新北师版初中数学九年级下册第一章本章小结与复习公开课优质课教学设计
北师大版 九年级数学下册 教案(全册优质教案精选)
北师大版九年级数学下册教案第一章直角三角形的边角关系1.1锐角三角函数第1课时正切教学目标1.经历探索直角三角形中某锐角确定后其对边与邻边的比值也随之确定的过程,理解正切的意义.2.能够用表示直角三角形中两边的比,表示生活中物体的倾斜程度,并能够用正切进行简单的计算.教学重点理解锐角三角函数正切的意义,用正切表示倾斜程度、坡度.教学难点从现实情境中理解正切的意义.教学过程一、创设情景明确目标我们都有过走上坡路的经验,坡面有陡有平,在数学上该如何衡量坡面的倾斜程度呢?如图所示,哪个坡面更陡一些?想一想:如图所示的两个坡面,哪个更陡一些?你是怎么做的?二、自主学习指向目标阅读预习教材第2页至第4页的内容;完成《名师学案》“课前预习”部分.三、合作探究达成目标探究点一正切的定义活动:1.想一想:当直角三角形的一个锐角的大小确定时,其对边与邻边比值会确定的吗?2.如图所示:在锐角A的一边上任意取点B,B1,B2,过这些点分别作CB⊥AC,C1B1⊥AC ,C 2B 2⊥AC ,垂足分别是C ,C 1,C 2.展示点评:证明:△ABC ∽△AB 1C 1,从而得出BC ∶B 1C 1=AC ∶AC 1,进一步转化成BC ∶AC =B 1C 1∶AC 1,同理可以证明:BC ∶AC =B 2C 2∶AC 2.反思小结:(1)通过以上论证,引导学生总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(2)直角三角形中边与角的关系:在直角三角形中,如果一个锐角确定,那么这个角的对边与邻边的比便随之确定.在Rt △ABC 中,锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边例题讲解:见教材例1.针对训练:教材第4页《课堂练习》第1题. 探究点二 坡度活动:阅读教材第4页内容.反思小结:坡面的铅直高度与水平宽度的比称为坡度(坡比),可以写成i =tan α. 针对训练:《名师学案》当堂练习部分. 四、总结梳理 内化目标本节课从梯子的倾斜程度谈起,通过探索直角三角形中边角关系,得出了直角三角形中的锐角确定后,它的对边比邻边的比也随之确定,在直角三角形中定义了正切的概念,接着,了解了坡面的倾斜程度与正切的关系.五、达标检测 反思目标1.如图所示,∠ACB =90°,CD ⊥AB ,垂足为D ,指出∠A 和∠B 的对边,邻边:(1)tan A =( )∶AC =CD ∶( ) (2)tan B =( )∶BC =CD ∶( ) 2.在Rt △ABC 中,∠C =90°.(1)AC =3,AB =6,求tan A 和tan B ; (2)BC =3,tan A =34,求34AC 和AB.3.在等腰△ABC 中,AB =AC =13,BC =10,求tan B.作业布置教材第4页习题1,2题. 教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________第2课时正弦和余弦教学目标1.经历探索知道直角三角形中某锐角确定后,它的对边、邻边和斜边的比值也随之确定,能够根据直角三角形中的边角关系,进行简单的计算.2.能够正确地运用sin A,cos A,tan A表示直角三角形中两边之比.教学重点正确地运用三角函数值表示直角三角形中两边之比.教学难点理解角度与数值之间一一对应的函数关系.教学过程一、创设情景明确目标1.锐角∠A的正切符号分别如何表示?2.它等于哪两边的比?3.求出如图所示的Rt△ABC中∠A的正切值.二、自主学习指向目标阅读教材第5页至第6页的内容;完成《名师学案》“课前预习”部分.三、合作探究达成目标探究点正弦和余弦的定义活动:(1)如图,当Rt△ABC中的一个锐角A确定时,它的对边与邻边的比随之确定.此时,其他边之间的比值也确定吗?(2)可以让学生再画一个Rt△ABC,使之与上图相似,然而再求出对边与斜边,邻边与斜边,比较与上图所求出对边与斜边,邻边与斜边的比相等吗?展示点评:两个相似三角形的对边与斜边之比相等,邻边与斜边的比也相等,据相似三角形的比例而得到的.反思小结:(1)在Rt△ABC中,如果锐角A确定时,那么∠A的对边与斜边的比,邻边与斜边的比也随之确定.(2)在Rt△ABC中,锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=∠A的对边斜边(3)在Rt △ABC 中,锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边(4)锐角A 的正弦,余弦和正切都是做∠A 的三角函数. 例题讲解:见教材例2.针对练习:教材随堂练习第1,2题. 四、总结梳理 内化目标 1.锐角三角函数定义:sin A =∠A 的对边斜边tan A =∠A 的对边∠A 的邻边cos A =∠A 的邻边斜边2.定义中应该注意的几个问题:(1)sin A ,cos A ,tan A 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形);(2)sin A ,cos A ,tan A 是一个完整的符号,表示∠A 的正弦,余弦,正切,习惯省去“∠”号;(3)sin A ,cos A ,tan A 是一个比值.注意比的顺序,且sin A ,cos A ,tan A 均﹥0,无单位; (4)sin A ,cos A ,tan A 的大小只与∠A 的大小有关,而与直角三角形的边长无关; (5)两个锐角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等. 五、达标检测 反思目标1.在Rt △ABC 中,锐角A 的对边和斜边同时扩大100倍,sin A 的值( ) A .扩大100倍 B .缩小100倍 C .不变 D .不能确定2.已知Rt △ABC 中,∠C =90°.(1)若AC =4,AB =5,求sin A 与sin B ; (2)若AC =5,AB =12,求sin A 与sin B ; (3)若BC =m ,AC =n ,求sin B.3.在Rt △ABC 中,∠C =90°,AB =15,sin A =513,求AC 和BC.4.如图:在等腰△ABC 中,AB =AC =5,BC =6.求:sin B ,cos B ,tan B. 提示:过点A 作AD 垂直于BC 于D.作业布置教材第6页习题1,4题. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.2 30°,45°,60°角的三角函数值教学目标1.能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数. 2.能熟练计算含有30°、45°、60°角的三角函数的运算式. 教学重点熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式.教学难点30°、45°、60°角的三角函数值的推导过程. 教学过程一、创设情景 明确目标1.一个直角三角形中是怎么定义一个锐角的正弦、余弦和正切的?2.在Rt △ABC 中,∠C =90°,若tan A =512,则sin A =________,cos A =________.二、自主学习 指向目标阅读教材第8页至第9页的内容,完成《名师学案》的“课前预习”部分. 三、合作探究 达成目标探究点一 30°,45°,60°的特殊值活动:(1)思考两块三角尺有几个不同的锐角?分别是多少度?(可以通过量角器去度量) (2)你通过两块直角的各边长分别求出几个锐角的正弦值,余弦值和正切值.展示点评:如图(1),∵a =12c ,即c =2a ,据勾股定理可得到b =3a ,∴sin 30°=a c =12,cos 30°=b c =32;tan 30°=a b =33,依次可以用45°,60°的三角函数值.以上均属于特殊角,例如在直角三角形中,30°角所对直角边等于斜边的一半,可以通过勾股定理求出它的邻边的长,即可求出30°的角所有三角函数值,同理45°,60°也可进行.反思小结:sin 30°=12,sin 45°=22,sin 60°=32,cos 30°=32,cos 45°=22,cos 60°=12,tan 30°=33,tan 45°=1,tan 60°= 3. 讲解例题:教材例1. 针对训练:(1)sin 30°=_______;cos 45°=_______;tan 30°=________;sin 60°=________;cos A =32,则∠A =________;tan A =33,则∠A =________;sin A =12,则∠A =________. (2)教材随堂练习1.探究点二 特殊值的应用活动:教材例2 例2:一个小孩荡秋千,秋千链子的长度为2.5m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0.01m ).展示点评:解:如图,据题意可知:∠AOD =12×60°=30°,OD =2.5m∴OC =OD·cos 30°=2.5×32≈2.165(m ),∴AC =2.5-2.165≈0.34(m ) 反思小结:利用通过锐角三角函数在实际中的应用,得到与特殊角的三角函数值,尽量取值接近准确值.针对训练:教材随堂练习2. 四、总结梳理 内化目标(1)熟练30°,45°,60°的特殊三角函数值.(2)准确应用锐角三角函数在实际生活中,特殊值在实际生活中有很大的用途. 五、达标检测 反思目标1.已知:Rt △ABC 中,∠C =90°,cos A =35,AB =15,则AC 的长是( )A .3B .6C .9D .12 2.下列各式中不正确的是( )A .sin 260°+cos 260°=1B .sin 30°+cos 30°=1C .sin 35°=cos 55°D .tan 45°>sin 45°3.计算2sin 30°-2cos 60°+tan 45°的结果是( ) A .2 B . 3 C . 2 D .14.已知∠A 为锐角,且cos A ≤12,那么( )A .0°<∠A ≤60°B .60°≤∠A <90°C .0°<∠A ≤30°D .30°≤∠A <90°5.在△ABC 中,∠A 、∠B 都是锐角,且sin A =12,cos B =32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定6.