中考总复习:圆的有关概念、性质与圆有关的位置关系--知识点整理及重点题型梳理](提高)

合集下载

圆中考 知识点总结

圆中考 知识点总结

圆中考知识点总结圆是中学数学中的一个重要知识点,在中考数学中起着重要的作用。

因此,掌握圆的相关知识对于中考数学是非常重要的。

本文将对中考数学中关于圆的知识点进行总结,帮助学生更好地复习和掌握圆的相关知识。

知识点总结一、基本概念1. 圆的定义:圆是由平面上距离一个确定点一定距离的点的全体组成的集合。

2. 圆的要素:圆心、半径、直径、弧、圆周。

3. 圆的性质:圆的直径是圆周的两倍,圆周上任意两点与圆心的距离相等。

二、圆的相关公式1. 圆的周长公式:C=2πr。

2. 圆的面积公式:S=πr²。

三、圆的相关定理1. 直径定理:直径所对应的两个锐角为直角。

2. 圆的切线定理:过圆外一点引圆的切线与过该点作圆的半径垂直。

3. 圆的切线与弦的性质:相交弦定理、弦切定理。

4. 圆的内切与外切定理:内切定理、外切定理。

四、圆的相关应用1. 圆的面积和周长的应用:计算圆的面积、周长和扇形面积等。

2. 圆的几何关系:切线与圆的位置关系、相交弦的性质等。

3. 圆的倒影与旋转:圆的旋转变换、圆的倒影变换。

五、解题技巧1. 熟练掌握圆的相关公式和定理,能够正确应用公式和定理解题。

2. 多做练习,培养解决问题的能力,提高解题技巧。

3. 注意细节,正确理解题目的意思和要求,避免因理解错误而导致错误答案。

六、经典例题1. 已知AB是∠O的平分线,且AC⊥BC,求证:AC=BC。

2. 已知AB与CD是两条相交的直径,P是与AB、CD相交的一点,求证:PA²+PB²=PC²+PD²。

3. 如图,ΔABC是等边三角形,M、N分别是BC、AB的中点,P为AM的垂足,若PA=2,则求BP的长。

4. 四通五达服装公司要在正方形草坪内竖立一些旗杆,使得每个旗杆都最多不见这块草坪中心的五分之一。

那么最多可以竖立几个旗杆?结语通过对圆的相关知识点进行总结,我们可以更好地掌握圆的相关概念、公式、定理和应用。

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。

中考圆知识点总结复习

中考圆知识点总结复习

中考圆知识点总结复习圆是数学中重要的基本概念之一,也是我们日常生活中经常遇到的形状。

在中考数学中,圆的知识点是不可避免的,掌握好圆的相关知识对于中考数学的考试至关重要。

本文将对中考数学中关于圆的知识点进行总结复习,希望对同学们的复习有所帮助。

一、圆的基本概念1. 圆的定义:在平面上的所有到一个固定点距离相等的点的集合,这个固定的点叫作圆心,这个相等的距离叫作圆的半径。

2. 直径、半径和周长的关系:圆的直径是通过圆心的两个相对的点之间的线段,它等于半径的两倍,周长等于直径的π倍或者半径的两倍π。

二、圆的性质1. 圆心角的性质:圆内切于同一弧上的两条弦所对圆心的两个角是相等的,当圆心角的度数是180°时,这两条弦构成的角是直角。

2. 圆周角的性质:位于圆的同一弧上的两条弦所对的圆周角相等。

3. 圆内接四边形的性质:圆内接四边形的对角和等于180°。

4. 弦长定理:圆内一条弦和它所对的两个圆周角的性质。

5. 弦切定理和切割定理:切割定理:切线与过切点作直径的两个弧所对的圆周角等于90°。

三、圆的相关计算1. 圆的周长和面积的计算公式:周长C=2πr面积S=πr²2. 圆的内、外接正多边形的周长和面积的计算四、圆的位置关系1. 圆的位置关系的判定:“点和圆的位置关系”、“直线和圆的位置关系”、“圆和圆的位置关系”。

