2019-2020广西省中考数学绝密预测押题试卷(含答案)
2020年广西省中考数学预测试题及答案
广西省2020年中考数学真题预测试题一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣202.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3.00分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84° B.60° C.36° D.24°9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2= °.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是.15.(3.00分)不等式x+1≥0的解集是.16.(3.00分)一元二次方程x2﹣9=0的解是.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC 的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次1 2 3 4 5 成绩(m)10.5 10.2 10.3 10.6 10.4 求该同学这五次投实心球的平均成绩.22.(8.00分)解方程=.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.【分析】根据主视图的画法解答即可.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.【点评】本题考查几何体的三视图画法.根据主视图是从几何体正边看得到的图形解答是关键.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.【分析】利用概率公式计算即可得.【解答】解:∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:7000000000=7×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3.00分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.【分析】首先利用勾股定理计算出AB长,再计算sinB即可.【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,∴sinB==,故选:A.【点评】此题主要考查了锐角三角函数,关键是正确计算出AB的长.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84° B.60° C.36° D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【分析】根据“实际售价=原售价×”可得答案.【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.【点评】本题主要考查列代数式,解题的关键是掌握代数式的书写规范及实际问题中数量间的关系.10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%【分析】根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤x<69之间的占53.3%.【解答】解:由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.【点评】本题考查了扇形统计图的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2a)•(ab)=2a2b.故选:B.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2= 46 °.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.15.(3.00分)不等式x+1≥0的解集是x≥﹣1 .【分析】根据一元一次不等式的解法求解不等式.【解答】解:移项得:x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(3.00分)一元二次方程x2﹣9=0的解是x1=3,x2=﹣3 .【分析】利用直接开平方法解方程得出即可.【解答】解:∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+负的场数=8;胜的积分+平的积分=14,把相关数值代入即可.【解答】解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.【点评】本题考查了列二元一次方程组,根据总场数和总分数得到相应的等量关系是解决本题的根据.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DC A=30°,AC=,AD=,则BC 的长为 5 .【分析】作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股定理得:AE=,CE=,及ED的长,可得CD的长,证明△BFD∽△BCA,列比例式可得BC的长.【解答】解:过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD==,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BF=,∴BC=+=5,故答案为:5.【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.【分析】先化简,再计算加法即可求解.【解答】解:2+3=4+3=7.【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:1 2 3 4 5投实心球序次成绩(m)10.5 10.2 10.3 10.6 10.4求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.22.(8.00分)解方程=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.【分析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=2【点评】本题主要考查菱形的性质,能够利用勾股定理求出BO的长是解题关键.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.【分析】(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,即可得出结论;(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【分析】(1)求出A、B、C的坐标,利用两根式求出抛物线的解析式即可;(2)求出直线AH的解析式,根据方程即可解决问题;(3)首先求出⊙H的半径,在HA上取一点K,使得HK=,此时K(﹣,﹣),由HQ2=HK•HA,可得△QHK∽△AHQ,推出==,可得KQ=AQ,推出AQ+QE=KQ+EQ,可得当E、Q、K 共线时,AQ+QE的值最小,由此求出点E坐标,点K坐标即可解决问题;【解答】解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣3)代入得到a=,∴抛物线的解析式为y=x2+x﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=x﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点K,使得HK=,此时K(﹣,﹣),∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,可得△QHK∽△AHQ,∴==,∴KQ=AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值==.【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、圆的有关知识、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。
广西省南宁市2019-2020学年中考数学预测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b22.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.63.一、单选题如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D4.如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2-2B.32C.3-1D.15.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°6.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是( )A .B .C .D .7.若2<2a -<3,则a 的值可以是( )A .﹣7B .163C .132D .128.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )A .90°B .120°C .270°D .360°9.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-410.已知5a =,27b =,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-二、填空题(本题包括8个小题)11.如图,点G 是ABC 的重心,AG 的延长线交BC 于点D ,过点G 作GE //BC 交AC 于点E ,如果BC 6=,那么线段GE 的长为______.12.若a+b=5,ab=3,则a 2+b 2=_____.13.如图AB 是O 直径,C 、D 、E 为圆周上的点,则C D ∠+∠=______.14.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.15.若关于x的方程2x m2x22x++=--有增根,则m的值是▲16.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.17.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.18.若代数式33x-有意义,则x的取值范围是__.三、解答题(本题包括8个小题)19.(6分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20.(6分)解分式方程:21133xx x-+=--.21.(6分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.22.(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)18 12备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?23.(8分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?24.(10分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.,其面积为5,点C在小正方在图中画出以线段AB为底边的等腰CAB形的顶点上;在图中面出以线段AB为一边的ABDE,其面积为16,点D和点E均在小正方形的顶点上;连接CE,并直接写出线段CE的长.25.(10分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.26.(12分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=6,求⊙O的半径.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.2.D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.D【解析】【分析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.4.C【解析】【分析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥A B′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴BD=32AB′=3,∴BC′=BD-3-1.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.5.A【解析】【分析】如图,过点C 作CD ∥a ,再由平行线的性质即可得出结论.【详解】如图,过点C 作CD ∥a ,则∠1=∠ACD ,∵a ∥b ,∴CD ∥b ,∴∠2=∠DCB ,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A .【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.6.C【解析】【分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C .【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.7.C【解析】【分析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.8.B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.9.D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .10.D【解析】【详解】根据a =5,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.二、填空题(本题包括8个小题)11.2【解析】分析:由点G 是△ABC 重心,BC=6,易得CD=3,AG :AD=2:3,又由GE ∥BC ,可证得△AEG ∽△ACD ,然后由相似三角形的对应边成比例,即可求得线段GE 的长.详解:∵点G 是△ABC 重心,BC=6,∴CD=12BC=3,AG :AD=2:3, ∵GE ∥BC ,∴△AEG ∽△ADC ,∴GE :CD=AG :AD=2:3,∴GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG :AD=2:3是解题的关键.12.1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a 2+2ab+b 2=25,然后根据题意即可得解. 解:∵a+b=5,∴a 2+2ab+b 2=25,∵ab=3,∴a 2+b 2=1.故答案为1.考点:完全平方公式.【分析】连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,根据圆周角定理可知:∠C=12∠AOE,∠D=12∠BOE,则∠C+∠D=12(∠AOE+∠BOE)=90°,故答案为:90°.【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.15.1.【解析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.16.1设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.17.3【解析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.18.x≠3【解析】【详解】由代数式3x3-有意义,得x-3≠0,解得x≠3,故答案为: x≠3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.三、解答题(本题包括8个小题)19.(1)20;15%;35%;(2)见解析;(3)126°.(1)根据被调查学生总人数,用B 的人数除以被调查的学生总人数计算即可求出m ,再根据各部分的百分比的和等于1计算即可求出n ;(2)求出D 的学生人数,然后补全统计图即可;(3)用D 的百分比乘360°计算即可得解.【详解】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为20;15%;35%;(2)∵D 等级的人数为:400×35%=140,∴补全条形统计图如图所示:(3)D 部分扇形所对应的圆心角:360°×35%=126°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20.2x =.【解析】试题分析:方程最简公分母为(3)x -,方程两边同乘(3)x -将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘(3)x -,得:213x x --=-,整理解得:2x =,经检验:2x =是原方程的解.考点:解分式方程.21.详见解析.【解析】(1)根据全等三角形判定中的“SSS”可得出△ADC ≌△CBA ,由全等的性质得∠DAC=∠BCA ,可证AD ∥BC ,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC 与△CBA 中,AD BC CD AB AC CA =⎧⎪=⎨⎪=⎩,∴△ADC ≌△CBA .(SSS )∴∠DAC=∠BCA .∴DA ∥BC .∴∠1=∠1.②③图形同理可证,△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,∠1=∠1.22.(1)A 类图书的标价为27元,B 类图书的标价为18元;(2)当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本,利润最大.【解析】【分析】(1)先设B 类图书的标价为x 元,则由题意可知A 类图书的标价为1.5x 元,然后根据题意列出方程,求解即可.(2)先设购进A 类图书t 本,总利润为w 元,则购进B 类图书为(1000-t )本,根据题目中所给的信息列出不等式组,求出t 的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B 类图书的标价为x 元,则A 类图书的标价为1.5x 元, 根据题意可得54054010 1.5x x-=, 化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A 类图书的标价为:1.5x=1.5×18=27(元),答:A 类图书的标价为27元,B 类图书的标价为18元;(2)设购进A 类图书t 本,总利润为w 元,A 类图书的标价为(27-a )元(0<a <5),由题意得,() 1812100016800600t tt+-≤⎧≥⎨⎩,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.23.(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元.【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.试题解析:解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+ 350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为1.答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元.点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.24.(1)见解析;(2)见解析;(3)见解析,CE=【解析】【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=5.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键. 25.(1)200,(2)图见试题解析(3)540【解析】【详解】试题分析:(1)根据A级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;(2)根据总人数求出C级的人数,然后补全条形统计图即可;(3)1减去A、B两级所占的百分比乘以360°即可得出结论.试题解析::(1)调查的学生人数为:5025%=200名;(2)C级学生人数为:200-50-120=30名,补全统计图如图;(3)学习态度达标的人数为:360×[1-(25%+60%]=54°.答:求出图②中C级所占的圆心角的度数为54°.考点:条形统计图和扇形统计图的综合运用26.(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.【解析】【详解】(1)相切,连接OC,∵C为BE的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;(2)连接CE,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22-=2,∵CD是⊙O的切线,AC AD∴2CD=AD•DE,∴DE=1,∴CE=22+=3,∵C为BE的中点,∴BC=CE=3,∵AB为⊙O的CD DE直径,∴∠ACB=90°,∴AB=22+=2.AC BC∴半径为1.12019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.16=()A.±4 B.4 C.±2 D.22.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ3.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.144.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+65.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C .没有实数根D .无法确定6.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a≥3 D .a≤37.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒8.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A .12B .14C .16D .1169.如图所示,点E 是正方形ABCD 内一点,把△BEC 绕点C 旋转至△DFC 位置,则∠EFC 的度数是( )A .90°B .30°C .45°D .60°10.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .二、填空题(本题包括8个小题)11.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点D .若∠A=32°,则∠D=_____度.12.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .13.如图,有一直径是2的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC ,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.14.已知x 1,x 2是方程x 2-3x-1=0的两根,则1211x x +=______. 15.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .16.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 17.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=62,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为_____.18.化简:a b a b b a+--22= __________. 三、解答题(本题包括8个小题)19.(6分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.20.(6分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. 若平行于墙的一边长为y 米,直接写出y 与x 的函数关系式及其自变量x 的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.21.(6分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.22.(8分)如图,已知等腰三角形ABC 的底角为30°,以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE ⊥AC ,垂足为E .证明:DE 为⊙O 的切线;连接OE ,若BC =4,求△OEC 的面积.23.(8分)如图,已知O 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O 的半径.24.(10分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.25.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=kx(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为;若点D的坐标为(4,n).①求反比例函数y=kx的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.26.(12分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】16的算术平方根,为正数,再根据二次根式的性质化简.【详解】4,故选B.【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.2.D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.3.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.4.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.5.B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.6.D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.8.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进。
广西省桂林市2019-2020学年中考数学第一次押题试卷含解析
广西省桂林市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且,则的值为A .B .C .D .2.如图,△ABC 中,∠B =70°,则∠BAC =30°,将△ABC 绕点C 顺时针旋转得△EDC .当点B 的对应点D 恰好落在AC 上时,∠CAE 的度数是( )A .30°B .40°C .50°D .60° 3.若函数2y x =与y=﹣2x ﹣4的图象的交点坐标为(a ,b ),则12a b +的值是( ) A .﹣4 B .﹣2 C .1 D .24.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .5.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是6.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75° 7.方程13122x x -=--的解为( ) A .x=4 B .x=﹣3 C .x=6 D .此方程无解8.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )A .∠1=50°,∠1=40°B .∠1=40°,∠1=50°C .∠1=30°,∠1=60°D .∠1=∠1=45°9.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤ D .122a ≤≤ 10.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120°11.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=3,则△ACE的面积为()A.1 B.3C.2 D.2312.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径¼'AA的长为()A.πB.2πC.4πD.8π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=________.14.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k x的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.151a 中的字母a的取值范围是_____.16.如图,已知,第一象限内的点A在反比例函数y=2x的图象上,第四象限内的点B在反比例函数y=kx的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.17.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x =(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .18.如图,矩形ABCD 中,E 为BC 的中点,将△ABE 沿直线AE 折叠时点B 落在点F 处,连接FC ,若∠DAF =18°,则∠DCF =_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A ,B ,W 三个空座位,且只有A ,B 两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W 的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A ,B 的概率.20.(6分)如图,在ABC △中,以AB 为直径的⊙O 交AC 于点D ,过点D 作DE BC ⊥于点E ,且BDE A ∠=∠.(1)判断DE 与⊙O 的位置关系并说明理由;(2)若16AC =,3tan 4A =,求⊙O 的半径.21.(6分)已知,抛物线L :y=x 2+bx+c 与x 轴交于点A 和点B (-3,0),与y 轴交于点C (0,3). (1)求抛物线L 的顶点坐标和A 点坐标.(2)如何平移抛物线L 得到抛物线L 1,使得平移后的抛物线L 1的顶点与抛物线L 的顶点关于原点对称? (3)将抛物线L 平移,使其经过点C 得到抛物线L 2,点P (m ,n )(m >0)是抛物线L 2上的一点,是否存在点P ,使得△PAC 为等腰直角三角形,若存在,请直接写出抛物线L 2的表达式,若不存在,请说明理由.22.(8分)如图,一次函数y =-x +5的图象与反比例函数y =k x (k≠0)在第一象限的图象交于A(1,n)和B 两点.求反比例函数的解析式;在第一象限内,当一次函数y =-x +5的值大于反比例函数y =k x (k≠0)的值时,写出自变量x 的取值范围.23.(8分)先化简,再求值:(x ﹣2y )2+(x+y )(x ﹣4y ),其中x =5,y =15. 24.(10分)如图,二次函数23y x x m =-++的图象与x 轴的一个交点为()4,0B ,另一个交点为A ,且与y 轴相交于C 点()1求m 的值及C 点坐标;()2在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由()3P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由.25.(10分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC 与CD 的长分别为45cm 和60cm ,且它们互相垂直,座杆CE 的长为20cm .点A 、C 、E 在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD 的长;(2)求车座点E 到车架档AB 的距离(结果精确到1cm ).26.(12分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=o ,求DMC ∠的度数.27.(12分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC 的三个顶点都在格点上,且直线m 、n 互相垂直.(1)画出△ABC 关于直线n 的对称图形△A′B′C′;(2)直线m 上存在一点P ,使△APB 的周长最小;①在直线m 上作出该点P ;(保留画图痕迹)②△APB 的周长的最小值为 .(直接写出结果)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】∵,∠A=∠A,∴△ABC∽△AED。
