2014-2015高新区九上期末数学
2014~2015学年度九年级数学上册期末考试
2014~2015学年度九年级数学上册期末考试一、选择题(每小题3分,共45分)1、若已知m 是方程 012=--x x 的一个根,则代数式m m -2的值等于( ) A、-1 B、0 C、1 D、22、下列方程中,是关于x 的一元二次方程的是( )A、)1(2)1(2+=+x x B、05112=-+xx C、0)1(2=++-c bx x a D、1222-=+x x x3、若关于x 的方程0)1(222=+-+k x k x 有实数根,则k 的取值范围是( )21<k A 、 21≤k B 、 21>k C、 21≥k D、 4、方程0252=+-x x 的两个实数根为1x 和2x ,则21x x +-21x x 的值是( )7-、A 3-、B 7C、 3D、5、若关于x 的方程的两个根为11=x ,22=x ,则这个方程是( )0232=-+x x A 、 0232=--x x B 、0322=+-x x C、 0322=++x x D、 6、用换元法解方程716)1(222=+++x x x x 时,如果设xx y 12+=,那么将原方程化为关于y 的一元二次方程的一般形式是( )06722=+-y y A 、 06722=++y y B 、0672=+-y y C、 0672=++y y D、7、若一元二次方程022=--m x x 无实数根,则一次函数1)1(-++=m x m y 图像不经过( )A、第一像限 B、第二像限 C、第三像限 D、第四像限8、某超市一月份的营业额是100万元,第一季度的营业额共800万元,如果平均每月的增涨率为x ,那么所列的方程应为( ) 800)1(1002=+x A 、 8002100100=⨯+x B 、8003100100=⨯+x C、 []800)1()1(11002=++++x x D、 9、二次函数322+-=x x y 化为k h x y +-=2)(的形式,的结果是( )4)1(2++=x y A 、 4)1(2+-=x y B 、2)1(2++=x y C 、 2)1(2+-=x y D 、10、下列四个函数中,y 随x 增大而增大的是( )11、如图24-2所示, o 是△ABC 的外接圆,已知∠B=60º,则∠CAO=( ) A、15º B、30º C、45º D、60º 12、如图24-3所示,⊙o 的外切梯形ABCD 中,若AD ∥BC,则∠DOC=( ) A、45º B、60º C、70º D、90º13、函数b ax y +=与函数c bx ax y ++=2,在同一平面坐标系里面的图像是( )14、如图24-4所示,O是△ABC 的内心,过点O作EF ∥AB,与AC,BC 交于E,F,则( ) A、EF>AE+BF B、EF<AE+BF C、EF=AE+BF D、EF ≤AE+BF15、如图24-5所示,在⊙o 中有拆线OABC,其中OA=8,AB=12, ∠A=∠B=60º,则弦BC的长为( )A、19 B、16 C、18 D、20二、填空题(每空4分,共28分) 16、方程01)1()1(22=-++-x m x m ,当m 满足 时,方程为关于x 的一元二次方程,当m 满足 时,方程为一元一次方程。
2014-2015学年九年级上数学期末试卷及答案解析
2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )23.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )D . 7种5.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )4个黑球和若干个白球,它们除颜色外没有任何(m 为常数)的图象与x 轴的一个交点为(1,0),8.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣9.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )D.810.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF =4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B 两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B 两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC 的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则=此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.(2013•咸宁)关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a D . ﹣1 ,3.(2013•鄂州)已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m的关键.6.(2013•资阳)在一个不透明的盒子里,装有色外没有任何其他区别,÷8.(2013•济南)如图,二次函数y=ax +bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣<最小值:<﹣9.(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( ),AG=10.(2013•日照)如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( ) ∴===二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 4或﹣4 .兰州)若,且一元二次方程解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵=335从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:..15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.x <联立消掉k=时,抛物线与的坐标为(,))时,×y=.17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的轴的交点的坐标特点是解此题的关=,连接E=.,根据垂径定理可得:,由,E=∴=,∵=,AG=== E=AD=,××=3∴(∴,,;足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,个月,则乙队施工个月,则乙队施工y≤20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;,=135﹣垂直于OC ,OB=OC ,利用为公共边,利用SAS ,即可得证;OA=OC 的长,即可确定出AE=CE=AF=AE=AC=2AE=.BC=3,根据等AM=6;r=6r=,则CE=2r=OM=6﹣BE=2OM=然后判断Rt △PCM BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6=BE=2OM=∠MCP ,∴=,=PC=.求出二次函数的解析式为的方程,解方程),则D 点坐标为(x ,长度的最大值.两点,∴∴××,解得),时,有最大值,且的值,函数关系式即可求>=11,y=xxy=y=CEQ ,根据y=∴﹣x ,FOB=,∴C 作CK y=x ×,×,﹣y=﹣,当AC===.y=xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=本题是二次函数压轴题,考查了二次函数的图象与性质、正比例函数的图象与性质、待定系数法、对称、解直角三角形、相似三角形的判定与性质、解一元二次方程等知识点.试题的难点在于第(3)问,图形中:EQ=BE AE 在△ACD 与△BEF 中,,:B==EQ=AEH==,EH=BE::DM=OM=x 点坐标,运用待定系数法得到直,解得,m N=N=m ON==m m x ﹣×解得≤,,)﹣当时,m=)=,到达最高位置时的坐标为(,)考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点根据相似三角形对应边成比例得出=,即AF=1,进而得到点A(2)先由抛物线过原点((﹣2,0),求出对称轴为直线可知当△OBC是等腰三角形时,可分两种情况讨论:①求出y1的值,将A,设C(2,y2),列出方程,解方程求出抛物线的解析式.∴====362)代入,解得x=36(负值舍去))代入,解得xx x y=x。