五、圆的几何变换1. 圆的平移、旋转、对称的基本概念。

2. 圆的平移、旋转、对称的性质。

六、圆的应用.1. 圆的应用在实际生活和工作中运用。

2. 圆在建筑、设计、制图中的应用。

3. 圆的运动的应用。

七、典型例题解析1. 利用圆的数学知识解决问题的方法。

2. 典型例题的解题思路和方法。

3. 典型例题的解题技巧和技巧。

八、练习题1. 适当安排时间,每天复习一定的题目,加深对知识点的理解和掌握。

2. 定期进行模拟考试,检测自己对圆的知识点的掌握情况。

3. 及时总结巩固,弥补知识点的不足。

九年级数学圆形知识点归纳

九年级数学圆形知识点归纳

九年级数学圆形知识点归纳九年级数学学习中,我们接触到了许多有关圆形的知识。

本文将对这些知识进行归纳总结,以便更好地了解和掌握圆形的特性和运用。

一、圆的定义和性质圆是由平面上与一个固定点的距离相等的所有点组成的图形,这个固定点称为圆心,距离称为半径。

圆的性质有以下几个要点:1. 圆上的任意点与圆心的距离都相等。

2. 圆的直径是两个任意点在圆上连线的最长线段,它的长度是圆的半径的两倍。

3. 圆的弧是两个点在圆上连线所得到的曲线部分。

4. 圆心角是以圆心为顶点的角,它的度数等于所对的弧所在圆周的度数。

二、圆的计算公式在解决圆的相关问题时,我们需要运用一些计算公式。

以下是常见的圆的计算公式:1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π取近似值3.14。

2. 圆的面积公式:S = πr²,其中S表示圆的面积。

三、圆的相关定理1. 同圆弧所对的圆心角相等。

2. 等弧所对的圆心角相等。

3. 在同一个圆或等圆中,圆心角大的所对的弧也大,圆心角小的所对的弧也小。

4. 在同一个圆或等圆中,与同一弧相交的弦所对的圆心角相等。

四、切线和切点的性质1. 切线是与圆只有一个交点的直线。

2. 在切点处,切线垂直于半径。

3. 半径和切线之间的夹角是直角。

五、圆锥和圆柱体1. 圆锥是以一个圆为底面,上方以一个顶点为端点的三维图形。

2. 圆柱体是以一个圆为底面,上下底面平行且等大小的三维图形。

六、几何图形的应用在生活中,我们经常会遇到一些与圆相关的几何图形。

以下是一些常见的应用场景:1. 钟表:钟表的表盘就是一个圆形,指针所指的位置是圆上的点。

2. 气球:气球形状都是圆形,用圆的表面面积计算气球的充气量。

3. 轮胎:轮胎是车辆底盘的重要组成部分,轮胎的结构和运动都与圆形有关。

通过对九年级数学圆形知识点的归纳总结,我们对圆形的定义、性质、计算公式、相关定理,以及在几何图形应用中的实际场景有了更深入的理解。

初三关于圆的知识点归纳

初三关于圆的知识点归纳

初三关于圆的知识点归纳在初中数学中,圆是一个非常重要的知识点,不仅作为基础知识贯穿于整个学习过程中,而且其涉及到了很多高中数学中深入探讨的概念和定理。

本文将对初三生涯中需要学习的圆的知识点进行归纳总结,希望对广大初三学生有所帮助。

一、基本概念1. 圆:平面上与一个确定点距离相等的所有点的集合称为圆,这个确定点称为圆心,所有在圆上的点与圆心之间的距离称为半径。

圆的表示方法是圆心坐标与半径。

2. 圆周:圆的周长称为圆周。

常用符号:C = 2πr 或C=πd3. 弧:由圆上的两个点所确定的一段圆弧,可以表示为 AB 或AOB(A、B为圆上两点,O为圆心)。

弧的度数可用弧所对圆心角的度数表示。

4. 弦:两个在圆上且不在圆直径上的点,可以用线段AB表示,这个线段称为圆的弦。

5. 直径:圆上经过圆心的一条线段,称为圆的直径。

直径的关系式:d = 2r。

二、圆的性质1. 圆心角:以圆心为顶点,圆弧所对的角,称为圆心角。

圆心角的度数等于其所对圆弧的度数。

圆心角的大小与圆弧的大小相等。

2. 弧长公式:圆弧长度L=α/360°×πd 或L=α/360°×2πr。

(α为圆心角的度数)3. 弦长公式:弦长L=2r*sin(θ/2)。

(θ为弦对应圆心角的度数)4. 切线定理:圆上的任意一点,与这个点的切线垂直。

同时,切线所在的直线与半径所在直线的夹角等于被切割弦所对应的圆心角的度数的一半。

三、圆的位置关系1. 判定两圆相交:两圆相交,当且仅当两圆的半径之和大于等于两圆心之间的距离。

2. 切线定理:过外部一点切圆的切线只有唯一的一个。

3. 相交弦定理:两个相交于圆上的弦交于圆的内部的点,两条弦对应的弧的和等于圆周角的度数。

四、圆与三角形的关系1. 正多边形外接圆半径公式:正n边形的外接圆半径R=a/2sin(180°/n) (其中a为正n边形的边长)2. 等腰三角形的特殊点:(1)等腰三角形的高线、垂直平分线和中位线三线交于同一点,称为等腰三角形的垂心,垂心到三角形三顶点的距离相等。

中考圆形知识点总结归纳

中考圆形知识点总结归纳

中考圆形知识点总结归纳一、圆的定义及性质1. 定义:圆是平面上到一个定点的距离等于定长的点的全体构成的集合。

2. 圆心和半径:圆心是到圆上任一点的距离相等的点;半径是圆心到圆上任一点的距离。

3. 直径:通过圆心并且有圆上两点的线段叫做直径,直径的长度等于两倍的半径。

4. 切线和切点:在圆上的一点处与圆相切的直线叫做切线,切线与圆相切的点叫做切点。

二、圆的周长和面积1. 周长:圆的周长等于直径乘以π(π≈3.14)。

2. 面积:圆的面积等于半径的平方乘以π。

三、角与弧1. 圆心角与弧长的关系:圆心角的度数等于对应圆周的弧长所对应的圆心角的两倍。

2. 弧长的计算:弧长等于圆周长乘以所含圆心角的度数除以360度。

3. 弧度制:1弧度等于半径长所对应的圆心角的弧长。

4. 弧长与扇形面积的计算:扇形面积等于扇形对应的圆心角的弧度除以2π乘以圆的面积。

四、相交圆的位置关系1. 相交圆的位置关系:两个圆相交于两个不同的点,一个点,或者不相交。

2. 内切和外切圆:两个圆内切的位置关系就是一个圆在另一个圆内部,一个圆与另一个圆外切的位置关系就是一个圆的周长与另一个圆的圆心的距离相等。

五、圆的应用1. 圆的模型:圆在自然界中有丰富的应用,例如铁路辙、车轮、橱柜的拉手等都是圆形的。

2. 饼图:根据数据用圆形图示数据的比例和百分比,通过饼图可以直观的看出不同部分所占的比例。

综上所述,圆形是数学中重要的基本图形之一,在日常生活和工作中都有着广泛的应用,掌握圆形的基本概念和性质对于学习和生活都是非常有帮助的。

希望大家能够认真学习圆形知识,掌握相关的计算方法,提高自己的数学能力。

中考圆形知识点总结归纳

中考圆形知识点总结归纳

中考圆形知识点总结归纳圆形是中学数学中一个重要的几何概念,在中考中也是一个常见的考点。

本文将对中考中涉及到的圆形知识进行总结和归纳,帮助考生复习和掌握这一部分内容。

一、圆的基本概念圆是由平面上任意一点到另一点的距离都相等的点的集合。

其中,距离相等的这个固定值称为圆的半径,用字母r表示。

圆心是圆上任意两点的连线的垂直平分线的交点。

二、圆的性质1. 圆上任意两点之间的距离都等于圆的半径。

2. 圆心角的度数等于它所对的弧的度数,且圆心角所对的弧长等于圆的半径乘以圆心角的弧度值。

3. 相等弧所对的圆心角是相等的。

4. 圆的内切正多边形的中心与圆心重合。

三、弧1. 圆周角:圆周角是指以圆心为顶点的角,它的两边是相交于圆上的两条弧。

圆周角的度数等于它所对的弧的度数。

2. 弦:圆内部连接两点的线段称为弦。

弦分割出的两条弧叫做弦所对的弧。

3. 弧长:指圆上的一段弧所对应的圆周长度。

弧长等于圆心角的弧度值乘以圆的半径。

四、相交弦与切线的性质1. 相交弦定理:相交弦所对的弧相等,或者说两个相交弦所对应的圆心角相等。

2. 切线的性质:切线与半径的垂直分割线。

切线于半径的交点处所对应的圆心角为直角。

五、圆的面积和周长1. 圆的面积公式:S = πr²,其中S为圆的面积,r为圆的半径,π取近似值3.14。

2. 圆的周长公式:C = 2πr,其中C为圆的周长。

六、圆的应用1. 圆的切线与圆的性质:切线与切点间的弦相等,切线切割出的小圆与大圆相似。

2. 弧长与扇形面积:扇形面积等于扇形所对的圆心角的弧长所占整个圆的比例乘以圆的面积。

总结:通过对中考圆形知识点的总结和归纳,我们可以看到,圆形在中考中的考点比较多,涉及到圆的基本概念、性质、弧、相交弦与切线的性质、面积和周长以及应用等方面的内容。