广西省柳州市2019-2020学年中考数学第三次押题试卷含解析
广西省柳州市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限2.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A .2B .2C .6D .223.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ) A .16个B .15个C .13个D .12个4.下列实数中,结果最大的是( ) A .|﹣3|B .﹣(﹣π)C .7D .35.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是( ) A .若点(3,6)在其图象上,则(﹣3,6)也在其图象上 B .当k >0时,y 随x 的增大而减小C .过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为kD .反比例函数的图象关于直线y=﹣x 成轴对称6.如图,等边△ABC 的边长为1cm ,D 、E 分别AB 、AC 是上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分的周长为( )cmA .1B .2C .3D .47.在直角坐标系中,设一质点M 自P 0(1,0)处向上运动一个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处……,如此继续运动下去,设P n (x n ,y n ),n =1,2,3,……,则x 1+x 2+……+x 2018+x 2019的值为( )A .1B .3C .﹣1D .20198.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( ) A .149×106千米2 B .14.9×107千米2 C .1.49×108千米2 D .0.149×109千29.在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c (a≠0)的大致图象如图所示,则下列结论正确的是( )A .a <0,b <0,c >0B .﹣2ba=1 C .a+b+c <0D .关于x 的方程ax 2+bx+c=﹣1有两个不相等的实数根 10.如图,函数y 1=x 3与y 2=1x在同一坐标系中的图象如图所示,则当y 1<y 2时( )A .﹣1<x <lB .0<x <1或x <﹣1C .﹣1<x <I 且x≠0D .﹣1<x <0或x >111.下列各式正确的是( ) A .0.360.6=± B 93=± C 33(3)3-=D 2(2)2-=-12.3-的倒数是( ) A .13-B .3C .13D .13±二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.14.若点A(1,m)在反比例函数y=3x的图象上,则m的值为________.15.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.16.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.17.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.18.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)﹣(﹣1)20184﹣(13)﹣120.(6分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).(1)t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为8cm2?21.(6分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息: 型号 载客量 租金单价 A 30人/辆 380元/辆 B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A 型号客车x 辆,租车总费用为y 元.求y 与x 的函数解析式,请直接写出x 的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?22.(8分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?23.(8分)如图,在ABCD Y 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF -的值最大?并求此时sin B 的值.24.(10分)如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F . (1)求证:BD=CD ; (2)求证:DC 2=CE•AC ;(3)当AC=5,BC=6时,求DF 的长.25.(10分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?26.(12分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.27.(12分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30 60 81 50 40 110 130 146 90 10060 81 120 140 70 81 10 20 100 81整理数据:课外阅读平均时间0≤x<40 40≤x<80 80≤x<120 120≤x<160x(min)等级 D C B A人数 3 a 8 b分析数据:平均数中位数众数请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.2.B【解析】【分析】∠=,易首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,B60o得△ABC是等边三角形,即可得到答案.【详解】连接AC,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,∴AB=BC,∵B60o∠=,∴△ABC是等边三角形,∴AC=AB=1.故选:B.【点睛】本题考点:菱形的性质.3.D【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴4144x=+,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.4.B【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得7<|-3|=3<-(-π),所以最大的数是:-(-π).故选B.【点睛】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.5.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.6.C【解析】【分析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.7.C【解析】【分析】+x2+…+x7;经过观察分析可得每4个数的和为2,把2019个根据各点横坐标数据得出规律,进而得出x1数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故选C.【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律8.C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:149 000 000=1.49×2千米1.故选C.把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.9.D 【解析】试题分析:根据图像可得:a <0,b >0,c <0,则A 错误;12ba->,则B 错误;当x=1时,y=0,即a+b+c=0,则C 错误;当y=-1时有两个交点,即2ax bx c 1++=-有两个不相等的实数根,则正确,故选D . 10.B 【解析】 【分析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y 1<y 2时所对应的x 的取值范围. 【详解】根据图象知,一次函数y 1=x 3与反比例函数y 2=1x的交点是(1,1),(-1,−1), ∴当y 1<y 2时,, 0<x<1或x <-1; 故答案选:B. 【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案. 11.A 【解析】3=,则B 3=-,则C 2=,则D 错,故选A . 12.A 【解析】 【分析】 【详解】解:3-的倒数是13-. 故选A . 【点睛】本题考查倒数,掌握概念正确计算是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】 【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.3【解析】试题解析:把A(1,m)代入y=3x得:m=3.所以m的值为3.15.23 3π-【解析】【分析】连接BD,易证△DAB是等边三角形,即可求得△ABD的高为3,再证明△ABG≌△DBH,即可得四边形GBHD的面积等于△ABD的面积,由图中阴影部分的面积为S扇形EBF﹣S△ABD即可求解.【详解】如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =2602360π⨯﹣12×=23π-故答案是:23π- 【点睛】本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD 的面积等于△ABD 的面积是解题关键.16.4﹣π【解析】【分析】由题意可以假设A (-m ,m ),则-m 2=-4,求出点A 坐标即可解决问题.【详解】由题意可以假设A (-m ,m ),则-m 2=-4,∴m=≠±2,∴m=2,∴S 阴=S 正方形-S 圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题17.43【解析】 试题分析:1204=2180r ππ⨯,解得r=43. 考点:弧长的计算.18.62n【解析】【分析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成, ……∴组成n 个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-1.【解析】【分析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.20.(1)t =154秒;(1)t =5s ). 【解析】【分析】(1)利用勾股定理列式求出 AB ,再表示出 AP 、AQ ,然后分∠APQ 和∠AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;(1)过点 P 作 PC ⊥OA 于 C ,利用∠OAB 的正弦求出 PC ,然后根据三角形的面积公式列出方程求解即可.【详解】解:(1)∵点 A (0,6),B (8,0),∴AO =6,BO =8,∴AB===10,∵点P的速度是每秒1个单位,点Q 的速度是每秒1个单位,∴AQ=t,AP=10﹣t,①∠APQ是直角时,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP 是直角时,△AQP∽△AOB,∴,即,解得t=,综上所述,t=秒时,△APQ 与△AOB相似;(1)如图,过点P 作PC⊥OA 于点C,则PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面积=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故当t=55s)时,△APQ的面积为8cm1.【点睛】本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键.21.(1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.22.(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】【分析】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:.答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤1,∵m是整数,∴m最大可取1.答:这所中学最多可以购买篮球1个.【点睛】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.23.(1)见解析;(2)1BE =时,22CE CF -的值最大,15sin ∠=B【解析】【分析】(1)延长BA 、CF 交于点G ,利用可证△AFG ≌△DFC 得出CF GF =,AG DC =,根据CE AB ⊥,可证出12EF GC GF ==,得出AEF G ∠=∠,利用2AB =,4BC =,点F 是AD 的中点,得出2AG =,11222AF AD BC ===,则有AG AF =,可得出AFG AEF ∠=∠,得出2EFC AEF G AEF ∠=∠+∠=∠,即可得出结论;(2)设BE=x ,则2AE x =-,4EG x =-,由勾股定理得出222216CE BC BE x =-=-,222328CG EG CE x =+=-,得出282CF x =-,求出222(1)9CE CF x -=--+,由二次函数的性质得出当x=1,即BE=1时,CE 2-CF 2有最大值,21615CE x =-=,由三角函数定义即可得出结果.【详解】解:(1)证明:如图,延长CF 交BA 的延长线于点G ,∵F 为AD 的中点,∴AF FD =.在ABCD Y 中,AB CD ∥,∴G DCF ∠=∠.在AFG V 和DFC △中,,,,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AFG DFC AAS △≌△,∴CF GF =,AG DC =,∵CE AB ⊥. ∴12EF GC GF ==, ∴AEF G ∠=∠,∵2AB =,4BC =,点F 是AD 的中点,∴2AG =,11222AF AD BC ===. ∴AG AF =.∴AFG G ∠=∠.∴AFG AEF ∠=∠.在EFG V 中,2EFC AEF G AEF ∠=∠+∠=∠,又∵CFD AFG ∠=∠,∴CFD AEF ∠=∠.∴23EFD EFC CFD AEF AEF AEF ∠=∠+∠=∠+∠=∠(2)设BE x =,则2AE x =-,∵2AG CD AB ===,∴224EG AE AG x x =+=-+=-,在Rt CEG △中,222216CE BC BE x =-=-,在Rt CEG △中,22222(4)16328CG EG CE x x x =+=-+-=-,∵CF GF =, ∴222111(328)82244CF CG CG x x ⎛⎫===-=- ⎪⎝⎭, ∴22222168228(1)9CE CF x x x x x -=--+=-++=--+,∴当1x =,即1BE =时,22CE CF -的值最大,∴CE ==在Rt BEC V 中,sin CE B BC ∠==【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.24.(1)详见解析;(2)详见解析;(3)DF=607.【解析】【分析】(1)先判断出AD⊥BC,即可得出结论;(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出DF ODEF AE=,即可得出结论.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)连接OD,∵DE是⊙O的切线,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴CD CE AC CD=,∴CD2=CE•AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=12AB=52,由(1)知,CD=12BC=3,由(2)知,CD2=CE•AC,∵AC=5,∴CE=295CDAC=,∴AE=AC-CE=5-95=165,在Rt△CDE中,根据勾股定理得,DE=22125CD CE-=,由(2)知,OD∥AC,∴DF ODEF AE=,∴52121655DFDF+=,∴DF=607.【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.25.(1)答案见解析;(2)14【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41.164==点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.26.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AG AD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BF ED DF=,由(1)知△DFD∽△DFC,∴BF DF DF CF=,∴EG DF ED CF=,∴EG·CF=ED·DF.27.(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解析】【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【详解】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)8450030020+⨯=(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点睛】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.。
广西省南宁市2019-2020学年中考数学第三次押题试卷含解析
广西省南宁市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .72.方程=的解为( ) A .x =3 B .x =4 C .x =5 D .x =﹣53.如图,在直角坐标系xOy 中,若抛物线l :y =﹣12x 2+bx+c (b ,c 为常数)的顶点D 位于直线y =﹣2与x 轴之间的区域(不包括直线y =﹣2和x 轴),则l 与直线y =﹣1交点的个数是( )A .0个B .1个或2个C .0个、1个或2个D .只有1个4.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图,已知菱形ABCD ,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .16B .12C .24D .186.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x )=10890 D .(x+180)(50﹣10x )﹣50×20=10890 7.计算2311x x x -+++的结果为( )A.2 B.1 C.0 D.﹣18.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=55,那么点C的位置可以在()A.点C1处B.点C2处C.点C3处D.点C4处9.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、B C,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为()A.13πB.14πC.16πD.112π10.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB 上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是()A.0 B.1 C.2 D.311.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<212.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N 两点.若AM=2,则线段ON的长为( )A .22B .32C .1D .62二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB≠AC .D,E 分别为边AB,AC 上的点.AC=3AD,AB=3AE,点F 为BC 边上一点,添加一个条件:______,可以使得△FDB 与△ADE 相似.(只需写出一个)14.菱形ABCD 中,∠A=60°,AB=9,点P 是菱形ABCD 内一点,PB=PD=33,则AP 的长为_____. 15.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条. B .用计算器计算:7•tan63°27′≈_____(精确到0.01).16.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.17.如图①,在矩形ABCD 中,对角线AC 与BD 交于点O ,动点P 从点A 出发,沿AB 匀速运动,到达点B 时停止,设点P 所走的路程为x ,线段OP 的长为y ,若y 与x 之间的函数图象如图②所示,则矩形ABCD 的周长为_____.18.若正多边形的一个外角是45°,则该正多边形的边数是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=ax 2﹣2ax+c (a≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK+KN 最小,并求出点K 的坐标;(3)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当△CQE 的面积最大时,求点Q 的坐标;(4)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.20.(6分)已知:二次函数C 1:y 1=ax 2+2ax+a ﹣1(a≠0)把二次函数C 1的表达式化成y =a(x ﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C 1的图象经过点A(﹣3,1).①求a 的值;②点B 在二次函数C 1的图象上,点A ,B 关于对称轴对称,连接AB .二次函数C 2:y 2=kx 2+kx(k≠0)的图象,与线段AB 只有一个交点,求k 的取值范围.21.(6分)如图,AB 为圆O 的直径,点C 为圆O 上一点,若∠BAC=∠CAM ,过点C 作直线l 垂直于射线AM ,垂足为点D .(1)试判断CD 与圆O 的位置关系,并说明理由;(2)若直线l 与AB 的延长线相交于点E ,圆O 的半径为3,并且∠CAB=30°,求AD 的长.22.(8分)如图,分别延长▱ABCD 的边CD AB ,到E F ,,使DE BF ,连接EF ,分别交AD BC ,于G H ,,连结CG AH.,求证:CG //AH .23.(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?24.(10分)计算:|3-2|+2﹣1﹣cos61°﹣(1﹣2)1.25.(10分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=15.26.(12分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP 且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.27.(12分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.2.C【解析】方程两边同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,检验:当x=5时,(x-1)(x+3)≠0,所以x=5是原方程的解,故选C.3.C【解析】【分析】根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.【详解】∵抛物线l:y=﹣12x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,故选C.【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.4.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.A【解析】【分析】由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.【详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.6.C【解析】【分析】设房价比定价180元増加x 元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x 元,根据题意,得(180+x ﹣20)(50﹣x 10)=1. 故选:C .【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.7.B【解析】【分析】按照分式运算规则运算即可,注意结果的化简. 【详解】解:原式=231111x x x x -++==++,故选择B. 【点睛】本题考查了分式的运算规则.8.D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =54DC AC AC ==,∴5∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+=故答案为D.9.A【解析】【分析】利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=12∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧AB的长.【详解】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=12∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=60?•11 1803ππ=.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.10.D【解析】【分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.11.B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.12.C【解析】【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=22AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=22AM=22×2,∵CM平分∠ACB,∴2,∴2,∴AC=2AB=2(2+2)=22+2,∴OC=12AC=2+1,CH=AC ﹣AH=22+2﹣2=2+2, ∵BD ⊥AC ,∴ON ∥MH ,∴△CON ∽△CHM ,∴ON OC MH CH =,即21222+=+, ∴ON=1.故选C .【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.14.33或63【解析】【分析】分成P 在OA 上和P 在OC 上两种情况进行讨论,根据△ABD 是等边三角形,即可求得OA 的长度,在直角△OBP 中利用勾股定理求得OP 的长,则AP 即可求得.【详解】设AC 和BE 相交于点O .当P 在OA 上时,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴BD=AB=9,OB=OD=12BD=92.则=.在直角△OBP中,==则=当P在OC上时,=故答案是:【点睛】本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.15.20 5.1【解析】【分析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.16.1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.17.1【解析】分析:根据点P 的移动规律,当OP ⊥BC 时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长.详解:∵当OP ⊥AB 时,OP 最小,且此时AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C 矩形ABCD =2(AB+AD )=2×(8+6)=1.故答案为1.点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,OP=2.18.1;【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=1即该正多边形的边数是1.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1)或(1,1)或(,2)或(1,2).【解析】试题分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG ,可得出△CQE 关于m 的解析式,再根据二次函数的性质可求得Q 点的坐标;(4)分DO=DF 、FO=FD 和OD=OF 三种情况,分别根据等腰三角形的性质求得F 点的坐标,进一步求得P点坐标即可.