2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)
2014-2015学年人教版九年级上学期期末数学试卷考试时间100分钟,试卷满分100分一. 选择题(每小题3分,共30分)1.“ a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 3.已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1 时, 0 <y <1D .当 x <0 时, y 随着 x 的增大而增大 4.如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180° 5.如果关于x 的一元二次方程22(21)10k x k x -++=有两个 不相等的实数根,那么k 的取值范围是() A .14k >-B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 6.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧tan 的值是( )A .1BCD 7.如图,在大小为4×4的正方形网格中与①中三角形相似的是( )A .②B . ③C . ④和③D . ②和④8.已知抛物线k x a y +-=2)2((是常数,>k a a ,0),A (﹣3,y 1)、B (3,y 2)、C (4,y 3)是抛物线上三点,则y 1,y 2,y 3由小到大依序排列为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 2<y 3<y 1 D .y 3<y 2<y 1 9.如图,△AOB 是等边三角形,B (2,0),将△AOB 绕O 点逆时针方向旋转90°到△A′OB′位置,则点A′ 的坐标是( )(第4题)(第6题)A .(﹣1,)B .(﹣,1)C .(,﹣1)D .(1,﹣)10. 已知二次函数c bx ax y ++=2的图象如图所示,那么 一次函数c bx y +=和反比例函数xay =在同一平面直角坐标系中的图象大致是( )A .B .C .D .二.填空题(每小题3分,共24分.) 11. 已知点M )3,21(m -关于原点对称的点在第一象限,那么的取值范围是________. 12. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为 13.一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元,则平均每次降价的百分率是 .14. 如图,在平面直角坐标系中,点O为坐标原点,点P 在第一象限,☉P 与x 轴交于O 、A 两点,点A 的坐标为(6,0),☉P的半径为13,则点P 的坐标为 .15.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,AB 上取一点E ,A 、D 、E 三点为顶点组成的三角形与△ABC 相似,AE 的长是_____ _. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (a 3,a )是反比例函数xk y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的 面积等于9,则k 的值为 .(第16题) 17. 轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达 C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔 A 的距离是 海里.18. 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),下列说法:①若b 2﹣4ac=0,则抛物线的顶点一定在x 轴上; ②若a-b+c=0,则抛物线必过点(-1,0);③若a <0,且一元二次方程ax 2+bx+c=0有两根x 1,x 2(x 1<x 2),则ax 2+bx+c <0的解集为x 1<x <x 2;④若33ca b +=,则方程ax 2+bx+c=0有一根为-3. (第12题) (第14题) (第15题)其中正确的是 (把正确的序号都填上)三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分)(1)2tan 603sin 30cos 45+--o o o . (2)解方程:2410x x ++=20.(本题8分) 如图,一次函数y 1=kx+b 的图象与反比例函数2my x=(x >0)的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数的解析式; (2)直接写出y 1≤y 2时x 的取值范围.21.(本题8分) 小华和小丽两人玩数字游戏,先由小丽心中任意想一个数记为 x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为 y ,且他们想和猜的数字只能在 1、2、3、4这四个数字中.(1)请用树状图或列表法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通” .求他们“心灵相通”的概率; (3)如果他们想和猜的数字满足x y 1-≤,则称他们“心有灵犀” .求他们“心有灵犀”的概率.22. (本题8分) 如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM ,连接OM 、BC. 求证:(1)△ABC ∽△POM ;(2)2OA 2=OP·BC.23. (本题10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润甲y (万元)与进货量x(吨)近似满足函数关系x y 3.0=甲;乙种水果的销售利润乙y (万元)与进货量x (吨)近似满足函数关系bx ax y +=2乙(其中0≠a ,a ,b 为常数),且进货量x 为1吨时,销售利润乙y 为1.4万元;进货量x 为2吨时,销售利润乙y 为2.6万元.(1)求乙y (万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2014—2015学年第一学期九年级数学期末质量检测评分标准11.m0< 12.1413.010 14.(3,2) 15.916或16.3 17.25 18.①、②、④三.解答题(本大题共有5题,满分46分)19.(1)21-2⎛⨯⎝…………………………………3分=313+-22…………………………………5分=4………………………………………6分(2)(2)解:2x4x1+=-,2x4x 414++=-+2(x2)3+=…………………………………3分x+2=…………………………………5分12x2,x2==.………………………………………6分20. (1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,…………………………………3分∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=-2x+8,反比例函数的解析式为y2=;…………………6分(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.…………………………………8分(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通)=41164=…………………6分(3)根据(1)得所以可能的情况有16中,数字满足|x-y|≤1的情况有10种,∴P(心有灵犀)105168==…………………8分22.(1)证明:∵直线PM切⊙O于点M,∴∠PMO=90°,∵弦AB是直径,∴∠ACB=90°,∴∠ACB=∠PMO,∵AC∥PM,∴∠CAB=∠P,∴△ABC∽△POM;…………………4分(2)∵△ABC∽△POM,∴,又AB=2OA,OA=OM,∴,∴2OA2=OP·BC.…………………8分23.解:(1)由题意,得:解得∴y乙=-0.1x2+1.5x.…………………4分(2)W=y甲+y乙=0.3(10-t)+(-0.1t2+1.5t)∴W=-0.1t2+1.2t+3.W=-0.1(t-6)2+6.6.∴t=6时,W有最大值为6.6.