对于考生而言,要牢固掌握圆的基本概念和性质,熟练运用相关公式和定理,灵活应用于解题过程中。

只有通过不断的实践和练习,才能在考试中熟练运用所学的圆形知识,取得好的成绩。

中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(基础)责编:常春芳【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点二、与圆有关的位置关系 1.点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:点P 在圆外⇔d >r ; 点P 在圆上⇔d =r ; 点P 在圆内⇔d <r . 要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A 、B 的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点. ②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解. ④“R-r ”时,要特别注意,R >r .【典型例题】类型一、圆的性质及垂径定理的应用【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题1】1.已知:如图所示,在⊙O 中,弦AB 的中点为C ,过点C 的半径为OD .(1)若AB =OC =1,求CD 的长; (2)若半径OD =R ,∠AOB =120°,求CD 的长.【思路点拨】如图所示,一般的,若∠AOB =2n °,OD ⊥AB 于C ,OA =R ,OC =h ,则AB =2R ·sin n °=2n ·tan n °=CD =R -h ;AD 的长180n Rπ=. 【答案与解析】解:∵半径OD 经过弦AB 的中点C , ∴半径OD ⊥AB .(1)∵AB=AC=BC∵OC=1,由勾股定理得OA=2.∴CD=OD-OC=OA-OC=1,即CD=1.(2)∵OD⊥AB,OA=OB,∴∠AOD=∠BOD.∴∠AOB=120°,∴∠AOC=60°.∵OC=OA·cos∠AOC=OA·cos60°=12 R,∴1122CD OD OC R R R =-=-=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.举一反三:【变式】在足球比赛场上,甲、乙两名队员互相配合向对方球门进攻,当甲带球冲到A点时,乙已跟随冲到B点(如图所示),此时甲是自己直接射门好还是迅速将球回传给乙,让乙射门好呢?(不考虑其他因素)【答案】解:过M、N、B三点作圆,显然A点在圆外,设MA交圆于C,则∠MAN<∠MCN.而∠MCN=∠MBN,∴∠MAN<∠MBN.因此在B点射门较好.即甲应迅速将球回传给乙,让乙射门.2.(2015•大庆模拟)已知AB是⊙O的直径,C是圆周上的动点,P是弧AC的中点.(1)如图1,求证:OP∥BC;(2)如图2,PC交AB于D,当△ODC是等腰三角形时,求∠A的度数.【思路点拨】(1)连结AC,延长PO交AC于H,如图1,由P是弧AC的中点,根据垂径定理得PH⊥AC,再根据圆周角定理,由AB是⊙O的直径得∠ACB=90°,然后根据OP∥BC;(2)如图2,根据圆心角、弧、弦的关系,以及三角形内角和等推论证来求得∠A的度数.【答案与解析】(1)证明:连结AC,延长PO交AC于H,如图1,∵P是弧AB的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC;(2)解:如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°,当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=()°,即∠PAO=()°.综上所述,∠A的度数为36°或()°.【总结升华】本题考查了圆周角定理及其推论同时考查了等腰三角形的性质、垂径定理和三角形内角和定理.举一反三:【变式】(2015•温州模拟)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.【答案】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的角平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,∴BE=13﹣AC=13﹣5=8;(2)由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==,根据AD是△ACD外接圆直径,∴△ACD外接圆的半径为:×=.类型二、圆的切线判定与性质的应用3.如图所示,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC与⊙O相切.【思路点拨】AC与⊙O有无公共点在已知条件中没有说明,因此只能过点O向AC作垂线段OE,长等于⊙O的半径,则垂足E必在⊙O上,从而AC与⊙O相切.【答案与解析】证明:连接OD,作OE⊥AC,垂足为E,连结OA.∵AB与⊙O相切于点D,∴OD⊥AB.∵AB=AC,OB=OC,∴∠1=∠2,∴OE=OD.∵OD为⊙O半径,∴AC与⊙O相切.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.求△ABC的内切圆的半径.【答案】解:设△ABC的内切圆与三边的切点分别为D、E、F,根据切线长定理可得:AE =AF ,BF =BD ,CD =CE ,而AE+CE =b ,CD+BD =a ,AF+BF =c , 可求2a b cCE +-=. 连接OE 、OD ,易证OE =CE .即直角三角形的内切圆半径2a b cr +-=.4.如图所示,已知:△ABC 内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,∠D =30°. (1)求证:AD 是⊙O 的切线; (2)若AC =6,求AD 的长.【思路点拨】(1)连接OA ,根据圆周角定理求出∠O 的度数,根据三角形的内角和定理求出∠OAD ,根据切线的判定推出即可;(2)得出等边三角形AOC ,求出OA ,根据勾股定理求出AD 的长即可. 【答案与解析】(1)证明:连接OA ,∵1sin 2B =,∴∠B =30°. ∵∠AOC =2∠B ,∴∠AOC =60°. ∵∠D =30°,∴∠OAD =180°-∠D -∠AOD =90°. ∴AD 是⊙O 的切线.(2)解:∵OA =OC ,∠AOC =60°,∴△AOC是等边三角形,∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=【总结升华】证明直线是圆的切线的方法:①有半径,证垂直;②有垂直,证半径.举一反三:【变式】如图所示,半径OA⊥OB,P是OB延长线上一点,PA交⊙O于D,过D作⊙O的切线交PO于C 点,求证:PC=CD.【答案】证明:连接OD.∵CE切⊙O于D,∴OD⊥CE.∴∠2+∠3=90°.∵OA⊥OB,∴∠P+∠A=90°.∵OD=OA,∴∠3=∠A..∴∠P=∠2.又∵∠1=∠2,∴∠P=∠1.∴PC=CD.类型三、切线的性质与等腰三角形、勾股定理综合运用5.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC 的平分线交AC于点D,求∠CDP的度数.【思路点拨】连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【答案与解析】解:连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°.【总结升华】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于做好辅助线构建直角三角形,求证∠CPD+∠DPA+∠A+∠ACO=90°,即可求出∠CDP=45°.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题3】6.如图所示,AB是⊙O的直径,AF是⊙O的弦,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若DE=4,sinC=35,求AE的长.【思路点拨】构造半径、半弦、弦心距的直角三角形.【答案与解析】解:(1)证明:连接OE,BF,交于点G,则BF⊥AF,BF∥CD.∵OA=OE,∴∠OAE=∠OEA.∵∠OAE=∠FAE,∴∠OEA=∠FAE.∴OE∥AF,∵AF⊥DE,∴OE⊥CD.∴CD为⊙O的切线.(2)解:∵ BF∥DE,OE∥AF,∠D=90°,∴四边形DEGF为矩形.∴BF=2GF=2DE=8.∵BF∥CD,∴∠C=∠ABF.可求得OA=OB=5,OG=3.∴DF=EG=2,AF=AB·sinC=6.∴AD=8,AE=【总结升华】(1)通过挖掘图形的性质,将分散的条件sinC=35,DE=4,集中到一个直角三角形中,使问题最终得到解决;(2)本题第(2)问还可以适当改变后进行变式训练,如改为:若DF=2,sinC=35,求AE的长;(3)第(2)问还可以过O作OM⊥AF于M后得OM=DE=4,sin∠AOM=sinC=35加以解决.。