试题解析:(1)∵抛物线经过点C(0,4),A(4,0),∴416840ca a=⎧⎨-+=⎩,解得124ac⎧=-⎪⎨⎪=⎩,∴抛物线解析式为y=﹣12x1+x+4;(1)由(1)可求得抛物线顶点为N(1,92),如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得924k bb⎧+=⎪⎨⎪=-⎩,解得1724kb⎧=⎪⎨⎪=-⎩,∴直线C′N的解析式为y=172x-4 ,令y=0,解得x=817,∴点K的坐标为(817,0);(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,由﹣12x1+x+4=0,得x1=﹣1,x1=4,∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴EG BQ CO BA = ,即246EG m += ,解得EG=243m + ; ∴S △CQE =S △CBQ ﹣S △EBQ =12(CO-EG )·BQ=12(m+1)(4-243m +) =2128-333m m ++ =-13(m-1)1+2 . 又∵﹣1≤m≤4,∴当m=1时,S △CQE 有最大值2,此时Q (1,0);(4)存在.在△ODF 中,(ⅰ)若DO=DF ,∵A (4,0),D (1,0),∴AD=OD=DF=1.又在Rt △AOC 中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F 的坐标为(1,1).由﹣12x 1+x+4=1,得x 1=1+5 ,x 1=1﹣5. 此时,点P 的坐标为:P 1(1+5,1)或P 1(1﹣5,1);(ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M .由等腰三角形的性质得:OM=12OD=1, ∴AM=2. ∴在等腰直角△AMF 中,MF=AM=2.∴F (1,2).由﹣12x 1+x+4=2,得x 13x 1=13. 此时,点P 的坐标为:P 2(32)或P 4(13,2);(ⅲ)若OD=OF ,∵OA=OC=4,且∠AOC=90°.∴.∴点O到AC的距离为.而OF=OD=1<矛盾.∴在AC上不存在点使得OF=OD=1.此时,不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1)或(11)或(,2)或(1,2).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.20.(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k的取值范围是16≤k≤12或k=﹣1.【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.21.(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=92.【解析】【分析】(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O的位置关系是相切;(2)连接BC,∵AB 是⊙O 的直径,∴∠BCA=90°,∵圆O 的半径为3,∴AB=6,∵∠CAB=30°, ∴133332BC AB AC BC ====,, ∵∠BCA=∠CDA=90°,∠CAB=∠CAD ,∴△CAB ∽△DAC , ∴,AC AB AD AC= ∴3333AD = ∴92AD =. 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.22.证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出△EGD 和△FHB 全等,从而得出DG=BH ,从而说明AG 和CH 平行且相等,得出四边形AHCG 为平行四边形,从而得出答案.详解:证明:在▱ABCD 中,AB//CD AD//CB AD CB ,,=,E F EDG DCH FBH ,∠∠∠∠∠∴===,又 DE BF =,EGD ∴V ≌()FHB AAS V ,DG BH ∴=,AG HC ∴=,又AD//CB Q ,∴四边形AGCH 为平行四边形, AH //CG ∴.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG 为平行四边形.23.(1)补图见解析;(2)27°;(3)1800名【解析】【分析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360°乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解.【详解】(1)抽取的总人数是:10÷25%=40(人),在B类的人数是:40×30%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360×340=27°;(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图.24.3【解析】【分析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=112311322--=【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.25.2x2﹣7xy,1【解析】【分析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可. 【详解】原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=15时,原式=50﹣7=1.【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键. 26.(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴AD PAGE PG=,∴46AD tt-=,∴AD=16t(4﹣t),∴BD=AB﹣AD=6﹣16t(4﹣t)=16t2﹣23t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=12×BD×EF=12×(16t2﹣23t+6)×6=12(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D不可能在EF上,即∠FDB不可能为直角;③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,如图2,作FH⊥BD于点H,则FH=PA,即4﹣t=6﹣t,方程无解,∴假设不成立,即△BDF不可能是等腰直角三角形.27.(1)详见解析;(2)4.【解析】(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,试题分析:再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.。
广西省柳州市2019-2020学年中考数学第一次押题试卷含解析
广西省柳州市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将不等式组2(23)3532x x x x -≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( ) A . B . C . D . 2.将直线y=﹣x+a 的图象向右平移2个单位后经过点A (3,3),则a 的值为( )A .4B .﹣4C .2D .﹣23.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是( )A .AE=6cmB .4sin EBC 5∠= C .当0<t≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形4.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )A .0.334B .C .D .5.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .6.如图,边长为2a 的等边△ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12aB .aC .32aD .3a7.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .68.已知5a b =r r ,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r方向相同 C .//a b r r D .||5||a b =r r9.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .10.如图,l 1∥l 2,AF :FB=3:5,BC :CD=3:2,则AE :EC=( )A.5:2 B.4:3 C.2:1 D.3:2 11.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A.27.1×102B.2.71×103C.2.71×104D.0.271×10512.在平面直角坐标系中,位于第二象限的点是()A.(﹣1,0)B.(﹣2,﹣3)C.(2,﹣1)D.(﹣3,1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组512324x xx x+>+⎧⎨+⎩…的解集是__.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.15.如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.16.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为_____.17.如果某数的一个平方根是﹣5,那么这个数是_____.18.正八边形的中心角为______度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,求BD的长.20.(6分)如图,在Y ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE ≌△BFE ;若DF 平分∠ADC ,连接CE .试判断CE 和DF 的位置关系,并说明理由.21.(6分)解下列不等式组:6152(43){2112323x x x x ++-≥->①② 22.(8分)如图,顶点为C 的抛物线y=ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,连接OC 、OA 、AB ,已知OA=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)过点C 作CE ⊥OB ,垂足为E ,点P 为y 轴上的动点,若以O 、C 、P 为顶点的三角形与△AOE 相似,求点P 的坐标;(3)若将(2)的线段OE 绕点O 逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A 、E′B ,求E′A+12E′B 的最小值.23.(8分)如图,△ABC 中,AB=8厘米,AC=16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t .⑴用含t 的代数式表示:AP= ,AQ= .⑵当以A ,P ,Q 为顶点的三角形与△ABC 相似时,求运动时间是多少?24.(10分)(问题情境)张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC 中,AB =AC ,点P 为边BC 上任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E ,过点C 作CF ⊥AB ,垂足为F ,求证:PD+PE =CF .小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE =CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE =CF.[变式探究]如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;请运用上述解答中所积累的经验和方法完成下列两题:[结论运用]如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;[迁移拓展]图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=13,AD=3dm,BD37dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.25.(10分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,3,四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.(1)求抛物线的解析式,并直接写出点D的坐标;(2)当△AMN的周长最小时,求t的值;(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.26.(12分)某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?27.(12分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)(1)点C坐标为;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:11xx≤⎧⎨>-⎩,即11x-<≤.∴在数轴上可表示为.故选B.“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.A【解析】【分析】直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【详解】由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故选A.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n 个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.3.D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)结论B正确,理由如下:如图,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm ,BEC 11S 40BC EF 10EF 5EF 22∆==⋅⋅=⋅⋅=, ∴EF=1.∴EF 84sin EBC BE 105∠===. (3)结论C 正确,理由如下:如图,过点P 作PG ⊥BQ 于点G ,∵BQ=BP=t ,∴2BPQ 11142y S BQ PG BQ BP sin EBC t t t 22255∆==⋅⋅=⋅⋅⋅∠=⋅⋅⋅=. (4)结论D 错误,理由如下:当t=12s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如图,连接NB ,NC .此时AN=1,ND=2,由勾股定理求得:NB=2NC=217∵BC=10,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.故选D .4.B【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:334亿=3.34×1010 “点睛”此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.D【解析】【分析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A ,B ,C 中铁片顺序为1,1,5,6,选项D 中铁片顺序为1,5,6,1.故选D .【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键. 6.A【解析】【分析】取CB 的中点G ,连接MG ,根据等边三角形的性质可得BH=BG ,再求出∠HBN=∠MBG ,根据旋转的性质可得MB=NB ,然后利用“边角边”证明∴△MBG ≌△NBH ,再根据全等三角形对应边相等可得HN=MG ,然后根据垂线段最短可得MG ⊥CH 时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC 的中点G ,连接MG ,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM ,∵CH 是等边△ABC 的对称轴,∴HB=12AB , ∴HB=BG ,又∵MB 旋转到BN ,∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===,∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a , ∴HN=2a , 故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7.D【解析】分析: 连接OB ,根据等腰三角形三线合一的性质可得BO ⊥EF ,再根据矩形的性质可得OA=OB ,根据等边对等角的性质可得∠BAC=∠ABO ,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB. 详解: 如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴,∴6,故选D .点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 8.A【解析】【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=r rr ,故该选项说法错误 B 、因为5a b =r r ,所以a r 与b r 的方向相同,故该选项说法正确,C 、因为5a b =r r ,所以//a b r r,故该选项说法正确, D 、因为5a b =r r ,所以||5||a b =r r ;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.9.C【解析】【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A 、不是轴对称图形,也不是中心对称图形.故此选项错误;B 、不是轴对称图形,也不是中心对称图形.故此选项错误;C 、是轴对称图形,也是中心对称图形.故此选项正确;D 、是轴对称图形,但不是中心对称图形.故此选项错误.故选C .【点睛】考点:1、中心对称图形;2、轴对称图形10.D【解析】【分析】依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=25BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值.【详解】∵l1∥l2,∴35 AF AGBF BD==,设AG=3x,BD=5x,∵BC:CD=3:2,∴CD=25BD=2x,∵AG∥CD,∴3322 AE AG xEC CD x===.故选D.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.11.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27100用科学记数法表示为:. 2.71×104.故选:C.【点睛】本题考查科学记数法—表示较大的数。
广西省南宁市2019-2020学年中考数学第一次押题试卷含解析
广西省南宁市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为22.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块3.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°5.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a46.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°7.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.8.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.9.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()A.71.810⨯D.5⨯1810⨯C.61.8100.1810⨯B.510.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是1511.不等式的最小整数解是()A.-3 B.-2 C.-1 D.212.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A .5B .2C .52D .25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连结DQ .给出如下结论:①DQ =1;②;③S △PDQ =;④cos ∠ADQ=.其中正确结论是_________.(填写序号)14.⊙O 的半径为10cm ,AB,CD 是⊙O 的两条弦,且AB ∥CD ,AB=16cm,CD=12cm .则AB 与CD 之间的距离是 cm .15.12的相反数是______. 16.在平面直角坐标系xOy 中,若干个半径为1个单位长度,圆心角是60o 的扇形按图中的方式摆放,动点K 从原点O 出发,沿着“半径OA →弧AB →弧BC →半径CD →半径DE ⋯”的曲线运动,若点K 在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒π3个单位长度,设第n 秒运动到点K ,(n 为自然数),则3K 的坐标是____,2018K 的坐标是____17.8的算术平方根是_____.18.一元二次方程x (x ﹣2)=x ﹣2的根是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.(1)二月份冰箱每台售价为多少元?(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y 台(y≤12),请问有几种进货方案?(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?20.(6分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.21.(6分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.22.(8分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.23.(8分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.24.(10分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?25.(10分)现有A、B两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A 30 120 0.20B 60 320 0.25设上网时间为x分钟,(1)若按方式A和方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?26.(12分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.27.(12分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B.3.C【解析】【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.5.C【解析】【分析】【详解】解:A、a•a=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a﹣1=a4,正确,不合题意;故选C.【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.6.B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定7.B由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.8.D【解析】【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D .【详解】解:观察图形可知图案D 通过平移后可以得到.故选D .【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.9.C【解析】分析:一个绝对值大于10的数可以表示为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,整数位数减去1即可.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1800000这个数用科学记数法可以表示为61.810⨯,故选C .点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.10.C【解析】【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C .故选C .11.B【解析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】∵,∴,∴,∴不等式的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变. 12.C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B时,用5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,BP=22151()22+=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=55,则PQ=5535 255-=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,则有3 12 DNDN=-,解得:DN=35.由DQ=1,得cos∠ADQ=35 DNDQ=.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.14.2或14【解析】【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm ,CD=12cm ,∴AF=8cm ,CE=6cm ,∵OA=OC=10cm ,∴OF=6cm ,OE=8cm ,∴EF=OF+OE=14cm.∴AB 与CD 之间的距离为14cm 或2cm.故答案为:2或14.15.﹣12. 【解析】【分析】根据只有符号不同的两个数叫做互为相反数解答.【详解】12的相反数是12-. 故答案为12-. 【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.16.3,2⎛ ⎝⎭()1009,0 【解析】【分析】设第n 秒运动到K n (n 为自然数)点,根据点K 的运动规律找出部分K n 点的坐标,根据坐标的变化找出变化规律“K 4n+1(4122n +,),K 4n+2(2n+1,0),K 4n+3(4322n +-,),K 4n+4(2n+2,0)”,依此规律即可得出结论.【详解】设第n 秒运动到K n (n 为自然数)点,观察,发现规律:K 1(12),K 2(1,0),K 3(32,,K 4(2,0),K 5(52),…,∴K 4n+1(412n +),K 4n+2(2n+1,0),K 4n+3(432n +-,),K 4n+4(2n+2,0). ∵2018=4×504+2,∴K 2018为(1009,0).故答案为:(322,),(1009,0). 【点睛】 本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.17..【解析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8,,∴8的算术平方根是.故答案为.考点:算术平方根.18.1或1【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可得答案.【详解】x (x ﹣1)=x ﹣1,x (x ﹣1)﹣(x ﹣1)=0,(x ﹣1)(x ﹣1)=0,x ﹣1=0,x ﹣1=0,x 1=1,x 1=1,故答案为:1或1.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a 的值为1.【解析】【分析】(1)设二月份冰箱每台售价为x 元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.【详解】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据题意,得:90000500x=80000x,解得:x=4000,经检验,x=4000是原方程的根.答:二月份冰箱每台售价为4000元.(2)根据题意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y为整数,∴y=3,9,10,11,2.∴洗衣机的台数为:2,11,10,9,3.∴有五种购货方案.(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,∵(2)中的各方案利润相同,∴1﹣a=0,∴a=1.答:a的值为1.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.20.(1)m=3,k=12;(2)或【解析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=kx,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标. 【详解】解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=kx的图像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得236 kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.21.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.22.(1)画图见解析;(2)A1(0,6);(3)弧BB1=.2【解析】【分析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案.【详解】解:(1)△A1B1C如图所示.(2)A1(0,6).(3) 221310, BC=+=¼1901010. 1801802n rBB πππ⨯∴===.【点睛】本题考查了旋转作图和弧长的计算.23.(1)见解析;(2)DF=10【解析】【分析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案.【详解】(1)如图(1)所示:△ABE,即为所求;(2)如图(2)所示:△CDF即为所求,DF=10.【点睛】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.24.(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:760.5 x = 26 x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(260.26﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用电行驶74千米.25.(1)x=270或x=520;(2)当320<x<520时,选择方式B更省钱;当x=520时,两种方式花钱一样多;当x>520时选择方式A更省钱.【解析】【分析】(1)根据收取费用=月使用费+超时单价×超过时间,可找出y A、y B关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.(2)列不等式,求解即可得出结论.【详解】(1)当时,与x之间的函数关系式为:当时,与x之间的函数关系式为:即当时,与x之间的函数关系式为:当时, 与x之间的函数关系式为:即方式A和方式B的收费金额相等,当时,当时,解得:当时, 解得:即x=270或x=520时,方式A 和方式B 的收费金额相等.(2) 若上网时间x 超过320分钟,解得320<x<520,当320<x<520时,选择方式B 更省钱;解得x=520,当x=520时,两种方式花钱一样多;解得x >520,当x >520时选择方式A 更省钱.【点睛】考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.26. (1)抛物线的解析式是223y x x =--.直线AB 的解析式是3y x =-. (2) 278. (3)P 点的横坐标是3212+或3212-. 【解析】【分析】(1)分别利用待定系数法求两函数的解析式:把A (3,0)B (0,﹣3)分别代入y=x 2+mx+n 与y=kx+b ,得到关于m 、n 的两个方程组,解方程组即可;(2)设点P 的坐标是(t ,t ﹣3),则M (t ,t 2﹣2t ﹣3),用P 点的纵坐标减去M 的纵坐标得到PM 的长,即PM=(t ﹣3)﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,然后根据二次函数的最值得到当t=﹣=时,PM 最长为=,再利用三角形的面积公式利用S △ABM =S △BPM +S △APM 计算即可;(3)由PM ∥OB ,根据平行四边形的判定得到当PM=OB 时,点P 、M 、B 、O 为顶点的四边形为平行四边形,然后讨论:当P 在第四象限:PM=OB=3,PM 最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t 2﹣2t ﹣3)﹣(t ﹣3)=3;当P 在第三象限:PM=OB=3,t 2﹣3t=3,分别解一元二次方程即可得到满足条件的t 的值.【详解】解:(1)把A (3,0)B (0,-3)代入2y x mx n =++,得093{3m n n =++-=解得2{3m n =-=- 所以抛物线的解析式是223y x x =--.设直线AB 的解析式是y kx b =+,把A (3,0)B (0,3-)代入y kx b =+,得 03{3k b b =+-=解得1{3k b ==- 所以直线AB 的解析式是3y x =-.(2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM=22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p = ABM BPM APM S S S =+V V V =19324⨯⨯=278. (3)若存在,则可能是:①P 在第四象限:平行四边形OBMP ,PM=OB=3, PM 最长时94PM =,所以不可能.②P 在第一象限平行四边形OBPM : PM=OB=3,233p p -=,解得132p +=,232p =(舍去),所以P 点的横坐标是32.③P 在第三象限平行四边形OBPM :PM=OB=3,233p p -=,解得132p =(舍去),①2p =,所以P 点的横坐标是32-.所以P 27.骑共享单车从家到单位上班花费的时间是1分钟.【解析】试题分析:设骑共享单车从家到单位上班花费x 分钟,找出题目中的等量关系,列出方程,求解即可. 试题解析:设骑共享单车从家到单位上班花费x 分钟, 依题意得:881.5,20x x ⨯=- 解得x=1.经检验,x=1是原方程的解,且符合题意.答:骑共享单车从家到单位上班花费的时间是1分钟.。
