9.2实际问题与一元一次不等式(2)
9.2一元一次不等式(2)
•这节课我学会(懂得)了……
•这节课我想对师傅(学友)说……
温馨提示:师友交流、总结本节课的知识点、解题思路,
并互相评价对方的表现.
应用一元一次不等式解实际问题的步骤:
实际问题
设未知数
结合实际
确定答案
解不等式
找不等关系
列不等式
应用一元一次方程解实际问题步骤:
错或不答都扣5分.小明得分要超过90分,他至少要答对
多少道题?
挑战师傅
我们要组团(不少于10人)去蒙山旅游,通票60元/人,
团购优惠(10人以下不予优惠),甲旅行社:全体八折优惠;
乙旅行社:一人免费,其余八五折收费,利用我们学过的
知识分析一下,你会选择哪种方式购票?
温馨提示:1、2题师友自主完成,师傅指导纠错,3题师傅自主完成。
9.2 一元一次不等式
(第二课时)
1 会通过列一元一次不等式去解决生活中的实际问
题,经历“实际问题抽象为不等式模型”的过程。
2 体会解不等式过程中的化归思想与类比思想,体
会分类讨论思想在用不等式解决实际问题中的应
用。
1.解下列不等式,并在数轴上表示解集:
x
5
≥
x 2
2
3
2.解一元一次不等式的一般步骤是什么?
一、本节课最佳师友是…
二、课后作业:
1、必做题:P126页中习题9.2的第5、6、7题;
2、选做题:P126页中习题9.2的第10题;
更大优惠?你能为消费者设计一套方案吗?
请师友先自主解答,师友代表板演当累计购物超过100元时的解题
过程。
列一元一次不等式解实际问题的步骤:
9.2 一元一次不等式 第2课时 新人教版七年级数学下册教学课件
探究新知
素养考点 2 一元一次不等式解答货币问题 例2 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本 2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几支笔?
解:设她还可能买n支笔,根据题意得 3n+2.2×2≤21,
解得 n≤ . 因为在这个问题中n只能取正整数,所以小颖还可能买1支、2支、 3支、4支或5支笔.
例1 去年广州空气质量良好(二级以上)的天数与全年 天数(365天)之比达到60%,如果到明年(365天)这样 的比值要超过70%,那么明年空气质量良好的天数要比 去年至少增加多少?
分析:题目蕴含的不等关系为 明年这样的比值要超70% ,
转 化 为 不 等 式,即 明年空气明质年量天良数好的天数>70%
连接中考
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分, 小华得分要超过120分,他至少要答对的题的个数为( C )
A.13
B.14
C.15 D.16
课堂检测
基础巩固题
1.某商品原价500元,出售时标价为900元,要保持利润不低
于26%,则最低可打 ( B)
A. 六折 B. 七折
C. 八折
答:明年要比去年空气质量良好的天数至少增加 37天,
才能使这一年空气质量良好的天数超过全年天数的70% .
巩固练习
在一次知识竞赛中,有10道抢答题,答对一题得10分,答错一 题扣5分,不答得0分,小玲有一道题没有答,成绩仍然不低于 60分,她至少答对几道题?
解:设小玲答对的题数是x,则答错的题数是9-x, 根据题意,得10x-5(9-x)≥60, 解这个不等式,得x≥7. 答:她至少答对7道题.
D. 九折
2. 某次知识竞赛共20道题,每一题答对得10分,答错或不答
七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版
第九章不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。
教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。
为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。
在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。
最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。
教学目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。
〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。
重点难点一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。
课时分配9.1不等式………………………………………………………4课时9.2实际问题与一元一次不等式……………………………… 3课时9.3一元一次不等式组………………………………………… 2课时9.4课题学习利用不等式分析比赛……………………… 1课时本章小结……………………………………………………… 2课时不等式及其解集[教学目标]1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。
9.2.2实际问题与一元一次不等式
答:2008年空气质量良好的天数至少比2002年增加 56天,才能使这一年空气质量良好的天数超过全年 天数的70%
例2 :某次知识竞赛共有20道题,每一题答对得 10分,答错或不答都扣5分,小明得分要超过90 分,他至少要答对多少道题? 解:设小明答对X道题,则他答错或不答的题数 为20-X,根据他的得分要超过90,得 10X-5(20-X)>90 解这个不等式,得 10X-100+5X>90 x>38/3 在本题中,X应是正整数而且不能超过20,所 以小明至少要答对13道题. 返回
思考:
2002年北京空气质量良好的天数 365×0.55 用x表示2008年增加的空气质量良好的天数,则 2008年北京空气质量良好的天数是 x+365×0.55 与x有关的哪个式子的值应超过70﹪? x+365×0.55 提示:2008年有366天 366
解:设2008年空气质量良好的天数比2002年增 加x天,2002年有365×0.55天空气质量良好,2008 年有(x+365×0.55)天空气质量良好,并且 365×0.55+x >70﹪ 366 去分母,得 x+200.75>256.2
(2)当学生数是多少时,两家旅行社的收费一 样? (3) 就学生数x讨论哪家旅行社更优惠.