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。

初三数学圆知识点归纳

初三数学圆知识点归纳

初三数学圆知识点归纳数学是一门理科学科,也是一门需要不断探索和实践的学科。

在初中数学中,圆是一个重要的几何图形,它具有许多特殊性质和应用。

掌握好圆的知识点,将有助于我们更好地理解几何学的基本原理和应用于实际生活中的问题。

本文将对初三数学圆知识点进行归纳总结。

1. 圆的性质圆是由一个固定点到平面上所有距离相等的点组成的图形。

圆的性质有:- 圆心:圆内任意两点与圆心的距离相等。

- 半径:圆心到圆上任意一点的距离称为半径。

- 直径:通过圆心的一条线段,两个端点都在圆上,称为直径。

直径是圆的最长线段,它的长度等于圆的直径的两倍。

- 弦:在圆上任意选取两点,它们之间的线段称为弦。

- 弧:在圆上两点之间的一段曲线称为弧。

- 弧长:弧上的一段长度称为弧长。

圆的周长就是圆的一整个弧的长度,公式为C = 2πr。

其中,C表示圆的周长,r表示圆的半径,π是一个数学常数,约等于3.14。

2. 圆的元素与关系- 圆心角:由两条半径所夹的角叫做圆心角。

圆心角的角度是圆心所对的弧所占整个圆的弧长的比例。

- 弧度:用半径为1的圆的弧长所对应的角度叫做1弧度(1 rad)。

- 弧度制与度制的换算关系:360° = 2π rad,180° = π rad。

- 同弧度的圆心角相等,同圆心角的弧长成比例。

- 弦切线关系:当一条弦的两个端点与切线的交点重合时,这条弦称为切线所对应的弦。

圆心角是直径所对应的切线所对应的弦的两倍。

3. 圆的位置关系- 相交: 两个圆的交点不为空,称为相交。

- 相切: 两个圆只有一个交点,称为相切。

- 相离: 两个圆没有公共的交点,称为相离。

4. 圆与直线的关系- 切线: 若一条直线与圆只有一个交点,且交点在圆的外部,那么这条直线称为圆的切线。

- 弦: 若一条直线有两个交点分别在圆的内部和外部,那么这条直线称为圆的弦。

- 垂直与切线的直径: 过圆切点的直径垂直于切线。

5. 圆的构造- 构造圆心: 已知圆上一点,可以通过画弦、垂直平分线、等分弧等方法构造出圆心。

圆九年级圆知识点归纳

圆九年级圆知识点归纳

圆九年级圆知识点归纳圆是数学中的一个重要概念,在九年级的数学课程中也是必修的内容之一。

本文将主要介绍九年级数学中关于圆的知识点,包括圆的基本概念、圆的性质以及与圆相关的一些定理和公式。

1. 圆的基本概念:圆是平面上所有与一个固定点距离相等的点的集合。

这个固定点称为圆心,用O表示。

而与圆心距离相等的距离称为半径,用r 表示。

圆的边界称为圆周,圆周上的任意一点与圆心的连线称为半径。

2. 圆的性质:(1)圆的直径是通过圆心的两个点之间的线段,它的长度等于圆的半径的两倍。

(2)圆的周长是圆周的长度,用C表示。

根据定义,圆周的长度等于半径乘以2π(π是一个常数,约等于3.14),即C = 2πr。

(3)圆的面积是圆内部的所有点组成的区域,用A表示。

圆的面积公式为A = πr²。

3. 圆的相关定理和公式:(1)弧长定理:一个圆周的弧长可以表示为θ/360°乘以圆的周长。

其中,θ是对应的圆心角的度数。

(2)圆心角定理:一个圆心角的度数等于它所对应的弧长的长度除以圆的半径。

(3)切线定理:如果一条直线与圆相切,那么这条直线与圆的半径的斜率相乘的结果等于-1。

(4)切线长定理:从切点到切线外一点的线段与切线相切,这条线段的长度等于这个切点与圆心连线的长度。

4. 圆的应用:圆在日常生活和工程中有着广泛的应用。

例如,轮子和齿轮就是圆的应用之一。

轮子的圆形设计可以减小与地面的摩擦力,使车辆行驶更顺畅。

齿轮是机械设备中的传动部件,由多个圆形齿突出,通过齿与齿之间的啮合来实现动力传递。

总结:通过对九年级数学中与圆相关的知识点的归纳和梳理,我们可以更好地理解和应用这些概念、定理和公式。

圆作为几何学中的一个基础概念,无论是在数学学科中还是在实际中都有着重要的作用。

希望通过学习和掌握这些知识,能够对九年级的数学学习有所帮助。

九年级常考的圆知识点总结

九年级常考的圆知识点总结

九年级常考的圆知识点总结圆是我们九年级数学中的一个重要知识点,也是经常出现在考试中的内容。

本文将对九年级常考的圆知识点进行总结和归纳,希望能够帮助同学们更好地理解和掌握这些知识。

一、圆的定义和性质圆是平面内所有与一个确定点距离相等的点构成的集合。

其中,确定的点称为圆心,相等的距离称为半径。

圆的性质有很多,包括以下几个重要的方面:1. 圆上任意两点与圆心的距离相等;2. 圆的直径是圆上任意两点的最大距离;3. 圆的半径垂直于切线;4. 圆的切线与半径的交角是直角;5. 圆的内接四边形的两对对边和相等。

二、圆的基本要素和计算1. 弧度制和度度量制弧度制是一种角度的计量单位,它是以圆的半径长的弧所对的圆心角来定义的。

与之相对的是度度量制,在度度量制中,一个圆被划分成360个度。

在解决圆的相关问题时,我们需要根据具体情况选择使用弧度制还是度度量制。

2. 圆的弧长和扇形面积当我们需要计算圆上两点之间的弧长时,可以使用下列公式进行计算:L = rθ,其中L表示弧长,r表示圆的半径,θ表示弧所对的圆心角的度数或弧度数。