∴10-6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.…………………10分2014-2015学年人教版九年级上学期期末数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是.(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2014-2015学年人教版九年级上学期期末数学试卷答案解析参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.考点:比例的性质.专题:计算题.分析:根据内项之积等于外项之积得到2x=15,然后解一次方程即可.解答:解:∵=,∴2x=15,∴x=.故选B.点评:本题是基础题,考查了比例的基本性质,比较简单.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定考点:点与圆的位置关系.分析:点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解答:解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.点评:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义.分析:首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.解答:解:∵在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC===3,∴sinB==.故选D.点评:本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1考点:反比例函数的性质.分析:如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()解答:解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.点评:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°考点:圆周角定理.分析:已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.解答:解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.点评:本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.考点:概率公式.分析:先统计出奇数点的个数,再根据概率公式解答.解答:解:∵正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,∴点数为奇数的概率为:=.故选:C.点评:此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A .B .C .D .考点: 动点问题的函数图象.分析: 分段讨论,当0≤x ≤2时,作PQ ⊥AC ,根据锐角三角函数和勾股定理求出AQ 、PQ 、CQ 、PC 2;当2<x <4时,PC 在BC 上,是一次函数;当4<x ≤6时,PC 在AC 上,是一次函数,根据函数关系式分析即可得出结论.解答: 解:当0≤x ≤2时,作PQ ⊥AC ,∵AP=x ,∠A=60°∴AQ=,PQ=, ∴CQ=2﹣,∴PC==, ∴PC 2=x 2﹣2x+4=(x ﹣1)2+3;当2<x <4时,PC=4﹣x ,当4<x ≤6时,PC=2﹣(6﹣x )=x ﹣4,故选:C .点评: 本题主要考查了动点问题的函数图形,分段讨论,列出每段函数的解析式是解决问题的关键.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为 6π .考点: 弧长的计算.分析: 直接利用弧长的计算公式计算即可.解答: 解:弧长是:=6π.故答案是:6π.点评:本题考查了弧长的计算公式,正确记忆公式是关键.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是2:5.考点:相似三角形的应用.分析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.解答:解:∵,∴三角尺的周长与它在墙上形成的影子的周长的比是.点评:本题考查相似三角形的性质,相似三角形的周长的比等于相似比.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是③⑤.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.考点:二次函数图象与系数的关系.分析:根据二次函数的图象开口方向即可判断A;由二次函数的图象与y轴的交点位置即可判断B;把x=﹣1代入二次函数的解析式即可判断C;根据二次函数的对称轴即可求出D.解答:解:①∵二次函数的图象开口向上,∴a>0,故本选项错误;②∵二次函数的图象与y轴的交点在点(0,﹣1)的上方,∴c>﹣1,故本选项错误;③、∵二次函数的图象的对称轴是直线x=,∴﹣=,﹣3b=2a,2a+3b=0,故本选项正确;④∵二次函数的图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;⑤∵二次函数的图象的对称轴是直线x=,∴﹣=,∴﹣3b=2a,b=﹣a,∴y最小值=a+b+c=a+×(﹣a)+c=;即y的最小值为,故本选项正确;故答案为:③⑤.点评:本题考查了二次函数的图象和系数的关系,题目具有一定的代表性,是一道比较好的题目,注意用了数形结合思想,二次函数的图象开口方向决定a的符号,二次函数的图形与y轴的交点位置决定c的符号,根据二次函数的图象的对称轴是直线x=得出﹣=,把x=代入y=ax2+bx+c(a≠0)得出y=a+b+c等等.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是(﹣1,1).(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是(4025,﹣1).考点:规律型:点的坐标.分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(﹣3,1),再向右平移2个单位”后点B的坐标为:(﹣3+2,1),即B1(﹣1,1).(2)首先由正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴根据题意得:第1次变换后的点B的对应点的坐标为(﹣3+2,1),即B1(﹣1,1),(2)第2次变换后的点B的对应点的坐标为:(﹣1+2,﹣1),即(1,﹣1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,﹣1).故答案为:(﹣1,1);(4025,﹣1).点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n ﹣3,﹣1)是解此题的关键.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.考点:特殊角的三角函数值.分析:将tan30°=,cos60°=,tan45°=1,sin30°=分别代入运算,然后合并即可得出答案.解答:解:原式==.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.考点:二次函数的三种形式;二次函数的性质.分析:(1)由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h求解即可;(3)先求出方程x2﹣4x+3=0的两根,再根据二次函数的性质即可求解.解答:解:(1)y=x2﹣4x+3=(x2﹣4x+4)﹣4+3=(x﹣2)2﹣1;(2)∵y=(x﹣2)2﹣1,∴对称轴为直线x=2,顶点坐标为(2,﹣1);(3)解方程x2﹣4x+3=0,得x=1或3.∵y=x2﹣4x+3,a=1>0,∴抛物线开口向上,∴当1<x<3时,函数y<0.点评:本题考查了二次函数解析式的三种形式,二次函数的性质,难度适中.利用配方法将一般式转化为顶点式是解题的关键.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.考点:相似三角形的判定与性质.分析:(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.