如图Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,BC =3,AC =4,设∠BCD =α,则tan α的值为( )A .34B .43C .35D .457.当锐角α>60°时,cos α的值( ) A .小于12 B .大于12C .大于32D .大于1 作业布置教材第10页习题1,2题. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.3 三角函数的计算教学目标1.熟练运用计算器,求出锐角的三角函数值,或是根据三角函数值求出相应的锐角. 2.能够进行简单的三角函数式的运算,理解正弦值与余弦值都在0与1之间. 教学重点学会应用计算器求三角函数值. 教学难点能够进行简单的三角函数式的运算. 教学过程一、创设情景 明确目标(1)让学生熟练写出30°,45°,60°的三角函数的特殊值.(2)如图,∠C =90°,∠A =16°,则∠B =________(74°). 16°,74°的三角函数值是特殊值吗?可以直接求出来吗?还有16°32′的三角函数值怎么求?二、自主学习指向目标阅读教材第12页至第14页的内容,完成《名师学案》的“课前预习”部分.三、合作探究达成目标探究点一用科学计算器求锐角三角函数值活动:像这样的问题:如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?如图,在Rt△ABC中,∠C=90°,BC=AB sin16°,你知道sin16°等于多少吗?我们可以借助科学计算器求锐角的三角函数值?怎样用科学计算器求锐角的三角函数值呢?请与同伴交流你是怎么做的.展示点评:(1)用科学计算器求16°的三角函数值(sin16°):(2)操作顺序如下:∴据上表则可以求得BC=AB·sin16°≈200×0.2756≈55.12反思小结:利用科学计算器求锐角的三角函数值按键的顺序为:第一步按sin或cos或tan,第二步按数键?,第三步按=,即可出来数据;一般题中无特例说明,数据一般精确到万分位.例题讲解:例:用科学计算器计算cos42°,tan85°和sin72°38′5″的值.(学生动手操作) 针对训练:教材随堂练习1.探究点二用科学计算器求锐角的度数活动:教材第13页[想一想]展示点评:已知三角函数值求角度,要用到sin cos tan键的第二功能sin-1cos-1 tan-1和SHIFT键.例已知三角函数值,用计算器求锐角A:sin A=0.9816,cos A=0.8607,tan A=0.1890,tan A=56.78上表的显示结果是以“度”为单位的,再按.,,,键即可显示以“度,分,秒”为单位的结果.请你求出想一想中∠A的度数.反思小结:已知三角函数值求角度,要用到科学计算器中的sin,cos,tan键的第二功能键sin-1cos-1tan-1和SHIFT键.针对训练:教材随堂练习4.四、总结梳理内化目标利用科学计算器求已知角的三角函数值和已知三角函数值求角度的步骤.注意区分以上两种计算方式的步骤;在计算时注意精确值.五、达标检测反思目标1.用计算器求下列各式的值:(1)sin56°;(2)sin15°49′;(3)cos20°;(4)tan29°;(5)tan44°59′59″;(6)sin15°+cos61°+tan76°2.根据下列条件求∠θ的大小:(1)tanθ=2.9888;(2)sinθ=0.3957;(3)cosθ=0.7850;(4)tanθ=0.89723.求图中避雷针的长度(结果精确到0.01m)作业布置教材第15页习题2,3,4. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.4 解直角三角形教学目标1.熟练掌握直角三角形除直角外五个元素之间的关系. 2.学会根据题目要求正确地选用这些关系式解直角三角形. 教学重点会利用已知条件解直角三角形. 教学难点根据题目要求正确选用适当的三角关系式解直角三角形. 教学过程一、创设情景 明确目标(1)直角三角形三边的关系:勾股定理a 2+b 2=c 2.直角三角形两锐角的关系:两锐角互余∠A +∠B =90°. *直角三角形边与角之间的关系:锐角三角函数sin A =a c ,cos A =b c ,tan A =a b(2)特殊角30°,45°,60°角的三角函数值.(3)直角三角形中有6个元素,三个角和三条边,那么至少知道几个元素就可以求其他元素.二、自主学习 指向目标阅读教材第16页至第17页的内容,完成《名师学案》中的“课前预习”部分. 三、合作探究 达成目标 探究点 解直角三角形活动:想一想:在Rt △ABC 中,∠C =90°,(1)根据∠A =60°,斜边AB =30,你能求出这个三角形的其他元素吗? (2)根据AC =2,BC =6,你能求出这个三角形的其他元素吗? (3)根据∠A =60°,∠B =30°,你能求出这个三角形的其他元素吗? 展示点评:(1)∠B =90°-∠A =30°;AC =sin B ·AB ;BC =sin A ·AB. (2)AB =AC 2+BC 2;tan A =BCAC;∠B =90°-∠A ,以上可以根据所给出的等量关系分别求出(1)(2)中的未知元素.(3)不可以求出各边长.反思小结:(1)在直角三角形中由已知的元素,求出所有未知的元素,叫解直角三角形.(2)解直角三角形中,除直角外,其他五个元素中需要知道两个元素(至少有一个为边)可以求到其他三个元素.例题讲解:教材例1,例2针对训练:(1)教材随堂练习.(2)《名师学案》中“当堂练习”部分.四、总结梳理内化目标本节课主要学习了如何利用已知条件,选用合适的三角关系式解直角三角形,这是需要我们熟练掌握的,为后面学习解决实际问题提供打下基础.五、达标检测反思目标1.在下列直角三角形中不能求解的是()A.已知一直角边一锐角B.已知一斜边一锐角C.已知两边D.已知两角2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.(1)已知∠B=45°,c=6解这个直角三角形(2)已知∠A=30°,b+c=30解这个直角三角形3.在Rt△ABC中,∠C=90°,AC=6,∠BAC的平分线AD=43,解此直角三角形.作业布置教材习题1.5第1,2题.教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________1.5三角函数的应用第1课时与方位角有关的实际问题教学目标1.理解航海方位角的概念,并学会画航行方位图,将航海问题转化成数学问题.2.通过航海问题的解决让学生体会船只在海上航行的实际情景,从而培养空间想象力.教学重点学会画航行的方位图,将航海问题转化成数学问题.教学难点将航海的实际情景用航行方位图表现出来.教学过程一、创设情景明确目标(1)回顾直角三角形边与角之间的关系.(2)让学生画出方位角的示意图,并给出定义.学生画图:二、自主学习指向目标阅读教材第19页图1-13有关的内容,并完成《名师学案》中的“课前预习”部分.三、合作探究达成目标探究点方位角的实际问题活动:出示幻灯片动画,动画内容如下:一渔船以20海里/小时的速度跟踪鱼群由西向东航行,在A处测得灯塔C在北偏东60°方向上,继续航行1小时到达B点,这时测得灯塔C在北偏东30°方向上,已知灯塔C的周围10海里范围内有暗礁,如果渔船不改变航线继续向东航行,有没有触礁的危险?展示点评:根据题中船的路径可以把它画成平面图,如图所示,根据实际问题,作CD⊥AD,在Rt△ACD中,求出CD的长度,然后比较CD与10海里的大小就可以确定此船有没有触礁的危险.解答如下:根据题意可知,∠BAC=30°,∠CBD=60°,AB=20×1=20(海里).则∠BAC=∠ACB=30°,故AB=BC=20海里.在直角三角形CBD中,∵sin60°=CD∶CB=3 2,∴CD=20×32=103>10所以,货轮继续向东航行途中没有触礁的危险.反思小结:(1)在这种航海问题上,首先通过方位角的定位画出平面示意图,用辅助线的方法把实际问题转化成数学问题(解直角三角形)(2)方位角的位置要精确.针对训练:《名师学案》中“当堂练习”部分.四、总结梳理内化目标本节课我们学习了航海方位角的概念,并学会根据航海实际情景来画航行方位图,将航海问题转化成数学问题来解决.五、达标检测反思目标如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)作业布置教材习题1.6第4题.教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________第2课时与仰角、俯角有关的实际问题教学目标1.了解仰角、俯角的概念,并弄清它们的意义.2.将实际问题转化成数学问题,并由实际问题画出平面图形,也能由平面图形想象出实际情景,再根据解直角三角形的方法来解决实际问题.教学重点将实际问题转化成数学问题且了解仰角、俯角的概念.教学难点实际情景和平面图形之间的转化.教学过程一、创设情景 明确目标(1)让学生熟练写出直角三角形中的边与角之间的关系:(①三边之间,②角之间,③锐角三角函数)(2)仰角与俯角 ①如图:②定义:在视线与水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.二、自主学习 指向目标阅读教材第19页中想一想的内容,完成《名师学案》中“课前预习”部分. 三、合作探究 达成目标探究点 仰角、俯角的实际问题 活动:出示幻灯动画,动画内容如下:小明想测量塔CD 的高度.他在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50m 至B 处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果精确到1m ).(1)你能完成这个任务吗?(2)请与同伴交流你是怎么想的? (3)准备怎么去做?展示点评:实物图可以建立成两个直角三角形模型,已知在Rt △ACD 中,AC =CD·tan 30°,同理BC =CD·tan 60°,于是AC -BC =AB ,可以得到关于CD 与已知量的关系,即可求出CD 的长.解答如下:解:如图,根据题意可知,∠A =30°,∠DBC =60°,AB =50m.求CD 的长设CD =x m ,则∠ADC =60°,∠BDC =30°,∵tan ∠ADC =AC x ,tan ∠BDC =BCx ,∴AC =xtan60°,BC =xtan30°,∴xtan60°-xtan30°=50.∴x =50tan60°-tan30°=503-33=253≈43(m )所以,该塔约有43m 高.