练习2:某人的移动电话(手机) 可选择两种收费办法中的一种,甲种 收费办法是,先交月租15元,每通一分 钟电话再收费0.10元;乙种收费办法 是,不交月租费,每通一分钟电话收费 0.20元.问每月通话时间在什么范围 内选择甲种收费办法合适?在什么范 围内时选择乙种收费办法用题 的解法类似,所不同的是:一个是列 方程,另一个是列不等式。这类问题 是通过题意中的不等量关系列出不等 式,解不等式,得到问题答案。
数学六年级下册第九章训练题-实际问题与一元一次不等式(2)
惠;
若一次购物超过500元,则其中500元按上述九折优惠,超过
500元的部分给予八折优惠.
某人两次去该商场购物,分别付款168元和423元.如果他合起
来一次去购买同样的商品,他可以节省多少钱?
数学
他可以节省30.6元.
七年级 下册
配RJ版
第九章
9.2
数学
七年级 下册
配RJ版
第九章
9.2
7.某型杂交水稻亩产量是普通水稻亩产量的2倍.现有两块试
数学
配RJ版
七年级 下册
数学
第九章
七年级 下册
配RJ版
不等式与不等式组
9.2 一元一次不等式
第3课时 实际问题与一元一次不等式(2)
第九章
9.2
数学
七年级 下册
配RJ版
第九章
9.2
1.某种商品的进价为400元,出售时标价为500元,商店准备打
折出售,但要保证利润率不低于10%,则至多可以打 ( C )
把多少亩B块试验田改种杂交水稻?
数学
七年级 下册
配RJ版
第九章
解:(1)设普通水稻的亩产量是x千克,则杂交水稻的亩产量
是2x千克,
依题意得
−
=4,
解得 x=600,
经检验,x=600是原方程的解,且符合题意,
则2x=2×600=1 200.
答:普通水稻的亩产量是600千克,杂交水稻的亩产量是1
数学
七年级 下册
配RJ版
第九章
解:(1)设每本手绘纪念册的价格为x元,每本图片纪念
册的价格为y元.
+ = ,
= ,
9.2 实际问题与一元一次不等式
9.2 实际问题与一元一次不等式一、基础过关1.若代数式4x-32的值不大于3x+5的值,则x的最大整数值是()A.4 B.6 C.7 D.82.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:•“父母买全票女儿按半价优惠”,乙旅行社告知:“家庭旅游可按团体票价,即每人均按全价的45收费”.若这两家旅行社每人的原票价相同,那么()A.甲比乙优惠 B.乙比甲优惠 C.甲与乙相同 D.与原票价相同3.若方程组43,235x y kx y-=⎧⎨+=⎩的解中x>y,求k的取值范围.4.解下列不等式,并在数轴上表示解集.(1)22x--(x-1)<1;(2)213x--1016x+≥54x-5.5.清河镇的总面积为6平方千米,无河流通过,全部用水靠打井从地下抽取.已知该镇生活类用地为0.4平方千米,每日最多能抽出地下水16200000升,•牧业用水每天需2升/平方米,生活用水每天需6千/平方米,工业用水每天需10升/平方米,为使用水量能满足需求,该镇工业用地最多可以多大(除生活用地和工业用地外的土地都算作牧业用地)?6.初三(6)班班长和体育委员准备为班级购买羽毛球拍和羽毛球,已知羽毛球折每副20元,羽毛球每只0.5元.体育用品商店提出两种优惠办法:(1)赠送1副球拍;(2)按总价的9折付款.已知他们想买球拍4副,羽毛球若干,请你考虑一下选择哪一种办法好?二、综合创新:7.(应用题)(1)学校为解决部分学生的午餐,联系了两家快餐公司,•两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠.甲公司表示每份午餐按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费,问:应选择哪家公司较好?(2)光明电影院为了吸引暑假期间的学生观众,增加票房收入,•决定六月份向市区内中小学生预售七、八两个月使用的“学生电影(优惠)兑换券”,每张优惠券定价为1元,可随时兑换当日某一场次电影票一张.如果七、八两个月期间,每天放映5场次,电影票平均每张3元,•平均每场能卖出250张,为了保证每场次的票房收入平均不低于1000元,•至少应预售这两个月的“优惠券”多少张?8.(1)(2005年,湖北宜昌)小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了,如果小华能按照赶到学校,•那么他行走剩下的一半路程的平均速度至少要到达多少?(2)(2005年,河南实验区)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.