而当我们需要计算一个扇形的面积时,可以使用下列公式:S = 0.5r²θ,其中S表示扇形的面积,r表示圆的半径,θ表示扇形所对的圆心角的度数或弧度数。

三、圆的位置关系和相交性质1. 相离和相切当两个圆没有任何交点时,我们称它们为相离的;当两个圆只有一个公共切点时,我们称它们为相切的。

2. 相交和内切当两个圆有两个交点时,我们称它们为相交的;当一个圆完全包含在另一个圆内部,并且两个圆的圆心重合时,我们称它们为内切的。

四、圆的切线和切点1. 切线的性质圆的切线与半径的交角是直角,这是一个重要的性质。

同时,切线与半径的长度相等。

2. 切点的坐标计算当我们知道切线的方程和圆的方程时,可以通过联立两个方程来求解切点的坐标。

五、圆的证明问题圆的证明问题是考察同学们对圆性质的理解和运用能力的重要环节。

初三圆的知识点归纳总结

初三圆的知识点归纳总结

初三圆的知识点归纳总结圆是初中数学中一个重要的几何概念,它涉及到的知识点较多。

下面将对初三圆的知识点进行归纳总结,以便于读者更好地理解和掌握。

1. 圆的定义与性质圆是平面上的一条曲线,其上的任意两点到圆心的距离相等。

圆由无数点组成,其中最重要的是圆心和半径。

- 圆心:圆上所有点到圆心的距离相等,通常用字母O表示。

- 半径:连接圆心和圆上任意一点的线段,通常用字母r表示。

2. 相关公式与计算圆的周长和面积是初三学习中需要重点掌握的计算公式。

- 圆的周长公式:C = 2πr,其中π取近似值3.14,r为半径。

- 圆的面积公式:S = πr²,其中π取近似值3.14,r为半径。

3. 弧与弦圆上的弧是圆上两点之间的曲线段,弧由圆心角所确定。

圆上任意两点之间的线段称为弦。

- 弧长:弧长可以通过圆心角与圆的周长的比例来计算,通常用字母l表示。

l = (θ/360) × 2πr,其中θ为圆心角的度数。

- 弦长:弦长可以通过半径和圆心角来计算,通常用字母s表示。

s = 2r × sin(θ/2),其中θ为圆心角的度数。

4. 切线与切点在圆上,过圆上一点的直线称为切线,该点称为切点。

圆的切线与半径的关系如下:- 切线与半径的垂直关系:切线与通过切点的半径垂直相交。

- 切线的长度:切线的长度可以通过直角三角形的定理计算。

假设切点坐标为(x₀, y₀),半径为r,则切线长为L = √(x₀² +y₀²)。

5. 弧度制与角度制圆的度量可以用角度制和弧度制来表示。

- 角度制:一个圆的360°被等分为若干个小部分,每个小部分被称为1度(1°)。

- 弧度制:一个圆的一周对应的弧长为2π,定义为2π弧度(2π rad),因此1弧度约等于57.3°。

6. 圆的其他性质- 在同一个圆上,相等弧所对圆心角相等,圆心角相等则所对弧相等。

- 在同一个圆上,位于圆上的两条弦相等,则其所对的圆心角相等。

中考圆知识点归纳总结

中考圆知识点归纳总结

中考圆知识点归纳总结中考圆是初中数学中非常重要的一个知识点,也是数学的基础。

掌握了中考圆的相关知识,不仅对于进一步学习数学有很大的帮助,也对于解决实际问题有很大的应用价值。

下面将对中考圆的知识点进行归纳总结,希望能够帮助大家更好地掌握这一部分内容。

1. 圆的基本概念圆是平面上距离一个固定点一定距离的点的集合,这个固定点叫做圆心,这个固定距离叫做半径。

圆通常用字母 O 表示圆心,用字母 r 表示圆的半径。

圆上的任一点到圆心的距离都等于半径,这一点是圆的重要性质之一。

2. 圆的相关线段在圆周上取两点 A、B,连接这两点和圆心 O,得到三条线段,分别是弧 AB、弦 AB 和半径 OB。

弧 AB 是连通 A、B 两点的曲线部分,弦 AB 是圆上连接 A、B 两点的线段,半径OB 是以 O 为端点的一段线段。

圆有很多重要的线段长度关系定理,比如:弦长定理、弦切定理、弦心定理等。

3. 圆的面积和周长圆的周长和面积是圆的重要特征。

圆的周长又叫做圆周长或者圆的周长,通常用字母 C 或者 P 表示,圆周长的计算公式是C=2πr,其中 r 表示圆的半径,π 是一个数学常数,约等于3.14。

圆的面积通常用 S 表示,圆的面积计算公式是S=πr²。

4. 圆中角的度量圆上的角分为圆心角、弧对应角和弦对应角。

圆心角的度数等于它所对的圆弧的度数,弧对应角和弦对应角的度数相等。

圆心角、弧对应角和弦对应角之间有很多重要的关系,比如角度的计算,叠加与相交的等。

5. 圆的切线和切点在圆上一个点处的切线是与这个点的切线有且只有一个交点的直线。

圆上的切线长相等。

切点是与切线有且只有一个公共点的圆上的点。

圆的切线和切点有很多重要的定理,比如切线与半径垂直定理等。

中考圆的知识点比较基础但非常重要,掌握了这些知识对于学生进一步学习数学有很大的帮助。

希望同学们多加练习和实践,加强对中考圆知识点的理解和掌握,提高数学的应用能力。

初三-数学-圆的常见考点

初三-数学-圆的常见考点

圆的常见考点考点1:圆的有关概念和性质一、考点讲解:1.圆的圆的有关概念:(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点为圆心,定长为半径.(2)圆心角:顶点在圆心的角叫做圆心角.(3)圆周角:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(5)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2.圆的有关性质:(1)圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.3.三角形的内心和外心(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.(3)三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心二、经典例题剖析:【例题1-1】如图1-3-l,在⊙O中,已知∠ACB=∠CDB=60○,AC=3,则△ABC的周长是____________.【例题1-2】如图1-3-2,在⊙O中,弦AB=1.8cm,圆周角∠ACB=30○,则⊙O的直径等于=_________cm.三、针对性训练:1.如图l-3-3,MN所在的直线垂直平分弦AB,利用这样的工具最少使用__________次,就可找到圆形工件的圆心.2.如图1-3-4,A、B、C是⊙O上三个点,当BC平分∠ABO时,能得出结论_______(任写一个).3.在△ABC 中,∠A=62°,点I 是外接圆圆心,则∠BIC=___________4.下列命题正确的是()A .相等的圆心角所对的弦相等B .等弦所对的弧相等C .等弧所对的弦相等D .垂直于弦的直线平分弦5.“圆材埋壁”是我国古代《九章算术》中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图1-3-5,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB=10寸,则直径CD 的长为()A .12.5寸B .13寸C .25寸D .26寸6.如图1-3-6,已知AB 是半圆O 的直径,弦AD 和BC 相交于点P ,那么CD AB等于() A .sin ∠BPDB .cos ∠BPDC .tan ∠BPDD .cot ∠BPD7.⊙O 的半径是5,AB 、CD 为⊙O 的两条弦,且AB ∥CD ,AB=6,CD=8,求AB 与CD 之间的距离.8.在半径为1的圆中,弦AB 、AC,则∠BAC 的度数为多少?考点2:与圆有关的角一、考点讲解:1.圆心角:顶点在圆心的角叫圆心角.圆心角的度数等于它所对的弧的度数.2.圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角.圆周角的度数等于它所对的弧的度数的一半.3.圆心角与圆周角的关系.同圆或等圆中,同弧或等弧所对的圆周角等于它所对的国心角的一半.4.弦切角:圆的切线与圆的弦组成的顶点在圆上的角.弦切角的度数等于它所夹得弧的度数的一半.弦切角的度数等于它所夹的弧所对的圆周角.5.圆内接四边形顶点都在国上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.二、经典例题剖析:【例题2-1】如图1-3-7,A、B、C是⊙O上的三点,∠BAC=30°则∠BOC的大小是()A.60○B.45○C.30○D.15○【例题2-2】如图1-3-8,PA、PB是⊙O的切线,切点分别为A、B,点C 在⊙O上.如果∠P=50○,那么∠ACB等于()A.40○B.50○C.65○D.130○三、针对性训练:1.如图1-3-9,已知AB 是⊙O 的直径,AD ∥OC,∠ADB 的度数为80°,则∠BOC=_________.2.如图1-3-10,⊙O 内接四边形ABCD 中,AB=CD 则图中和∠1相等的角有______3.如图1-3-l ,弦AB 的长等于⊙O 的半径,点C 在上,则∠C 的度数是________-.4.如图l -3-12,四边形ABCD 内接于⊙O ,若∠BOD=100°,则∠DAB 的度数为()A .50°B .80°C .100°D .130°5.如图1-3-13是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则∠A+∠B+∠C+∠D+∠E 的度数是()A .180°B .150°C .135°D .120°6.如图1-3-14所示,直线AB 交圆于点A ,B ,点M 的圆上,点P 在圆外,且点M ,P 在AB 的同侧,∠AMB=50°.设∠APB=x °,当点P 移动时,求x 的变化范围,并说明理由.考点3:点与圆,直线与圆的位置关系一、考点讲解:1.点和圆的位置关系有三种:点在圆外,点在圆上,点在圆内,设圆的半AMB径为r ,点到圆心的距离为d ,则点在圆外d >r .点在圆上d=r .点在圆内d <r .2.直线和圆的位置关系有三种:相交、相切、相高.设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交d <r ,直线与圆相切d=r ,直线与圆相离d >r二、经典例题剖析【例题3-1】Rt △ABC 中,∠C=90°,∠AC=3cm ,BC =4cm ,给出下列三个结论:①以点C 为圆心1.3cm 长为半径的圆与AB 相离;②以点C 为圆心,2.4cm 长为半径的圆与AB 相切;③以点C 为圆心,2.5cm 长为半径的圆与AB 相交.上述结论中正确的个数是()A .0个B .l 个C .2个D .3个【例题3-2】已知半径为3cm ,4cm 的两圆外切,那么半径为6cm 且与这两圆都外切的圆共有______个.三、针对性训练:1.两个同心圆的半径分别为1cm 和2cm ,大圆的弦AB 与小圆相切,那么AB=()A . 3B .2 3C .3D .42.在△ABC 中,∠C=90°,AC=3cm ,BC=4cm ,CM 是中线,以C 为圆心,以3cm 长为半径画圆,则对A 、B 、C 、M 四点,在圆外的有_________,在圆上的有________,在圆内的有________.考点4:圆与圆的位置关系一、考点讲解:⇔⇔⇔⇔⇔⇔1.同一平面内两圆的位置关系:(1)相离.如果两个圆所包含的区域没有公共部分,那么就说这两个圆相离.(2)内含:如果一个圆在另外一个圆的里面,那么就说这两个圆内含。