广西省来宾市2019-2020学年中考数学第一次押题试卷含解析
广西省来宾市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列式子成立的有( )个 ①﹣12的倒数是﹣2 ②(﹣2a 2)3=﹣8a 5③2(32-)=5﹣2④方程x 2﹣3x+1=0有两个不等的实数根 A .1B .2C .3D .42.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC ,垂足为D 、E ,F 分别是CD ,AD 上的点,且CE =AF.如果∠AED =62°,那么∠DBF 的度数为( )A .62°B .38°C .28°D .26°3.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,若AC =CD =DB ,则cos ∠CAD =( )A .13B .2 C .12D .3 4.如图,点E 是四边形ABCD 的边BC 延长线上的一点,则下列条件中不能判定AD ∥BE 的是( )A .12∠=∠B .34∠=∠C .D 5∠∠= D .B BAD 180∠∠+=o5.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )A .①B .②C .③D .④6.若代数式2x有意义,则实数x 的取值范围是( ) A .x >0B .x≥0C .x≠0D .任意实数7.如图,在菱形ABCD 中,∠A=60°,E 是AB 边上一动点(不与A 、B 重合),且∠EDF=∠A ,则下列结论错误的是( )A .AE=BFB .∠ADE=∠BEFC .△DEF 是等边三角形D .△BEF 是等腰三角形8.若不等式组的整数解共有三个,则a 的取值范围是( )A .5<a <6B .5<a≤6C .5≤a <6D .5≤a≤69.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠410.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是2=0.4S 甲,2=0.6S 乙,则甲的射击成绩较稳定 C .“明天降雨的概率为12”,表示明天有半天都在降雨 D .了解一批电视机的使用寿命,适合用普查的方式11.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .6B .8C .10D .1212.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是4二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数32xy x =-中,自变量x 的取值范围是______ 14.如图,某水库大坝的横断面是梯形ABCD ,坝顶宽6AD =米,坝高是20米,背水坡AB 的坡角为30°,迎水坡CD 的坡度为1∶2,那么坝底BC 的长度等于________米(结果保留根号)15.如图,在平面直角坐标系中,抛物线212y x =可通过平移变换向__________得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.16.如图,A 、B 是双曲线y=kx上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若D 为OB 的中点,△ADO 的面积为3,则k 的值为_____.17.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角°.18.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt△ABC中,90C=o∠,点D在边BC上,DE⊥AB,点E为垂足,7AB=,∠DAB=450,tanB=3 4 .(1)求DE的长;(2)求CDA∠的余弦值.20.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.21.(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+, 则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.22.(8分)如图,在△ABC 中,AB=AC ,CD 是∠ACB 的平分线,DE ∥BC ,交AC 于点 E .求证:DE=CE . 若∠CDE=35°,求∠A 的度数.23.(8分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)24.(10分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.25.(10分)货车行驶25km与轿车行驶35km所用时间相同.已知轿车每小时比货车多行驶20km,求货车行驶的速度.26.(12分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.27.(12分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m>1,连接CA,若△ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【详解】解:①﹣12的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;232)6﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.2.C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF ≌△ADE .详解:∵AB=AC ,AD ⊥BC ,∴BD=CD . 又∵∠BAC=90°,∴BD=AD=CD .又∵CE=AF ,∴DF=DE ,∴Rt △BDF ≌Rt △ADE (SAS ), ∴∠DBF=∠DAE=90°﹣62°=28°. 故选C .点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键. 3.D 【解析】 【分析】根据圆心角,弧,弦的关系定理可以得出»AC =»CD=»BD =°°1180603⨯=,根据圆心角和圆周角的关键即可求出CAD ∠的度数,进而求出它的余弦值. 【详解】解:AC CD DB ==Q»AC =»CD =»BD =°°1180603⨯=, °°160302CAD ∠=⨯=°cos cos302CAD ∠==故选D . 【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键. 4.A 【解析】 【分析】利用平行线的判定方法判断即可得到结果. 【详解】 ∵∠1=∠2,∴AB ∥CD ,选项A 符合题意; ∵∠3=∠4,∴AD ∥BC ,选项B 不合题意; ∵∠D=∠5,∴AD∥BC,选项C不合题意;∵∠B+∠BAD=180°,∴AD∥BC,选项D不合题意,故选A.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.5.C【解析】【分析】根据正方形的判定定理即可得到结论.【详解】与左边图形拼成一个正方形,正确的选择为③,故选C.【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.6.C【解析】【分析】根据分式和二次根式有意义的条件进行解答.【详解】解:依题意得:x2≥1且x≠1.解得x≠1.故选C.【点睛】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.7.D【解析】【分析】连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.【详解】连接BD,∵四边形ABCD是菱形,∴AD=AB,∠ADB=12∠ADC,AB∥CD,∵∠A=60°,∴∠ADC=120°,∠ADB=60°,同理:∠DBF=60°,即∠A=∠DBF,∴△ABD是等边三角形,∴AD=BD,∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,∴∠ADE=∠BDF,∵在△ADE和△BDF中,{ADE BDF AD BDA DBF∠=∠=∠=∠,∴△ADE≌△BDF(ASA),∴DE=DF,AE=BF,故A正确;∵∠EDF=60°,∴△EDF是等边三角形,∴C正确;∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°-∠A=120°,∴∠ADE=∠BEF;故B正确.∵△ADE≌△BDF,∴AE=BF,同理:BE=CF,但BE不一定等于BF.故D错误.故选D.【点睛】本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.8.C【解析】【分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<1.故选C.【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.10.B【解析】【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【详解】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为12”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.【点睛】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.11.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.12.D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.故选D.考点:随机事件发生的可能性(概率)的计算方法二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.x≠1 【解析】 【详解】 解:∵32xy x =-有意义, ∴x-1≠0, ∴x≠1;故答案是:x≠1. 14.(46203)+ 【解析】 【分析】过梯形上底的两个顶点向下底引垂线AE 、DF ,得到两个直角三角形和一个矩形,分别解Rt ABE ∆、Rt DCF ∆求得线段BE 、CF 的长,然后与EF 相加即可求得BC 的长.【详解】如图,作AE BC ⊥,DF BC ⊥,垂足分别为点E ,F ,则四边形ADFE 是矩形. 由题意得,6EF AD ==米,20AE DF ==米,30B °?,斜坡CD 的坡度为1∶2,在Rt ABE ∆中,∵30B °?,∴3203BE AE ==米.在Rt △DCF 中,∵斜坡CD 的坡度为1∶2, ∴12=DF CF , ∴240CF DF ==米,∴20364046203BC BE EF FC =++=++=+(米). ∴坝底BC 的长度等于(46203)+米.故答案为(463)+. 【点睛】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.15.先向右平移2个单位再向下平移2个单位; 4 【解析】221122222y x x x =-=--. 平移后顶点坐标是(2,-2),利用割补法,把x 轴上方阴影部分补到下方,可以得到矩形面积,面积是224⨯=. 16.1. 【解析】过点B 作BE ⊥x 轴于点E ,根据D 为OB 的中点可知CD 是△OBE 的中位线,即CD=BE ,设A (x ,),则B (2x ,),故CD=,AD=﹣,再由△ADO 的面积为1求出k 的值即可得出结论.解:如图所示,过点B 作BE ⊥x 轴于点E , ∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD=BE .设A (x ,),则B (2x ,),CD=,AD=﹣,∵△ADO 的面积为1, ∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1. 17.1 【解析】试题分析:根据圆锥的侧面积公式S=πrl 得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.解:∵侧面积为15πcm 2,∴圆锥侧面积公式为:S=πrl=π×3×l=15π, 解得:l=5, ∴扇形面积为15π=,解得:n=1,∴侧面展开图的圆心角是1度. 故答案为1. 考点:圆锥的计算.18.//DF AC 或BFD A ∠=∠ 【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)3;(2)10【解析】分析:(1)由题意得到三角形ADE 为等腰直角三角形,在直角三角形DEB 中,利用锐角三角函数定义求出DE 与BE 之比,设出DE 与BE ,由AB=7求出各自的值,确定出DE 即可;(2)在直角三角形中,利用勾股定理求出AD 与BD 的长,根据tanB 的值求出cosB 的值,确定出BC 的长,由BC ﹣BD 求出CD 的长,利用锐角三角函数定义求出所求即可.详解:(1)∵DE ⊥AB ,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE .在Rt △DEB 中,∠DEB=90°,tanB=34DE BE ,∴=34,设DE=3x ,那么AE=3x ,BE=4x .∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;(2)在Rt △ADE 中,由勾股定理,得:,同理得:BD=1.在Rt △ABC 中,由tanB=34,可得:cosB=45,∴BC=285,∴CD=35,∴cos ∠CDA=CD AD CDA点睛:本题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,等腰直角三角形的判定与性质,熟练掌握各自的性质是解答本题的关键.20.(1)10;(2) 【解析】 【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP ∽△PDA ;根据△OCP 与△PDA 的面积比为1:4,得出CP=12AD=4,设OP=x ,则CO=8﹣x ,由勾股定理得 x 2=(8﹣x )2+42,求出x ,最后根据AB=2OP 即可求出边AB 的长;(2)作MQ ∥AN ,交PB 于点Q ,求出MP=MQ ,BN=QM ,得出MP=MQ ,根据ME ⊥PQ ,得出EQ=12PQ ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB ,∴EF=EQ+QF=12(PQ+QB )=12PB , 由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴=EF=12∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为 【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形21.(1)3;(2)1312n +-;(3)1218,95N N ==【解析】 【分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可. ()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值 【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++=()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n---⋯-, 每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,nn S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可, 则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10,②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=,满足:10100N <<,③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=,满足:10100N <<,④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=,不满足100N <,∴1218,95N N == 【点睛】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键. 22. (1)见解析;(2) 40°. 【解析】 【分析】(1)根据角平分线的性质可得出∠BCD=∠ECD ,由DE ∥BC 可得出∠EDC=∠BCD ,进而可得出∠EDC=∠ECD ,再利用等角对等边即可证出DE=CE ;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A 的度数. 【详解】(1)∵CD 是∠ACB 的平分线,∴∠BCD=∠ECD .∵DE ∥BC ,∴∠EDC=∠BCD ,∴∠EDC=∠ECD ,∴DE=CE . (2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC ,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°. 【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD ;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°. 23.90(31)+米 【解析】 【详解】解:如图,过点D 作DE ⊥AC 于点E ,作DF ⊥BC 于点F ,则有DE ∥FC ,DF ∥EC . ∵∠DEC=90°,∴四边形DECF 是矩形, ∴DE=FC .∵∠HBA=∠BAC=45°,∴∠BAD=∠BAC ﹣∠DAE=45°﹣30°=15°. 又∵∠ABD=∠HBD ﹣∠HBA=60°﹣45°=15°, ∴△ADB 是等腰三角形. ∴AD=BD=180(米).在Rt △AED 中,sin ∠DAE=sin30°=DEAD, ∴DE=180•sin30°=180×12=90(米), ∴FC=90米,在Rt △BDF 中,∠BDF=∠HBD=60°,sin ∠BDF=sin60°=BFBD, ∴BF=180•sin60°=180×39032=(米). ∴BC=BF+FC=903+90=90(3+1)(米). 答:小山的高度BC 为90(3+1)米.24. (1)抛物线的解析式是223y x x =--.直线AB 的解析式是3y x =-.(2)278. (3)P 点的横坐标是3212+或3212-. 【解析】 【分析】(1)分别利用待定系数法求两函数的解析式:把A (3,0)B (0,﹣3)分别代入y=x 2+mx+n 与y=kx+b ,得到关于m 、n 的两个方程组,解方程组即可;(2)设点P 的坐标是(t ,t ﹣3),则M (t ,t 2﹣2t ﹣3),用P 点的纵坐标减去M 的纵坐标得到PM 的长,即PM=(t ﹣3)﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,然后根据二次函数的最值得到 当t=﹣=时,PM 最长为=,再利用三角形的面积公式利用S △ABM =S △BPM +S △APM 计算即可;(3)由PM ∥OB ,根据平行四边形的判定得到当PM=OB 时,点P 、M 、B 、O 为顶点的四边形为平行四边形,然后讨论:当P 在第四象限:PM=OB=3,PM 最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t 2﹣2t ﹣3)﹣(t ﹣3)=3;当P 在第三象限:PM=OB=3,t 2﹣3t=3,分别解一元二次方程即可得到满足条件的t 的值. 【详解】解:(1)把A (3,0)B (0,-3)代入2y x mx n =++,得093{3m n n =++-=解得2{3m n =-=- 所以抛物线的解析式是223y x x =--.设直线AB 的解析式是y kx b =+,把A (3,0)B (0,3-)代入y kx b =+,得03{3k b b =+-=解得1{3k b ==- 所以直线AB 的解析式是3y x =-.(2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM=22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p = ABM BPM APM S S S =+V V V =19324⨯⨯=278.(3)若存在,则可能是:①P 在第四象限:平行四边形OBMP ,PM=OB=3, PM 最长时94PM =,所以不可能. ②P 在第一象限平行四边形OBPM : PM=OB=3,233p p -=,解得13212p +=,23212p -=(舍去),所以P 点的横坐标是3212+. ③P 在第三象限平行四边形OBPM :PM=OB=3,233p p -=,解得13212p +=(舍去), ①2321p -=,所以P 点的横坐标是3212-. 所以P 点的横坐标是321+或321-. 25.50千米/小时.【解析】【分析】根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.【详解】解:设货车的速度为x 千米/小时,依题意得:解:根据题意,得253520x x =+ . 解得:x=50经检验x=50是原方程的解.答:货车的速度为50千米/小时.【点睛】本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.26.(1)m =3,k =12;(2)或 【解析】【分析】(1)把A(m ,m +1),B(m +3,m -1)代入反比例函数y =k x,得k =m(m +1)=(m +3)(m -1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,两线交于点P.根据平行四边形判定和勾股定理可求出M,N 的坐标.【详解】解:(1)∵点A(m ,m +1),B(m +3,m -1)都在反比例函数y =k x的图像上, ∴k =xy ,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得2 36kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.27.(1)A(4,0),C(3,﹣3);(2) m=32;(3) E点的坐标为(2,0)或(43,0)或(0,﹣4);【解析】【分析】方法一:(1)m=2时,函数解析式为y=24x x-,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;(2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=90o,∠ACP=90o,∠PAC=90o三种情况, 利用勾股定理即可求得m的值;(3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.方法二:(1)同方法一.(2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.【详解】方法一:解:(1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,∴对称轴x=2,令y=0,则x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,则y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵抛物线y=x2﹣2mx(m>1),∴A(2m,0)对称轴x=m,∵P(1,﹣m)把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP为直角三角形,∴当∠ACP=90°时,PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),当∠APC=90°时,PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=32.(3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直线PE的解析式为y=2x﹣2﹣m.令y=0,则x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(43,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵对称轴x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP为直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴K AC×K AP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴K AC×K CP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴K AP×K CP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴K CP=,△PEC是以P为直角顶点的等腰直角三角形,∴PE⊥PC,∴K PE×K CP=﹣1,∴K PE=2,∵P(1,﹣m),∴l PE:y=2x﹣2﹣m,∵点E在坐标轴上,∴①当点E在x轴上时,E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E 1(2,0),E 2(,0),②当点E 在y 轴上时,E (0,﹣2﹣m )且PE=PC , ∴(1﹣0)2+(﹣m+2+m )2=(2m ﹣1﹣1)2+(1﹣2m+m )2, ∴1=(m ﹣1)2,∴m 1=2,m 2=0(舍),∴E (0,4),综上所述,(2,0)或(,0)或(0,﹣4).【点睛】本题主要考查二次函数的图象与性质.扩展:设坐标系中两点坐标分别为点A(11,x y ), 点B(22,x y ), 则线段AB 的长度为: 221212()()x x y y --设平面内直线AB 的解析式为:111y k x b =+,直线CD 的解析式为:222y k x b =+(1)若AB//CD,则有:12k k =;(2)若AB ⊥CD,则有:121k k ?-.。
广西省百色市2019-2020学年中考数学第一次押题试卷含解析
广西省百色市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一元二次方程2x6x c0-+=有一个根为2,则另一根为A.2 B.3 C.4 D.82.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.310103.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限4.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为UIR=,当电压为定值时,I关于R的函数图象是()A.B. C.D.5.下列四个图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A .B .C .D .7.如图,在正方形ABCD 中,AB=12x x ,P 为对角线AC 上的动点,PQ ⊥AC 交折线A ﹣D ﹣C 于点Q ,设AP =x ,△APQ 的面积为y ,则y 与x 的函数图象正确的是( )A .B .C .D .8.已知抛物线y=ax 2+bx+c (a≠1)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:①抛物线过原点;②a ﹣b+c <1;③当x <1时,y 随x 增大而增大;④抛物线的顶点坐标为(2,b );⑤若ax 2+bx+c=b ,则b 2﹣4ac=1.其中正确的是( )A.①②③B.①④⑤C.①②④D.③④⑤9.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)10.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|11.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a612.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.14.计算:2(a-b)+3b=___________.15.化简:9=______.16.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=13BD,若四边形AECF为正方形,则tan∠ABE=_____.17.如图,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连接AC,AE,若∠D=78°,则∠EAC=________°.18.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DF AB于点F,∠BCD=2∠ABD.(1)求证:AB是☉O的切线;(2)若∠A=60°,DF=,求☉O的直径BC的长.20.(6分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.21.(6分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?22.(8分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.23.(8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.24.(10分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.25.(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种,B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.26.(12分)如图,已知AC 和BD 相交于点O ,且AB ∥DC ,OA=OB .求证:OC=OD .27.(12分)求抛物线y=x 2+x ﹣2与x 轴的交点坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1. 考点:根与系数的关系.2.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt △ABC 中,∠C=90°,AC=1,BC=3,∴∠A 的正切值为31BC AC ==3, 故选A .【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.3.A【解析】【分析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.4.C【解析】【分析】根据反比例函数的图像性质进行判断.【详解】解:∵UIR,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键.5.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选D.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.A【解析】【分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F 在MD 上运动时,0≤x <2,则:y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.7.B【解析】∵在正方形ABCD 中, AB=∴AC =4,AD =DC =DAP =∠DCA =45o ,当点Q 在AD 上时,PA =PQ ,∴DP=AP=x,∴S =211·22PQ AP x = ; 当点Q 在DC 上时,PC =PQCP =4-x,∴S =221111·(4)(4)(168)482222PC PQ x x x x x x =--=-+=-+; 所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q 在AP 、DC 上这两种情况. 8.B【解析】由抛物线的对称轴结合抛物线与x 轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y >1,得到a ﹣b+c >1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b ),判断⑤.【详解】解:①∵抛物线y=ax 2+bx+c (a≠1)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,1), ∴抛物线与x 轴的另一交点坐标为(1,1),∴抛物线过原点,结论①正确;②∵当x=﹣1时,y >1,∴a ﹣b+c >1,结论②错误;③当x <1时,y 随x 增大而减小,③错误;④抛物线y=ax 2+bx+c (a≠1)的对称轴为直线x=2,且抛物线过原点, ∴22b a-=,c=1, ∴b=﹣4a ,c=1,∴4a+b+c=1,当x=2时,y=ax 2+bx+c=4a+2b+c=(4a+b+c )+b=b ,∴抛物线的顶点坐标为(2,b ),结论④正确;⑤∵抛物线的顶点坐标为(2,b ),∴ax 2+bx+c=b 时,b 2﹣4ac=1,⑤正确;综上所述,正确的结论有:①④⑤.故选B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.9.D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.10.D【解析】【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C 错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.∴选D.11.B【解析】【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.12.D【解析】A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;∴平均数不发生变化.B. ∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C. ∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D. ∵原方差是:()()()()() 22222 313233234355=63 -+-+-⨯+-+-;添加一个数据3后的方差是:()()()()()22222 3132333343510=77-+-+-⨯+-+-;∴方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.14.2a+b.【解析】【分析】先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b.故答案为:2a+b.15.3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以9=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.16.1 3【解析】【分析】利用正方形对角线相等且互相平分,得出EO=AO=12BE,进而得出答案.【详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【点睛】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE是解题关键.17.1.【解析】【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=12(180°-∠D)=51°,又∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案为:1°18.1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵竹竿的高度竹竿的影长=1.52.5旗杆的高度,旗杆的影长=30旗杆的高度,解得:旗杆的高度=1.52.5×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明过程见解析;(2)【解析】【分析】(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.【详解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足为B又∵CB为直径∴AB是⊙O的切线.(2)∵∠A=60°,∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB ∠A=∠A∴△ADF∽△ACB∴AF DF AB CB=即14CB =解得:CB=考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定20.(1)14;(2)13.【解析】【分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可. 【详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=1 4(2)列表如下:根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13 P=.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.大和尚有25人,小和尚有75人.【解析】【分析】设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设大和尚有x人,小和尚有y人,依题意,得:100131003x yx y+=⎧⎪⎨+=⎪⎩,解得:{x25y75==.答:大和尚有25人,小和尚有75人.【点睛】考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,可得:352100{4103800y xy x+=+=,解得:300200 xy=⎧⎨=⎩,答:A种树苗的单价为200元,B种树苗的单价为300元. (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用23.(1)详见解析;(2).【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB , ∵DE ⊥AF , ∴∠AED=90°, 在△ADE 和△FAB 中,∴△ADE ≌△FAB(AAS), ∴AE=BF=1 ∵BF=FC=1 ∴BC=AD=2故在Rt △ADE 中,∠ADE=30°,DE=,∴的长==.24.y=2x +2x ;(-1,-1). 【解析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1). 考点:待定系数法求函数解析式.25. (1) A 种树每棵2元,B 种树每棵80元;(2) 当购买A 种树木1棵,B 种树木25棵时,所需费用最少,最少为8550元. 【解析】 【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(2-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.9(A 种树的金额+B 种树的金额)进行解答. 【详解】解:(1)设A 种树木每棵x 元,B 种树木每棵y 元,根据题意,得256003380x y x y +=⎧⎨+=⎩ ,解得10080x y =⎧⎨=⎩ , 答:A 种树木每棵2元,B 种树木每棵80元.(2)设购买A 种树木x 棵,则B 种树木(2-x )棵,则x≥3(2-x ).解得x≥1. 又2-x≥0,解得x≤2.∴1≤x≤2.设实际付款总额是y 元,则y =0.9[2x +80(2-x )]. 即y =18x +7 3.∵18>0,y 随x 增大而增大,∴当x =1时,y 最小为18×1+7 3=8 550(元). 答:当购买A 种树木1棵,B 种树木25棵时,所需费用最少,为8 550元. 26.证明见解析. 【解析】试题分析:首先根据等边对等角可得∠A=∠B ,再由DC ∥AB ,可得∠D=∠A ,∠C=∠B ,进而得到∠C=∠D ,根据等角对等边可得CO=DO . 试题解析:证明:∵AB ∥CD ∴∠A =∠D ∠B =∠C ∵OA=OB ∴∠A =∠B ∴∠C =∠D ∴OC =OD考点:等腰三角形的性质与判定,平行线的性质 27.(1,0)、(﹣2,0) 【解析】试题分析:抛物线与x 轴交点的纵坐标等于零,由此解答即可. 试题解析:解:令0y =,即220x x +-=.解得:11x =,22x =-.∴该抛物线与x 轴的交点坐标为(-2,0),(1,0).。
广西省钦州市2019-2020学年中考数学第一次押题试卷含解析
广西省钦州市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知圆内接正三角形的面积为33,则边心距是()A.2 B.1 C.3D.3 22.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:13.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.35B.34C.23D.574.设a,b是常数,不等式1xa b+>的解集为15x<,则关于x的不等式0bx a->的解集是()A.15x>B.15x<-C.15x>-D.15x<5.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm6.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°7.4的算术平方根为()A.2±B.2C.2±D.28.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:A→C→B;乙的路线为:A→D→E→F→B,其中E为AB的中点;丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A.甲=乙=丙B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲9.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为()A.50035030x x=-B.50035030x x=-C.500350+30x x=D.500350+30x x=10.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为()A.19°B.29°C.38°D.52°11.数据3、6、7、1、7、2、9的中位数和众数分别是()A.1和7 B.1和9 C.6和7 D.6和912.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×109二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)y x x=> 与此正方形的边有交点,则a 的取值范围是________.14.如图所示,P 为∠α的边OA 上一点,且P 点的坐标为(3,4),则sinα+cosα=_____.15.若|a|=20160,则a=___________.16.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 17.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 .18.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A 、非常了解B 、比较了解C 、基本了解D 、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表. 对冬奥会了解程度的统计表 对冬奥会的了解程度 百分比 A 非常了解 10% B 比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.20.(6分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为___________.图①(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.图②21.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.22.(8分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?23.(8分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.24.(10分)如图,平面直角坐标系xOy中,已知点A(0,3),点B30),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.(1)在点C1(﹣2,2,点C2(0,﹣2),点C3(33AB的“等长点”是点________;(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;(3)若直线y=kx+33k上至少存在一个线段AB的“等长点”,求k的取值范围.25.(10分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.26.(12分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.(1)求证:△ABC≌△AOD.(2)设△ACD的面积为,求关于的函数关系式.(3)若四边形ABCD恰有一组对边平行,求的值.27.(12分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.B(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=624+,cos75°=624-,tan75°=23+)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x,利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.【详解】如图,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,则AD=3x,∵tan∠BAD=BD AD,∴BD= tan30°·3,∴3,∵133 2BC AD⋅=,∴12×33∴x=1所以该圆的内接正三边形的边心距为1,故选B.【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距. 2.B 【解析】 【分析】根据中位线定理得到DE ∥BC ,DE=12BC ,从而判定△ADE ∽△ABC ,然后利用相似三角形的性质求解. 【详解】解:∵D 、E 分别为△ABC 的边AB 、AC 上的中点, ∴DE 是△ABC 的中位线, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,∴△ADE 的面积:△ABC 的面积=21()2=1:4, ∴△ADE 的面积:四边形BCED 的面积=1:3; 故选B . 【点睛】本题考查三角形中位线定理及相似三角形的判定与性质. 3.A 【解析】∵△DEF 是△AEF 翻折而成, ∴△DEF ≌△AEF ,∠A=∠EDF , ∵△ABC 是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°, ∴∠BED=∠CDF ,设CD=1,CF=x ,则CA=CB=2, ∴DF=FA=2-x ,∴在Rt △CDF 中,由勾股定理得,CF 2+CD 2=DF 2,即x 2+1=(2-x )2, 解得x=34, ∴sin ∠BED=sin ∠CDF=35CF DF . 故选:A . 4.C 【解析】根据不等式10x a b+>的解集为x <15 即可判断a,b 的符号,则根据a,b 的符号,即可解不等式bx-a<0【详解】 解不等式10x a b+>, 移项得:1-x a b>∵解集为x<15∴1-5a b = ,且a<0∴b=-5a>0,15 15a b=-解不等式0bx a ->, 移项得:bx >a 两边同时除以b 得:x >a b, 即x >-15故选C 【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键 5.C 【解析】 【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA ,根据等角对等边证明FC=AF ,则DF 即可求得,然后在直角△ADF 中利用勾股定理求解. 【详解】∵长方形ABCD 中,AB ∥CD , ∴∠BAC=∠DCA , 又∵∠BAC=∠EAC , ∴∠EAC=∠DCA , ∴FC=AF=25cm ,又∵长方形ABCD 中,DC=AB=32cm , ∴DF=DC-FC=32-25=7cm ,在直角△ADF 中,(cm ).【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.6.B【解析】因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠BAD=25°,∴∠B=65°,∴∠C=∠B=65°(同弧所对的圆周角相等).故选B.7.B【解析】=2,而2,,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.8.A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.∵AE=BE=12AB,∴AD=EF=12AC,DE=BE=12BC,∴甲=乙.图3与图1中,三个三角形相似,所以JKAI=JBAJ=BK AIIJ AC,=AJAB=IJBC.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,。
广西省河池市2019-2020学年中考数学第三次押题试卷含解析
广西省河池市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算x ﹣2y ﹣(2x+y )的结果为( )A .3x ﹣yB .3x ﹣3yC .﹣x ﹣3yD .﹣x ﹣y2.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒3.如图,AD 为△ABC 的中线,点E 为AC 边的中点,连接DE ,则下列结论中不一定成立的是()A .DC=DEB .AB=2DEC .S △CDE =14S △ABC D .DE ∥AB4.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .5.下列几何体是棱锥的是( )A .B .C .D .6.若()292m m --=1,则符合条件的m 有( )A .1个B .2个C .3个D .4个7.关于x 的一元二次方程x 2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .0m >且1m ≠ B .0m > C .0m ≥且1m ≠ D .0m ≥8.下列手机手势解锁图案中,是轴对称图形的是( )A .B .C .D .9.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒10.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF ⊥AC 分别交DC 于F ,交AB 于点E ,点G 是AE 中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG ;(2)OG= 12BC ;(3)△OGE 是等边三角形;(4)16AOE ABCDS S ∆=矩形.A .1B .2C .3D .411.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( )A .280×103B .28×104C .2.8×105D .0.28×10612.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,3,[﹣2.5]=﹣3.现对82进行如下操作:821第次−−−−−→ [82⎡⎤]=92第次−−−−−→ [93]=33第次−−−−−→ 3,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2(a -b )+3b =___________.14.如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π).15.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.16.若正多边形的一个外角是45°,则该正多边形的边数是_________.17.如图,在3×3的正方形网格中,点A ,B ,C ,D ,E ,F ,G 都是格点,从C ,D ,E ,F ,G 五个点中任意取一点,以所取点及AB 为顶点画三角形,所画三角形时等腰三角形的概率是_____.18.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; 以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.20.(6分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m =162﹣3x .请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.21.(6分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AB ,DC 的延长线交于点E .(1)求证:AC 平分∠DAB ;(2)若BE=3,322.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.23.(8分)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线212y x bx c =-++经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD .()1求此抛物线的解析式.()2求此抛物线顶点D 的坐标和四边形ABCD 的面积.24.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m = ,n = ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.25.(10分)已知:a 是﹣2的相反数,b 是﹣2的倒数,则(1)a=_____,b=_____;(2)求代数式a 2b+ab 的值.26.(12分)已知关于 x 的一元二次方程 x 2﹣2(k ﹣1)x+k(k+2)=0 有两个不相等的实数根.求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根.27.(12分)如图,正六边形ABCDEF 在正三角形网格内,点O 为正六边形的中心,仅用无刻度的直尺完成以下作图.(1)在图1中,过点O 作AC 的平行线;(2)在图2中,过点E 作AC 的平行线.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】原式去括号合并同类项即可得到结果.【详解】原式223x y x y x y =---=--,故选:C .【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.2.B【解析】分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.3.A【解析】【分析】根据三角形中位线定理判断即可.【详解】∵AD为△ABC的中线,点E为AC边的中点,∴DC=12BC,DE=12AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=14S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.4.B【解析】【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B.【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.5.D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.6.C【解析】【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】Q()29m--=12m∴m2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.7.A【解析】【分析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m >1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.8.D【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.9.D【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.C【解析】∵EF⊥AC,点G是AE中点,∴OG=AG=GE=12 AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE 是等边三角形,故(3)正确;设AE=2a ,则OE=OG=a ,由勾股定理得,, ∵O 为AC 中点,∴,∴BC=12,在Rt △ABC 中,由勾股定理得,, ∵四边形ABCD 是矩形,∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a ,12BC=2a , ∴OG≠12BC ,故(2)错误;∵S △AOE =12=22,S ABCD 2,∴S △AOE =16S ABCD ,故(4)正确; 综上所述,结论正确是(1)(3)(4)共3个,故选C .【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.11.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将280000用科学记数法表示为2.8×1.故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.C【解析】分析:[x]表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.详解:1211211[]11233111===u u u u u x u u u u u u x u u u u u u x 第次第次第次 ∴对121只需进行3次操作后变为1.故选C .点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2a+b .【解析】【分析】先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b .故答案为:2a+b .14.23π. 【解析】【分析】图中阴影部分的面积就是两个扇形的面积,圆A ,B 的半径为2cm ,则根据扇形面积公式可得阴影面积.【详解】()2260423603603A B πππ∠+∠⨯⨯==(cm 2). 故答案为23π. 考点:1、扇形的面积公式;2、两圆相外切的性质.15.4.4×1【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×1,故答案为4.4×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.1;【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=1即该正多边形的边数是1.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).17.2 5 .【解析】【分析】找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.【详解】∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,∴所画三角形时等腰三角形的概率是25,故答案是:25.【点睛】考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.18.2【分析】根据定义即可求出答案.【详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.1019.(1)见解析(2)【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.20.(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解析】【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.21.(1)证明见解析;(2)3 22π-【解析】【分析】(1)连接OC,如图,利用切线的性质得CO⊥CD,则AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,从而得到∠DAC=∠CAO;(2)设⊙O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出∠COE=60°,然后根据扇形的面积公式,利用S阴影=S△COE﹣S扇形COB进行计算即可.【详解】解:(1)连接OC,如图,∵CD与⊙O相切于点E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)设⊙O半径为r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos ∠COE=12OC OE =, ∴∠COE=60°,∴S 阴影=S △COE ﹣S 扇形COB =12•3•33﹣260?·393336022ππ=-.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式. 22.(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°. 【解析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答; (2)求出“高”的人数,即可补全统计图;(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,⨯o即可求出对应的扇形圆心角的度数.试题解析:()15025%200÷=(人). ()2学生学习兴趣为“高”的人数为:20050602070---=(人).补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.200⨯= 学生学习兴趣为“中”对应扇形的圆心角为:30%360108.⨯=o o23.()1 21242y x x =-++;()212. 【解析】 【分析】 (1)由正方形的性质可求得B 、C 的坐标,代入抛物线解析式可求得b 、c 的值,则可求得抛物线的解析式; (2)把抛物线解析式化为顶点式可求得D 点坐标,再由S 四边形ABDC =S △ABC +S △BCD 可求得四边形ABDC 的面积.【详解】()1由已知得:()0,4C ,()4,4B ,把B 与C 坐标代入212y x bx c =-++得: 4124b c c +=⎧⎨=⎩, 解得:2b =,4c =,则解析式为21242y x x =-++; ()2∵221124(2)622y x x x =-++=--+, ∴抛物线顶点坐标为()2,6,则114442841222ABC BCD ABDC S S S =+=⨯⨯+⨯⨯=+=V V 四边形. 【点睛】二次函数的综合应用.解题的关键是:在(1)中确定出B 、C 的坐标是解题的关键,在(2)中把四边形转化成两个三角形.24.(1)8,3; (2)144;(3)23. 【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1); (2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分) 考点:统计与概率的综合运用.25.2 ﹣12【解析】试题分析:()1利用相反数和倒数的定义即可得出. ()2先因式分解,再代入求出即可.试题解析:()1a Q 是2-的相反数,b 是2-的倒数,12,.2a b ∴== ()2当12,2a b ==时,21(1)2(21)32a b ab ab a ⎛⎫+=+=⨯-⨯+=- ⎪⎝⎭. 点睛:只有符号不同的两个数互为相反数.乘积为1的两个数互为倒数.26.方程的根120=2x x =-或【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x 的一元二次方程x 1﹣1(k ﹣a )x+k (k+1)=0有两个不相等的实数根,∴△=[﹣1(k ﹣1)]1﹣4k (k ﹣1)=﹣16k+4>0,解得:k <14. (1)当k=0时,原方程为x 1+1x=x (x+1)=0,解得:x 1=0,x 1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.27.(1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):。
广西省百色市2019-2020学年中考数学第五次押题试卷含解析
广西省百色市2019-2020学年中考数学第五次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a32.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的1 5D.据此估计全校1000名八年级同学,选择科目B的有140人3.如下图所示,该几何体的俯视图是()A.B.C.D.4.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=2x+6x+m,则m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或145.在反比例函数1kyx-=的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1D.k<16.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°7.在平面直角坐标系中,点P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)9.cos30°的值为()A.1 B.12C.33D.3210.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步) 1.0 1.2 1.1 1.4 1.3天数 3 3 5 7 12在每天所走的步数这组数据中,众数和中位数分别是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.411.若a与5互为倒数,则a=()A.15B.5 C.-5 D.1512.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,若∠1+∠2=180°,∠3=110°,则∠4= .14.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F 处,连接CF,则CF的长度为_____15.如果两圆的半径之比为32:,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d的取值范围是__________.16.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.17.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.18.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表x ﹣1 1 1 3y ﹣1 3 5 3下列结论:①ac<1;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=1的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>1.其中正确的结论是.20.(6分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.21.(6分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22.(8分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ; (2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率. 23.(8分)先化简,再求值:a b a -÷(a ﹣22ab b a-),其中a=3tan30°+1,b=2cos45°. 24.(10分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC 的高为10米,灯柱BC 与灯杆AB 的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE 的长为13.3米,从D 、E 两处测得路灯A 的仰角分别为α和45°,且tanα=1.求灯杆AB 的长度.25.(10分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 作BC 的平行线交CE 的延长线与F ,且AF=BD ,连接BF 。
广西省百色市2019-2020学年中考数学第三次押题试卷含解析
广西省百色市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )A .1处B .2处C .3处D .4处 2.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)3.如图,直线m ⊥n ,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为(-4,2),点B 的坐标为(2,-4),则坐标原点为( )A .O 1B .O 2C .O 3D .O 44.如图是某个几何体的三视图,该几何体是( )A .圆锥B .四棱锥C .圆柱D .四棱柱5.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为 ( )A .3B .2C .3D 66.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.﹣3的相反数是()A.13-B.13C.3-D.38.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A.35.578×103B.3.5578×104C.3.5578×105D.0.35578×1059.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米10.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()1 2 3 4 5成绩(m)8.2 8.0 8.2 7.5 7.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.011.如图所示的几何体的主视图正确的是()A.B.C.D.12.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.14.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.15.图中是两个全等的正五边形,则∠α=______.16.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.17.2的平方根是_________.18.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD 沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′D E的形状,并判断△A′DE与△EFC′是否全等?请说明理由.20.(6分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.21.(6分)某花卉基地种植了郁金香和玫瑰两种花卉共30 亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香 2.4 3玫瑰 2 2.5(1)设种植郁金香x 亩,两种花卉总收益为y 万元,求y 关于x 的函数关系式.(收益=销售额﹣成本)(2)若计划投入的成本的总额不超过70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?22.(8分)如图,在平面直角坐标系中,一次函数y=﹣13x+2的图象交x轴于点P,二次函数y=﹣12x2+32x+m的图象与x轴的交点为(x1,0)、(x2,0),且21x+22x=17(1)求二次函数的解析式和该二次函数图象的顶点的坐标.(2)若二次函数y=﹣12x2+32x+m的图象与一次函数y=﹣13x+2的图象交于A、B两点(点A在点B 的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.23.(8分)如图,在平面直角坐标系xOy中,函数()0ky xx=>的图象与直线y=2x+1交于点A(1,m). (1)求k、m的值;(2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数()0ky xx=>的图象于点C.横、纵坐标都是整数的点叫做整点.①当n =3时,求线段AB 上的整点个数; ②若()0k y x x=>的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.24.(10分)如图1,抛物线y =ax 2+(a+2)x+2(a≠0),与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点P (m ,0)(0<m <4),过点P 作x 轴的垂线交直线AB 于点N ,交抛物线于点M .(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值. 25.(10分)如图,点A 、B 、C 、D 在同一条直线上,CE ∥DF ,EC=BD ,AC=FD ,求证:AE=FB .26.(12分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC (顶点是网格线交点的三角形)的顶点A 、C 的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC 关于x 轴对称的△A 1B 1C 1;请在y 轴上求作一点P ,使△PB 1C 的周长最小,并直接写出点P的坐标.27.(12分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;(3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D .【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.2.A【解析】【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.3.A【解析】试题分析:因为A 点坐标为(-4,2),所以,原点在点A 的右边,也在点A 的下边2个单位处,从点B 来看,B (2,-4),所以,原点在点B 的左边,且在点B 的上边4个单位处.如下图,O 1符合.考点:平面直角坐标系.4.B【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.故选B.【点睛】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.5.A【解析】连接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),∴此时PD+PE最小,此时PD+PE=BE,∵正方形的面积是12,等边三角形ABE,,∴BE=AB=1223即最小值是23,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.6.C【解析】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB ∥EF ,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C .点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.8.B【解析】【分析】科学计数法是a×10n ,且110a ≤<,n 为原数的整数位数减一.【详解】解:35578= 3.5578×410,故选B .【点睛】本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.9.C【解析】当60cm 的木条与20cm 是对应边时,那么另两条边的木条长度分别为90cm 与120cm ; 当60cm 的木条与30cm 是对应边时,那么另两条边的木条长度分别为40cm 与80cm ;当60cm 的木条与40cm 是对应边时,那么另两条边的木条长度分别为30cm 与45cm ;所以A 、B 、D 选项不符合题意,C 选项符合题意,故选C.10.D【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D .【点睛】本题考查众数;中位数.11.D【解析】【分析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.12.D【解析】【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB 的度数,再根据圆周定理求出∠C 的度数,再根据圆内接四边形的性质求出∠E 的度数即可.【详解】由图可知,OA=10,OD=1,在Rt △OAD 中,∵OA=10,OD=1,=,∴tan ∠1=AD OD=1=60°, 同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB 所对的圆周角的度数是60°或120°,故选D .【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m≤1.【解析】【分析】由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.【详解】∴关于x的一元二次方程x1+1x+m−1=0有解,∴△=11−4(m−1)=8−4m≥0,解得:m≤1.故答案为:m≤1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.14.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值. 【详解】解: ∵∠AED=∠ABD (同弧所对的圆周角相等),∴tan∠AED=tanB=12 ADAB.故答案为:1 2 .【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.15.108°【解析】【分析】先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.【详解】如图:∵图中是两个全等的正五边形,∴BC=BD,∴∠BCD=∠BDC,∵图中是两个全等的正五边形,∴正五边形每个内角的度数是0 (52)1805-⨯=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.16.32 3π【解析】【分析】过点F作FE⊥AD于点E,则AE=12AD=12AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论【详解】如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴3.∴S弓形AF=S扇形ADF-S△ADF=60412233 36023ππ⨯-⨯=-∴ S阴影=2(S扇形BAF-S弓形AF)=2×[304233603ππ⨯⎛-⎝]=2×(12333ππ-+2233π.【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.17.2±【解析】【分析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根).【详解】解:2的平方根是2±故答案为2±.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.1.【解析】【分析】根据立体图形画出它的主视图,再求出面积即可.【详解】主视图如图所示,∵主视图是由1个棱长均为1的正方体组成的几何体,∴主视图的面积为1×12=1.故答案为:1.【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.△A′DE是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB 推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.20.(1)证明见解析;(2)23【解析】【分析】(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.【详解】(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点E作EH⊥BD于点H.∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DH=12BD=12×6=3,∵BE=DE,∴BH=DH=3,∴BE==23,∴DE=BE=23.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.21.(1)y = 0.1x + 15,(2)郁金香25 亩,玫瑰5 亩【解析】【分析】(1)根据题意和表格中的数据可得到y关于x的函数;(2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.【详解】(1)由题意得y=(3-2.4)x-(2.5-2)(30-x )=0.1x+15即y 关于x 的函数关系式为y=0.1x+15(2)由题意得2.4x+2(30-x )≤70解得x≤25,∵y=0.1x+15∴当x=25时,y 最大=17.530-x=5,∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.22.(1)y =﹣12x 2+32x+2=(x ﹣32)2+258,顶点坐标为(32,258);(2)存在,点M (9227,0).理由见解析.【解析】【分析】(1)由根与系数的关系,结合已知条件可得9+4m =17,解方程求得m 的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y =﹣13x+2联立并解得x =0或113,即可得点A 、B 的坐标为(0,2)、(113,79),由此求得, ,过点B 作BM ⊥AB 交x 轴于点M ,证得△APO ∽△MPB ,根据相似三角形的性质可得AP OP MP PB ,代入数据即可求得MP =7027,再求得OM =9227,即可得点M 的坐标为(9227,0). 【详解】 (1)由题意得:x 1+x 2=3,x 1x 2=﹣2m ,x 12+x 22=(x 1+x 2)2﹣2x 1x 2=17,即:9+4m =17,解得:m =2,抛物线的表达式为:y =﹣12x 2+32x+2=(x ﹣32)2+258, 顶点坐标为(32,258); (2)存在,理由:将抛物线表达式和一次函数y =﹣13x+2联立并解得:x =0或113,∴点A 、B 的坐标为(0,2)、(113,79), 一次函数y =﹣13x+2与x 轴的交点P 的坐标为(6,0), ∵点P 的坐标为(6,0),B 的坐标为(113,79),点B 的坐标为(0,2)、 ∴PB =221176039()()-+-=710, AP=2262+=210过点B 作BM ⊥AB 交x 轴于点M ,∵∠MBP =∠AOP =90°,∠MPB =∠APO ,∴△APO ∽△MPB ,∴AP OP MP PB = ,∴210710MP = , ∴MP =7027, ∴OM =OP ﹣MP =6﹣7027=9227, ∴点M (9227,0). 【点睛】 本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB 、AP 的长,再利用相似三角形的性质解决问题.23.(1)m =3,k =3;(2)①线段AB 上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n <3时,有五个整点.【解析】【分析】(1)将A 点代入直线解析式可求m ,再代入k y x=,可求k.(2)①根据题意先求B ,C 两点,可得线段AB 上的整点的横坐标的范围1≤x≤3,且x 为整数,所以x 取1,2,3.再代入可求整点,即求出整点个数.②根据图象可以直接判断2≤n <3.【详解】(1)∵点A (1,m )在y =2x+1上,∴m =2×1+1=3.∴A (1,3).∵点A (1,3)在函数k y x=的图象上, ∴k =3.(2)①当n =3时,B 、C 两点的坐标为B (3,7)、C (3,1).∵整点在线段AB 上∴1≤x≤3且x 为整数∴x =1,2,3∴当x =1时,y =3,当x =2时,y =5,当x =3时,y =7,∴线段AB 上有(1,3)、(2,5)、(3,7)共3个整点.②由图象可得当2≤n <3时,有五个整点.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.24.(1)213222x x -++;(2)m =3;(3145【解析】【分析】(1)本题需先根据图象过A 点,代入即可求出解析式;(2)由△OAB ∽△PAN 可用m 表示出PN ,且可表示出PM ,由条件可得到关于m 的方程,则可求得m 的值;(3)在y 轴上取一点Q ,使2O 3O 2Q P =,可证的△P 2OB ∽△QOP 2,则可求得Q 点坐标,则可把AP 2+32BP 2转换为AP 2+QP 2,利用三角形三边关系可知当A 、P 2、Q 三点在一条线上时,有最小值,则可求出答案.【详解】解:(1)∵A (4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a =﹣12, ∴抛物线的解析式为y =213222x x -++; (2)∵213222y x x =++- ∴令x =0可得y =2,∴OB =2,∵OP =m ,∴AP =4﹣m ,∵PM ⊥x 轴,∴△OAB ∽△PAN , ∴OB PN OA PA=, ∴244mPN =-, ∴1PN (4m)2=-, ∵M 在抛物线上,∴PM =21322m m +-+2, ∵PN :MN =1:3,∴PN :PM =1:4, ∴2131m m 24(4m)222-++=⨯⨯-, 解得m =3或m =4(舍去);(3)在y 轴上取一点Q ,使2O 3O 2Q P =,如图,由(2)可知P 1(3,0),且OB =2, ∴22O 32OP Q OP OB ==,且∠P 2OB =∠QOP 2, ∴△P 2OB ∽△QOP 2, ∴22OP 3BP 2=, ∴当Q (0,92)时,QP 2=232BP , ∴AP 2+32BP 2=AP 2+QP 2≥AQ , ∴当A 、P 2、Q 三点在一条线上时,AP 2+QP 2有最小值,∵A (4,0),Q (0,92), ∴AQ 22942⎛⎫+ ⎪⎝⎭145, 即AP 2+32BP 2145 【点睛】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.25.见解析【解析】【分析】根据CE ∥DF ,可得∠ECA=∠FDB ,再利用SAS 证明△ACE ≌△FDB ,得出对应边相等即可.【详解】解:∵CE ∥DF∴∠ECA=∠FDB ,在△ECA 和△FDB 中EC BD ECA FAC FD ⎧⎪∠∠⎨⎪⎩===∴△ECA ≌△FDB ,∴AE=FB .【点睛】 本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.26.(1)(2)见解析;(3)P (0,2).【解析】分析:(1)根据A ,C 两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x 轴的对称点,依次连接即可.(3)作点C 关于y 轴的对称点C′,连接B 1C′交y 轴于点P ,即为所求.详解:(1)(2)如图所示:(3)作点C 关于y 轴的对称点C′,连接B 1C′交y 轴于点P ,则点P 即为所求.设直线B 1C′的解析式为y=kx+b (k≠0),∵B 1(﹣2,-2),C′(1,4),∴224k b k b -+=-⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, ∴直线AB 2的解析式为:y=2x+2,∴当x=0时,y=2,∴P (0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.27.(1)C (2,0),A (1,4),B (1,9);(2)12<t <5;(2)m=7732,∴n=37732. 【解析】分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C 的坐标,联立抛物线与直线的解析式即可求出A 、B 的坐标.(Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t ,1),然后求出直线AC 的解析式后,将点E 的坐标分别代入直线AC 与AD 的解析式中即可求出t 的值,从而可知新抛物线的顶点E 在△DAC 内,求t 的取值范围.(Ⅲ)直线AB 与y 轴交于点F ,连接CF ,过点P 作PM ⊥AB 于点M ,PN ⊥x 轴于点N ,交DB 于点G ,由直线y=x+2与x 轴交于点D ,与y 轴交于点F ,得D (﹣2,0),F (0,2),易得CF ⊥AB ,△PAB 的面积是△ABC 面积的2倍,所以12AB•PM=12AB•CF ,,从而可求出PG=3,利用点G 在直线y=x+2上,P (m ,n ),所以G (m ,m+2),所以PG=n ﹣(m+2),所以n=m+4,由于P (m ,n )在抛物线y=x 2﹣1x+9上,联立方程从而可求出m 、n 的值.详解:(I )∵y=x 2﹣1x+9=(x ﹣2)2,∴顶点坐标为(2,0).联立2693y x x y x ⎧=-+⎨=+⎩, 解得:14x y =⎧⎨=⎩或69x y =⎧⎨=⎩; (II )由题意可知:新抛物线的顶点坐标为(2﹣t ,1),设直线AC 的解析式为y=kx+b将A (1,4),C (2,0)代入y=kx+b 中,∴430k b k b +=⎧⎨+=⎩, 解得:26k b =-⎧⎨=⎩, ∴直线AC 的解析式为y=﹣2x+1. 当点E 在直线AC 上时,﹣2(2﹣t )+1=1,解得:t=12. 当点E 在直线AD 上时,(2﹣t )+2=1,解得:t=5,∴当点E 在△DAC 内时,12<t <5; (III )如图,直线AB 与y 轴交于点F ,连接CF ,过点P 作PM ⊥AB 于点M ,PN ⊥x 轴于点N ,交DB 于点G .由直线y=x+2与x 轴交于点D ,与y 轴交于点F ,得D (﹣2,0),F (0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF ⊥AB .∵△PAB的面积是△ABC面积的2倍,∴12AB•PM=12AB•CF,∴PM=2CF=12.∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=PMPG,∴PG=45PMsin︒=6222=3.∵点G在直线y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在抛物线y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=773±.∵﹣2<m<1,∴m=7732+不合题意,舍去,∴m=7732-,∴n=m+4=37732-.点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.。
广西省南宁市2019-2020学年中考数学第五次押题试卷含解析
广西省南宁市2019-2020学年中考数学第五次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在三角形ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形A′B′C ,若点B′恰好落在线段AB 上,AC 、A′B′交于点O ,则∠COA′的度数是( )A .50°B .60°C .70°D .80°2.关于x 的一元二次方程x 2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .0m >且1m ≠B .0m >C .0m ≥且1m ≠D .0m ≥3.下列运算错误的是( )A .(m 2)3=m 6B .a 10÷a 9=aC .x 3•x 5=x 8D .a 4+a 3=a 7 4.估算9153+÷的运算结果应在( ) A .2到3之间 B .3到4之间 C .4到5之间D .5到6之间5.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环) 7 8 9 10 次数 1 4 32A .8、8B .8、8.5C .8、9D .8、106.下列说法中正确的是( ) A .检测一批灯泡的使用寿命适宜用普查. B .抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上. C .“367人中有两人是同月同日生”为必然事件. D .“多边形内角和与外角和相等”是不可能事件.7.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .29B .34C .52D .418.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=1009.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A .4200.5x +-420x =20B .420x -4200.5x +=20C .4200.5x --420x=20D .420420200.5x x -=- 10.若一次函数=y ax b +的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A .0a b +<B .0a b ->C .0ab >D .0ba< 11.如图,在△ABC 中,DE ∥BC ,若23AD DB =,则AE EC 等于( )A .13B .25C .23D .3512. “车辆随机到达一个路口,遇到红灯”这个事件是( ) A .不可能事件B .不确定事件C .确定事件D .必然事件二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.14.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.15.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.16.如图,C 为半圆内一点,O 为圆心,直径AB 长为1 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 1.17.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.18.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B 之间的距离为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:|﹣3|+(5+π)0﹣(﹣12)﹣2﹣2cos60°;(2)先化简,再求值:(1111a a--+)+2421aa+-,其中a=﹣2+2.20.(6分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.21.(6分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?22.(8分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.23.(8分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).24.(10分)计算:2 03182sin60(1)2-︒⎛⎫-+-+ ⎪⎝⎭解不等式组3(1)45513x xxx--⎧⎪-⎨->⎪⎩…,并写出它的所有整数解.25.(10分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.26.(12分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30 n 600(1)甲队单独完成这项工程所需天数n=,乙队每天修路的长度m=(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.27.(12分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.2.A【解析】【分析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.>1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.3.D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.4.D【解析】【详解】3+,∵23,∴3+5到6之间.故选D.【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.5.B【解析】【分析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892+=8.5(环),故选:B.【点睛】数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 6.C 【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可. 【详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等. 故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法. 7.D 【解析】解:设△ABP 中AB 边上的高是h .∵S △PAB =13S 矩形ABCD ,∴12 AB•h=13AB•AD ,∴h=23AD=2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.在Rt △ABE 中,∵AB=5,AE=2+2=4,∴BE=22AB AE + =2254+=41,即PA+PB 的最小值为41.故选D .8.A 【解析】 【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x ,根据“从80吨增加到100吨”,即可得出方程.由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.9.C【解析】【分析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】原价买可买420x瓶,经过还价,可买4200.5x-瓶.方程可表示为:4200.5x-﹣420x=1.故选C.【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.10.D【解析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,ba<0,故D正确.故选D.11.C【解析】试题解析::∵DE∥BC,∴23 AE ADEC DB==,考点:平行线分线段成比例.12.B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.17【解析】【分析】根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.【详解】解:1-30%-50%=20%,⨯+⨯+⨯=.∴2520%1030%1850%17【点睛】本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.14.1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.15.3.1或4.32或4.2【解析】【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB=22AB BC+=5,S△ABC=12AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=APAC•S△ABC=35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=·342.45AB BCAC⨯==,∴AD=DP=223 2.4-=1.2,∴AP=2AD=3.1,∴S等腰△ABP=APAC•S△ABC=3.65×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=CPAC•S△ABC=45×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.16.4π【解析】【分析】根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=12OB=1。
广西省崇左市2019-2020学年中考数学第三次押题试卷含解析
广西省崇左市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点P (﹣2,5)关于y 轴对称的点的坐标为( )A .(2,﹣5)B .(5,﹣2)C .(﹣2,﹣5)D .(2,5)2.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为( )A .20151()2B .20162()2C .20152()2D .20161()23.下列几何体中,三视图有两个相同而另一个不同的是( )A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4) 4.计算(﹣12)﹣1的结果是( ) A .﹣12 B .12 C .2 D .﹣25.计算﹣2+3的结果是( )A .1B .﹣1C .﹣5D .﹣66.从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )A .B .C .D .7.函数y=13x 中,自变量x 的取值范围是( )A .x >3B .x <3C .x=3D .x≠38.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-9.如图,已知△ABC ,AB =AC ,将△ABC 沿边BC 翻转,得到的△DBC 与原△ABC 拼成四边形ABDC ,则能直接判定四边形ABDC 是菱形的依据是( )A .四条边相等的四边形是菱形B .一组邻边相等的平行四边形是菱形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直平分的四边形是菱形10.如图,在Rt ABC ∆中,90,ABC BA BC ∠=︒=.点D 是AB 的中点,连结CD ,过点B 作BG CD ⊥,分别交CD CA 、于点E F 、,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG FG AB FB =;②点F 是GE 的中点;③2AF AB =;④6ABC BDF S S ∆∆=,其中正确的个数是( )A .4B .3C .2D .111.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A .50B .0.02C .0.1D .112.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.14.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.15.计算:(2018﹣π)0=_____.16.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.17.计算:63﹣27=_____18.某物流仓储公司用如图A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知顶点为A的抛物线y=a(x-12)2-2经过点B(-32,2),点C(52,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.20.(6分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.21.(6分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.22.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.23.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=12 DA;(3)若∠A=30°,且图中阴影部分的面积等于2233p-,求⊙O的半径的长.24.(10分)如图,在△ABC中,AB>AC,点D在边AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC=5,点D是AC的中点,求DE的长.25.(10分)如图1,已知抛物线y=﹣33x2+233x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.26.(12分)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB=AD ,∠BFC=∠BAD=2∠DFC .求证:(1)CD ⊥DF ;(2)BC=2CD .27.(12分)解不等式组:3(2)421152x x x x ≥-+⎧⎪-+⎨<⎪⎩并把解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点(25)P -,关于y 轴对称的点的坐标为(25),, 故选:D .【点睛】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键. 2.A【解析】【分析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“S n=(12)n﹣2”,依此规律即可得出结论.【详解】如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,∴S n=(12)n﹣2.当n=2018时,S2018=(12)2018﹣2=(12)3.故选A.【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n=(12)n﹣2”.3.B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.4.D【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:1112122-⎛⎫-==-⎪⎝⎭-,故选D.【点睛】本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.5.A【解析】【分析】根据异号两数相加的法则进行计算即可.【详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.【点睛】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.6.C【解析】【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.7.D【解析】由题意得,x﹣1≠0,解得x≠1.故选D.8.B【解析】【分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°=22,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×222,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.9.A【解析】【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【详解】∵将△ABC 延底边 BC 翻折得到△DBC ,∴AB=BD , AC=CD ,∵AB=AC ,∴AB=BD=CD=AC ,∴四边形 ABDC 是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.10.C【解析】【分析】用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.【详解】解:由题意知,△ABC是等腰直角三角形,设AB=BC=2,则AC=,∵点D是AB的中点,∴AD=BD=1,在Rt△DBC中,DC(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,BD CD CBDE BD BE==,即12DE BE==∴DE=5,BE=5,在△GAB和△DBC中,DBE DCBAD BCGAB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GAB≌△DBC(ASA) ∴AG=DB=1,BG=CD∵∠GAB+∠ABC=180°,∴AG∥BC,。
广西省崇左市2019-2020学年中考数学第一次押题试卷含解析
广西省崇左市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示,若将△ABO 绕点O 顺时针旋转180°后得到△A 1B 1O ,则A 点的对应点A 1点的坐标是( )A .(3,﹣2)B .(3,2)C .(2,3)D .(2,﹣3)2.下列运算正确的是( )A .a 6÷a 2=a 3B .(2a+b )(2a ﹣b )=4a 2﹣b 2C .(﹣a )2•a 3=a 6D .5a+2b=7ab 3.一个正比例函数的图象过点(2,﹣3),它的表达式为( ) A .3y -2x = B .2y 3x =C .3y 2x =D .2y -3x = 4.如图,已知△ABC 中,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .90°B .135°C .270°D .315°5.如图,已知点A ,B 分别是反比例函数y=k x (x <0),y=1x(x >0)的图象上的点,且∠AOB=90°,tan ∠BAO=12,则k 的值为( )A .2B .﹣2C .4D .﹣46.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( ) A .﹣5 B .﹣3 C .3 D .17.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶58.下面调查方式中,合适的是( )A .调查你所在班级同学的体重,采用抽样调查方式B .调查乌金塘水库的水质情况,采用抽样调査的方式C .调查《CBA 联赛》栏目在我市的收视率,采用普查的方式D .要了解全市初中学生的业余爱好,采用普查的方式9. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( ) 月用水量(吨) 4 5 6 9 户数(户) 3421A .中位数是5吨B .众数是5吨C .极差是3吨D .平均数是5.3吨10.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )A .32πB .83π C .6π D .以上答案都不对11.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4π B .324π- C .2-8π D .324π- 12.甲、乙两人分别以4m/s 和5m/s 的速度,同时从100m 直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t (s ),甲乙两人的距离为S (m ),则S 关于t 的函数图象为( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m ,两侧离地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞的高度为_______m .(精确到0.1m )14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .15.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,»»AD CD=.若∠CAB=40°,则∠CAD=_____.16.分解因式:24xy x -=____17.如图,点E 在正方形ABCD 的外部,∠DCE=∠DEC ,连接AE 交CD 于点F ,∠CDE 的平分线交EF 于点G ,AE=2DG .若BC=8,则AF=_____.18.若分式67x--的值为正数,则x 的取值范围_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦•爱国情•成才志”中华经典诗文诵读比赛.九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A 、B 两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A 箱中放置3个黄球和2个白球;B 箱中放置1个黄球,3个白球,丽丽从A 箱中摸一个球,张强从B 箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止. 根据以上规则回答下列问题:(1)求一次性摸出一个黄球和一个白球的概率; (2)判断该游戏是否公平?并说明理由.20.(6分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.(1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°. ①求证:△ABP ∽△BCP ;②若 PA=3,PC=4,则 PB= .(2)已知锐角△ABC ,分别以 AB 、AC 为边向外作正△ABE 和正△ACD ,CE 和 BD 相交于 P 点.如图(2)①求∠CPD 的度数;②求证:P 点为△ABC 的费马点.21.(6分)某船的载重为260吨,容积为1000m 1.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m 1,乙种货物每吨体积为2m 1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙). 22.(8分)计算:|﹣2|++(2017﹣π)0﹣4cos45°23.(8分)如图,在ABC ∆中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .求证:四边形DBEC 是平行四边形.若120ABC ∠=︒,4AB BC ==,则在点E的运动过程中:①当BE =______时,四边形BECD 是矩形; ②当BE =______时,四边形BECD 是菱形.24.(10分)如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A 的对应点E 落在射线BC 上,连接BQ ,设DAQ α∠=(060α<<o o 且30α≠o ).(1)当030α<<o o 时,①在图1中依题意画出图形,并求BQE ∠(用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当3060α<<o o 时,直接写出线段CE ,AC ,CQ 之间的数量关系.25.(10分)如图,在矩形ABCD 中,AB=3,BC=4,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',B'C 与AD 交于点E ,AD 的延长线与A'D'交于点F .(1)如图①,当α=60°时,连接DD',求DD'和A'F 的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD 的延长线上时,求EF 的长; (3)如图③,当AE=EF 时,连接AC ,CF ,求AC•CF 的值.26.(12分)如图,已知AB 是O e 的直径,点C 、D 在O e 上,60D ∠=o 且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O e 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .27.(12分)如图,在△ABC 中,AB=BC ,CD ⊥AB 于点D ,CD=BD .BE 平分∠ABC ,点H 是BC 边的中点.连接DH ,交BE 于点G .连接CG . (1)求证:△ADC ≌△FDB ;(2)求证:1CE BF2;(3)判断△ECG的形状,并证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】由题意可知,点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标. 【详解】由题意可知,点A与点A1关于原点成中心对称,∵点A的坐标是(﹣3,2),∴点A关于点O的对称点A'点的坐标是(3,﹣2).故选A.【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.2.B【解析】【分析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合并.【详解】A选项:a6÷a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;C选项:(-a)2•a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B.【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.3.A【解析】【分析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴函数的解析式是:32y x =-.故选A.4.C【解析】【分析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.5.D【解析】【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=kx(x<0),y=1x(x>0)的图象上,即可得S△OBD=12,S△AOC=12|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k 的值 【详解】解:过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,∴∠ACO=∠ODB=90°, ∴∠OBD+∠BOD=90°, ∵∠AOB=90°, ∴∠BOD+∠AOC=90°, ∴∠OBD=∠AOC , ∴△OBD ∽△AOC , 又∵∠AOB=90°,tan ∠BAO=12, ∴OB AO =12, ∴BOD OACS S V V =14 ,即112142k ,解得k=±4, 又∵k <0, ∴k=-4, 故选:D . 【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
广西省2020年中考数学绝密预测押题试卷(含答案)
广西省 中考数学绝密预测押题试卷本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。
注意:答案一律填写在答题卷上,在试题卷上作答无效.........。
考试结束,将本试卷和答题卷一并交回。
第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)请用2B 铅笔在答题卷上将选定的答案标号涂黑。
1.-5的相反数是A .-5B .5C .51D . ±52.我国南海海域面积为38000002km ,用科学记数法表示正确的是A .3.8×1052km B .3.8×1062km C .3.8×1072km D .3.8×1082km3.如图,AB ∥CD ,E 在AC 的延长线上,若︒=∠34A ,︒=∠90DEC,则D∠的度数为A .︒17B .︒34C .︒56D .o 66 4.在函数3x y +=中,自变量x 的取值范围是 A .x ≥-3且1x ≠ B .x >-3且1x ≠ C .x ≥3 D .x >3 5.如图是由4个大小相同的正方体搭成的几何体,其俯视图是6.下列说法中正确的是A .篮球队员在罚球线上投篮一次,未投中是必然事件B .想了解某种饮料中含色素的情况,宜采用普查C .数据5,1,-2,2,3的中位数是-2D .一组数据的波动越大,方差越大7.下列运算正确的是A. 235a a a +=B. 22a a -=C. 632a a a ÷=D. 236()a a =8.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解的个数有第5题图AB CDECD 第3题图A.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD 中,E 是CD 的中点,AD 、BE 的延长线交于点F ,3DF =,2DE =,则平行四边形ABCD 的周长为A .5B .12C .14D .1610.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是 A .200米 B. 2003米 C. 2203米 D. 100(31)+米11.如图,在平面直角坐标系中,抛物线y =23ax +与y 轴交于点A ,过点A 与x轴平行的直线交抛物线y =213x 于B 、C 两点,则BC 的长为A .1B .2C .3D .612.如图,AB 是⊙O 的直径,AD 是⊙O 的切线, BC ∥OD 交⊙O 于点C , 若AB =2, OD =3,则BC 的长为A .32B .23C .3D .2第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,满分18分;只要求填写最后结果.) 13.分解因式:24x - = .14.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中 数学题的概率是 .第9题图F ED CBA 第10题图第12题图第11题图B OAC y xO CD45°30°BDC AO E DBC A15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为cm 6、cm 8,AE ⊥BC 于点E ,则AE 的长是 cm . 16.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边OBC ∆,将点C 向左平移,使其 对应点C '恰好落在直线AB 上,则点C '的坐标为 .17.如图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π). 18.如图,第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA OB ⊥,3cos 3A =,则k 的值为 .三、解答题(本大题共8题,共66分;解答应写出必要的文字说明、演算步骤或推理过程.)19.(本题6分)计算: ()︒-++⎪⎭⎫⎝⎛-+-30tan 35321160120.(本题6分)先化简,再求值:221()111a a a a a -÷+--,其中12+=a .21. (本题8分) 如图,在△ABC 中,AB AC =,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母.①作CAM ∠的平分线AN ;②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.第18题图BO Ayx第17题图BACBAO O O图1图220﹪纪念奖三等奖二等奖一等奖45﹪纪念奖三等奖二等奖600奖项一等奖人数(人)1002003004005006325256722. (本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有 名学生;(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ; (3)将图2补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23. (本题8分)某水果销售点用1000元购进甲、乙两种新出产的水果共140千克,这(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?A B CM24. (本题8分)某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25.(本题10分)如图,︒=∠90C ,⊙O 是Rt △ABC 的内切圆,分别切AB AC BC ,,于点G F E ,,,连接OF OE ,.AO 的延长线交BC 于点D ,2,6==CD AC . (1)求证:四边形OECF 为正方形; (2)求⊙O 的半径; (3)求AB 的长.26.(本题12分) 如图,已知直线121+=x y 与y 轴交于点A ,与x 轴交于点D ,抛物线c bx x y ++=221与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).OGFEDC BA乙甲72015963O y (米)x (天)(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,直接写出点P的坐标;(3)在抛物线的对称轴上找一点M,使|MCAM |的值最大,求出点M的坐标.21OMN DC BA答案评分标准一.选择题BBCA DDDC CDDB 二.填空题13. (2)(2)x x +- 14.1415. 16. (﹣1,2) 17. 3π 18. -4三.解答题19.解:原式=4﹣2+1﹣333⨯4分(对一个知识点给1分) =4﹣2+1﹣1 5分 =2 6分20.解:原式=2(1)(1)(1)(1)(1)(1)(1)(1)a a a a a a a a a a ⎡⎤-+-⋅+-⎢⎥+-+-⎣⎦2分(还有其他做法) =2222(1)(1)(1)(1)a a a aa a a a ---⋅+-+- 3分 =23a a - ……4分 当a =21+时,原式=3223232+--=- ……6分 21.解:(1)作图正确 . ……3分(2)四边形ABCD 是平形四边形,理由如下: ∵AB AC =∴1ABC ∠=∠ 4分 ∵121CAM ABC ∠=∠+∠=∠∴112CAM ∠=∠∵AN 平分CAM ∠∴122CAM ∠=∠ 5分∴12∠=∠∴BC ∥AD ……6分 ∵AC 的中点是O ∴AO CO =又∵AOD COB ∠=∠ ∴AOD COB ∆≅∆∴BC =AD ……7分 ∴四边形ABCD 是平形四边形 ……8分22. 解:(1)1260.……(2分) (2)108°. ……4分(3)三等奖的人数为:1260×(1﹣20%﹣5%﹣45%)=378人,图略……6分 (4)抽到获得一等奖的学生的概率为:63÷1260=5%. ……8分23. 解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:1分5x +9(140﹣x )=1000, ……3分 解得:x =65,∴140﹣x =75(千克), ……5分 答:购进甲种水果65千克,乙种水果75千克; ……6分 (2)3×65+4×75=495,答:利润为495元. ……8分24解:(1)∵720÷(9-3)=120∴乙工程队每天修公路120米. ……1分(2)设y 乙=kx+b ,则309720k b k b +⎧⎨+⎩== ∴120360k b ⎧⎨-⎩== 2分∴y 乙=120x -360 ……3分当x =6时,y 乙=360设y 甲=kx ,则360=6k ,k =60,∴y 甲=60x ……6分 (3)当x =15时,y 甲=900,∴该公路总长为:720+900=1620(米)设需x 天完成,由题意得,(120+60)x =1620 7分 解得x =9 答:需9天完成 ……8分25. (本题满分10分)解:(1)如图,因为⊙O 是Rt △ABC 的内接圆,分别切BC ,AC ,AB 于点E ,F ,G ∴∠CFO=∠OEC=90°∵∠C=90°...........1分 (三个直角少一个,这一分就不得) ∴则四边形OECF 为 矩形,……………………….2分 又∵OE=OF=r ……………………………3分 ∴四边形OECF 为 正方形 (2) 由四边形OECF 为 正方形∴OE//AC ,CE=CF=r∴△OED ∽△ACD ……………………………4分 ∴AC OE DC DE = ∴622r r =- ………………………5分解得:r=23 ……………………………6分(3) ⊙O 是Rt △ABC 的内切圆,由(2)得DE=21,设BD=x,则BE=BG=x+21 ∵AG=AF=29,∴AB=5+x ,由222AB AC BC =+ 得222)5(6)2(+=++x x ………………8分O GFE DCBA(第21解得:x=25 ……………………………9分 ∴AB =215…………………………………10分 (若设BG=x,则方程为222)29(6)23(+=++x x 得x=3) 26. (1)直线121+=x y 与y 轴交于点A 得A (0,1),将A (0,1)、B (1,0)坐标代入y=x 2+bx+c 得,解得,∴抛物线的解折式为y=x 2﹣x+1;……………………3分(2)满足条件的点P 的坐标为(,0)或(1,0)或(3,0)或(,0); (7)分(3)抛物线的对称轴为,……………………8分∵ B 、C 关于x=对称, ∴ MC=MB ,要使|AM ﹣MC|最大,即是使|AM ﹣MB|最大,由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时|AM ﹣MB|的值最大. (9)分易知直线AB 的解折式为y=﹣x+1………………10分∴ 由,得⎪⎪⎩⎪⎪⎨⎧-==2123y x∴M(1.5,-0.5) ………………12分。
2020年广西省中考数学绝密预测试卷(含答案)
广西省中考数学绝密预测试卷一、选择题(共12小题,每小题3分,满分36分)1.在所给的π,0,﹣1,2这四个数中,最小的数是( ) A . πB . 0C . ﹣1D .22.下列二次根式中,最简二次根式是( ). A . 5.0B .5C .50D .b a 23.已知一个正多边形的每个外角都是36°,则该正多边形的边数是( ). A .7 B .8 C .9D .104.下列计算正确的选项是( ) A .3232a a a a -÷=⋅B .2a a =C .22423a a a +=D .()222b a b a -=-5. 要判断马力同学的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的( ). A .方差 B .中位数 C .平均数D .众数6. 抛物线2)3(2---=x y 的顶点坐标是( )A .(3,2)B .(3,2-)C .(2-,2)D .(3-,2-) 7.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2的度数是( )A. 155°B. 135°C. 125°D.115°8.关于x 的一元二次方程2(1)10a x x a -++-=的一个根为0,则实数a 的值为( )A .1B .1-C .0D .1-或19.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19B.18C.16D.15左视图主视图aa 34第10题图3310.如图,是一个正六棱柱的主视图和左视图,则图中的a =( ). A .3 B .32 C .2 D .111.如图,在等边△ABC 中,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =1,那么△ABC 的面积为( )A.3B.C.4D.12.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论正确的是( ) ①∠AEF=∠BCE ;②AF+BC >CF ;③S △CEF =S △EAF +S △CBE ; ④若=,则△CEF ≌△CDF .A. ①②③ B ①②④ C ①③④ D ①②③④二、填空题(共6小题,每小题3分,满分18分) 13. -3的倒数是 .14.在平面直角坐标系中,点(3,6-)与(-3,b )关于原点对称,则b = .15.因式分解:322a a -= .16.一组数据如下10,10,8,x ,已知这组数据的众数与平均数相等,则这组数据的中位数为17.观察下列各等式:①2121=,②434121=+,③87814121=++,④1615161814121=+++,…,猜想第n (n 是正整数)个等式是 .18.已知△ABC 中,AB AC m ==,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC 交AB 于2B ,作23B B 平分21AB B ∠交AC 于3B ,过3B 作34//B B BC 交AB 于4B ,则线段34B B 的长度为 .(用含有m 的代数式表示)三、解答题(共8小题,满分66分) 19.(6分)计算:(-2)×5+3.20.(6分)解不等式组:⎪⎩⎪⎨⎧-<-≤-33203x x , 并把解集在数轴上表示出来.C 第18题图B 1B A B 2B 3B 4 第11题图第12题图321.(6分)如图,直线b kx y +=分别交x 轴、y 轴于A (1,0)、B (0,1-),交双曲线xy 2=于点C 、D .(1)求k 、b 的值; (2)写出不等式xb kx 2>+的解集.22.(8分)已知:如图,△ABC 中,AB =AC ,矩形BCDE 的边DE 分别与AB 、AC 交于点F 、G . 求证:EF =DG23.(8分)如图是某货站传送货物的平面示意图, AD 与地面的夹角为60°.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°成为37°, 因此传送带的落地点由点B 到点C 向前移动了2米.(1)求点A 与地面的高度;(2)如果需要在货物着地点C 的左侧留出2米,那么请判断距离D 点14米的货物Ⅱ是否需要挪走,并说明理由.(参考数据:sin37°取0.6,cos37°取0.8,tan37°取0.75,3取1.73)B 第23题图 BC 37° A 45°ⅡⅠ60° AB C D EF G 第22题图 第21题图24.(10分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实摸球的次数n 100 150 200 500 800 1000 摸到黑球的次数m 23 31 60 130 203 251 摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________; (2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.25.(10分)已知:如图,点C 在以AB 为直径的⊙O 上,点D 在AB 的延长线上,∠BCD=∠A . (1)求证:CD 为⊙O 的切线;(2)过点C 作CE ⊥AB 于E .若CE=2,co s ∠D=,求A D 的长.26.(12分)如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过(0,3)A ,(1,0)B 两点,顶点为M .(1)求b 、c 的值;(2)将OAB △绕点B 顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿y 轴上下平移后经过点C ,求平移后所得抛物线的表达式;(3)设(2)中平移后所得的抛物线与y 轴的交点为1A ,顶点为1M ,若点P 在平移后的抛物线上,且满足△1PMM 的面积是△1PAA 面积的3倍,求点P 的坐标.yxBAO3 . -7 0参考答案及评分标准(数学)一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2. B ; 3. D ; 4.A ; 5.A ; 6.B ; 7.D ; 8.B ; 9.C ; 10.A ; 11.B ; 12.C ;二、填空题:(本大题共12题,每题4分,满分48分) 13.31-; 14.6; 15. )1)(1(2-+a a a ; 16.10; 17.n n 21121...21212132-=++++; 18. 3512m ⎛⎫- ⎪⎝⎭(或52m m -)三、解答题(本大题共7题,满分78分)19.解:原式= -10+3 …………………………………………………3分 = -7 ……………………………………………………6分20.解:由①得:x ≤3 …………………………………………………………1分 由②得: 7x <- …………………………………………………………3分………………………5分∴ 原不等式组的解集为: 7x <- ………………………6分21. 解:(1)∵直线b kx y +=过点(1,0)和(0,-1),∴⎩⎨⎧=-+=bbk 10, ……………………………………………………2分∴1,1-==b k . ……………………………………………………4分 (2)不等式xmb kx >+的解集是:012<<->x x 或…………………6分22. 证明:∵AB =AC∴∠ABC =∠ACB ……………………………………………………1分 又∵四边形BCDE 是矩形∴BE =DC ,∠E =∠D =∠EBC =∠BCD =90°…………………………3分∴ ∠EBF =∠DCG ……………………………………………………5分 ∴△BEF ≌△CDG ……………………………………………………7分 ∴EF =DG ……………………………………………………8分23.解:(1)作AE ⊥BC 于点E , ……………………………………………………1分设AE x =,在Rt △ACE 中,4cot 3CE AE ACE x =⋅∠=,……………………………………2分 在Rt △ABE 中, cot BE AE ABE x =⋅∠=,……………………………………3分∵BC=CE-BE ,423x x -= 解得6x =.………………………………………………………4分 答:点A 与地面的高度为6米.(2)结论:货物Ⅱ不用挪走. ………………………………………………………5分在Rt △ADE 中,3cot 6233ED AE ADE =⋅∠=⨯= ……………………6分 cot 8CE AE ACE =⋅∠=…………………………………………………………7分∴CD=CE+ED =82311.46+≈1411.46 2.542-=>……………………………………………………………8分 ∴货物Ⅱ不用挪走.24.解:(1)0.251; ……………………………………………………………1分0.25; ……………………………………………………………2分 (2)设袋中白球为x 个,依题意,得:4111=+x ,……………………………………………………………5分 x=3 ……………………………………………………………6分 答:估计袋中有3个白球。
2019-2020学年广西省南宁市中考数学预测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.下列计算正确的是( ) A .(a 2)3=a 6 B .a 2+a 2=a 4 C .(3a )•(2a )2=6a D .3a ﹣a =32.若a+b=3,,则ab 等于( ) A .2B .1C .﹣2D .﹣13.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<- B .32b -<≤-C .32b -≤≤-D .-3<b<-24.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1255.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是 A .()2y x 12=-+ B .()2y x 12=++C .2y x 1=+D .2y x 3=+6.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,若AD =3,BE =1,则DE =( )A .1B .2C .3D .47.下列图案中,是轴对称图形的是( )A .B .C .D .8.通过观察下面每个图形中5个实数的关系,得出第四个图形中y 的值是( )A.8 B.﹣8 C.﹣12 D.129.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确10.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )A.1个B.2个C.3个D.4二、填空题(本题包括8个小题)11.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.12.分解因式:(2a+b)2﹣(a+2b)2= .13.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.14.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.15.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.16.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.17.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020广西省中考数学绝密预测押题试卷本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。
注意:答案一律填写在答题卷上,在试题卷上作答无效.........。
考试结束,将本试卷和答题卷一并交回。
第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)请用2B 铅笔在答题卷上将选定的答案标号涂黑。
1.-5的相反数是A .-5B .5C .51D . ±52.我国南海海域面积为38000002km ,用科学记数法表示正确的是A .3.8×1052km B .3.8×1062km C .3.8×1072km D .3.8×1082km3.如图,AB ∥CD ,E 在AC 的延长线上,若︒=∠34A ,︒=∠90DEC ,则D ∠的度数为A .︒17B .︒34C .︒56D .o 66 4.在函数1y x =-中,自变量x 的取值范围是 A .x ≥-3且1x ≠ B .x >-3且1x ≠ C .x ≥3 D.x >3 5.如图是由4个大小相同的正方体搭成的几何体,其俯视图是6.下列说法中正确的是A .篮球队员在罚球线上投篮一次,未投中是必然事件B .想了解某种饮料中含色素的情况,宜采用普查C .数据5,1,-2,2,3的中位数是-2D .一组数据的波动越大,方差越大7.下列运算正确的是A. 235a a a +=B. 22a a -=C. 632a a a ÷=D. 236()a a =8.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解的个数有第5题图AB CDEA.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD 中,E 是CD 的中点,AD 、BE 的延长线交于点F ,3DF =,2DE =,则平行四边形ABCD 的周长为A .5B .12C .14D .1610.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是 A .200米B.C.D. 1)米11.如图,在平面直角坐标系中,抛物线y =23ax +与y 轴交于点A ,过点A 与x轴平行的直线交抛物线y =213x 于B 、C 两点,则BC 的长为A .1B .2C .3D .612.如图,AB 是⊙O 的直径,AD 是⊙O 的切线, BC ∥OD 交⊙O 于点C , 若AB =2, OD =3,则BC 的长为A .32B .23CD.2第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,满分18分;只要求填写最后结果.) 13.分解因式:24x - = .14.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中 数学题的概率是 .第9题图F ED CBA 第10题图第12题图第11题图xD45°30°BDC AO E DBC A15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为cm 6、cm 8,AE ⊥BC 于点E ,则AE 的长是 cm . 16.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边OBC ∆,将点C 向左平移,使其 对应点C '恰好落在直线AB 上,则点C '的坐标为 .17.如图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π). 18.如图,第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA OB ⊥,cos A =,则k 的值为 .三、解答题(本大题共8题,共66分;解答应写出必要的文字说明、演算步骤或推理过程.)19.(本题6分)计算: ()︒-++⎪⎭⎫⎝⎛-+-30tan 35321160120.(本题6分)先化简,再求值:221()111a a a a a -÷+--,其中12+=a .21. (本题8分) 如图,在△ABC 中,AB AC =,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母.①作CAM ∠的平分线AN ;②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.第18题图BO Ayx第17题图BACBAO O O图1图220﹪纪念奖三等奖二等奖一等奖45﹪纪念奖三等奖二等奖600奖项一等奖人数(人)1002003004005006325256722. (本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有 名学生;(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ; (3)将图2补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23. (本题8分)某水果销售点用1000元购进甲、乙两种新出产的水果共140千克,这(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?A B CM24. (本题8分)某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25.(本题10分)如图,︒=∠90C ,⊙O 是Rt △ABC 的内切圆,分别切AB AC BC ,,于点G F E ,,,连接OF OE ,.AO 的延长线交BC 于点D ,2,6==CD AC . (1)求证:四边形OECF 为正方形; (2)求⊙O 的半径; (3)求AB 的长.26.(本题12分) 如图,已知直线121+=x y 与y 轴交于点A ,与x 轴交于点D ,抛物线c bx x y ++=221与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).OGFEDC BA甲y (米)x (天)(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,直接写出点P的坐标;(3)在抛物线的对称轴上找一点M,使|MCAM |的值最大,求出点M的坐标.21OMN DC BA答案评分标准一.选择题BBCA DDDC CDDB 二.填空题13. (2)(2)x x +- 14.1415.16. (﹣1,2) 17. 3π 18. -4三.解答题19.解:原式=4﹣2+134分(对一个知识点给1分) =4﹣2+1﹣1 5分 =2 6分20.解:原式=2(1)(1)(1)(1)(1)(1)(1)(1)a a a a a a a a a a ⎡⎤-+-⋅+-⎢⎥+-+-⎣⎦2分(还有其他做法) =2222(1)(1)(1)(1)a a a aa a a a ---⋅+-+- 3分 =23a a - ……4分 当a1时,原式=33+=……6分 21.解:(1)作图正确 . ……3分(2)四边形ABCD 是平形四边形,理由如下: ∵AB AC =∴1ABC ∠=∠ 4分 ∵121CAM ABC ∠=∠+∠=∠∴112CAM ∠=∠∵AN 平分CAM ∠∴122CAM ∠=∠ 5分∴12∠=∠∴BC ∥AD ……6分 ∵AC 的中点是O ∴AO CO =又∵AOD COB ∠=∠ ∴AOD COB ∆≅∆∴BC =AD ……7分 ∴四边形ABCD 是平形四边形 ……8分22. 解:(1)1260.……(2分) (2)108°. ……4分(3)三等奖的人数为:1260×(1﹣20%﹣5%﹣45%)=378人,图略……6分 (4)抽到获得一等奖的学生的概率为:63÷1260=5%. ……8分23. 解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:1分5x +9(140﹣x )=1000, ……3分 解得:x =65,∴140﹣x =75(千克), ……5分 答:购进甲种水果65千克,乙种水果75千克; ……6分 (2)3×65+4×75=495,答:利润为495元. ……8分24解:(1)∵720÷(9-3)=120∴乙工程队每天修公路120米. ……1分(2)设y 乙=kx+b ,则309720k b k b +⎧⎨+⎩== ∴120360k b ⎧⎨-⎩== 2分∴y 乙=120x -360 ……3分当x =6时,y 乙=360设y 甲=kx ,则360=6k ,k =60,∴y 甲=60x ……6分 (3)当x =15时,y 甲=900,∴该公路总长为:720+900=1620(米)设需x 天完成,由题意得,(120+60)x =1620 7分 解得x =9 答:需9天完成 ……8分25. (本题满分10分)解:(1)如图,因为⊙O 是Rt △ABC 的内接圆,分别切BC ,AC ,AB 于点E ,F ,G ∴∠CFO=∠OEC=90°∵∠C=90°...........1分 (三个直角少一个,这一分就不得) ∴则四边形OECF 为 矩形,……………………….2分 又∵OE=OF=r ……………………………3分 ∴四边形OECF 为 正方形 (2) 由四边形OECF 为 正方形∴OE//AC ,CE=CF=r∴△OED ∽△ACD ……………………………4分 ∴AC OE DC DE = ∴622r r =- ………………………5分解得:r=23 ……………………………6分(3) ⊙O 是Rt △ABC 的内切圆,由(2)得DE=21,设BD=x,则BE=BG=x+21 ∵AG=AF=29,∴AB=5+x ,由222AB AC BC =+ 得222)5(6)2(+=++x x ………………8分O GFE DCBA(第21解得:x=25 ……………………………9分 ∴AB =215…………………………………10分 (若设BG=x,则方程为222)29(6)23(+=++x x 得x=3) 26. (1)直线121+=x y 与y 轴交于点A 得A (0,1),将A (0,1)、B (1,0)坐标代入y=x 2+bx+c 得,解得,∴抛物线的解折式为y=x 2﹣x+1;……………………3分(2)满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0); (7)分(3)抛物线的对称轴为,……………………8分∵ B 、C 关于x=对称, ∴ MC=MB ,要使|AM ﹣MC|最大,即是使|AM ﹣MB|最大,由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时|AM ﹣MB|的值最大. (9)分易知直线AB 的解折式为y=﹣x+1………………10分∴ 由,得⎪⎪⎩⎪⎪⎨⎧-==2123y x∴M(1.5,-0.5) ………………12分。