①按该公司要求可以有几种购买方案?②若该公司购进的6台机器的日生产能力不能低于380个,•那么为了节约资金应选择哪种方案?甲乙价格(万元/台) 7 5每台日产量(个)100 60三、培优作业9.(探究题)某校师生要去外地参加夏令营活动,•车站提出两种车票价格的优惠方案供学校选择,第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按原价的80%付款.该校有5名教师参加这项活动,试根据参加夏令营的学生人数,选择购票付款的最佳方案.答案: 1.B 点拨:由题意,得4x-32≤3x+5,解得x ≤612,∴满足题意的最大整数值为6. 2.B 点拨:设两旅行社的原票价均为每张x 元,则参加甲旅行社需付出2x+12x=52x (•元);参加乙旅行社需付出3x ·45=125x (元).由于125x<52x ,所以乙比甲优惠. 3.解方程组43,235x y k x y -=⎧⎨+=⎩ 得5,610.9k x k y +⎧=⎪⎪⎨-⎪=⎪⎩∵x>y ,∴56k +>109k -,解得k>1. ∴k 的取值范围是k>1.4.(1)x>-2); (2)x ≤2(数轴见答图9-2-2).0-2 25.解:设工业用地为x 平方千米,则牧业用地为(6-0.4-x )平方米,依题意,得0.4×106×6+x ×106×10+(5.6-x0×106×2≤1.62×107.解得x ≤0.325.答:该镇工业用地最多为0.325平方千米.6.解:设买x 只羽毛球.(1)当3×20+0.5x>(4×20+0.5x )×0.9时,有x>240.∴当羽毛球的只数大于240时,按优惠方法(2)付款合算.(2)当3×20+0.5x<(4×20+0.5x )×0.9时,有x<240.∴当羽毛球的只数小于240时,按优惠方法(1)付款合算.(3)当羽毛球的只数等于240时,按两种方法付款均可.7.(1)解:设购买午餐x 份,每份的报价为1个单位,则甲、乙两家公司的实际收费分别为y 甲=0.9x ,y 乙=100+0.8(x-100).①当0.9x>100+0.8(x-100)时,有x>200.∴当购买份数大于200时,选择乙公司较好.②当0.9x<100+0.8(x-100)时,有x<200.∴当购买份数小于200时,选择甲公司较好.③当购买份数为200时,选择甲、乙两公司均可.(2)解:设每一场次有“优惠券”x 张,依题意,有3×250+x ≥1000.解得x ≥250.故每天的“优惠券”张数不少于250×5=1250(张),从而七、八两个月至少需卖出“优惠券”:1250×31×2=77500(张).8.(1)解:设他行走剩下的一半路程的平均速度为x ,则1260x ≥2.4-1.2,x ≥6. 答:他行走剩下的一半路程的平均速度至少为6千米/小时.(2)②设购买甲种机器x 台,则购买乙种机器(6-x )台.由题意,得7x+5(6-x )≤34,解这个不等式,得x ≤2,即x 可以取0、1、2三个值,方案一:不购买甲种机器,购买乙种机器6台;方案二:购买甲种机器1台,购买乙种机器5台;方案三:购买甲种机器2台,购买乙种机器4台.②按方案一购买机器,所耗资金为30万元,新购买机器日生产量为360个;按方案二购买机器,所耗资金为1×7+5×5=32(万元),新购买机器日生产为1×100+5•×60=400(个);按方案三购买机器,所耗资金为2×7+4×5=34(万元),•新购买机器日生产量为2×100+4×60=440(个).因此,选择方案二既能达到生产能力不低于380•个的要求,又比方案三节约2万元资金,故应选择方案二.9.解:设学生人数为x人,每张票价为a元,则按第一种方案应付款(5a+x·78%)元;按第二种方案应付款(5+x)·80%a元.(1)当5a+x·78%a>(5+x)·80%a时,有x<50.∴当学生人数小于50时,第二种方案较好.(2)当5a+x.78%a<(5+x).80%a时,有x>50.∴当学生人数大于50时,第一种方案较好.(3)当学生人数为50时,两种方案均可.数学世界答案:要放满这些格子,所需麦粒可以覆盖全地球,全世界几百年才能生产出。
数学六年级下册第九章-实际问题与一元一次不等式(2)-课件与答案
台污水处理设备.现有A,B两种型号的设备,其中每台的价格、
月处理污水量及年消耗费如下表.经预算,该企业购买设备
的资金不高于105万元.
(1)请你设计该企业的几种购买方案.
数学
七年级 下册
配RJ版
第九章
9.2