解答:(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.点评:本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC.解答:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.点评:本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:计算题.分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r 的方程,求出方程的解即可得到圆的半径r的值.解答:(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.点评:此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.考点:反比例函数与一次函数的交点问题;三角形的面积.专题:计算题.分析:(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.解答:解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)点评:本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.考点:解直角三角形.专题:计算题.分析:(1)过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,从而求出tanB的值;(2)在Rt△BCD中,先求出BC=k=10,求出k的值,继而得出AB的值.解答:解:(1)过点C作CD⊥AB,垂足为D,(1分)在Rt△ACD中,,(1分)设CD=3k,则AB=AC=5k,(1分)∴.(1分)在△BCD中,∵BD=AB﹣AD=5k﹣4k=k.(1分)∴.(1分)(2)在Rt△BCD中,,(1分)∵BC=10,∴.(1分)∴.(1分)∴AB=.(1分)点评:本题考查了解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.分析:(1)根据待定系数法即可求得;(2)正确画出图形;(3)通过图象可以看出点B纵坐标t的取值范围.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).∴,解得,∴抛物线的表达式为y=﹣x2﹣2x+3.(2)此抛物线如图所示.(3)2<t≤4.如图,由图象可知点B纵坐标t的取值范围为2<t≤4.点评:本题考查了待定系数法求解析式,以及画图的能力和识别图形的能力,要熟练掌握.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.考点:切线的性质.分析:(1)连接AE,由圆周角定理和等腰三角形的性质,结合切线的性质可证得∠CBF=∠BAE,可证得结论;(2)由(1)结论结合正弦值,在Rt△ABE中可求得BE,可求出BC,过C作CM⊥BF,在Rt△BCM中可求得BM,CM,再利用平行线分线段成比例可求得BF.解答:(1)证明:如图1,连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=∠BAC.∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:由(1)可知∠CBF=∠BAE,∴sin∠BAE=sin∠CBF=,在Rt△ABE中,sin∠BAE=,∴=,∴BE=,∴BC=2,如图2,过C作CM⊥BF于点M,则sin∠CBF==,即=,解得CM=2,由勾股定理可求得BM=4,又∵AB∥CM,∴=,。
最新2014-2015学年人教版九年级上册数学期末测试卷及答案
2014-2015学年度九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( ) A .y =2(x -1)2-3 B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 6 5.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B .2C .2D .26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( ) A .35° B .45° C .55° D .75°7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y < B.21y y > C.21y y = D.1y 、2y 的大小不确定 8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .9.一次函数y ax b =+与二次函数2y ax bx c =++在同一坐标系中的图像可能是( )第3题图 第6题图第4题图A .B .C .D .10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A.3B.3根号3 C.D.4二、填空题:1112.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB= °.13.若函数221y mx x=++的图象与x轴只有一个公共点,则常数m的值是_______ 14.抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园),一只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A 经过的路线与直线l所围成的面积是_________ .三、解答下列各题1.解方程:(1)122=+xx(2)0)3(2)3(2=-+-xx第12题图第14题图第15题图2.已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠. (1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.3.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2. (2)△A 2B 2C 2中顶点B 2坐标为 .4.某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A 1表示,女生用B 1表示)和九年(2)班的1名男生1名女生(男生用A 2表示,女生用B 2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.5.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?6、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.7、如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?参考答案1.DA 、是中心对称图形,不是轴对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、既是中心对称图形又是轴对称图形,故本选项正确. 2.D将函数y =2x 2的图象向左平移1个单位,得: y =2(x +1)2,,再向上平移3个单位,可得到的抛物线是y =2(x +1)2+3.故选:D. 考点:抛物线的平移. 3.C .∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C 、A 、B 1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°-55°=125°, ∴旋转角等于125°. 4.D.∵OC ⊥AB ,OC 过圆心O 点,∴BC=AC=21AB=21×16=8,在Rt △OCB 中,由勾股定理得:68102222=-=-=BC OB OC5.B .连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,因而面积是因而正六边形的面积 6.A【解析】连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵∠ABD =55°,∴∠A =90°-∠ABD =35°,∴∠BCD =∠A =35°. 