中考圆知识点总结

中考圆知识点总结

中考圆知识点总结中考的数学试题覆盖了诸多数学知识点,其中圆相关的内容占了重要地位,是中考数学考试中的难点之一。

掌握了圆的相关知识点,不仅可以在考试中取得好成绩,同时也对日常生活中的数学问题有所帮助。

下面将对中考圆的知识点进行总结和归纳。

一、圆的基本概念圆是平面上到定点距离小于等于定长的点的集合,这个定点叫做圆心,这个定长叫做圆的半径。

圆的直径是圆上任意两点的最长距离,圆的直径恰好是圆的半径的二倍。

圆的面积公式为S=πr²,其中r表示圆的半径。

圆的周长公式为L=2πr,同样r表示圆的半径。

二、圆相关的几何定理1. 直径定理:在同一个圆或等圆的两个弦等长,则它们所对的圆心角相等,且所对圆弧的长度相等。

2. 圆心角定理:同弧的两个内角相等,同弦的两个角相等。

3. 弧长定理:同弧的弧长与所对圆心角的大小成正比。

4. 弧的关系定理:弧长和圆心角的关系,相等角对的弧相等,圆心角相等的弧相等。

5. 弧与弦的关系:相等的圆心角所对的弦相等,弦等于半径的弦、垂直与直径的弦等于相等弦。

6. 正弦定理、余弦定理:一般所涉及到的较少,不是本考纲的重点内容。

三、圆的位置关系1. 两圆相交的位置关系:相离、内切、相交、外切2. 圆内接四边形:矩形、菱形、平行四边形、正方形3. 角平分线与弦的关系四、圆的相交与切线关系1. 圆的切线:圆上任何一点的切线只有一条2. 切线定理:切线与半径的夹角是直角3. 切线长度定理:切线外的弦等于切线两条线段的和4. 弦上的圆角:弦上的两个圆角是相等的五、圆的证明题1. 利用圆的性质证明几何定理2. 利用等角、相似证明题3. 利用直线、圆的位置关系证明题4. 利用圆与三角形的关系证明题以上是中考圆的知识点总结,掌握了这些知识,可以更好地应对中考数学试题中的圆相关问题。

希望同学们能够认真学习,多练习,相信在考试中一定能取得好成绩。

初三数学总复习圆

初三数学总复习圆

初三数学总复习圆的有关概念和性质【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.④三角形的内心和外心ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。

圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。

圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(4)圆内接四边形:顶点都在国上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.【课前练习】1.如图,A、B、C是⊙O上的三点,∠BAC=30°则∠BOC的大小是()A.60○B.45○ C.30○D.15○2.如图,C是⊙O上一点,O是圆心.若∠AOB=50°,则∠C的度数为()A.35○B.50○ C.105○D.150○3.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()A.180° B.15 0° C.135° D.120°4.如图,PA、PB是⊙O的切线,切点分别为A 、B,点C在⊙O上.如果∠P=50○,那么∠ACB等于()A.40○ B.50○ C.65○D.130○5.如图,在⊙O中,已知∠ACB=∠CDB=60○,AC=3,则△ABC的周长是_______6.“圆材埋壁”是我国古代《九章算术》中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸 B.13寸 C.25寸 D.26寸7.如图,在⊙O中,弦AB=1.8m,圆周角∠ACB=30○,则⊙O的直径等于_________cm.8.在半径为1的圆中,弦AB、AC则∠BAC的度数为9.如图,弦AB的长等于⊙O的半径,点C在AMB上,则∠C的度数是_______.10.如图,四边形 ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为()A.50° B.80° C.100° D.130°11.如图,四边形ABCD为⊙O的内接四边形,点E在CD的延长线上,如果∠BOD=120°,那么∠BCE等于()A.30° B.60° C.90° D.120°12.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4,求这个圆形截面的半径.B点与圆、直线与圆、圆与圆的位置关系【知识梳理】1.点与圆的位置关系:有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r,点到圆心的距离为d,则点在圆外⇔d>r.点在圆上⇔d=r.点在圆内⇔d<r.2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r,圆心到直线的距离为d,则直线与圆相交⇔d<r,直线与圆相切⇔d=r,直线与圆相离⇔d>r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d,两圆的半径分别为R和r,则①两圆外离⇔d>R+r;有4条公切线;②两圆外切⇔d=R+r;有3条公切线;③两圆相交⇔R-r<d<R+r(R>r)有2条公切线;④两圆内切⇔d=R-r(R>r)有1条公切线;⑤两圆内含⇔d<R—r(R>r)有0条公切线.(注意:两圆内含时,如果d为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点的直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.1.两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=()..3 D.4A2.已知⊙O1和⊙O2相外切,且圆心距为10cm,若⊙O1的半径为3cm,则⊙O2的半径 cm.3.两圆既不相交又不相切,半径分别为3和5,则两圆的圆心距d的取值范围是()A.d>8 B.0<d≤2C.2<d<8 D.0≤d<2或d>84.已知半径为3cm,4cm的两圆外切,那么半径为6cm且与这两圆都外切的圆共有___个.5.已知⊙O1和⊙O2的半径分别为3crn和5 cm,两圆的圆心距是6 cm,则这两圆的位置关系是()A.内含 B.外离 C.内切 D.相交6.如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=4,OA=3,则cos∠APO的值为()3344A B C D....45537.如图,已知PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC度数是()A.70° B.40° C.50° D.20°8.在△ABC中,∠C=90°,AC=3cm,BC=4cm,CM是中线,以C为圆心,以3cm长为半径画圆,则对A、B、C、M四点,在圆外的有_________,在圆上的有________,在圆内的有________.9.已知半径为3 cm,4cm的两圆外切,那么半径为6 cm且与这两圆都外切的圆共有_________个.10.已知两圆的半径分别为3 cm和4 cm,圆心距为1cm,那么两圆的位置关系是()A.相离 B.相交 C.内切 D.外切11.如图,A、B是⊙上的两点,AC是⊙O的切线,∠B=65○,则∠BAC等于()A.35○B.25○C.50○D.65○12.已知两圆的圆心距是3,两圆的半径分别是方程x2-3x+2=0的两个根,那么这两个圆的位置关系是()A.外离 B.外切 C.相交 D.内切13.如图,已知两同心圆,大圆的弦AB切小圆于M,若环形的面积为9π,求AB的长.14.如图,PA切⊙O于A,PB切⊙O于B,∠APB=90°,OP=4,求⊙O的半径.15.如图,△ABO中,OA= OB,以O为圆心的圆经过AB中点C,且分别交OA、OB于点E、F.(1)求证:AB是⊙O切线;(2)若△ABO腰上的高等于底边的一半,且AB=4 3 ,求ECF的长16.如图,CB、CD是⊙O的切线,切点分别为B、D,CD的延长线与⊙O的直径BE的延长线交于A点,连OC,ED.(1)探索OC与ED的位置关系,并加以证明;(2)若OD=4,CD=6,求tan∠ADE的值.CB17.如图,⊙O 的半径为1,过点A(2,0)的直线切⊙O 于点B,交y 轴于点C (1)求线段AB 的长(2)求以直线AC 为图象的一次函数的解析式18.如图,经过原点O 的⊙P 与、轴分别交于A 、B 两点,点C 是劣弧上一点,则∠ACB=( )A. 80°B. 90°C. 100°D. 无法确定 19.如图,AB 是⊙O 的弦,AC 是⊙Or 切线,A 为切点,BC 经过圆心. 若∠B=20°,则∠C 的大小等于( ) A .20° B .25° C . 40° D .50°20.如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB =( )A .30°B .35°C .45°D .60°21.如图A ,B ,C 是⊙O 上的三个点,若,则等于( )(A) 50°(B) 80°(C) 100° (D) 130°22.如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边 形OACB 为菱形,还需要添加一个条件,这个条件可以是( ) A 、AD =BD B 、OD =CD C 、∠CAD =∠CBD D 、∠OCA =∠OCB23.如图,AB 为⊙O 直径,已知为∠DCB=20o,则∠DBA 为( ) A 、 B 、C 、D 、第10题24.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不成立...的是( ) A .∠A ﹦∠D B .CE ﹦DE C .∠ACB ﹦90°D .CE ﹦BD 25. 如图,中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则☉C 的半径为( )(A )2.3 (B )2.4 (C )2.5 (D )2.626. 已知,是⊙O 的一条直径,延长至点,使,与⊙O 相切于点,若,则劣弧的长为 .27. 如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA , CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD.若∠ACD=30°, 则∠DBA 的大小是( )A .15°B .30°C .60°D .75°①已知Rt ⊿ABC 中,∠C=90°,AB=3,BC=4,⊿ABC 内切圆半径为 ②已知⊿ABC 中,°,AB=2,BC=3,AC=2,⊿ABC 内切圆半径为 28.已知圆锥的侧面积等于cm 2,母线长10cm ,则圆锥的高是 cm .29.一个圆锥的底面半径为1厘米,母线长为2厘米, 则该圆锥的侧面积是(结果保留π)。