(2)若该企业每月产生的污水量为2 040 t,为了节约资金,应选
择哪种购买方案?
(3)在(2)的条件下,若每台设备的使用年限为10年,污水厂处
元.
(1)分别求出A,B型电动车各购进多少辆;
(2)若每辆A型电动车的售价是每辆B型电动车售价的1.5倍,
要使销售完这批电动车的利润率不低于26%,则每辆A,B型
电动车的售价至少定为多少?
数学
七年级 下册
配RJ版
第九章
9.2
(1)A型电动车购进10辆,B型电动车购进20辆.
(2)要使利润率不低于26%,则每辆A型电动车的售价
依题意得 12x+10(10-x)≤105,
解得 x≤2.5.
又∵x是非负整数,
∴x可取0,1,2.
∴该企业有3种购买方案.
方案1:购买B型设备10台;
方案2:购买A型设备1台,B型设备9台;
方案3:购买A型设备2台,B型设备8台.
第九章
9.2
数学
七年级 下册
配RJ版
(2)依题意得 240x+200(10-x)≥2 040,
80%,那么明年空气质量良好的天数比去年至少要增加多少
天?
明年空气质量良好的天数比去年至少要增加74天.
数学
知识点
七年级 下册
配RJ版
第九章
9.2
应用一元一次不等式解决实际问题
9.2.3实际问题与一元一次不等式(第二课时)
铁冲中学七年级数学导学案制定人: 审核:课题 9.2.2实际问题与一元一次不等式(第二课时)学习目标 1、会根据实际问题中的数量关系建立数学模型 2、学会用去分母的方法解一元一次不等式。
学习重点 学习难点课堂流程学法指导教师点拨情境导入 目标点睛练习:用合适的方法解下列不等式,并把解集表示在数轴上 (1)3x+2>2x-2 (2)23722+-≥-x x例:2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?解:设2008年空气质量良好的天数要比2002年至少增加了x 。
分析:2002年北京空气质量良好的天数是__________,则2008年空气质量良好的天数为____________,那么2008年空气质量良好的天数与全年的天数之比为_______________,这个值要_____________,即可列不等式:______________________________ 去分母,得_______________________________移项,合并同类项得_______________________________ 由于x 应为正整数,得_______________________________答:2008年空气质量良好的天数要比2002年至少增加____,才能使这一年的空气质量良好的天数超过全年天数的70%。
合作探究 激情展示一区列不等式解应用题的一般步骤 1、审(_______________) 2、找(_______________) 3、列(_______________) 4、解(_______________) 5、写(_______________)二区1、若代数式3131-x 的值为不小于2的数,则x 的取值范围为____________2、代数式3x 2-2的最小值是_________。
人教版初中数学七年级下册9.2.2《一元一次不等式的应用》教案设计
课题:9.2实际问题与一元一次不等式教材:人教版义务教育课程标准实验教科书七年级下册【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题.2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3.情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
让学生充分进行讨论交流,在活动中体会不等式的应用。
在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动问题2:甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.启发提问:我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。
人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式
5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车
9.2 一元一次不等式 第2课时
解得 x≥0.5 答:导火索的长度至少取0.5 m.