7.A因为函数m x x y +--=822的图象抛物线开口向下,所以在对称轴8224b x a -=-=-=--左侧,y 随x 的增大而增大,因为221-<<x x ,所以21y y <,故选:A. 8.A【解析】过O 点作OC⊥AB,垂足为D ,交⊙O 于点C ,由折叠的性质可知OD 为半径的一半,而OA为半径,可求∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理求∠AOB,然后求得弧AB的长,利用弧长公式求得围成的圆锥的底面半径,最后利用勾股定理求得其高即可.解:过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知,OD=OC=OA,由此可得,在Rt△AOD中,∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理,得∠AOB=180°﹣∠A﹣∠B=120°,∴弧AB的长为=2设围成的圆锥的底面半径为r,则2πr=2π,∴r=1cm.∴圆锥的高为=.故选A.9.C.A.由一次函数y ax b=+的图象可得:a>0,b>0,此时二次函数2=++的y ax bx c图象应该开口向上,故A错误;B.由一次函数y ax b=+的图象可得:a>0,b>0,此时二次函数2=++的y ax bx c图象应该开口向上,对称轴x=﹣<0,故B错误;C.由一次函数y ax b=+的图象可得:a<0,b<0,此时二次函数2=++的y ax bx c图象应该开口向下,对称轴x=﹣<0,故C正确.D.由一次函数y ax b=+的图象可得:a<0,b<0,此时二次函数2=++的y ax bx c图象应该开口向下,故D错误;10.求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解:圆锥的底面周长是6,则6=,∴n=180°,即圆锥侧面展开图的圆心角是180度. 则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度. ∴在圆锥侧面展开图中BP=m .故小猫经过的最短距离是m .11.(1,2).已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.试题解析:∵y=x 2-2x+3=x 2-2x+1-1+3=(x-1)2+2, ∴抛物线y=x 2-2x+3的顶点坐标是(1,2). 12.根据旋转可得AC=AD ,∠CAD=∠BAE , ∵AC=AD ,∠C=80°, ∴∠C=∠ADC=80°,∴∠CAD=180°-80°-80°=20°, ∴∠BAE=20°.13.需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m 的值.试题解析:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点; ②若m≠0,则函数y=mx 2+2x+1,是二次函数. 根据题意得:△=4-4m=0, 解得:m=1.故答案为:0或1.14.根据图象可知抛物线的对称轴为x=-1,一个交点为(1,0),那么可推出另一交点为(-3,0),结合图象即可求出y >0时,x 的范围. 解:根据抛物线的图象可知:抛物线的对称轴为x=-1,已知一个交点为(1,0), 根据对称性,则另一交点为(-3,0), 所以y >0时,x 的取值范围是-3<x <1. 15.设正方形的边长为a ,再分别计算出正方形与圆的面积,计算出其比值即可. 试题解析:设正方形的边长为a ,则S 正方形=a 2,因为圆的半径为2a,所以S 圆=π(2a )2=24a ,所以“小鸡正在圆圈内”啄食的概率为:2244a a ππ=.16.∵在Rt △ACB 中,BC=2,AC=2∴由勾股定理得:AB=4,∴AB=2BC ,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=22120490125236036023πππ⨯⨯++⨯⨯=+17.解:()1212=+x x 方程两边同时加1得: 2122=++x x ()212=+x 21±=+x 所以: 21±-=x()()()032322=-+-x x()()0233=+--x x()()013=--x x所以:13==x x 或小题(1)用配方法好解,小题(2)适合用提公因式法。
高新区2014-2015九上期末考试
姓名 准考证号高新区2014-2015学年度上期期末综合素质测评九年级数学注意事项:1、全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2、考生必须在答题卡上作答,答在试题卷、草稿纸上无效。
3、在答题卡上作答时,考生需首先准确填写自己的姓名、准考证号,并用2B 铅笔准确填涂好自己的准考证号。
A 卷的第I 卷为选择题、用2B 铅笔填涂作答;A 卷的第II 卷以及B 卷中横线及框内上注有“▲”的地方,是需要考生在答题卡上作答的内容或问题,用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
请按照题号在各题目对应的答题区域内作答,超出答题区域书写的答案无效。
4、保持答题卡面清洁,不得折叠、污染、破损等。
A 卷(共100分)一、选择题(本大题共10个小题,每题只有一个正确的选项,第小题3分,共30分,)1、Sin30°的值是 A. 23 B. 22 C.1 D.21 2、如图是一个正方体被截去一角后得到的几何体,它的俯视图是3、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加成都市“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员小亮被抽到的概率是 A. 501 B. 21 C.52 D.201 4、若关于x 的一元二次方程032=-+m x x 有两个不相等的实数根,则m 的取值范围是 A. 21>m B. 121<m C.121->m D.121-<m 5、在Rr △ABC 中,∠C=90°,a=4,b=3,则sinA 的值是 A. 54 B. 53 C.43 D.456、下列命题中,不正确的是A. 顺次连结菱形各边中点所得的四边形是矩形B. 有一个角是直角的菱形是正方形C.对角线相等且垂直的四边形是正方形D.有一个角是60°的等腰三角形是等边三角形7、将抛物线12+=x y 先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系是A.2)2(2++=x yB.2)2(2-+=x yC.2)2(2+-=x yD.2)2(2--=x y8、某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是A.至少有两名学生生日相同B.不可能有两名学学生日相同C.可能有两名学生生日相同,但可能性不大D.可能有两名学生生日相同,且可能性很大9.如图,在Rt △ABC 中,∠A=30°,DE 垂直平分斜边AC ,交AB 于D ,E ,垂足,连接CD ,若BD=1,则AC 的长是 A.32 B.2 C.34 D.410.如图,⊙O 的半径为2,弦AB=32,点C 在弦AB 上,AB AC 41=,则OC 的长为A 、2 B.3 C.332 D.27 二、填空题(本大题共4个小题,每小题4分,满分16分)11、如图,在⊙O 中,C 在圆周上,∠ACB=45°则∠AOB=12、袋子中装有5个红球和3个黑球,这些球除了颜色外都相同,从袋中随机的摸出1个球,则它是红球的概率是13、二次函数n x x y +-=62的部分图象如图所示,则它的对称轴为x=14、如图,∠AOE=∠BOE=15°,EF//OB ,EC ⊥OB ,若EC=1,则EF=三、解答题(共54分)15、(6分)计算:60sin 30tan 45cos )2011(2201⋅++---π16、(6分)解方程:0672=+-x x17、(本小题10分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样,规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元。
新人教版2014-2015年九年级上学期期末考试数学试题及答案
新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。
其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。
2014-2015年第一学期九年级数学试题答案
2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
苏州高新区2013-2014学年第一学期初三数学期末试题及答案