中考圆的知识点总结

中考圆的知识点总结

中考圆的知识点总结中考数学中,圆是一个重要的几何图形,涉及的知识点较多。

在考试中,对圆的相关知识的理解和掌握是非常关键的。

本文将对中考数学中与圆有关的知识点进行总结和归纳,帮助考生理清思路,更好地备战中考数学。

1. 圆的定义圆是平面上到一个定点的距离等于定值的所有点构成的图形。

其中,定点叫做圆心,距离叫做半径。

2. 圆的性质(1)圆上任意两点之间的线段,叫做弧。

(2)圆的直径是圆上任意两点连线沿圆内部的最大距离,它的长度是半径的2倍。

(3)圆的周长是圆周上的所有点连成的折线的长度。

(4)圆内任意两点与圆心连线的夹角是等腰三角形的夹角。

3. 圆的相关公式(1)圆的周长公式:C = 2πr(其中,C表示周长,r表示半径,π取3.14)。

(2)圆的面积公式:A = πr²(其中,A表示面积)。

4. 圆的位置关系(1)相离:两个圆没有交点,且圆心之间的距离大于两个圆的半径之和。

(2)相切外切:两个圆有且仅有一个公共切点,且圆心之间的距离等于两个圆的半径之和。

(3)相交:两个圆有两个交点,且圆心之间的距离小于两个圆的半径之和。

(4)包含内切:一个圆完全包含另一个圆,且两个圆心之间的距离小于等于两个圆的半径之差。

5. 判定正方形和矩形的方法如果一个四边形的四个角都是直角,并且四条边的长度相等,就可以判定为正方形。

若四边形的对边相等且相邻边两两相等,则可以判定为矩形。

6. 圆锥的相关知识(1)圆锥的配准:当给出圆锥的高及底面的半径时,可以通过连接圆锥的顶点、底面圆心以及连接顶点和底面圆周上的一点构成一个直角三角形,从而确定圆锥的顶部的位置。