3.(广州·中考)某商店5月1日举行促销优惠活动,当天 到该商店购买商品有两种方案,方案一:用168元购买会 员卡成为会员后,凭会员卡购买商店内任何商品,一律按 商品价格的8折优惠;方案二:若不购买会员卡,则购买 商店内任何商品,一律按商品价格的9.5折优惠.已知小敏 5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时, 实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时, 采用方案一更合算?
解决较复杂问题时,常需要分不同情况进行讨论.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/72021/9/7Tuesday, September 07, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/72021/9/72021/9/79/7/2021 1:32:23 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/72021/9/72021/9/7Sep-217-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/72021/9/72021/9/7Tuesday, September 07, 2021
想一想:小玲有几种答题可能? 小玲有3种答题可能,分别是 答对7道题,答错2道题,有1道题未答; 答对8道题,答错1道题,有1道题未答; 答对9道题,有1道题未答.
【跟踪训练】
1.我班几个同学合影留念,每人交0.70元.已 知一张彩色底片0.68元,扩印一张相片0.50元, 每人分一张,在将收来的钱尽量用掉的前提下, 这张相片上的同学最少有几人?
9.2 实际问题与一元一次不等式(第2课时)
根据题意,得15(100-x)+20x≥1800, 解得x≥60.∴ x的最小值是60.
答:至少需要60名八年级学生参加活动.
3.某校一名老师将在假期带领学生去北京旅游,有两种购票方式: 甲旅行社说:“如果老师买全票,其他人全部半价优惠.” 乙旅行社说:“所有人按全票价的6折优惠.”已知全票价240元. 设学生有x名,甲旅行社的收费为y1元,乙旅行社的收费为y2元.
人教版.七年级下册
某次知识竞赛,试题都是选择题,答对一道得5分 , 不答或答错不得分也不扣分.小明想在本次竞赛中得 80分,请问他应答对多少道题? 16道
如果将题目中改为“小明想在本次竞赛中 得分不低于80分,请问他至少应答对多 少道题?”应该怎么解?
例1 某次知识竞赛共有20道题,每一题答对得10分,答错或
(3)当累计购物超过100元时,设累计购物x(x>100)元.
①若到甲商场花费少,则50+0.95(x-50)>100+0.9(x-100). 解得,x>150. ∴累计购物超过150元时,到甲商场花费少.
②若到乙商场花费少,则50+0.95(x-50)<100+0.9(x-100). 解得,x<150. ∴累计购物超过100元不超过150元时,到乙 商场花费少.
因此,需要分__三__种情况讨论: (1)如果累计购物不超过50元; 都不优惠
(2)如果累计购物超过50元而不超过100元;乙优惠,甲不优惠
(3)如果累计购物超过100元; 都优惠
解:(1)当累计购物不超过50元时,在两家商场购 物都不享受优惠,因此花费是一样的.
(2)当累计购物超过50元而不超过100元时, 享受乙商场的优惠,不享受甲商场的优惠,因 此到乙商场购物优惠;
七年级下册《9.2 一元一次不等式》教案、导学案、同步练习
《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
【教学重点】:熟练并准确地解一元一次不等式。
【教学难点】:熟练并准确地解一元一次不等式。
【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
9.2实际问题与一元一次不等式(2)
1 第四步: 系数为 1,得 x< 2
-2x<-1
3. 某商店以每辆 250 元的进价购入 200 辆自行车,并以每辆 275 元的价格销售.两个月后自行车的销售款 已超过这批自行车的进货款,这时至少已售出多少辆自行车?
第三环节:拓展提升
1、某商品的进价是 500 元,标价为 750 元,商店要求以利润不低于 5%的售价打折出售,售货员最低可以打 几折出售此商品?