义务教育阶段学业质量测试九年级数学2014.01 注意事项:1.本试卷共3大题、28小题,满分130分,考试用时120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号、考试号填写清楚,并用2B铅笔认真正确填涂考试号下方的数字;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效.一、选择题(本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,将每题的选项代号填涂在答题卡相应位置)1.下列命题中假命题中的是A.三点确定一个圆B.三角形的内心到三角形各边的距离都相等C.同圆中,同弧或等弧所对的圆周角相等D.同圆中,相等的弧所对的弦相等2.方程x2=2x的解是A.x=2 B.x1=2,x2=0 C.x1,x2=0 D.x=03.学校为了了解500名初三学生的体重情况,从中抽取50名学生进行测量,下列说法中正确的是A.总体是500 B.样本容量为50C.样本是50名学生D.个体是每个学生4.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠ABD=20°,则∠ADC的度数为A.40°B.50°C.60°D.70°5.下列说法正确的是A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等6.已知两圆的半径分别为1和3,当这两圆内含时,圆心距d的范围是A.0<d<2 B.1<d<2 C.0<d<3 D.0≤d<27.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1,y2,y3的大小关系为A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y38.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是A .无实数根B .有两个相等实数根C .有两个同号不等实数根D .有两个异号实数根9.如图,四边形ABCD 是梯形,AD//BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tanB =A .B .C .114D 10.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为A .122π+B .2π+1 C .π+1 D .π+12 二、填空题(本大题共8小题,每小题3分,共24分,请把答案填在答题卡相应位置上)11.抛物线y =(x -1)2+2的顶点坐标为 ▲ .12. ∠A 是锐角,且sinA =cosA ,则∠A 的度数是 ▲ 度.13.已知一组数据1,2,0,-1,x ,1的平均数为1,则这组数据的极差为 ▲ .14.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2, 则弦AB 的长为 ▲ .15.若(x 2+y 2+1)(x 2+y 2+2)=6.则x 2+y 2的值为 ▲ .16.已知a 、b 是一元二次方程x 2+4x -3=0的两个实数根,则a 2-ab +4a的值是 ▲ .17.对于二次函数y =x 2-2mx -3,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m =1;③如果将它的图象向左平移3个单位后过原点,则m =-1;④如果当x =4时的函数值与x =2010时的函数值相等,则当x =2014时的函数值为-3.其中正确的说法有 ▲ 个.18.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足13CF FD =,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:①△ADF ∽△AED ;②FG =2;③S △DEF =④tan ∠E .其中正确的是 ▲ (写出所有正确结论的序号).三、解答题(本大题共10题,共76分,解答应写出必要的计算过程、推演步骤或文字说明)19.(本题8分)解方程:(1)x2-6x-2=0 (2)(2x+1)2=-6x-320.(本题4分)2cos30°-tan4521.(本题6分)已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表(1)求该二次函数的解析式;(2)函数值y随x的增大而增大时,x的取值范围是_ ▲.22.(本题6分)已知x1,x2是一元二次方程x2-x+2m-2=0的两个实根.(1)求m的取值范围;(2)若m满足2x1+x2=m+1,求m的值.23.(本题8分)某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的600名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:(1)图中的x的值为▲:(2)求最喜欢乒乓球运动的学生人数;(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人表演节目,求2人均是最喜欢篮球运动的学生的概率.24.(本题8分)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于点D,E是BC边的中点,连结DE.(1)求证:DE与半圆O相切;(2)若AD、AB的长是方程x2-6x+8=0的两个根,求直角边BC的长;(3)在(2)的条件下,则图中阴影部分的面积=▲.25.(本题8分)已知操场上旗杆PQ的高为10米,若在B处测得旗杆顶点P的仰角为30°,在BQ延长线上的A处测得点P的仰角为45°.(1)试求A、B两点之间的距离;(2)小唐同学正在放风筝,风筝从A处起飞,几分钟后便飞达C处.此时,B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上,在A处小唐同学背向旗杆又测得风筝的仰角为75°,求A、C两点之间的距离.(结果可保留根号)26.(本题8分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)试求售价在什么范围时,每个月的利润不低于2200元?27.(本题10分)如图,⊙A 与y 轴交于C 、D 两点,圆心A 的坐标为(1,0),直线BC :y =12x +2切⊙A 于点C ,交x 轴于点B . (1)⊙A 的半径为 ▲ ;(2)若点P 是第一象限内⊙A 上的一点,过点P 作⊙A 的切线与直线BC 相交于点G ,且∠CGP =120°,求点G 的坐标;(3)向左移动⊙A(圆心A 始终保持在x 轴上),与直线BC 交于E 、F ,在移动过程中是否存在点A ,使△AEF 是直角三角形?若存在,求出点A 的坐标;若不存在,请说明理由.28.(本题10分)已知直线y =-34x +3分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,以C 为顶点的抛物线y =(x +m)2+n 与直线AB 的另一交点为D ,设运动时间为t 秒.(1)C 点坐标为 ▲ ;(用t 来表示)(2)求CD 的长;(3)设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?。
2014~2015学年度第一学期期末考试九年级数学试卷答案
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
2014~2015学年度 最新 江苏省2015届九年级上期末数学试题及答案