(2)圆锥的表面积公式:S = πr² + πrl(其中,S表示表面积,r 表示底面半径,l表示斜高)。

(3)圆锥的体积公式:V = 1/3πr²h(其中,V表示体积,r表示底面半径,h表示高)。

7. 圆柱的相关知识(1)圆柱的表面积公式:S = 2πrh + 2πr²(其中,S表示表面积,r表示底面半径,h表示高)。

中考压轴圆知识点总结

中考压轴圆知识点总结

中考压轴圆知识点总结中考数学是学生们的一大难题,而数学中颇具难度的数学圆知识点更是让许多学生头疼。

在中考中,圆的知识点占据了重要的地位,学生们需要认真复习和掌握这些知识点才能顺利通过考试。

下面我们就来总结一下中考数学圆的知识点,希望对大家有所帮助。

一、圆的基本概念1. 圆的定义:在平面上所有到圆心的距离都相等的点的集合称为圆。

圆用字母 O 表示。

2. 圆的元素:圆的圆心、半径和弧。

3. 直径、半径、弧长与圆的关系:直径是通过圆心的线段,它的长度等于两倍的半径;半径是从圆心到圆上任意一点的距离;弧长是指圆的一部分弧所对的圆周的长度。

4. 弧度制:一周角的度数为 360°,而一周角对应的弧长为圆周的长度,如果圆的周长为 L,那么一周角所对应的弧长的度数衡量单位是圆周的长度的一个弧长。

这就是弧的弧度制,以弧长等于半径的角叫做1弧度的那个角。

5. 圆内接与外接:内接四边形是指四边形的四个顶点都在圆上,外接四边形是指四边形的四个顶点都在圆的外切,在圆上。

6. 一个绕圆一周转的圆心角是360°(或2 π 弧度)。

这被称为一周角。

二、圆的相关定理1. 圆内切四边形定理:一个四边形是积形,当且仅当它的内部与外部不相交,并且内部的一个角是直角。

2. 圆的面积和周长计算公式:圆的面积公式A=πr^2 ;圆的周长公式C=2πr3. 圆周角的性质:一个绕圆一周转的圆心角是360°,我们也称这个角叫一周角。

4. 圆的切线定理:在过圆外一点做圆的切线,这条圆的切线和这个点到圆心的连线垂直。

5. 弧长与扇形面积关系:圆心角相等的两个弧所对的圆周相等,圆心角相等的两个扇形的面积与依次对应的弧长成正比。

6. 圆内角、弦长与弧长的关系:在一个圆上的两个弦所确定的两个弧,弦分数相等,它们所对应的圆心角相等。

7. 圆的内切关系和切线定理:8. 圆的位置关系定理:每一对不同圆,在共有的外部和内部至少有一个定位的情态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(提高)【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角). 考点二、与圆有关的位置关系 1.点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:点P 在圆外⇔d >r ; 点P 在圆上⇔d =r ; 点P 在圆内⇔d <r . 要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等. 要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径).3.圆和圆的位置关系 (1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点. ②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解. ④“R-r ”时,要特别注意,R >r .考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.【思路点拨】要用好60°角,构造直角三角形.在圆中常用的是作出弦的弦心距,由弦心距,半弦长及半径构成直角三角形.【答案与解析】解:过O作OM⊥BC于M,连接OC.在Rt△OPM中,∠OPC=60°,OP12 2OA==,∴PM=1,OM.在Rt△OMC中,BC=2MC==.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.2.如图所示,在⊙O中,弦AB与CD相交于点M,AD BC=,连接AC.(1)求证:△MAC是等腰三角形;(2)若AC为⊙O直径,求证:AC2=2AM·AB.【思路点拨】(1)证明∠MCA=∠MAC;(2)证明△AOM∽△ABC.【答案与解析】证明:(1) ∵AD CB=,∴∠MCA=∠MAC.∴△MAC 是等腰三角形.(2)连接OM .∵AC 为⊙O 直径,∴∠ABC =90°.∵△MAC 是等腰三角形,OA =OC , ∴MO ⊥AC .∴∠AOM =∠ABC =90°. ∵∠MAO =∠CAB ,∴△AOM ∽△ABC , ∴AO ABAM AC=,∴AO ·AC =AM ·AB , ∴AC 2=2AM ·AB . 【总结升华】本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中. 举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定 【答案】解:要比较AB 与2CD 的大小有两种思路. (1)把AB 的一半作出来,比较12AB 与CD 的大小; (2)把2CD 作出来,比较AB 与2CD 的大小.如图所示,作OE ⊥AB ,垂足为E ,交AB 于F .则AF BF =,且12AE AB =. ∵AB =2CD .∴AE =CD .在Rt △AFE 中,AF >AE =CD . ∴AF >CD .∴22AF CD >,即2AB CD >. 答案A.3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D . (1)求证:∠C =∠ABD ; (2)若BD =4.8,sinC =45,求⊙O 的半径.【思路点拨】过O 作OE ⊥AB 于E ,连接BO ,再由垂径定理及三角函数进行证明与求解. 【答案与解析】解法一:(1)过O 作OE ⊥AB 于E ,连接BO(如图所示),则12C BOA AOE ∠=∠=∠.又∵ BD ⊥AO ,∴∠ABD+∠BAD =90°.∵∠AOE+∠BAD =90°,∴∠ABD =∠AOE =∠C . (2)在Rt △ABD 中,sin ADABD AB∠=, ∴4sin 5AD C AB ==. 设AD =4k ,则AB =5k ,BD =3k =4.8,k =1.6. ∴AB =8,AE =4.∵sin AE AOE OA ∠=,∴445OA=.∴OA =5.解法二:(1)延长AO 交⊙O 于C ′.(如图所示)∴∠C ′=∠C .∵AC ′为⊙O 的直径, ∴∠ABC ′=90°. ∴∠C ′+∠BAD =90°. ∵∠BAD+∠ABD =90°, ∴∠ABD =∠C ′=∠C .(2)在Rt △BDC ′中,sin sin BDC C BC '==', ∴ 4.860.8BC '==. 在Rt △ABC ′中,∵4sin 5AB C AC '==', ∴设AB =4k ,则AC ′=5k ,BC ′=3k =6.∴k =2. ∴1110522OA AC ==⨯=. 【总结升华】解决圆周角的问题中常用的方法有两种:一是把圆周角转化为同弧所对圆心角的一半的角;二是将圆周角的顶点移动到使其一边经过圆心.类型二、圆的切线判定与性质的应用4.(2014秋•兴化市月考)如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB,交AB 于点F ,连接BE . (1)求证:AC 平分∠DAB;(2)求证:△PCF 是等腰三角形;(3)若AC=8,BC=6,求线段BE 的长.【思路点拨】(1)根据切线的性质可得结论;(2)连接OE,根据圆周角定理得∠ACB=90°,进而可推导得出△PCF是等腰三角形;(3)先在Rt△ACB中,根据勾股定理计算出AB=10,最终算得BE的值.【答案与解析】(1)证明:∵PD为⊙O的切线,∴OC⊥DP,∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB;(2)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,而∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,而∠OCF=∠OEF,∴∠PCF=∠CFP,∴△PCF是等腰三角形;(3)解:在Rt△ACB中,∵AC=8,BC=6,∴AB==10,∴OB=5,∵∠BOE=90°,∴△BOE为等腰直角三角形,∴BE=OB=5.【总结升华】本题考查了切线的性质,圆周角定理和等腰三角形的判定.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.举一反三:【变式】(2015•毕节市)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.类型三、切线的性质与等腰三角形、勾股定理综合运用5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且12OF-=,求证△DCE≌△OCB.解:(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°=90°-30°.∴∠DCE=∠DEC而ED⊥AB于F,∴∠CED=90°-∠BAC=30°.故△CDE为等腰三角形.(2)证明:在△ABC中,∵AB=2,AC=AO=1,∴BCOF=,∴AF AO OF=+=.又∵∠AEF=30°,∴AE=2AF1.∴CE=AE-AC=BC.而∠OCB=∠ACB-∠ACO=30°=∠ABC,故△CDE≌△COB.【总结升华】本题考查了切线的性质、等边三角形的判定和性质、等腰三角形的判定、勾股定理、全等三角形的判定和性质.解题的关键是证明△AOC是正三角形.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.【答案】解:连接PQ 并延长交AB 于E ,设大圆的圆心为O ,连接OA .设AB =2x ,则AE =x ,OB =2x-2. 在Rt △OAE 中,OA =5,∵OA 2=OE 2+AE 2,即52=(2x-2)2+x 2,∴x =3.∴AB =6.答案:66.如图所示,⊙O 的直径AB =4,点P 是AB 延长线上的一点,PC 切⊙O 于点C ,连接AC .PM 平分∠APC 交AC 于M .(1)若∠CPA =30°,求CP 的长及∠CMP 的度数;(2)若点P 在AB 的延长线上运动,你认为∠CMP 的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP 的度数;(3)若点P 在直径BA 的延长线上,PC 切⊙O 于点C ,那么∠CMP 的大小是否变化?请直接写出你的结论.【思路点拨】解:(1)连接OC ,则∠OCP =90°.∵ OA =OC ,∴ ∠COP =2∠CAP =60°.∴ CP =OC ·tan60°=12AB ·tan60°=∴ CP =∵ PM 平分∠CPA ,∴111(90)(9060)15222MPA CPA COP∠=∠=-∠=-=°°°°.∴∠CMP=30°+15°=45°.(2)设∠CPA=α,∵ PM平分∠CPA,∴∠MPA=12∠CPA12α=.∵∠OCP=90°,∴∠COP=90°-α.又∵ OA=OC,∴∠CAP=1(90) 2α-°.∴∠CMP=∠CAP+∠MPA11(90)45αα=-+=°°.解第(2)小题时,引用“设∠CPA=α”这一方法,用代数方法计算得出结论,降低了解题的难度.本题主要考查切线的性质及对直角三角形性质的运用.举一反三:【变式】如图所示,AB是⊙O的直径,C是EA的中点,CD⊥AB于D,CD与AE相交于F.(1)求证:AC2=AF·AE;(2)求证:AF=CF.【答案】证明:(1)如图所示,连接CE,延长CD交⊙O于G,连接AG.∵AB是⊙O直径,CD⊥AB,∴AC AG=.∴∠2=∠3.又∵∠1=∠1,∴△AFC∽△ACE.∴AC AE AF AC=.∴ AC2=AF·AE.(2)由(1)得AC AG==.又∵C是AE的中点,∴AC AG CE∴∠2=∠1.∴AF=CF.。

相关文档
最新文档