主备人:曹福梅
第 15 周
小组号:_________
2011 年____月_____日
在实际问题中如何建立不等关系,并根据不等关系列出不等式 列不等式解决问题中如何建立不等关系,并根据不等关系列出不等式
第一环节:自学检测
1.下题是已解好的不等式,请你在括号内填写每步的依据: 解不等式: 第一步: 去分母,得 x+5-2<3x+2 第二步: 移项,得 x-3x<2+2-5 第三步: 合并,得 ( ( ( ( ) ) ) )
x 1 3( x 1) 2 的非负整数解 4 8
上述的答案是否正:______ 正确的答案是:_____ 2.初三的几位学生拍了一张合影留念,已知冲一张底片需要 0.80 元,洗一张相片需要 0.35 元.在 每位学生得到一张相片的前提下,平均每人分摊的钱不足 0.5 元,那么参加合影的同学有多少? 若设参加合影的同学有 x 人,则可列不等式_______________________.
2、某城市平均每天产生垃圾 700 吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时可处理垃圾 55 吨,需 费用 550 元,乙厂每小时可处理垃圾 45 吨,需费用 495 元。 (1)甲、乙两厂同时处理该城市的垃圾,每天需几小时才能完成工作? (2)如果规定该城市每天用于处理垃圾的费用不超过 7370 元,甲厂每天处理垃圾至少需多少小时?
《实际问题与一元一次不等式》训练题
9.2 实际问题与一元一次不等式11.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.瓶.(1)(1)如果购买这两种消毒液共用如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?元,求甲、乙两种消毒液各购买多少瓶?(2)(2)该校准备再次该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?2.一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题.道题.(1)(1)根据所给条件,完成下表:根据所给条件,完成下表:根据所给条件,完成下表:答题情况答题情况 答对答对 答错或不答答错或不答题数题数 x 每题分值每题分值10 -5 得分得分10x (2)(2)若小明同学的竞赛成绩超过若小明同学的竞赛成绩超过100分,则他至少答对几道题?分,则他至少答对几道题?3. 3. 福林制衣厂现有福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条.已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则最多需要安排多少名工人制作裤子?则最多需要安排多少名工人制作裤子?4.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时可处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元.(1)(1)甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?(2)(2)如果规定该城市每天用于处理垃圾的费用不得超过如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少需要多少小时?需要多少小时?5.我市某商场A 型冰箱的售价是2190元,每日耗电量为1千瓦·时,最近商场又进回一千瓦·时,最近商场又进回一 批B 型冰箱,其售价比A 型冰箱高出10%,但每日耗电量却为0.55千瓦·时,为了减少库存,商场决定对A 型冰箱降价销售,请解答下列问题:型冰箱降价销售,请解答下列问题: (1)(1)已知已知A 型冰箱的进价为1700元,为保证商场利润率不低于3%,试确定A 型冰箱的降价范围降价范围. .(2)(2)如果只考虑价格与电量,那么商场将如果只考虑价格与电量,那么商场将A 型冰箱的售价至少打几折时,消费者购买A型冰箱才合算型冰箱才合算((两种冰箱的使用期均为10年,每年365天,每千瓦·时电费0.4元计算).).6.小杰到学校食堂买饭,看到A 、B 两窗口前面排队的人一样多两窗口前面排队的人一样多((设为a 人,a >8)8),就站,就站到A 窗口队伍的后面,过了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,人买了饭离开队伍,B B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人.(1)(1)此时,若小杰继续在此时,若小杰继续在A 窗口排队,则他到达窗口所花的时间是多少窗口排队,则他到达窗口所花的时间是多少((用含a 的代数式表示表示))?(2)(2)此时,若小杰迅速从此时,若小杰迅速从A 窗口队伍转移到B 窗口队伍后面重新排队,且到达B 窗口所花的时间比继续在A 窗口排队到达A 窗口所花的时间少,求a 的取值范围的取值范围((不考虑其它因素它因素). ).7.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元万元. .(1)(1)符合公司要求的购买方案有几种?