3l 2l1l F E DC B A 2015学年度第一学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.如图1,直线1l ∥2l ∥3l ,两直线AC 和DF 与1l ,2l ,3l 分别相交于点A 、B 、C 和点D 、E 、F .下列各式中,不一定成立的是( ▲ )(A ) EF DE BC AB =; (B )DF DEAC AB = ;(C )CF BE BE AD =; (D )CA BCFD EF =.2.用一个2倍放大镜照一个△ABC ,下面说法中错误的是(▲ )(A )△ABC 放大后,∠A 是原来的2倍; (B )△ABC 放大后,各边长是原来的2倍; (C )△ABC 放大后,周长是原来的2倍; (D )△ABC 放大后,面积是原来的4倍.3.在Rt ABC △中,已知ACB ∠=90°,1BC =,2AB =,那么下列结论正确的是( ▲ ) (A)sin A =; (B )1tan 2A =; (C)cos B = (D)cot B =4.如果二次函数2(0)y ax bx c a =++≠的图像如右图2所示, 那么 ( ▲ )(A )a <0,b >0,c >0; (B )a >0,b <0,c >0; (C )a >0,b <0,c <0; (D )a >0,b >0,c <0. 5.下列命题中,正确的是个数是( ▲ )(1)三点确定一个圆; (2)平分弦的直径垂直于弦; (3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形. (A )1个; (B )2个; (C )3个; (D )4个. 6.下列判断错误的是( ▲ )图1图2(A )00a =; (B )如果12a b =(b 为非零向量),那么a ∥b ;(C )设为单位向量,1=;(D )=,那么 =或 -=.二、填空题:(本大题共12题,每题4分,满分48分) 7.已知:5:2x y =,那么():x y y += ▲ .8.计算:523()3a ab --= ▲ .9.如图3,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E . 如果3AD =,4BD =,2AE =,那么AC = ▲ .10.已知线段MN 的长为2厘米,点P 是线段MN的黄金分割点,那么较长的线段MP 的长是 ▲ 厘米.11.二次函数322--=x x y 的图像与y 轴的交点坐标是 ▲ . 12.如果将抛物线22y x =-平移,使顶点移到点(3,1)P -的位置,那么所得新抛物线的表达式是 ▲ .13.正八边形的中心角为 ▲ 度.14.用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x 厘米,面积为y 平方厘米,写出y 关于x 的函数解析式: ▲ . 15.在地面上离旗杆底部20米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为 1.5米,那么旗杆的高为 ▲ 米(用含α的三角比表示).16.如图4,已知⊙O 的半径为5,⊙O 的一条弦AB 长为8,那么以3为半径的同心圆与弦AB 位置关系是 ▲ .图4图3B17.我们定义:如果一个图形上的点'A 、'B 、…、'P 和另一个图形上的点A 、B 、…、P 分别对应,并且满足:(1)直线'A A 、'B B 、…、'P P 都经过同一点O ;(2)'''===OA OB OP k OA OB OP=…,那么这两个图形叫做位似图形,点O 叫做位似中心,k 叫做位似比.如图5,在平面直角坐标系中,△ABC 和△'''C B A 是以坐标原点O 为位似中心的位似图形,且'OB BB =.如果点A (25,3),那么点'A 的坐标为 ▲ .D C图5 图618.如图6,已知△ABC 中,AB =AC ,tan B =2,AD ⊥BC 于点D ,点G 是△ABC 的重心. 将△ABC 绕着重心G 旋转,得到△111C B A ,并且点1B 在直线AD 上,联结1CC ,那么tan ∠11B CC 的值等于 ▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:4sin3060︒︒︒.20.(本题满分10分)如图7,已知AB ∥CD ,AD 与BC 相交于点O ,且32=CD AB(1)求ADAO的值; (2)如果a AO =,请用a 表示.21.(本题满分10分)BC图7如图8,已知二次函数的图像与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,6),对称轴为直线2=x ,求二次函数的解析式并写出图像最低点的坐标.22.(本题满分10分)如图9,某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉.小明为测量湖的半径,在湖边选择A 、B 两个点,在A 处测得45OAB ∠=,在AB 延长线上的C 处测得30OCA ∠=,已知50BC =米,求人工湖的半径.(结果保留根号)23.(本题满分12分)如图10,已知在△ABC 中,∠ACB =90°,点D 在边BC 上,CE ⊥AB ,CF ⊥AD ,E 、F 分别是垂足. (1)求证:2AC AF AD=;(2)联结EF ,求证:AE DB AD EF =.C图9EABOCBAy xx =2图824.(本题满分12分)如图11,在平面直角坐标系xOy中,点(),0B m(m>0),点C0,2A m-和点()在x轴上(不与点A重合),(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示);(2)当△BOC与△AOB全等时,二次函数2=-++的图像经过A、B、y x bx cC三点,求m的值,并求点C的坐标;(3)P是(2)的二次函数的图像上一点,90∠=,求点P的坐标及∠ACPAPC的度数.图11 备用图25.(本题满分14分)如图12,等边△ABC,4AB=,点P是射线AC上的一动点,联结BP,作BP的垂直平分线交线段BC于点D,交射线BA于点Q,分别联结PD,PQ.(1)当点P在线段AC的延长线上时,①求DPQ∠的度数并求证△DCP∽△PAQ;②设CP x=,AQ y=,求y关于x的函数解析式,并写出它的定义域;(2)如果△PCD是等腰三角形,求△APQ的面积.2015学年度第一学期九年级数学期终考试试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(C); 2.(A); 3.(D); 4.(C); 5.(A); 6.(D).二、填空题:(本大题共12题,每题4分,满分48分)7. 7:2(或72); 8. 5a b-+; 9.143;10. 1;11.(0,-3);12.()2231y x=-++;13.45; 14.225y x x=-+; 15.1.520tanα+;16.相切; 17.(5,6); 18.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式=142⨯+………………………………………………(6分)=21-+………………………………………………………………(3分)图12QPDCBA备用图ABC=1+.……………………………………………………………………(1分) 20.解(1)∵AB ∥CD , ∴AO ABOD CD=. ………………………………………………………………(2分) ∵23AB CD =, ∴错误!未找到引用源。
人教版九年级数学上册合肥高新区第一学期期末学业质量检测.docx
初中数学试卷桑水出品合肥高新区2015/2016学年第一学期期末学业质量检测九年级数学试卷每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列四个图形中,不是中心对称图形的是( ) 2.已知32=b a ,则代数式a b b +的值为( )A .52 B .53 C .23 D .323.二次函数23(x 2)1y =-++的图像的顶点坐标是( )A.(2,1)B.(-2,1)C.(-2,-1)D.(2,-1)4.如图,在△ABC 中,DE ∥BC ,若AD:DB=1:3,则△ADE 与△ABC 的面积之比是( ) A .1:3 B .1:4 C .1:9 D .1:165.在Rt ∆ABC 中,∠C =90°,sinB=135,则tanA 的值为( ) A.135 B.1312 C.125 D.512 6.已知二次函数277y kx x =--的图像与x 轴没有交点,则k 的取值范围为( ) A.k <74-B.k ≥74-且k ≠0C.k >74-D. k >74- 且k ≠0 7.AB 为⊙O 的直径,点C 、D 在⊙O 上.若∠ABD =42°,则∠BCD 的度数是( )A. 122°B. 128°C. 132°D. 138°8.已知A(-3,1y )、B (-2,2y )、C (2,3y )在二次函数22y x x c =++的图像上,比较1y 、2y 、3y 的大小( )校 班级 姓名 考号………………………………密…………………………………封…………………………………………A. 1y >2y >3yB. 2y >3y >1yC. 2y >1y >3yD. 3y >1y >2y 9.如图,在ABCD Y 中,AB=9,AD=6, ADC ∠的平分线交AB 于点E ,交CB 的延长线于点F ,AG DE ⊥,垂足为G .若AG=24,则BEF ∆的面积是( )A. 2B. 22C. 23D. 2410.