反思小结:仰角、俯角的问题上的类型题,首先要据题意建立直角三角形模型,充分利用三角函数来解决此类实际问题.针对训练:《名师学案》中的“当堂练习”部分.四、总结梳理 内化目标本节课学习了解决实际问题的重要方法:实际问题数学化,由实际问题画出平面图形,也能由平面图形想象出实际情景,再根据解直角三角形的方法来解决实际问题.并且了解了仰角,俯角的概念.五、达标检测 反思目标两座建筑AB 及CD ,其地面距离AC 为50.4米,从AB 的顶点B 测得CD 的顶部D 的仰角β=25°,测得其底部C 的俯角α=50°,求两座建筑物AB 及CD 的高.(精确到0.1米)作业布置教材第21页习题2. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________第3课时 与坡角有关的实际问题教学目标1.加强对坡度、坡角、坡面概念的理解,了解坡度与坡面陡峭程度的关系. 2.能解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力. 教学重点对堤坝等关于斜坡的实际问题的解决. 教学难点对坡度、坡角、坡面概念的理解. 教学过程一、创设情景 明确目标1.修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.什么叫坡度(坡比)?2.坡度等于什么?用什么表示? 3.坡度和坡角之间有什么关系?坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比).记作i ,即i =hl.坡度通常写成l ∶m 的形式,如i =1∶6.坡面与水平面的夹角叫做坡角,记作α,有i =tan α=hl 显然,坡度越大,坡角α就越大,坡面就越陡.4.利用解直角三角形的方法解决实际问题时应注意什么? 二、自主学习 指向目标阅读教材第19页做一做内容,完成《名师学案》“课前预习”部分. 三、合作探究 达成目标探究点 倾斜角有关的实际问题活动:出示幻灯动画,动画内容如下:如图,水库大坝的截面是梯形ABCD ,坝顶AD =6m ,坡长CD =8m .坡底BC =30m ,∠ADC =135°.(1)求坡角∠ABC 的大小;(2)如果坝长100m ,那么修建这个大坝共需多少土石料(结果精确到0.01m 3).展示点评:作AF ⊥BC ,DE ⊥BC 建立直角三角形模型,首先在Rt △DCE 中,EC =DE =DC·tan 45°,又可以得到四边形AFED 为矩形,即AF =DE ,再解Rt △ABF ,其中BF =BC -CF ,tan ∠ABC =AF BF.解:略反思小结:有关坡度(坡角)或倾斜角的实际问题,首先要通过作垂线把平面几何图形转化一个或者几个直角三角形来解.在解直角三角形中中主要利用公式i =tan α=hl 求题目中未知条件.针对训练:《名师学案》中“当堂练习”部分. 四、总结梳理 内化目标本节课从对坡度、坡角、坡面概念的复习,了解坡度与坡面陡峭程度的关系.学会解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力.五、达标检测 反思目标 1.如图,拦水坝的横断面为梯形ABCD(图中i =1∶3是指坡面的铅直高度DE 与水平宽度CE 的比),根据图中数据求:(1)坡角α和β;(2)斜坡AB 的长(精确到0.1m )2.如图,燕尾槽的横断面是一个等腰梯形,其中燕尾角∠B =55°,外口宽AD =180mm ,燕尾槽的深度是70mm ,求它的里口宽BC(结果精确到1mm ).作业布置教材第21页习题3.教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________ 第二章二次函数2.1二次函数教学目标1.能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.2.注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯.教学重点能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.教学难点根据实际问题,列出二次函数关系式.教学过程一、创设情景明确目标(1)什么叫一次函数?什么叫反比例函数,它们的一般形式各有什么特点?有定义中分别要注意什么?(2)下列关系式中:y=2x+1,y=-x-4,y=2x,y=5x2,y=-4x,y=ax+1,其中一次函数有哪些?反比例函数有哪些?二、自主学习指向目标阅读教材第29页至30页内容,完成《名师学案》中的“课前预习”部分.三、合作探究达成目标探究点一二次函数的定义活动:请用适当的函数解析式表示下列问题情境中的两个变量y与x之间的关系:(1)圆的面积y(cm2)与圆的半径x(cm)________.(2)正方形的边长为a,如果边长增加2,新图形的面积S与a之间的函数关系式为________.(3)果园里有100棵橙子树,每一棵树平均结600个橙子,现在准备多种一些果树以提高果园产量,但多种果树,那么树之间的距离和每棵树所接受的阳光就会减少,根据经验估计,每多种1棵树,平均每棵树就会少结5个橙子,假设果园增种x 棵果树,那么果园共有_______棵橙子树,这时平均每颗橙子树结_______个橙子,如果用y 表示橙子的总产量,那么y 与x 之间的关系式是:________.展示点评:(1)y =πx 2;(2)S =(a +2)2; (3)y =-5x 2+100x +60000思考:上面第(1)(2)(3)题中函数表达式有什么共同点?展示点评:归纳:二次函数定义:一般地,若两个变量x ,y 之间的对应关系可以表示成y =ax 2+bx +c(a ,b ,c 为常数,a ≠0)的形式,则称y 是x 的二次函数.能否抛开“a ≠0”理解二次函数的概念?为什么?对于b ,c 它们可否等于0?反思小结:判断一个函数是否为二次函数,关键是看它是否符合二次函数的特征,若形式比较复杂,则要先化简,再作出判断.具体地可从如下几点进行:(1)自变量的最高次数是2;(2)二次项系数不为0;(3)右边是整式;(4)判断时首先将右边化成一般式,不要看表面形式.针对训练:(1)教材随堂练习1.(2)《名师学案》中“当堂练习”有关部分. 探究点二 列出实际问题中的二次函数表达式 活动:某小区要修建一块矩形绿地,设矩形的边长为x 米,宽为y 米,面积为S 平方米,(x>y).(1)如果用18米的建筑材料来修建绿地的边框(即周长),求S 与x 的函数关系,并求出x 的了取值范围.(2)根据小区的规划要求,所修建的绿地面积必须是18平方米,在满足(1)的条件下,矩形的长和宽各为多少米?展示点评:题目中蕴涵的公式是什么?(S =18-2x2·x =(9-x)·x =-x 2+9x)第(2)问就是已知S(函数值),求x(自变量)的问题;即当S =18时,求x 的值.反思:根据实际问题列二次函数关系式的一般步骤有哪些?求自变量的值或二次函数值与以前学过的哪些知识相关?反思小结:一般地,列实际问题中的二次函数关系式可以按如下步骤进行:(1)审清题意,找出实际问题中的已知量,并分析它们之间的关系,将文字或图形语言转化成数字符号语言;(2)根据实际问题中存在的等量关系或客观存在的某种数量关系(如学过的公式等),建立二次函数关系式,并将之整理成一般形式为y =ax 2+bx +c(a ≠0);(3)联系实际,写出需要标明的自变量的取值范围.已知二次函数值求自变量的值可以化为解一元二次方程,而已知自变量的值求二次函数值实际上就是求代数式的值.针对训练:(1)教材第30页随堂练习2.(2)《名师学案》中“当堂练习”有关部分. 四、总结梳理 内化目标(1)一次函数与二次函数的区别与联系.(2)二次函数的定义?在定义中需注意些什么?二次函数的一般形式是:y =ax 2+bx +c(a ≠0)其中ax 2是二次项,bx 为一次项,c 为常数项.。
北师大版初中九年级数学下册第一章集体备课教案教学设计含教学反思
第一章直角三角形的边角关系1 锐角三角函数第1课时正切【知识与技能】让学生理解并掌握正切的含义,并能够举例说明;会在直角三角形中说出某个锐角的正切值;了解锐角的正切值随锐角的增大而增大.【过程与方法】让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维的习惯,提高学生运用数学知识解决实际问题的能力.【情感态度】能激发学生学习的积极性和主动性,引导学生自主探索、合作交流,培养学生的创新意识.【教学重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.【教学难点】理解正切的意义,并用它来表示两边的比.一、情景导入,初步认知你能比较两个梯子哪个更陡吗?你有哪些办法?【教学说明】通过实际问题,创设情境,引发学生产生认知盲点,激发学生学习的兴趣和探究的欲望。
.二、思考探究,获取新知(1)Rt△AB1C1和 Rt△AB2C2有什么关系?(2)111B CAC有什么关系(3)如果改变B2的位置(如B3C3)呢?(4)由此你得出什么结论?【教学说明】通过相似沟通了直角三角形中的边、角关系,从而变换角度继续探讨,符合学生的认知规律此时学生的思维豁然开朗,同时培养了学生思维的深刻性.此环节的设计正是数学思维的开阔性,多角度、多方位性的展现师生的共同努力,淋漓尽致地演绎了数学体现在思维艺术上的美,从而解决了本节课的第一个难点.【归纳结论】在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定.这个比叫做∠A 的正切.记作:tanA =A A ∠的对边∠的邻边当锐角A 变化时,tanA 也随之变化。
(5)梯子的倾斜度与tanA 有关系吗?【教学说明】借助几何画板,从运动的角度来实施动态化、形象化、直观化教学.【归纳结论】在这些直角三角形中,当锐角A 的大小确定后,无论直角三角形的大小怎样变化,∠A 的对边与∠A 的邻边的比值总是唯一确定的.所以,倾斜角的对边与邻边的比可以用来描述坡面的倾斜程度.三、运用新知,深化理解1. 见教材P 3上第1题.2. 如图,在 Rt △ABC 中,∠C= 90。
九年级数学下册:第一章直角三角形的边角关系复习教案(北师大版)
第1章直角三角形的边角关系课题回顾与思考教具目标(一)教学知识点1.经历回顾与思考,建立本章的知识框架图.2.利用计算器,发现同角的正弦、余弦、正切之间的关系。
3.进一步体会直角三角形边角关系在现实生活中的广泛应用.(二)能力训练要求1.体会数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题.2.进一步体会三角函数在现实生活中的广泛应用,增强应用数学的意识.(三)情感与价值观要求1.在独立思考问题的基础上,积极参与对数学问题的讨论,敢于发表自己的观点.并尊重与理解他人的见解,在交流中获益.2.认识到数学是解决现实问题的重要工具,提高学习数学的自信心.教学重点1.建立本章的知识结构框架图.2.应用三角函数解决现实生活中的问题,进一步理解三角函数的意义.教学难点应用三角函数解决问题教学方法探索——发现法教具准备多媒体演示、计算器教学过程Ⅰ.回顾、思考下列问题,建立本章的知识框架图[师]直角三角形的边角关系,是现实世界中应用广泛的关系之一.通过本章的学习,我们知道了锐角三角函数在解决现实问题中有着重要的作用.如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,—般来说,这些实际问题的数量关系往往归结为直角三角形中边和角的关系.利用锐角三角函数解决实际问题是本章的重要内容,很多实际问题穿插于各节内容之中.[问题门举例说明,三角函数在现实生活中的应用.[生]例如:甲、乙两楼相距30 m,甲楼高40 m,自甲楼楼顶看乙楼楼顶.仰角为30°,乙楼有多高?(结果精确到1 m)解:根据题意可知:3乙楼的高度为30tn30°=40+30×3=40+103≈57(m),即乙楼的高度约为57 m.[生]例如,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P和Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q南偏西50°的方向,求河宽(结果精确到1 m).解:根据题意,∠TPQ=90°,∠PQT=90°-50°=40°,PQ=180 m.则:PT就是所求的河宽.在Rt△TPQ中,PT=180×tan40°=180×0.839≈151 m,即河宽为151 m.[师]三角函数在现实生活中的应用很广泛,下面我们来看一个例子.多媒体演示如图.MN表示某引水工程的一段设计路线从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心,500 m为半径的圆形区域为居民区,取MN上的另一点B,测得BA 的方向为南偏东75°,已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?[师生共析]解:根据题意可知∠CMB=30°,∠CMA=60°,∠EBA=75°,MB=400 m,输水路线是否会穿过居民区,关键看A 到MN 的最短距离大于400 m 还是等于400 m ,于是过A 作AD ⊥MN .垂足为D .∵BE//MC .∴∠EBD =∠CMB =30°.∴∠ABN=45°.∠AMD =∠CMA-∠CMB =60°-30°=30°.在Rt △ADB 中,∠ABD =45°,∴tan45°=BD AD ,BD =︒45tan AD =AD , 在Rt △AMD 中.∠AMD=30°,tan30° =MD AD ,MD =︒30tan AD =3AD , ∵MD=MD-BD ,即 3AD-AD =400, AD-200(3+1)m>400m .所以输水路线不会穿过居民区.[师]我们再来看[问题2]任意给定一个角,用计算器探索这个角的正弦、余弦、正切之间的关系.例如∠α=25°,sin α、cos α、tan α的值是多少?它们有何关系呢?[生]sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663. 而︒︒25cos 25sin ≈0.4663. 我们可以发现ααcos sin =tan α. [师]这个关系是否对任意锐角都成立呢?我们不妨从三角函数的定义出发来推证一下.[师生共析]如 图,在Rt △ABC 中. ∠C =90°,∵sinA =ABBC cosA =AB AC tanA =ACBC , ∴ACBC AC AB AB BC AB AC AB BC A A =⋅=÷=cos sin =tanA, tanA=A A cos sin . 这就是说,对于任意锐角A ,∠A 的正弦与余弦的商等于∠A 的正切.[师]下面请同学们继续用计算器探索sin α,cos α之间的关系.[生]sin 225°≈0.1787,cos 225°≈0.8213,可以发现:sin 225°+cos 225°≈0.1787+0.8213=1.[师]我们可以猜想任意锐角都有关系:sin 2α+cos 2α=1,你能证明吗?[师生共析]如上图.sinA= AB BC ,cosA=ABAC sin 2A+cos 2A =2222222AB AC BC AB AC AB BC +=+, 根据勾股定理,得BC 2+AC 2=AB 2,∴sin 2A+cos 2A =1,这就是说,对于任意锐角A ,∠A 的正弦与余弦的平方和等于1.[师]我们来看一个例题,看是否可以应用上面的tanA 、sinA 、cosA 之间的关系.已知cosA=53,求sinA .tanA . [生]解:根据sin 2A+cos 2A =1.得sinA =.54)53(1cos 122=-=-A tanA=345354cos sin ==A A . [生]我还有另外一种解法,用三角函数的定义来解.解:∵cosA =.53=∠斜边的邻边A 设∠A 的邻边=3k .斜边=5k .则∠A 的对边=.4)3()5(22k k k =-∴sinA=.5454==∠k k A 斜边的邻边 tanA=.3434==∠∠k k A A 的邻边的对边 [师]问题3:你能应用三角函数解决哪些问题?[生]锐角三角函数反映了直角三角形的边角关系.凡是属于直角三角形的问题或可以转化为直角三角形的问题,都可以用三角函数来解决.[师]我们知道在直角三角形中,除直角外,有两个锐角.两条直角边以及斜边共5个元素,它们之间的关系很丰富.如图:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .(1)边的关系:a 2+b 2=c 2(勾股定理):(2)角的关系:∠A+∠B =90; (3)sinA=c a ,cosA=c b ,tanA=b a ;sinB=c b ,cosB=c a ,tanB=ab . 利用三角形的全等和直角三角形全等,以及作图,我们知道:当一直角边和斜边确定时,直角三角形唯一确定,即直角三角形的一直角边和斜边已知,则直角三角形中其他元素都可以求出.同学们不妨试一试.[生]例如Rt △ABC 中,∠C =90°.a =4,c=8求b ,∠A 及∠B解:∵a =4,c =8,根据勾股定理可得 b=3422=-a c .∵sinA=c a =2184=, ∴∠A =30°.又∵∠A+∠B =90°,∴∠B =60°.[师]很好,是不是只要知道直角三角形除直角外的两个元素,其余元素就都可以求出呢?[生甲]可以.[生乙]不可以.例如Rt △ABC 中,∠c =90°,∠A =25°.∠B=65°.这样的直角三角形有无数多个,是不唯一确定的,所以其余的元素无法确定.[生丙]我认为已知直角三角形中除直角外的两个元素.其中至少有一个边,就可以求出其余元素.[师]很好,我们来做一个练习.多媒体演示:在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A ,∠B 、∠C 的对边.(1)已知a =3,b =3,求C ,∠A ,∠B .(2)已知b =5,c =10,求a ,∠A ,∠B .(3)已知∠A=45°,c =8,求a ,b ,∠B .[生]解:(1)根据勾股定理c .=23332222=+=+b a .又∵tanA ∴∠A=b a =33=1, ∴∠A=45°. 又∵∠A+∠B =90,∴∠B =45°.(2)根据勾股定理,得a=355102222=-=-b c ,又∵sinB =21105==c b ∴∠B=30°. 又∵∠A+∠B=90°∴∠A=60°.(3)∵sinA=ca ∴=csinA=8×sin45°=42, 又∵cosA =c b ∴b=c ·cosA =8×cos45°=42, 又∵∠A+∠B =90°,∴∠B=45°.[师]实践证明,在直角三角形中,已知除直角外的两个元素(至少有一个是边),利用直角三角形中特殊的边的关系、角的关系、边角关系,就可求出其余所有元素.因此,在现实生活中,如测量、建筑、工程技术和物理学中,常遇到的距离、高度、角度都可以转化到直角三角形中,这些实际问题的数量关系往往就归结为直角三角形中边和角的关系问题.接下来,我们看问题4:如何测量一座楼的高度?你能想出几种办法?[生]有四种方法:第一种:用太阳光下的影子来测量.因为在同一时刻,物体的高度与它的影子的比值是一个定值.测量出物体的高度和它的影子的长度,再测出高楼在同一时刻的影子的长度.利用物体的高度:物体影子的长度=高楼的高度,高楼影子的长度.便可求出高楼的高.第二种:在地面上放一面镜子,利用三角形相似,也可以测量出楼的高度.第三种:用标杆的方法.第四种:利用直角三角形的边角关系求楼的高度.[师]下面就请同学们对本章的内容小结,建立本章内容框架图.[师生共析]本章内容框架如下:Ⅱ.随堂练习1.计算(1)︒-︒︒-︒45cos 60sin 45sin 30cos (2)sin 230°+2sin60°+tan45°-tan60°+cos 230°;(3)原式=.60tan 60tan 60tan 212︒-︒+︒-解:(1)原式=22232223--=1; (2)原式=(21)2+2×23+1-3+(23)2; =4331341+-++ =1+1=2(3)原式=︒-︒-60tan )60tan 1(2=|1-tan60°|-tan60°=tan60°-1-tan60°=-1.2.如图,大楼高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及楼与塔之间的距离AC(结果19确到0.0l m).解:没AC=x ,BC =y ,在Rt △ABC 中,tan60°=xy ,① 在Rt △BDE 中.tan30°=x y 30-,② 由①得y =3x ,代入②得33=xx 303 . x=153≈25.98(m).将x =153代入y=3x=3×153 =45(m).所以塔高BC 为45 m ,大楼与塔之间的距离为25.98 m .Ⅲ.课时小结本节课针对回顾与思考中的四个问题作了研讨,并以此为基础,建立本章的知识框植架结构图.进一步体验三角函数在现实生活中的广泛应用.Ⅳ.课后作业复习题A 组1,2,5,6,8B 组2.3,4,5,6Ⅴ.活动与探究如图.AC 表示一幢楼,它的各楼层都可到达;BD 表示一个建筑物,但不能到达.已知AC 与BD 地平高度相同,AC 周围没有开阔地带,仅有的测量工具为皮尺(可测量长度)和测角器(可测量仰角、俯角和两视线间的夹角).(1)请你设计一个测量建筑物BD 高度的方案,要求写出测量步骤和必要的测量数据(用字母表示),并画出测量示意图:(2)写出计算BD 高度的表达式.[过程]利用测量工具和直角三角形的边角关系来解决.这里的答案不唯一,下面只写出一种方法供参考.[结果]测量步骤(如图):①用测角器在A 处测得D 的俯角α;②用测角器在A 处测得B 的仰角β ③用皮尺测得AC=am .(2)CD=αtan a ,BE=αtan a ·tan β, BD=a+αβtan tan a . 板书设计回顾与思考本章内容结构框架图:。
北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教案
北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教案一. 教材分析北师大版九年级数学下册第一章《直角三角形的边角关系——回顾与思考》主要介绍了直角三角形的性质,包括锐角三角函数的概念、直角三角形的边角关系等。
本章内容是初中数学的重要知识点,为后续学习三角形相似、解直角三角形等知识打下基础。
二. 学情分析九年级的学生已经掌握了三角形的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对锐角三角函数的理解和应用存在困难,因此需要通过本章内容的学习,帮助学生巩固直角三角形的性质,提高解题能力。
三. 教学目标1.理解直角三角形的性质,掌握锐角三角函数的概念。
2.学会运用直角三角形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重点:直角三角形的性质,锐角三角函数的概念。
2.难点:锐角三角函数的应用,解直角三角形。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.教学课件:制作直角三角形性质、锐角三角函数的课件。
2.教学素材:提供相关案例,如实际问题、例题等。
3.学习工具:准备好直角三角形、锐角三角函数的相关资料。
七. 教学过程1.导入(5分钟)利用生活中的实例,如测量身高、测距等,引出直角三角形的性质和锐角三角函数的概念。
激发学生的学习兴趣,引导学生思考直角三角形在实际生活中的应用。
2.呈现(15分钟)呈现直角三角形的性质和锐角三角函数的定义,通过动画、图片等形式展示,帮助学生直观地理解。
同时,给出相关案例,让学生体会直角三角形性质和锐角三角函数在实际问题中的作用。
3.操练(15分钟)针对直角三角形的性质和锐角三角函数,设计一系列练习题。
让学生独立完成,巩固所学知识。
教师及时批改、讲解,解答学生的疑问。
4.巩固(10分钟)通过小组合作学习,让学生运用直角三角形的性质和锐角三角函数解决实际问题。
北师大版九年级下册第一章直角三角形的边角关系复习优秀教学案例
4.在学生解答问题过程中,教师要及时给予反馈和指导,帮助学生纠正错误、完善解题思路。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论交流,培养学生的团队合作能力和沟通能力。
2.设计具有挑战性和综合性的任务,引导学生通过合作解决问题,提高学生的解决问题能力和创新思维能力。
5.教学策略的灵活性:本案例运用了多种教学策略,如情景创设、问题导向、小组合作和反思与评价等,使教学过程丰富多样,激发了学生的学习动力和兴趣。教师能够根据学生的学习情况和反馈,灵活调整教学策略,以达到最佳的教学效果。
本案例背景与学科和课本内容紧密相关,符合教学实际,使用人性化的语言进行撰写。教学案例将直角三角形的边角关系与实际问题相结合,引导学生通过观察、分析、推理等方法,探索和发现直角三角形的边角关系,提高学生的数学思维能力和问题解决能力。
在教学过程中,教师将注重启发学生主动参与,积极思考,通过小组合作、讨论交流等方式,促进学生之间的互动和合作学习。同时,教师将引导学生运用多种解题策略和方法,提高学生的解题技巧和思维灵活性。
五、案例亮点
1.情景创设的真实性:本案例以实际问题情境为导入,让学生感受到数学与生活的紧密联系,激发了学生的学习兴趣和好奇心。这种真实性的情境创设,使学生能够更好地理解直角三角形的边角关系,并能够将其应用于实际问题中。
2.问题导向的有效性:本案例通过一系列由浅入深、循序渐进的问题,引导学生主动参与思考和探索,培养了学生的批判性思维和创新意识。这些问题不仅帮助学生巩固了已学的知识,还提高了学生的知识应用能力和问题解决能力。
3.小组合作的深度性:本案例鼓励学生进行小组合作和讨论交流,培养了学生的团队合作能力和沟通能力。通过合作解决问题,学生能够更深入地理解和掌握直角三角形的边角关系,同时也能够相互学习和借鉴解题策略和方法。
北师版九下数学第一章章末复习1教案
北师大版九年级下册数学章末复习【知识与技能】1.了解锐角三角函数的概念,熟记30°、45°、60°的正弦、余弦和正切的函数值.2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数.3.会用解直角三角形的有关知识解决简单的实际问题.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想.【情感态度】通过解直角三角形的学习,体会数学在解决实际问题中的作用. 【教学重点】会用解直角三的有关知识解决简单的实际问题.【教学难点】会用解直角三的有关知识解决简单的实际问题.一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.锐角三角函数①正弦、余弦、正切的定义②锐角三角函数的定义2.三角函数的计算3.解直角三角形4.解直角三角形的应用【教学说明】引导学生回忆本章所学的有关概念,知识点.加深学生印象.三、运用新知,深化理解1.已知,如图,D是△ABC中BC边的中点,∠BAD=90°,tanB=23,求sin∠DAC.解:过D作DE∥AB交AC于E,则∠ADE=∠BAD=90°,由tanB=23,得ADAB=23,设AD=2k,AB=3k;∵D是△ABC中BC 边的中点,∴DE=32k,在Rt△ADE中,AE=52k,sin∠DAC=DEAE =3k25k2=35.2.计算:tan230°+ cos230°- sin2 45°tan45°解:原式=(3)2+(3)2-(2)2×1131=+-3427=123.如图所示,菱形ABCD的周长为20cm,DE丄AB,垂足为E,sinA =35,则下列结论正确的个数有().①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④BD=210cm.A. 1个B. 2个C. 3个D. 4个解析:由菱形的周长为20cm知菱形边长是5cm.在Rt△ADE 中,∵AD=5cm,sinA=35,∴DE=AD·sinA=5×35=3(cm).∴AE= 22AE DE-=4(cm).∴BE=AB-AE=5-4=1(cm).菱形的面积为AB • DE=5×3=15(cm2). 在 Rt△DEB 中,BD= 22DE BE+=2231+=10(cm).答案:C.4.如图所示,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔 P的南偏东45°方向上的B处,求此时轮船所在的B处与灯塔P的距离(结【教学说明】通过上面的解题分析,再对整个学习过程进行总结,能够促进理解,提高认识水平,从而促进数学观点的形成和发展.四、复习训练,巩固提高1.如图,△ABC是等边三角形,P是△ABC的平分线BD上一点,PE丄AB于点E,线段 BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2B.23C.3D. 32.如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A 的仰角为45°然后沿坡角为30°的斜坡走100米到达D点,在D 点测得山顶A的仰角为30°,求山AB的高度.(参考数据:3≈1.73)3.如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度 CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,3≈1.732).解:根据题意得:四边形DCEF、DCBG是矩形,∴GB=EF=CD=1.5 米,DF=CE=8米设AG=x米,GF=y米,在 Rt△AFG中,五、师生互动,课堂小结师生共同总结,对于本章的知识.你掌握了多少?还存在哪些疑惑?同学之间可以相互交流1.布置作业:教材“复习题”中第5、6、9、12题.2.完成练习册中本课时的练习.根据学生掌握的情况,对掌握不够好的知识点、题型多加练习、讲解.力争让更多的学生学好本章内容.。
北师大版九年级数学下册:第一章《锐角三角函数与解直角三角形复习课》教学设计
北师大版九年级数学下册:第一章《锐角三角函数与解直角三角形复习课》教学设计一. 教材分析北师大版九年级数学下册第一章主要讲述了锐角三角函数和解直角三角形的知识。
这一章内容是初高中数学的衔接部分,对于学生来说,既熟悉又陌生。
熟悉是因为他们在初中已经接触过三角函数的概念,陌生是因为他们还没有系统地学习过函数的性质和应用。
因此,本章的教学设计既要回顾初中阶段的三角函数知识,又要为学生高中阶段的进一步学习打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,他们掌握了初中阶段的代数、几何知识,对于三角函数有一定的了解。
但同时,他们也存在一定的问题,比如对三角函数的理解不够深入,解题技巧有待提高。
因此,在教学设计中,我们需要关注学生的个体差异,针对不同层次的学生制定合适的学习目标,并通过分层教学,使每个学生都能在原有基础上得到提高。
三. 教学目标1.知识与技能:使学生掌握锐角三角函数的定义和性质,能够运用锐角三角函数解决实际问题;2.过程与方法:通过复习课的形式,培养学生自主学习、合作探究的能力;3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于挑战、克服困难的意志。
四. 教学重难点1.重点:锐角三角函数的定义和性质;2.难点:如何运用锐角三角函数解决实际问题。
五. 教学方法本节课采用复习课的形式,以学生为主体,教师为主导。
采用自主学习、合作探究、讲解演示等多种教学方法,引导学生回顾初中阶段的三角函数知识,为他们高中阶段的进一步学习打下基础。
六. 教学准备1.教师准备:教材、PPT、黑板、粉笔等;2.学生准备:笔记本、文具、初中数学笔记等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾初中阶段的三角函数知识,如:什么是三角函数?三角函数有哪些基本性质?学生回答后,教师进行总结。
2.呈现(10分钟)教师通过PPT展示锐角三角函数的定义和性质,让学生初步了解本节课的主要内容。
同时,教师进行讲解演示,引导学生理解并掌握锐角三角函数的概念。
北京版数学九年级下册《总结与复习》教学设计2
北京版数学九年级下册《总结与复习》教学设计2一. 教材分析北京版数学九年级下册《总结与复习》教学设计2,主要是对九年级下册所学知识的回顾和总结。
内容包括数的开方与平方根、实数与数轴、概率初步、相交线与平行线、三角形、数据的收集与处理等。
本节课旨在帮助学生巩固所学知识,提高解决问题的能力,为中考做好充分准备。
二. 学情分析九年级的学生已经掌握了大部分的数学知识,对于数的开方与平方根、实数与数轴、概率初步等概念有一定的理解。
但在实际应用中,部分学生对一些概念的理解仍存在模糊之处,需要通过复习加以巩固。
此外,学生的数学思维能力和解决问题的能力参差不齐,需要在教学过程中给予不同程度的学生适当的关注。
三. 教学目标1.知识与技能:使学生掌握数的开方与平方根、实数与数轴、概率初步等概念,提高学生解决问题的能力。
2.过程与方法:通过复习,培养学生总结、归纳、分析问题的能力,提高学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:数的开方与平方根、实数与数轴、概率初步等概念的运用。
2.难点:实数与数轴的相互关系,以及概率在实际问题中的应用。
五. 教学方法采用讲练结合、小组合作、分层教学的方法。
通过教师讲解、学生练习、小组讨论等形式,激发学生的学习兴趣,提高学生的参与度,使学生在复习过程中巩固知识,提高解决问题的能力。
六. 教学准备1.教师准备:教材、课件、练习题、黑板、粉笔等。
2.学生准备:笔记本、文具、学习资料等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾上一节课所学内容,为新课的复习做好铺垫。
例如:“上一节课我们学习了什么内容?谁能简要概括一下?”2.呈现(10分钟)教师通过课件或板书,呈现本节课要复习的知识点,包括数的开方与平方根、实数与数轴、概率初步等。
同时,给出一些典型例题,让学生观察、分析。
北京版数学九年级下册《总结与复习》教学设计
北京版数学九年级下册《总结与复习》教学设计一. 教材分析北京版数学九年级下册《总结与复习》教材内容主要包括:实数、代数、几何、统计与概率四个部分。
本章是对整个九年级数学知识的梳理和复习,旨在帮助学生建立知识体系,提高解决问题的能力。
教材通过问题探究、复习巩固、拓展应用等形式,激发学生的学习兴趣,培养学生的自主学习能力。
二. 学情分析九年级的学生已经掌握了大部分的数学知识,对于实数、代数、几何、统计与概率四个部分的知识点有一定的了解。
但部分学生对于一些概念的理解仍不够深入,解题技巧和策略有待提高。
此外,学生的数学思维能力和创新能力也有待加强。
三. 教学目标1.知识与技能:使学生掌握实数、代数、几何、统计与概率四个部分的知识点,提高解决问题的能力。
2.过程与方法:通过问题探究、复习巩固、拓展应用等形式,培养学生的自主学习能力、合作能力和创新能力。
3.情感态度与价值观:激发学生对数学的兴趣,树立正确的数学观念,提高学生的数学素养。
四. 教学重难点1.重点:实数、代数、几何、统计与概率四个部分的知识点的整合与应用。
2.难点:对于一些概念的深入理解,解题技巧和策略的掌握。
五. 教学方法1.启发式教学:通过问题探究,激发学生的思考,引导学生自主学习。
2.合作学习:学生进行小组讨论,培养学生的合作能力。
3.实践操作:让学生通过实际操作,加深对知识点的理解。
4.反馈评价:及时给予学生反馈,提高学生的学习效果。
六. 教学准备1.教材:北京版数学九年级下册《总结与复习》。
2.教学课件:制作相应的教学课件,辅助教学。
3.练习题:准备相应的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出本节课的主题,激发学生的学习兴趣。
2.呈现(10分钟)呈现教材中的知识点,引导学生回顾实数、代数、几何、统计与概率四个部分的内容。
3.操练(10分钟)让学生通过实际操作,加深对知识点的理解。
可以学生进行小组讨论,分享解题心得。
北师大版数学九年级下册第一章直角三角形的边角关系回顾与思考第1课时优秀教学案例
3.引导学生回顾已学的直角三角形知识,如勾股定理、三角函数等,为新课的学习打下基础。
(二)讲授新知
1.讲解直角三角形的定义、性质,让学生明确直角三角形的边角关系。
2.详细讲解勾股定理的推导过程,让学生理解并掌握勾股定理。
3.小组合作学习策略
小组合作学习在本案例中得到了充分运用。学生在小组内共同探讨问题、分享观点,不仅提高了学习效率,还培养了他们的沟通能力、团队协作能力和集体荣誉感。此外,小组合作学习还有利于学生之间的互补,促进个体发展。
4.反思与评价相结合
本案例中,反思与评价环节得到了重视。教师引导学生进行自我反思,帮助学生了解自己的学习状况,调整学习方法。同时,多元化的评价方式(自评、互评、教师评价)关注学生的全面发展,激发学生的学习积极性,提高他们的自信心。
3.各小组汇报解题过程和结果ቤተ መጻሕፍቲ ባይዱ分享学习心得,互相学习、交流。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结直角三角形的边角关系、勾股定理和三角函数的应用。
2.帮助学生梳理知识体系,强调直角三角形知识在实际问题解决中的重要作用。
3.鼓励学生提出疑问,解答学生在学习过程中遇到的问题。
(五)作业小结
北师大版数学九年级下册第一章直角三角形的边角关系回顾与思考第1课时优秀教学案例
一、案例背景
在我国初中数学教育中,直角三角形的边角关系是学生必须掌握的重要知识点。北师大版数学九年级下册第一章“直角三角形的边角关系回顾与思考”旨在帮助学生巩固和拓展这一概念。本课时教学案例将围绕这一主题展开,结合学科特点和教学实际,引导学生通过思考、探讨和实践,深入理解直角三角形的边角关系,并学会运用这一知识解决实际问题。
北师大版九年级下册第一章直角三角形的边角关系优秀教学案例锐角三角函数与解直角三角形(复习案)
三、教学策略
(一)情景创设
1.结合生活实际,创设与直角三角形相关的问题情境,激发学生的学习兴趣,引导学生关注数学与生活的联系。
2.通过多媒体展示直角三角形的图片,让学生观察和分析,发现其中的规律,为学习锐角三角函数奠定基础。
3.设计具有挑战性的数学问题,让学生在解决问题的过程中,自然地引入锐角三角函数的概念。
北师大版九年级下册第一章直角三角形的边角关系优秀教学案例锐角三角函数与解直角三角形(复习案)
一、案例背景
北师大版九年级下册第一章“直角三角形的边角关系”是初中数学的重要内容,为高中的三角函数学习打下基础。本节课主要复习锐角三角函数的概念和解直角三角形的方法。在设计教学案例时,我以学生的生活经验为出发点,结合学科特点和课程内容,以提高学生的参与度和实践能力为目标,力求打造一个富有实用性、趣味性和启发性的课堂。
作为一名特级教师,我深知教学策略在教学过程中的重要性。在教学过程中,我将根据学生的实际情况,灵活运用以上四个方面的策略,关注学生的个体差异,充分调动学生的积极性,努力提高他们的数学素养。同时,注重与学生的情感交流,营造一个和谐、愉快的课堂氛围,使学生在轻松愉快的环境中学习,提高他们的综合素质。
四、教学内容与过程
(二)问题导向
1.引导学生提出问题,激发学生的思考,培养学生的问题意识。
2.设计具有启发性的问题,引导学生通过自主探究、合作交流,发现直角三角形的边角关系。
新北师版初中数学九年级下册第一章本章小结与复习公开课优质课教学设计
第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。
二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。
如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。
显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。
2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。
这样就突出了直角三角形中边与角之间的相互关系。
3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。
4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。
同时要强调三角函数的实质是比值。
防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A 而是一个整体。
如果学生产生类似的错误,应引导学生重新复习三角函数定义。
5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。
北师大版九年级数学下册第一章《本章复习课》公开课课件
类型之四 三角函数的应用
12.(2015·十堰)如图,小华站在河岸上的 G 点,看见河 里有一小船沿垂直于岸边的方向划过来.此时,测得小船 C 的俯角是∠FDC=30°,若小华的眼睛与地面的距离是 1.6 米,BG=0.7 米,BG 平行于 AC 所在的直线,迎水坡 i= 4∶3,坡长 AB=8 米,点 A,B,C,D,F,G 在同一平面 内,则此时小船 C 到岸边的距离 CA 的长为__(8 3-5.5)__ 米.(结果保留根号)
10
2
3
3 10
A. 10
B.3 C.4 D. 10
3.如图①,将正方形纸片 ABCD 对折,使 AB 与 CD 重 合,折痕为 EF,如图②,展开后再折叠一次,使点 C 与点 E 重合,折痕为 GH,点 B 的对应点为点 M,EM 交 AB 于点 N,则 tan∠ANE=__34__.
, 4.如图,在边长相同的小正方形组成的网格中,点 A, B,C,D 都在这些小正方形的顶点上,AB,CD 相交于点 P, 则 tan∠APD 的值是__2__.
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/222021/7/222021/7/227/22/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/222021/7/22July 22, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/222021/7/222021/7/222021/7/227/22/2021
(春)九年级数学下册 第一章 直角三角形的边角关系小结与复习教案 (新版)北师大版
直角三角形的边角关系【教学内容】小结与复习【教学目标】知识与技能:理解三角函数的定义,识记特殊三角函数值,根据条件熟练解直角三角形过程与方法:通过对本章知识进行回顾,对本章知识结构有系统认识。
情感、态度与价值观:通过学习,了解数学在生产生活中的作用,激发数学学习兴趣。
【教学重难点】重点:熟练记忆特殊角三角值,根据条件选择适当方法解直角三角形。
难点:选择适当方法解直角三角形。
【导学过程】【知识回顾】什么是锐角的正切、正弦和余弦?2、写出30°、45°、60°角的三角函数值3、什么叫解直角三角形?解直角三角形有哪两种形式?【情景导入】本节课我们对本章知识进行回顾。
【新知探究】探究一、例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高 (结果精确到0.1m)?探究二、例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?探究三、2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:横断面(等腰梯形)ABCD的面积;②修一条长为100米的渠道要挖去的土方数.…….【知识梳理】本节课在回顾全章知识基础上,继续对解直角三角形深入学习。
【随堂练习】1.如图所示,图①中,一栋旧楼房由于防火设施较差,想要在侧面墙外修建一外部楼梯,由地面到二楼,再从二楼到三楼,共两段(图②中AB、BC两段),其中CC′=BB′=3.2m.结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m).(参考数据:sin30°=0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)2.如图所示,某公司入口处原有三级台阶,每级台阶高为20c m,台阶面的宽为30cm,为了方便残疾人士,拟将台阶改为坡角为12°的斜坡,设原台阶的起点为A,斜坡的起点为C,求AC的长度(精确到1cm).。
新版北师大版数学九级初三下册教学教案全
第一章直角三角形的边角关系第1课时§锐角三角函数教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。
这一章,我们继续学习直角三角形的边角关系。
师生共同研究形成概念1、梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。
这就涉及到倾斜角的问题。
用倾斜角刻画倾斜程度是非常自然的。
但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。
1)(重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡;2)如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;3)如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。
2、 想一想(比值不变)☆ 想一想 书本P 2 想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。
当倾斜角确定时,其对边与邻边的比值随之确定。
这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。
3、 正切函数(1) 明确各边的名称(2) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。
☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°,1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ;b 、 如图,在△ACB 中,tanA = 。
最新北师大版九年级下册数学全册教案及教学设计
北师大版九年级下册数学全册教案及教学设计北师大版九年级下册数学全册教案及教学设计第一章直角三角形的边角关系§1.1 从梯子的倾斜程度谈起(第一课时)学习目标:1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.学习重点:1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.学习难点:理解正切的意义,并用它来表示两边的比.学习方法:引导―探索法. 更多免费教案下载绿色圃中小学教育分学习过程:一、生活中的数学问题:1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)⑴Rt△AB1C1和Rt△AB2C2有什么关系?⑵⑵有什么关系?⑶如果改变B2在梯子上的位置如B3C3 呢?⑷由此你得出什么结论?三、例题:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC中,∠C 90°,BC 12cm,AB 20cm,求tanA和tanB的值.四、随堂练习:1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度. 结果精确到0.0013、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长. 结果保留根号五、课后练习:1、在RtABC中,∠C 90°,AB 3,BC 1,则tanA _______.在ABC中,AB 10,AC 8,BC 6,则tanA _______.在ABC中,AB AC 3,BC 4,则tanC ______.在RtABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a 24,c 25,求tanAtanB的值.若三角形三边的比是25:24:7,求最小角值.6、如图,在菱形ABCD中,AE⊥BC于E,EC 1,B , 求菱形的边长和四边形AECD的周长.7、已知:如图,斜坡AB的倾斜角a,且tan ,现有一小球从坡底A处以20cm/s 的速度向坡顶B处移动,则小球以多大的速度向上升高?探究⑴、a克糖水中有b克糖 a b 0 ,则糖的质量与糖水质量的比为_______; 若再添加c克糖 c 0 ,则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.如图,在Rt△ABC中,∠B 90°,AB a,BC b a b ,延长BA、BC,使AE CD c, 直线CA、DE交于点F,请运用 2 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式.学习方法:探索――交流法.学习过程:一、正弦、余弦及三角函数的定义想一想:如图1 直角三角形AB1C1和直角三角形AB2C2有什么关系?2 有什么关系? 呢?3 如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?4 如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?请讨论后回答.二、由图讨论梯子的倾斜程度与sinA和cosA的关系:三、例题:例1、如图,在Rt△ABC中,∠B 90°,AC=200.sinA=0.6,求BC的长.例2、做一做:如图,在Rt△ABC中,∠C 90°,cosA=,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.四、随堂练习:1、在等腰三角形ABC中,AB AC=5,BC 6,求sinB,cosB,tanB.2、在△ABC中,∠C=90°,sinA=,BC 20,求△ABC的周长和面积.3、在△ABC中.∠C 90°,若tanA ,则sinA .4、已知:如图,CD是Rt△ABC的斜边AB上的高,求证:BC2=AB??BD. 用正弦、余弦函数的定义证明五、课后练习:1、在Rt△ABC中,∠ C 90°,tanA ,则sinB _______,tanB ______.在Rt △ABC中,∠C 90°,AB 41,sinA ,则AC ______,BC _______.在△ABC中,AB AC 10,sinC ,则BC _____.4、在△ABC中,已知AC 3,BC 4,AB 5,那么下列结论正确的是A.sinAB.cosAC.tanAD.cosB5、如图,在△ABC中,∠C 90°,sinA ,则等于A. C. D.6、Rt△ABC中,∠C 90°,已知cosA ,那么tanA等于A. C. D.7、在△ABC中,∠C 90°,BC 5,AB 13,则sinA的值是A. B. C. D.8、已知甲、乙两坡的坡角分别为, 若甲坡比乙坡更徒些, 则下列结论正确的是A.tan tanβB.sinα sinβ;C.cosα cosβ9、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA的是A. C. D.10、某人沿倾斜角为的斜坡前进100m,则他上升的最大高度是 A.B.100sinβC.D. 100cosβ11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC中,AB 5,BC 13,ADBC边上的高,AD 4.求:CD,sinC.13、在Rt△ABC中,∠BCA 90°,CDBC 8,CD 5.求sin∠ACD,cos∠ACD和tan∠ACD.Rt△ABC中,∠C 90°,sinA和cosB15、如图,已知四边形ABCD中,BC CD DB,∠ADB 90°,cos∠ABD 求§1.2 30°、45°、60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角――45°、60°,它们的三角函数值分别是多少?你是如何得到的?结论:三角函数角度sinαcoαtanα30°45°60°[例1]计算:1 sin30°+cos45°;2 sin260°+cos260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差. 结果精确到0.01 m三、随堂练习1.计算:1 sin60°-tan45°;2 cos60°+tan60°;3 sin45。
北师大版九年级数学下册第一章直角三角形的边角关系单元优秀教学案例
3.培养学生运用数学知识解决生活中的问题,提高学生的应用能力。
(二)过程与方法
1.采用启发式教学,引导学生通过观察、思考、探究、实践等环节,自主发现直角三角形的边角关系。
2.利用小组合作、讨论等方式,培养学生的团队协作能力和沟通能力。
3.创设生活情境,让学生在解决实际问题的过程中,体会数学的价值和乐趣。
4.实践环节:让学生分组讨论,选取典型题目进行实践操作,巩固所学知识。
5.课堂小结:对本节课内容进行总结,强调直角三角形边角关系在实际问题中的应用。
6.课后作业:布置适量作业,让学生巩固所学知识,提高解题能力。
五、教学评价与反思
1.课堂评价:关注学生的学习过程,注重培养学生的创新意识和团队合作精神。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,及时给予反馈和指导。
四、教学实践
1.课堂导入:通过展示实际生活中的直角三角形实例,引出本节课的学习内容。
2.新课讲解:采用启发式教学,引导学生自主探究直角三角形的性质,如直角三角形的定义、边角关系等。
3.例题讲解:讲解勾股定理,并通过例题演示其在实际问题中的应用。
(三)情感态度与价值观
1.激发学生对数学的兴趣,培养学生的数学思维和探究精神。
2.培养学生勇于尝试、克服困难的意志,增强学生的自信心。
3.引导学生认识到数学在生活中的重要性,培养学生的责任感和使命感。
三、教学重点与难点
1.教学重点:直角三角形的性质、勾股定理及其应用。
2.教学难点:直角三角形边角关系的灵活运用,以及解决实际问题。
5.总结提升:对本节课内容进行总结,强调直角三角形边角关系在实际问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章直角三角形的边角关系
一、本章知识要点:
1、锐角三角函数的概念;
2、解直角三角形。
二、本章教材分析:
(一)使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键而且也是本章知识的难点。
如何解决这一关键问题,教材采取了以下的教学步骤:
1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。
显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步研究直角三角形中边与角的相互关系。
2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为同时也说明了锐角的度数变化了由30°变为45°后其对
边与斜边的比值也随之变化了由到。
这样就突出了直角三角形中边与角之间的相互关系。
3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。
4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌
握。
同时要强调三角函数的实质是比值。
防止学生产生sinX=60°sinX=等错误,要讲清sinA不是sin*A而是一个整体。
如果学生产生类似的错误,应引导学生重新复习三角函数定义。
5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢再通过有关的练习加以巩固。
在解三角形的过程中,需要会求一般锐角的三角函数值,并会由已知的三角函数值求对应的角度。
为此,教材中安排介绍了查三角函数表的方法,学生在查表过程中容易出错,尤其是在查余弦、余切表时,特别是在查表前,应适当讲一下锐角三角函数值的变化规律。
6.从定义总结同角三角函数关系式:在学生熟练掌握定义的基础上,师生共同发现如下的同角三角函数关系式,培养学生分析问题、总结规律、发现问题的习惯和能力。
例如:
sinA=sinB=
csA=csB=
tanA= tanB=
ctA= ctB=
有哪些函数的值相等呢?如下:
sinA=csB
∵∠A+∠B=90° cs(90°-B)=sinB
∠A=90°-∠B tan(90°-B)=ctB
∴sin(90°-∠B)=csB ct(90°-B)=tanB
关于∠A可由学生自己推出。
又有tanA·ctA= tanA= ctA=
∵ sinA=
csA=
∴
四个三角函数的基本性质:根据特殊角的三角函数值和查三角函数可以得出:
①正弦、正切的函数值是随着角度的增大而增大,正弦函数(在0°90°)
sin0°=0 sin90°=1正切函数(在0°90°)tan0° tan90°不存在。
②余弦、余切的函数值是随角度的增大而减小,余弦函数(0°90°) cs0°=1
cs90°=0,cs0°不存在,ct90°=1
为了巩固这一部分知识,应该通过一些基本练习题使学生达到熟练掌握的目的。
练习题如下:
填空:
(1)知:α+β=90°,sinα=则 csβ=——
(2)已知:sin27=a则cs63°=___
(3)已知:tan42°=c 则ct48°=__
(4)计算:tan48°+——
(5)已知A为锐角,化简:——
(6)已知O°<α<45°,化简= ——
(7)化简:= ——
(8)已知:csα=01756sinβ=01756 则锐角α与β之间的关系是__。
(9)在ΔAB中,∠=90°,如果45°<A<90°,0°<B<45°,那么sin A与 cs A 较大的是,sin B与cs B中较小的是。
(10)已知ΔAB中∠=90°,0°<∠B<45°,那么(sin A–cs A)与 (sin B-cs B)中是正数的是。
(11)ΔAB中,∠=90°,a、b、c为∠A、∠B、∠的对边,当b=10时sinA=(为常数)当b=100时a、b、c各扩大10倍, sinA=___
(12)ΔAB中∠B=30°,∠=45°AB=8c则A=___
判断下列各题是否正确(α角为锐角)
(1)sinα=cs42°则α=42° ()
(2)ctα=tan17°,则α=83° ()
(3)cs(90°-α)=sin36°α=36° ( )
(4)tan(90°-α)=ct53°α=37° ( )
(5)sin40°+sin30°=sin70° ( )
(6)( )
不查表判断下列各式的正负:
(1)ct75° ( ) (2)cs42°-cs46° ( )
(3)cs46°-cs47° ( ) (4)tan75°-ct14° ( )
(5)sin50°-cs50° ( ) (6)tan50°-sin50° ( )
(二)、解直角三角形
1、解直角三角形是本章重点,正确地选择关系式,先将已知和未知联系起,然后进行正确地计算是解直角三角形的关键。
2、解直角三角形的依据有如下公式:
① 三边之间关系:
② 角之间关系:∠A+∠B=90°
③ 边角之间关系:sinA=csB=;csA=sinB=;
tanA=ctB=; ctA=tanB=。
3、直角三角形可解的条件:在两个锐角和三边这五个条件中,必须已知两个独立的条件且两个条件中至少有一个条件是边。
根据可解的条件的分类,可有如下类型及其解法:a已知两边:两条直角边(a b )解法:c=
tanA=求∠A
∠B=90°-∠A
斜边和一条直角边( a c ) 解法: b=
用sinA=求A
∠B=90°-∠A
b一边和一锐角一条直角边和锐角A ∠B=90°-∠A
b=
c=
斜边和锐角A ∠B=90°-∠A
a=c sinA
b=
4、解直角三角形的应用
(1)、解决实际中提出的问题:如测量、航海、工程技术和物理学中的有
关距离、高度、角度的计算,应用中要根据题意,准确画出图形,从图中
确定要解的直角三角形,解直角三角形时,充分使用原始数据,正确选择
关系式,使运算尽可能简便、准确。
(2)、在解决实际问题中,仰角俯角;坡度坡角水平距离,垂直距离等概
念,一定要在弄清概念的含意的基础上,辨别出图中这些概念的位置。
(3)、如果图中无直角三角形,可适当地作垂线,转化为直角三角形,间
接地解出。
(4)、在解一些较复杂图形时,注意借助于几何图形的性质,可使得问题
得到解决。
练习题如下:
1、填空:
(1)等腰三角形腰长为10c,顶角为120°,则三角形底边长为,高为,
面积为。
(2)正三角形边长为2a,则一边上的高线长为。
(3)正三角形一边上中线长为3,则边长为。
(4)正三角形一边长为6,则正三角形外接圆半径R= 。
(5) RtΔAB中,∠=90°,a、b、c分别为A、B、的对边,a+c=4+,∠A=60°,则R= ,= 。
2、梯形的两底边分别为15c,5c,两底角分别为60°,30°。
求梯形的周
长。
3、如图电视塔建立在20米高的小山顶上,从水面上一点D测得塔顶A的
仰角为60°,测得塔基B的仰角为30°,求塔高AB。
4、在ΔAB中,∠=90°,a=10,ΔAB的面积S
Δ=,求角A及边长。
5、如图,ΔAB中D⊥AB于D,AD=B=4,ctA=,
求:(1)A与BD的长;(2)∠B的度数。
6、在ΔAB中,∠=90°,如果ctA=,求的
值。
7、在ΔAB中,∠=90°,如果AB=2,tanA=,求的值。