请说明理由;符合公司要求的购买方案有几种?请说明理由;符合公司要求的购买方案有几种?请说明理由;(2)(2)如果每辆轿车的日租金为如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?种购买方案?9.2 实际问题与一元一次不等式21. 1. 某商店在一次促销活动中规定:某商店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠元就可以享受打折优惠. . 一名同学为班级买奖品,准备买6本影集和若干枝铅笔,本影集和若干枝铅笔,已知影集每本已知影集每本15元,钢笔每枝8元,问他至少买多少枝钢笔才能打折?元,问他至少买多少枝钢笔才能打折?2. 2. 宏志高中高一年级近几年招生人数逐年增加,去年达到宏志高中高一年级近几年招生人数逐年增加,去年达到550人,其中面向全省招收的有“宏志班”学生,也有一般普通班学生“宏志班”学生,也有一般普通班学生. . . 由于场地、师资等限制,今年招生最多比去年由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可以多招20%,“宏志班”学生可以多招10%,问今年最少可招收“宏志班”学生多少名?少可招收“宏志班”学生多少名?3.(2011广州)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?4.某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg 以 上(含3000kg )的顾客采用两种销售方案:)的顾客采用两种销售方案:甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回。
9.2 实际问题与一元一次不等式
9.2 实际问题与一元一次不等式学习目标:1.通过列一元一次不等式解决生活实际问题2.通过回顾列一元一次方程或二元一次方程组解应用题的方法与步骤,准确把握用一元一次不等式解应用题的技巧.重点:应用不等式解决实际问题难点:应用不等式解决实际问题学习过程:问题:甲、乙两商店以同样价格售出同样的商品,并且又各自推出不同的优惠方案:从甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获得更大优惠?这个问题较复杂,从何处入手考虑它呢?甲商店优惠方案的起点为购物款达元后.乙商店优惠方案的起点为购物款达元后.我们是否分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元时,在商店购物花费较小.(2)如果累计购物超过50元而不超过100元, 在商店购物花费较小.(3)如果累计购物超过100元,那么在甲店购物花费小吗?设累计购买x元(x>100),如果在甲店购物花费小,则可得不等式:.去括号,得:移项并合并同类项,得:.系数化为1,得:这就是说,累计购物超过元时在甲店购物花费小.例1 2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?分析:首先确定:2002年共有天,2008年共有天.则2002年北京空气质量良好的天数是 .用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是 .解:设2008年比2002年空气质量良好的天数增加了x天.由x应为,得:答:例2 某次知识竞赛共有20道题,每一题答对得10分,答错或不答题都扣5分,小明得分要超过90分,他至少要答对多少道题?分析:设他至少要答对x道题,则他的得分为,他的扣分为 .解:设小明答对x道题,则他答错或不答的题数为()道.因为x必须是数而且不能超过,所以小明至少要答对道题.答: .跟踪练习1.某工程队计划在10天内修路6km,施工前2天修完1.2km后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少千米?2.某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车?3.采石场爆破时,点燃导火线后工人要在爆破前转移到400m外的安全区域,导火线燃烧速度是1cm/s,工人转移的速度是5m/s,导火线要大于多少米?4.某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润增加100万元,人均创利至少增加6000元,前年全厂年利润至少是多少?5.电脑公司销售一批计算机,第一个月以5500元/台的价格售出60台,第二个月起降价,后以5000元/台的价格将这批计算机全部售出,销售款总量超过55万元,这批计算机最少有多少台?6.苹果的进价是每千克1.5元,销售中估计有5%的苹果正常损耗,商家把售价至少定为多少,就能避免亏本?。
9.2实际问题与一元一次不等式
本周末老师组织全班同学参观蜡像 馆,蜡像馆的门票是每人20元,60人 以上(含60人)可按团体票购买,八 折优惠.若全班共50名师生去参观, 如何购买花费最少呢?若人数少于60 人时,多少人买60人的团体票比普通 票花费少呢?
团 购 优 惠方法
A 全 体 八 折 优 惠
惠余一 八 人 假如我们要组团(不少于10 五免 人)去旅游,利用我们学过 折费 的知识分析一下,你们会 优其 选择那种方式购票?