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC →CD →DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )ABC D二、填空题(本大题共4小题,每小题5分,满分20分)11.某同学沿坡比为3:1的斜坡前进了90米,那么他上升的高度是米.12.AB 是⊙O 的直径,弦CD 垂直平分半径OA ,若CD 长为6,则⊙O 的半径长为 . 13.如图,点A 是反比例函数图像上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上, 且BC ∥AD,四边形ABCD 的面积为4,则这个反比例函数的解析式为 . 14.如图,ABCD Y 中,M N 、是BD 的三等分点,连接CM 并延长交AB 于点E , 连接EN并延长交CD 于点F , 以下结论:①E 为AB 的中点;②4FC DF =;③92ECF EMN S S ∆∆=;④当CE BD ⊥时,DFN ∆是等腰三角形,其中一定正确的是 . 三、(本大题共2小题,每小题8分,满分16分)15.计算:︒-︒-︒45cos 230sin 260tan 216.如图,△ABC 的顶点坐标分别为A (1,3)、B (4,2)、C (2,1).(1)在图中以点O 为位似中心在原点的另一侧画出ABC ∆放大2倍后得到的111C B A ∆,并写出1A 的坐标;(2)请在图中画出ABC ∆绕点O 逆时针旋转90°后得到的222C B A ∆.四、(本大题共2小题,每小题8分,满分16分)得分 评卷人得分 评卷人得分 评卷人第12题第7题图第4题图第9题图GEABDAOx yB17.如图,一次函数12y x =-+的图像与反比例函数2my x=的图像交于点A (-1,3)、B (n ,-1).(1)求反比例函数的解析式;(2)当1y >2y 时,直接写出x 的取值范围.18.已知在直角坐标平面内,抛物线2y x bx c =++经过点A (2,0)、B (0,6).(1) 求抛物线的表达式; (2) 抛物线向下平移几个单位后经过点(4,0)?请通过计算说明. 五、(本大题共2小题,每小题10分,满分20分) 19.如图,两条互相平行的河岸,在河岸一边测得AB 为20米,在另一边测得CD 为70米,用测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(7.13,4.12≈≈,结果保留整数) 20.如图,在正方形ABCD 中,BE 平分∠DBC 且交CD 边于点E ,将△BCE 绕点C 顺时针旋转到△DCF 的位置,延长BE 交DF 于点G.(1)求证:△BDG ∽△DEG ;(2)若EG ·BG =4,求DF 的长. 六、(本题满分12分)21. 已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC =CP =2,弦AB ⊥OC ,∠AOC的度数为60°,连接PB. (1)求BC 的长;(2)求证:PB 是⊙O 的切线. 七、(本题满分12分)22. 合肥某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价为25元/件时,每天的销售量是150件;销售单价每上涨1元,每天的销售量就减少10件.(1)求商场销售这种文具每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大?(3)现商场规定该文具每天销售量不少于120件,为使该文具每天的销售利润最大,该文具定价多少元时,每天利润最大?八、(本题满分14分) 23.如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,CD ⊥AB 于点D.点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到点C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)当t 取何值时PQ ∥AB ?得分 评卷人得分 评卷人得分 评卷人得分 评卷人(3)是否存在某一时刻t,使得 PCQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,请说明理由.合肥高新区2015/2016学年第一学期期末学业质量检测九年级数学试题参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案 C B B D D A C D B C11. 45 12.32 13.xy 4-= 14. ④三、(本大题共2小题,每小题8分,满分16分) 15.解()111322221232=--=⨯-⨯-=原式16.解:(1)如图,A (-2,-6) (2)如图 四、(本大题共2小题,每小题8分,满分16分) 17.解:(1)把A (-1,3)代入2my x=可得m=-3 (2)x<-1或0<x<318.解:(1)把A (2,0),B (0,6)代入2y x bx c =++ 可得b=-5,c=6所以抛物线的表达式为652+-=x x y(2)把x=4代入652+-=x x y 可得y=2所以将抛物线向下平移2个单位可经过点(4,0)五、(本大题共2小题,每小题10分,满分20分) 19.解:解:分别过点A 、B 作CD 的垂线交CD 于点E 、F令两条河岸的距离为h∵AE ⊥CD,BF ⊥CD,AB ∥CD,AB=20 ∴AE=BF=h,EF=AB=20在Rt ⊿ACE 中,∠ACD=30Otan AE ACE CE ∠=即tan30O=CEh , C 22A 2C 1B 1A 1.........4分...............................8分.........5分.............................8分 ...........................8分.........4分..........4分 ..........8分CE ∴在Rt ⊿BDF 中,∠BDC=45Otan BF BDC DF ∠=即tan45O=DFh , DF h ∴=∵CD=70∴CE+EF+FD=70()().1713255013≈-=∴=+∴h h 20.(1)证明:∵将△∴△BCE ≌△DCF ,∴∠FDC =∠EBC ,∵BE 平分∠DBC , ∴∠DBE =∠EBC ,∴∠FDC =∠∵∠DGE =∠DGE ,∴△BDG ∽△(2)解:∵△BCE ≌△DCF ,∴∠F =∠BEC ,∠EBC =∠FDC , ∵四边形ABCD 是正方形,∴∠DCB =90°,∠DBC =∠BDC =45°, ∵BE 平分∠DBC ,∴∠DBE =∠EBC =22.5°=∠FDC , ∴∠BDF =45°+22.5°=67.5°, ∠F =90°-22.5°=67.5°=∠BDF , ∴BD =BF ,∵△BCE ≌△DCF , ∴∠F =∠BEC =67.5°=∠DEG ,∴∠DGB =180°-22.5°-67.5°=90°, 即BG ⊥DF ,∵BD =BF ,∴DF =2DG , ∵△BDG ∽△DEG ,BG ·EG =4, ∴DG BG EG DG =DG BGEG DG=, ∴DG ·DG =BG ·EG =4, ∴DG =2,∴ DF =2DG =4.六、(本题满分12分)七、(本题满分12分)的切线是则由为等边三角形,则连接O PB CBP OBC OBP CBP P CBP OCB BC ABC OB ⊙∴903060∠∠∠,30∠,∠∠∠).2(2Δ,).1(.21︒=︒+︒=+==+==︒[]9602830,28,1201040031000301000)30(10)2(800060010)25(10150)20()1.(2222==∴≤≤≥-==∴+--=-+-=---=最大最大时,当的增大而增大,随时,开口向下,当解得)(时,当w x x y x x x w x x w x x x x w八、(本题满分14分)23.解: (1)8.41068,6,8212122=∴=+===⋅=⋅CD AB BC AC BC AC CD AB ΘΘ又 (2)4.84.880.6 4.83CP CQ CD AC t tt t t =-==-=3,t PQ AD ∴=P 当时PQPC t PQ QC t QC PC t ======时,当时,当时,当5514411244.2..........................4分........................14分..........................8分......................3分.................................12分..........................8分。