小学奥数行程问题(追击问题)(教师版)

合集下载

行程问题(追及问题)

行程问题(追及问题)

甲乙两人同时从相距36千米的A,B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米,几小时后可追上乙?
哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?
两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?
双胞胎姐妹在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?
哥哥和弟弟在同一所学校读书,哥哥每分钟走60米,弟弟每分钟走40米,有一天弟弟先走5分钟,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?
小明以每分钟80米的速度步行上学,他走后20分钟爸爸发现忘带作业本,立即骑摩托车去送,爸爸骑摩托每分钟行驶480米,追上小明时,离学校还有200米的路程,求学校离小明家的路程。

骑车人和行人同一条街同方向前进,行人在骑车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?
客车以每小时40千米的速度从甲地开往乙地,3小时后一辆轿车也从甲地开往乙地,轿车6小时追上客车,求轿车的速度。

甲、乙两地相距450米,A、B两人从两地相向而行,经过5分钟相遇,已知A 每分钟比B每分钟慢6米,求A、B两车的速度各是多少米?。

小学奥数专题——第1讲:相遇问题与追及问题(老师版)

小学奥数专题——第1讲:相遇问题与追及问题(老师版)

第1讲:相遇问题与追及问题1、速度的定义:速度就是单位时间内所经过的路程。

2、速度、时间和路程是行程问题中最重要的三个量,它们的关系如下:路程=速度×时间速度=路程÷时间时间=路程÷速度3、行程问题中常用的数量单位(1)常用的路程单位:米、千米。

(2)常用的时间单位:秒、分钟和小时。

(3)常用的速度单位:米/秒、米/分、千米/小时。

【例1】甲、乙两地相距360千米,一辆汽车原计划用8小时从甲地到乙地,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生了故障,在途中停留了1小时.如果按照原定的时间到达乙地,汽车在后一半路程每小时应该行驶多少千米?【例1】45千米/时;60千米/时详解:(1)行驶路程是360千米,行驶时间是8小时,所以行驶速度是360÷8=45千米/时;(2)后一半路程是360÷2=180千米,行驶总时间仍然是8小时,前半程花了4+1=5小时,所以后半程行驶时间是3小时,后半程的速度是180÷3=60千米/时.【例2】A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两个人从出发到相遇需要多长时间?【例2】(1)80分钟;(2)30分钟详解:(1)甲行驶的路程是4800米,行驶的速度是60米/分,所以行驶的时间是4800÷60=80分钟;(2)两人从出发到相遇行驶的路程和是4800米,行驶的速度和是60+100=160米/分,所以相遇时间是4800÷160=30分钟.1、墨莫练习慢跑,12分钟跑了3000米,按照这个速度,跑25000米需要多少分钟?如果墨莫每天都以这个速度跑10分钟,连续跑一个月(30天),他一共跑了多少千米?1、100分钟;75千米解答墨莫跑的速度为3000÷12=250米/分,跑25000米需要25000÷250=100分钟.每天跑10分钟,跑一个月,一共跑了250×10×30=75000米,即75千米.2、兔子和乌龟赛跑,从A地跑到B地,全程共6000米.兔子计划5分钟跑完全程,结果比赛时兔子实际每分钟跑的路程比计划的要少200米.那么兔子实际跑完全程用了多长时间?2、6分钟简答:原计划5分钟跑完6000米,所以原计划速度为6000÷5=1200米/分,实际每分钟跑1200-200=1000米,所以实际时间为6000÷1000=6分钟.3、阿呆和阿瓜从相距5000米的A、B两地同时出发,相向而行.如果阿呆每分钟走150米,阿瓜每分钟走350米,那么两人从出发到相遇需要多长时间?3、10分钟简答:从出发到相遇,路程和为5000米,速度和为150+350=500米/分,所以相遇时间为5000÷500=10分钟两个运动物体在一条直线上运动,行进的方向可能相同,也可能相反。

小学奥数专题——第1讲:相遇问题与追及问题(老师版)

小学奥数专题——第1讲:相遇问题与追及问题(老师版)

第1讲:相遇问题与追及问题1、速度的定义:、速度的定义:速度就是单位时间内所经过的路程。

速度就是单位时间内所经过的路程。

2、速度、时间和路程是行程问题中最重要的三个量,它们的关系如下:如下:路程=速度×时间路程=速度×时间速度=路程÷时间速度=路程÷时间时间=路程÷速度时间=路程÷速度3、行程问题中常用的数量单位、行程问题中常用的数量单位(1)常用的路程单位:米、千米。

)常用的路程单位:米、千米。

(2)常用的时间单位:秒、分钟和小时。

)常用的时间单位:秒、分钟和小时。

(3)常用的速度单位:米/秒、米/分、千米/小时。

小时。

【例1】甲、乙两地相距360千米,一辆汽车原计划用8小时从甲地到乙地,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生了故障,在途中停留了1小时.如果按照原定的时间到达乙地,汽车在后一半路程每小时应该行驶多少千米?到达乙地,汽车在后一半路程每小时应该行驶多少千米?【例1】45千米/时;60千米/时详解:(1)行驶路程是360千米,行驶时间是8小时,所以行驶速度是360÷8=45千米/时;时;(2)后一半路程是360÷2=180千米,行驶总时间仍然是8小时,前半程花了前半程花了4+1=5小时,所以后半程行驶时间是3小时,后半程的速度是180÷3=60千米/时.时.【例2】A 、B 两地相距4800米,甲、乙两人分别从A 、B 两地同时出发,相向而行如果甲每分钟走60米,乙每分钟走100米,请问:米,请问: (1)甲从A 走到B 需要多长时间?需要多长时间?(2)两个人从出发到相遇需要多长时间?)两个人从出发到相遇需要多长时间?【例2】(1)80分钟;(2)30分钟分钟详解:(1)甲行驶的路程是4800米,行驶的速度是60米/分,所以行驶的时间是4800÷60=80分钟;(2)两人从出发到相遇行驶的路程和是4800米,行驶的速度和是60+100=160米/分,所以相遇时间是4800÷160=30分钟.分钟.1、墨莫练习慢跑,12分钟跑了3000米,按照这个速度,跑25000米需要多少分钟?如果墨莫每天都以这个速度跑10分钟,连续跑一个月(30天),他一共跑了多少千米?天),他一共跑了多少千米?1、100分钟;75千米 解答墨莫跑的速度为3000÷12=250米/分,跑25000米需要25000÷250=100分钟.每天跑10分钟,跑一个月,一共跑了250×10×30=75000米,即75千米.2、兔子和乌龟赛跑,从A 地跑到B 地,全程共6000米.兔子计划5分钟跑完全程,结果比赛时兔子实际每分钟跑的路程比计划的要少200米.那么兔子实际跑完全程用了多长时间?米.那么兔子实际跑完全程用了多长时间?2、6分钟分钟简答:原计划5分钟跑完6000米,所以原计划速度为6000÷5=1200米/分,实际每分钟跑1200-200=1000米,所以实际时间为6000÷1000=6分钟.分钟.3、阿呆和阿瓜从相距5000米的A 、B 两地同时出发,相向而行.如果阿呆每分钟走150米,阿瓜每分钟走350米,那么两人从出发到相遇需要多长时间?发到相遇需要多长时间?3、10分钟分钟简答:从出发到相遇,路程和为5000米,速度和为150+350=500米/分,所以相遇时间为5000÷500=10分钟分钟两个运动物体在一条直线上运动,行进的方向可能相同,也可能相反。

五年级奥数.行程.接送问题.教师版

五年级奥数.行程.接送问题.教师版

接送问题知识框架一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

例题精讲【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题【难度】☆☆☆【题型】解答【解析】车下午2时从学校出发,如图,在C 点与劳模相遇,再返回B 点,共用时40分钟,由此可知,在从B 到C 用了40220÷=分钟,也就是2时20分在C 点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC 要10分钟,也就是说2BC AC =.走完AC ,劳模用了80分钟;走完BC ,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【答案】8倍【巩固】 张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前 分钟到厂。

小学数学6年级培优奥数讲义 第22讲 行程问题(教师版)

小学数学6年级培优奥数讲义 第22讲  行程问题(教师版)

第22讲 行程问题①环形路线上的相遇和追及问题; ②速度行程问题与比例关系;③钟面上的行程问题。

问题回顾例1、一条船顺水航行48千米,再逆水航行16千米,共用了5小时;这知船顺水航行32千米,再逆水航行24千米,也用5小时。

求这条船在静水中的速度。

【解析】这道题的数量关系比较隐蔽,我们条件摘录整理如下:顺水 逆水 时间48千米 16千米 5小时 32千米24千米5小时比较条件可知,船顺水航行48千米,改为32千米,即少行了48-32=16(千米),那么逆水行程就由16千米增加到24千米,这就是在相同的时间里,船顺水行程是逆水行程的16÷8=2倍。

所以“逆水航行16千米”,可转换为“顺水航行16×2=32(千米),这样船5小时一共顺水航行48+32=80(千米),船顺水速为80÷5=16千米,船逆水速为16÷2=8(千米)。

船静水速为(16+8)÷2=12(千米)。

例2、甲、乙二人分别从A 、B 两地同时出发,往返跑步。

甲每秒跑3米,乙每秒跑7米。

如果他们的第四次相遇点与第五次相遇点的距离是150米,求A 、B 两点间的距离为多少米?BD E C A【解析】(法一)画图分析知甲、乙速度比为:::3:7S S V V ==乙乙甲甲,第四次相遇甲乙共走:4×2-1=7(个全程),教学目标知识梳理甲走了:3×7=21(份)在C 点,第五次相遇甲乙共走:5×2-1=9(个全程),甲走了:3×9=27(份)在D 点,已知CD 是150米,所以AB 的长度是150÷6×(3+7)=250(米)。

(法二)也有不画图又比较快的方法:第四次相遇:(2×4-1)×3÷20余数为1 则在x 的位置,第五次相遇:(2×5-1)×3÷20余数为7 则在7x 的位置,x 表示速度基数716x x x -=, 6150x =,10101506250x =⨯÷=(米),即全程AB 为250米。

【奥赛】小学数学竞赛:多次相遇和追及问题.教师版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:多次相遇和追及问题.教师版解题技巧 培优 易错 难

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】1星 【题型】解答 【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题 【难度】1星 【题型】解答 【解析】 17 【答案】17【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【考点】行程问题 【难度】2星 【题型】解答 【解析】 176 【答案】176【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答 【解析】 甲、乙两人的速度和第一次为60÷6=10(千米/时),第二次为12(千米/时),故第二次出发后5时相遇。

小学奥数专题——第3讲:多人多次相遇追及问题(老师版)

小学奥数专题——第3讲:多人多次相遇追及问题(老师版)

第3讲:多人多次相遇追及问题在之前的课程中,我们已经学过了如何处理两个对象之间的相遇追及问题.本讲我们进一步学习过程更为复杂的三个对象之间的行程问题.本讲中画线段图非常重要,你还记得画行程图要注意什么吗?【例1】有甲、乙、丙三个人,甲每分钟走40米,乙每分钟走60米,丙每分钟走50米.A、B两地相距2700米甲从A地,乙、丙从B 地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?【分析】全程已知,三个人的速度也都已知,那么甲乙的相遇时间、甲丙的相遇时间都是可以计算出来的.【答案】3分钟详解:甲和乙相遇时的路程和是2700米,速度和是100米/分,所以相遇时间是2700÷100=27分钟.甲和丙相遇时的路程和也是2700米,速度和是90米/分,所以相遇时间是2700÷90=30分钟,所以又过了3分钟甲和丙才相遇.【例2】叮叮、咚咚两人各自开车从A地出发,销销则从B地同时出发,相向而行.叮叮的速度为每小时70千米,销销的速度为每小时50千米.出发3小时后,叮叮与销销相遇又过了1小时,咚咚也与销销相遇请问:咚咚的车速是多少?【分析】请在图中把过程补全,并标出相应的数据,例如速度、时间、路程等.然后注意分析,看看哪个过程是可以计算的?【答案】40千米/时详解:首先画出线段图(如下图),有两次相遇,其中还隐藏了一次追及问题.AB全程:(70+50)×3=360千米咚咚和销销相遇时间是4小时,他们速度和是:360÷4=90千米/时,那么咚咚的速度是90-50=40千米/时.1、有冰冰、雪雪、霜霜三个人,冰冰每分钟走4米,雪雪每分钟走5米,霜霜每分钟走6米.A、B两地相距990米雪雪从A地,霜霜、冰冰从B地同时出发相向而行.请问,雪雪与霜霜相遇之后多少分钟又与冰冰相遇?【答案】20分钟简答:雪雪和霜霜相遇时的路程和是990米,速度和是11米/分,所以相遇时间是990÷11=90分钟.雪雪和冰冰相遇时的路程和也是990米,速度和是9米/分,所以相遇时间是990÷9=110分钟,又过了20分钟雪雪和冰冰才相遇.2、小春、小秋两人从A地出发,小夏则从B地同时出发,相向而行小春的速度为每小时60千米,小夏的速度为每小时40千米.出发3小时后,小春与小夏相遇.又过了1小时,小秋也与小夏相遇请问:小秋的速度是多少?【答案】35千米/时简答:有两次相遇,其中还隐藏了一次追及问题.AB全程:(60+40)×3=300千米小秋和小夏相遇时间是4小时,他们速度和是:300÷4=75千米/时,那么小秋的速度是75-40=35千米/时.【例3】甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车。

小学奥数行程问题之追及问题

小学奥数行程问题之追及问题

小学奥数行程问题之追及问题本文介绍了奥数第七讲行程问题中的追及问题,给出了解决追及问题的基本关系式和公式,并通过三个例子进行了讲解。

在解决追及问题时,需要注意追赶者和被追赶者所用时间相等的不变量,以及“追及距离”和“追赶者追上被追赶者所走的距离”这两个量之间的区别。

通过例子的讲解,学生可以熟练掌握追及问题的三个公式,并灵活运用公式求解问题。

例子中涉及了同时出发的同向而行的追及问题和先后出发的追及问题,需要画出线段图进行分析,求解速度差和追及时间,最终得出答案。

1、哥哥和弟弟同时在学校上学。

弟弟先走,以每分钟80米的速度,3分钟后,哥哥以每分钟200米的速度骑车向学校骑去。

问哥哥几分钟后能追上弟弟?2、姐妹在同一小学上学。

妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学。

结果两人同时到达学校。

求家到学校的距离有多远?追及问题的基本公式为:路程差=速度差×追及时间,速度差=路程差÷追及时间,追及时间=路程差÷速度差。

教学目标为掌握不同形式的追及问题的解题思路和基本规律。

教学重点为通过图形分析追及问题,难点为找准解决环形路程的追及问题的突破口。

例4为一条环形跑道长400米的问题。

甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米。

两人同时同地同向出发,经过多少分钟两人相遇?甲乙的速度差为50米每分钟,甲追上乙所用的时间为8分钟,因此经过8分钟两人相遇。

例5为在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶。

问2小时内,甲追上乙多少次?路程差为200米,甲追上乙一次所用的时间为4小时,因此2小时内甲追上乙的次数为1次。

2小时本文主要介绍了环形跑道的追及问题和和差问题的综合运用。

文章中给出了两个例子,分别是在圆形跑道上,甲、乙两人分别以每秒7米,每秒5米的骑车速度同时顺时针方向行驶,20分钟内甲追上乙几次?以及在480米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度?文章给出了详细的解题方法和答案,并提供了课后练和小结。

五年级下册数学竞赛试题行程问题(二)追及问题苏教版

五年级下册数学竞赛试题行程问题(二)追及问题苏教版

五年级下册数学竞赛试题行程问题(二)追及问题苏教版五年级上寒假奥数专题:行程问题(二):追及问题专题简析:“追及问题”追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。

追及问题的基本数量关系是:速度差×追及时间=追及路程结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意例1 中巴车每小时行60千米,小轿车每小时行84千米。

两车同时从相距60千米的两地同方向开出,且中巴在前。

几小时后小轿车追上中巴车?分析原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米。

60÷24=2.5小时,所以2.5小时后小轿车能追上中巴车【同步演练】1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。

摩托车多长时间能够追上?2.甲骑自行车从A地到B地,每小时行16千米。

1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。

A、B两地相距多少千米?例2 一辆汽车从甲地开往乙地,要行360千米。

开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

汽车是在离甲地多远处修车的?【同步演练】1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。

有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。

小王是在离工厂多远处遇到熟人的?2.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。

汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发。

为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度驶向乙地?例3 甲、乙两人以每分钟60米的速度同时、同地、同向步行出发。

走15分钟后甲返回原地取东西,而乙继续前进。

四年级奥数-教师版-第十讲火车行程问题

四年级奥数-教师版-第十讲火车行程问题

四年级奥数-教师版-第十讲火车行程问题指南针小升初第十讲火车过桥问题知识导航火车过桥问题是奥数行程问题的一种,也有路程、速度与时间之间的数量关系,同时还涉及车长、桥长等问题。

基本数量关系是:火车速度×时间=车长+桥长;依据这个基本的数量关系可以推导出几个相关的计算公式,在练习中我们应该举一反三,灵活的应用这个公式的变化。

一般的火车过桥所求的分为:求过桥时间;求桥长;求火车长;求火车的速度。

下面我们分别研究这些问题。

例1:一列火车长150米,每秒钟行19米。

全车通过长800米的隧道,需要多少时间?解析:列车过桥,就是从车头进隧道到车尾离隧道止。

车尾经过的距离=车长+隧道,车尾行驶这段路程所用的时间用车长与隧道和除以车速。

解:(800+150)÷19=50(秒)答:全车通过长800米的隧道,需要50秒。

【巩固1】一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?解析:火车长+桥长=路程;时间=路程÷速度;解:(200+200)÷10=40(秒)【巩固2】一列火车经过南京长江大桥,大桥长6700米,这列火车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?解析:很标准的火车过桥问题,比较简单。

求过桥时间:(桥长+火车长)÷速度=过桥时间(6700+100)÷400=17(分钟)答:这列火车经过大桥要17分钟。

- 66 -指南针小升初例2:一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?解析:重点推导公式:隧道长=路程-火车长;先求出车长与隧道长的和,然后求出隧道长。

火车从车头进洞到车尾离洞,共走车长+隧道长。

这段路程是以每秒8米的速度行了40秒。

解:(1)火车40秒所行路程:8×40=320(米)(2)隧道长度:320-200=120(米)答:这条隧道长120米。

小学奥数-行程追及问题(教师版)

小学奥数-行程追及问题(教师版)

行程追及问题有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间【例1】★甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?【解析】甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?18÷(14-5)=2(小时)【例2】★哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?【解析】哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?(50×10)÷(70-50)=25(分钟)【小试牛刀】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?【解析】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?(16-5)×2=22(千米)【例3】★★一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

五年级奥数.行程.多人相遇和追及问题.教师版

五年级奥数.行程.多人相遇和追及问题.教师版

二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式: =⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).【答案】37800米【巩固】 一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【考点】行程问题【难度】☆☆ 【题型】解答 例题精讲知识框架多人相遇和追及问题【解析】4004502502()(分钟).÷-=【答案】2分钟【例 2】在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少千米?【考点】行程问题【难度】☆☆☆【题型】解答【解析】汽车A在与汽车B相遇时,汽车A与汽车C的距离为:(8050)2260+⨯=千米,此时汽车B与汽车C的距离也是260千米,说明这三辆车已经出发了260(7050)13÷-=小时,那么甲、乙两站的距离为:(8070)131950+⨯=千米.【答案】1950千米【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【考点】行程问题【难度】☆☆☆【题型】解答【解析】甲遇到乙后15分钟,甲遇到了丙,所以遇到乙的时候,甲和丙之间的距离为:(60+40)×15=1500(米),而乙丙之间拉开这么大的距离一共要1500÷(50-40)=150(分),即从出发到甲与乙相遇一共经过了150分钟,所以A、B之间的距离为:(60+50)×150=16500(米).【答案】16500米【例 3】小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【考点】行程问题【难度】☆☆☆【题型】解答【解析】画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离:()54.810.8 1.360+⨯=(千米),这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是:1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A 到甲地需要:130÷2=65(分钟).从乙地到甲地需要的时间是:130+65=195(分钟)=3小时15分.小李从乙地到甲地需要3小时15分.【答案】3小时15分【巩固】 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【考点】行程问题 【难度】☆☆☆ 【题型】解答【解析】 那2分钟是甲和丙相遇,所以距离是(60+70)×1=130米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=130÷(65-60)=26分钟,所以路程=26×(65+70)=3510米。

小学数学5年级培优奥数讲义 第21讲 “三向”行程问题(教师版)

小学数学5年级培优奥数讲义 第21讲   “三向”行程问题(教师版)

第21讲“三向”行程问题熟练掌握“路程和=速度和×时间”这一公式并能利用其解决相向行程问题(相遇问题)、同向行程问题(追及问题)、背向行程问题(相离问题)。

一、相向行程问题(相遇问题)甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V和和二、同向行程问题(追及问题)有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t后甲乙同时到达终点,甲乙的速度分别为v甲和v乙,那么我们可以看到经过时间t后,甲比乙多跑了5米,或者可以说,在时间t内甲的路程比乙的路程多5米,甲用了时间t追了乙5米教学目标知识梳理三、背向行程问题(相离问题)相离问题:“两物体从同一地点出发,相背而行”, 注意对“速度和”的理解,注意时间的因素 图示:甲 出发点 乙A B关系式:相离距离=速度和×相背而行的时间.考点一:相向行程问题(相遇问题)例1、一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

小学奥数行程问题分类教师版

小学奥数行程问题分类教师版

小学奥数行程问题( 分类 )( 教师版)行程问题知识点拨发车问题(1)、一般间隔发车问题。

用 3 个公式快速作答;汽车间距 =(汽车速度 +行人速度)×相遇事件时间间隔汽车间距 =(汽车速度 - 行人速度)×追及事件时间间隔汽车间距 =汽车速度×汽车发车时间间隔(2)、求抵达目的地后相遇和追及的公共汽车的辆数。

标准方法是:绘图——尽可能多的列 3 个好使公式——联合 s 全程= v×t- 联合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法1⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,所以火车的行程是桥长与车身长度之和 .⑵ 火车与人错身时,忽视人自己的长度,二者行程和为火车自己长度;火车与火车错身时,二者行程和则为两车身长度之和 .⑶ 火车与火车上的人错身时,只需以为人具备所在火车的速度,而忽视自己的长度,那么他所看到的错车的相应行程仍不过对面火车的长度 .关于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种种类的题目,在剖析题目的时候必定得联合着图来进行 .接送问题依据校车速度(来回不一样)、班级速度(不一样班不一样速)、班数能否变化分类为四种常有题型:(1)车速不变 - 班速不变 - 班数 2 个(最常有)(2)车速不变 - 班速不变 - 班数多个(3)车速不变 - 班速变 - 班数 2 个2(4)车速变 - 班速不变 - 班数 2个标准解法:绘图+列 3 个式子1、总时间 =一个队伍坐车的时间 +这个队伍步行的时间;2、班车走的总行程;3、一个队伍步行的时间 =班车同时出发后回来接它的时间。

多人多次相遇和追击问题1.多人相遇追及问题,即在同向来线上, 3 个或3个以上的对象之间的相遇追及问题。

全部行程问题都是环绕“ 行程速度时间”这一条基本关系式睁开的,比方我们碰到的两大典型行程题相遇问题和追及问题的实质也是这三个量之间的关系转变.由此还能够获得以下两条关系式:行程和速度和相遇时间;行程差速度差追实时间;多人相遇与追及问题固然较复杂,但只需抓住这两条公式,逐渐表征题目中所波及的数目,3问题即可水到渠成.2、多人多次相遇追及的解题重点多次相遇追及的解题重点几个全程多人相遇追及的解题重点行程差时钟问题:时钟问题能够看做是一个特别的圆形轨道上 2 人追及问题,可是这里的两个“人”分别是时钟的分针和时针。

小学奥数行程问题之追及问题

小学奥数行程问题之追及问题

小学奥数行程问题之追及问题奥数第七讲行程问题(一)——追及问题四年级奥数教案第七讲行程问题(一)——追及问题解决追及问题的基本关系式是:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差在解决追及问题中,我们要抓住一个不变量,即追赶者所用时间与被追赶者所用的时间是相等的,都等于追及时间。

大家还要注意区别“追及距离”与“追赶者追上被追赶者所走的距离”这两个量之间的区别。

就像刚才的例子,“追及距离”为150米,而狗追上兔一共走了3×150=450(米)二、新授课:【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:追及时间=路程差÷速率差150÷(75-60)=10(分钟)答:10分钟后乙追上甲。

【小结】提醒学生闇练掌握追及问题的三个公式。

【例2】骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?【思路阐发】这道问题,是同时动身的同向而行的追及问题,请求其中某个速率,就必须先求出速率差,按照公式:速率差=路程差÷追及时间:速度差:450÷3=150(千米)自行车的速度:150+60=210(千米)答:骑自行车的人每分钟行210千米。

【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。

【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?【思路阐发】按照题意可知,第一辆汽车先行2小时后,第二辆汽车才动身,画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用追及时间=路程差÷速率差。

应用题板块-行程问题之相遇追及(小学四年级奥数题)

应用题板块-行程问题之相遇追及(小学四年级奥数题)

应用题板块-行程问题之相遇追及(小学四年级奥数题)【一、题型要领】1. 相遇问题【基本概念】小王在A地要去B地,小张在B地要去A地(下图左侧部分),两人分别行走一段时间后,就会在途中相遇(下图右侧部分)。

【基本公式】(1)总路程= 小王行走的路程+ 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)总路程= 小王行走的速度* 小王行走的时间+ 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)总路程=(小王行走的速度 + 小张行走的速度)* 行走的时间【解题关键】两地相距的距离等于小王行走的路程加上小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可2. 追及问题【基本概念】小张在前方行走,小王在后方与小张同方向行走(下图左侧部分),如果小王行走的速度大于小张,则经过一段时间以后,小王就会追上小张(下图右侧部分)【基本公式】(1)小王和小张相距的路程= 小王行走的路程- 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)小王和小张相距的路程 = 小王行走的速度* 小王行走的时间- 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)小王和小张相距的路程 =(小王行走的速度 - 小张行走的速度)* 行走的时间【解题关键】小王和小张相距的距离等于小王行走的路程减去小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可【举一反三】有一类题目是为赶时间,题目描述“为了节省XX时间从原本的速度x变成了之后的速度y”,解题时可以假象成另一个人以原速度提前走了XX 时间,而自身以修改后的速度从原地出发,最终两人同时到达终点,即可用“追及”问题解答【二、重点例题】例题1【题目】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟,他们同时出发,几分钟后两人相遇?【分析】走同样长的距离,小张花费的时间是小王花费时间的36 ÷ 12 = 3(倍),因此自行车的速度是步行速度的3倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程之相遇问题1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个数量的关系。

2、通过课堂上的合作学习、汇报展示、互动交流,提高学生分析处理信息的能力,培养学生解决实际问题的能力。

3、让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。

追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。

由于速度不同,就发生快的追及慢的问题。

根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

1:甲、乙二人在同一条路上前后相距9千米。

他们同时向同一个方向前进。

甲在前,以每小时5千米的速度步行;乙在后,以每小时10千米的速度骑自行车追赶甲。

几小时后乙能追上甲?(适于高年级程度)解:求乙几小时追上甲,先求乙每小时能追上甲的路程,是:10-5=5(千米)再看,相差的路程9千米中含有多少个5千米,即得到乙几小时追上甲。

9÷5=1.8(小时)综合算式:9÷(10-5)=9÷5=1.8(小时)答略。

2:甲、乙二人在相距6千米的两地,同时同向出发。

乙在前,每小时行5千米;甲在后,每小时的速度是乙的1.2倍。

甲几小时才能追上乙?(适于高年级程度)解:甲每小时行:5×1.2=6(千米)甲每小时能追上乙:6-5=1(千米)相差的路程6千米中,含有多少个1千米,甲就用几小时追上乙。

6÷1=6(小时)答:甲6小时才能追上乙。

3:甲、乙二人围绕一条长400米的环形跑道练习长跑。

甲每分钟跑350米,乙每分钟跑250米。

二人从起跑线出发,经过多长时间甲能追上乙?(适于高年级程度)解:此题的运动路线是环形的。

求追上的时间是指快者跑一圈后追上慢者,也就是平时所说的“落一圈”,这一圈相当于在直线上的400米,也就是追及的路程。

因此,甲追上乙的时间是:400÷(350-250)=400÷100=4(分钟)4 :在解放战争的一次战役中,我军侦察到敌军在我军南面6千米的某地,正以每小时5.5千米的速度向南逃窜,我军立即以每小时8.5千米的速度追击敌人。

在追上敌人后,只用半小时就全歼敌军。

从开始追击到全歼敌军,共用了多长时间?(适于高年级程度)解:敌我两军行进的速度差是:8.5-5.5=3(千米/小时)我军追上敌军用的时间是:6÷3=2(小时)从开始追击到全歼敌军,共用的时间是:2+0.5=2.5(小时)综合算式:60÷(8.5-5.5)+0.5=6÷3+0.5=2.5(小时)5:一排解放军从驻地出发去执行任务,每小时行5千米。

离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。

通讯员以每小时10千米的速度回到驻地,取了地图立即返回。

通讯员从驻地出发,几小时可以追上队伍?(适于高年级程度)解:通讯员离开队伍时,队伍已离开驻地3千米。

通讯员的速度等于队伍的2倍(10÷5=2),通讯员返回到驻地时,队伍又前进了(3÷2)千米。

这样,通讯员需追及的距离是(3+3÷2)千米,而速度差是(10-5)千米/小时。

根据“距离差÷速度差=时间”可以求出追及的时间。

(3+3÷2)÷(10-5)=4.5÷5=0.9(小时)6:甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?【解析】甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?18÷(14-5)=2(小时)1:哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?【解析】哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?(50×10)÷(70-50)=25(分钟)2:一队中学生到某地进行军事训练,他们以每小时5千米的速度前进,走了6小时后,学校派秦老师骑自行车以每小时15千米的速度追赶学生队伍,传达学校通知。

秦老师几小时可追上队伍?追上时队伍已经行了多少路?【解析】5×6=30(千米)……秦老师出发时队伍已经行的路程,也就是追及路程。

30÷(15-5)=3(小时)……追及时间5×(6+3)=45(千米)……队伍总走的路程3:学校组织四年级学生春游,包了两辆大面包车从学校出发。

第一辆车速每小时30千米,上午7:00出发,第二辆晚开1小时,速度是每小时40千米。

结果两辆车同时到达,问春游的景区离学校多远?【解析】晚开1小时,说明追及路程是:30×1=30(千米)30÷(40-30)=3(小时)……追及时间,追上的时候也就是到了景区。

40×3=120(千米)4:甲、乙两人同时从A地去B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?【解析】通过线段图可以知道,甲比乙多行了1200×2=2400(米),2400÷(250-90)=15(分钟)……行的时间。

250×15-1200=2550(米5:王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华.求多少分钟后追上李华?【解析】已知二人出发5分钟后,王芳返回学校取运动服,这样用去了5分钟,在学校又耽误了2分钟,王芳一共耽误了52212⨯=⨯+=(分钟).李华在这段时间比王芳多走:7012840(米),速度差为:1107040÷=(分钟)-=(米/秒),王芳追上李华的时间是:84040216:一辆慢车从甲地开往乙地,每小时行40千米,开出5小时后,一辆快车以每小时90千米的速度也从甲地开往乙地.在甲乙两地的中点处快车追上慢车,甲乙两地相距多少千米?【解析】慢车先行的路程是:405200-=(千⨯=(千米),快车每小时追上慢车的千米数是:904050米),追及的时间是:200504÷=(小时),快车行至中点所行的路程是:904360⨯=(千米),甲乙两地间的路程是:3602720⨯=(千米).1:一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?【解析】一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?40×5÷(90-40)=4(小时)……追及时间40×(5+4)=360(千米)……汽车速度×汽车时间=汽车路程360×2=720(千米)……全程2:甲、乙两车分别从A、B两地出发,同向而行,乙车在前,甲车在后.已知甲车比乙车提前出发1小时,甲车的速度是96千米/小时,乙车每小时行80千米.甲车出发5小时后追上乙车,求A、B 两地间的距离.【解析】由已知可求出甲、乙两车的追及时间,利用追及问题的公式求解.追及时间为:51=4-(小时)追及路程为:9680464()(千米)-⨯=A、B两地间的距离为:96164160⨯+=(千米)3:甲每分钟行80米,乙每分钟行50米,在下午1:30分时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在几点的时候追上乙?【解析】相背行了6分钟,两人相距(80+50)×6=780(米),这其实就是需要追及的路程。

780÷(80-50)=26(分钟)……追及时间,这样1时30分+6分+26分=2时2分追上乙。

4:某学校组织学生去长城春游,租用了一辆大客车,从学校到长城相距150千米。

大客车和学校的一辆小汽车同时从学校出发,当小汽车到长城时,大客车还有30千米。

已知大客车每小时行60千米,则小汽车比大客车快多少千米?【解析】大客车实际行驶了150-30=120(千米),120÷60=2(小时),实际行驶了2小时(包括小汽车也是行驶这个时间),150÷2=75(千米)……小汽车行驶速度,75-60=15(千米)……速度差5:甲、乙两人同时从东村出发到西村,甲的速度是每小时6千米,乙的速度是每小时4千米,甲中途有事休息了2小时,结果比乙迟到了1个小时,求两村相隔的距离?【解析】甲休息2小时相当于乙比甲先行2小时,甲比乙迟到1小时,现当于乙只比甲先行了1小时,4×1=4千米…追及路程4÷(6-4)=2(小时) 6×2=12(千米)……两村的距离6:一列慢车在早晨6:30以每小时40千米的速度由甲城开往乙城,另一列快车在早晨7:30以每小时56千米的速度也由甲城开往乙城。

铁路部门规定,向相同方向的两列火车之间的距离不能小于8千米。

那么,这列慢车最迟应该在什么时候停车让快车超过?【解析】一列慢车在早晨6:30以每小时40千米的速度由甲城开往乙城,另一列快车在早晨7:30以每小时56千米的速度也由甲城开往乙城。

铁路部门规定,向相同方向的两列火车之间的距离不能小于8千米。

那么,这列慢车最迟应该在什么时候停车让快车超过?追及路程:(7:30-6:30)×40=40(千米) 40-8=32(千米)32÷(56-40)=2(小时)……追及时间7:30+2小时=9点30分7:一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间,小强第一次追上小星?【解析】400÷(300-250)=8(分钟)1:小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?【解析】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?(16-5)×2=22(千米)2:小云以每分钟40米的速度从家去商店买东西,5分钟后,小英去追小云,结果在离家600米的地方追上小云,小英的速度是多少?【解析】40×5=200(米)……实际追及路程每5分钟行200米,600-200=400(米),小云又走了10分钟,其实这10分钟就是追及时间。

相关文档
最新文档