(2)如果到海尔商场购买更优惠,则有: 6000+6000(1-25%)(x-1)>6000(1-20%)x 解得:x<5 所以当购买的电脑少于5台时,选择海尔商 场更优惠。
3、如果两个商场收费相同,则 6000+6000(1-25%)(x-1)=6000(1-20%)x 解之得:x=5 也就是说:当购买的电脑刚好是5台时,两家商场 收费相同。
变形:某学校计划购买若干台电脑, 现从两家商店了解到同一型号的电脑每台 报价均为6000元,并且多买都有一定的优 惠.联想商场的优惠条件是:第一台按原 报价收款,其余每台优惠25%;海尔商场 的优惠条件是:每台优惠20%.如果让你 负责购买,你该怎样1)如果到联想商场购买更优惠,则有 6000+6000(1-25%)(x-1)<6000(1-20%)x 解得:x>5 所以当购买的电脑多于5台时,选择联想商场 更优惠。
②若到乙商场购物花费小,则 0.9x+10> 0.95x+2.5 解得: x<150 又∵ x>100 ∴100 < x<150 所以,当累计购物超过100元且低于150元时,到 乙商场购物花费小。 ③若在两家商场购物花费相同,则 0.9x+10= 0.95x+2.5 解得: x=150 所以,当累计购物刚好为150元时,到两家商场购 物花费相同。
广东省汕头市龙湖实验中学七年级下册数学《9.2实际问题与一元一次不等式》教案二(新人教版)
主备课人:宁文娟一、教学目标1、会根据实际问题中的数量关系建立数学模型,学会用去分母的方法解一元一次不等式;2、通过去分母的方法解一元一次不等式,让学生了解数学中的化归思想,感知不等式与方程的内在联系;3、结合实际,创设活泼有趣的情境,提高学生的学习兴趣.让他们在活动中获得成功的体验,激发起求知的欲望,增强学习的自信心.二、教学重点、难点:(一)重点:列不等式解决问题中如何建立不等式关系,并根据不等关系列出不等式。
(二)难点:在实际问题中如何建立不等关系,并根据不等关系列出不等式。
问题2:某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分, 小明得分要超过90分,他至少要答对多少道题?题中哪那句话包含着不等关系?你能说出这个不等关系吗?答对题得的分数-答错题扣的分数≥60分(一).板书课题,引入新课(二)提出问题问题2:某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分, 小明得分要超过90分,他至少要答对多少道题?题中哪那句话包含着不等关系?你能说出这个不等关系吗?答对题得的分数-答错题扣的分数≥90分解:设小明答对了x 道题,则他答错或不答的题数为20-x 。
根据他的得分要超过90,得10x-5(20-x )>90解这个不等式得 x>3212 在本题中,x 应是 数而且不能超过 ,所以小明至少要答对 道题。
三、当堂练习:(05·河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?教学反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②设小明答对了x道题,则如何用含有x的式子表示得分?
10x-5(20-x)
③如何列不等式?
强调:用不等式解应用问题时,必须注意对未知数的限制条件。
三、当堂反馈
1.某市自来水公司按如下标准收费:用户每月用水在5m3之内,按每立方米1.5元收费;超出5m3部分,每立方米收费2元。小希家某月的水费超过了15元,那么他家这个月的用水量至少是多少?
想一想2002年,2008年天数一样吗?
分析2002年北京空气质量良好的天数是多少?
365×0.55
用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?
x+365×0.55
请根据分析自己完成解答。小组交流注意事项。
例2.某次知识竞赛共有20道题。每道题答对加10分,答错或不答均扣5分。小明要想得分超过90分,他至少要答对多少道题?
教学方法
师生探究----学生达标
学生自主活动材料
一引入新课
前面我们结合实际问题,讨论了如何根据数量关系列不等式以及如何解不等式。在本节课上,我们将进一步探究如何用一元一次不等式解决生活中的一些实际问题。
二、合作探究
例1.2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55﹪,如果到2008年这样的比值要超过70﹪,那么2008年空气质量良好的天数要比2002年至少增加多少?
七年级数学下册第导学稿
课题
9.2实际题目与一元一次不等式2
课型
预习课
执笔人
审核人
级部审核
讲学时间
第周第讲学稿
教师寄语
今日事,今日毕。不要把今天的事拖到明天。
学习目标
探究实际题目中的不等关系,进一步体会利用不等式解决Байду номын сангаас目的基本过程;
教学重点
在实际问题中建立一元一次不等式的数量关系。
教学难点
在开放的题目情境中促使思维的发展
2.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少
小结:从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
必做课本135页第8,9题
选做预习课本137页9.3
自我评价专栏(分优良中差四个等级)
自主学习:合作与交流:书写:综合: