运筹学实验报告
《运筹学》实验四__网络计划(学生版)
实验四网络计划
一、实验目的
掌握WinQSB软件绘制计划网络图,计算时间参数,求关键路线。
二、实验平台和环境
WindowsXP平台下,WinQSB V2.0版本已经安装在D:\WinQSB中。
三、实验内容和要求
用WinQSB软件求解网络计划问题。
输人数据(PERT/CPM),显示网络图,计算时间参数,显示结果和关键工序,计算赶工时间,显示甘特图。
四、实验操作步骤
启动程序。
点击开始→程序→WinQSB→PERT_CPM.(课堂演示)
五、分析讨论题
参考上述实验过程,编制下述项目的网络计划图,计算有关参数并指出关键工序。
1、某工程项目明细如表4-1所示。
2、某工程项目明细如表4-2所示。
表4-2
六、网络计划常用术语词汇及其含义。
哈工大运筹学实验报告实验三.doc
实验三一、实验目的:1)进一步熟悉 Excel 规划求解工具,掌握 Excel 求解 0-1 整数规划问题;2)进一步熟悉 Matlab 软件,掌握 Matlab 求解 0-1 整数规划问题;3)用 Excel 和 Matlab 求解公司选址 0-1 规划问题。
二、实验器材1)PC机: 20 台。
2)Microsoft Excel 软件(具备规划求解工具模块): 20 用户。
3)Matlab 软件(具备优化工具箱):20 用户。
三、实验原理:公司选址属于 0-1 整数规划问题,通过对问题建立数学模型,根据 Excel 自身特点把数学模型在电子表格中进行清晰的描述,再利用规划求解工具设定相应的约束条件,最终完成对问题的寻优过程,具体可参见;在 Matlab 中,根据 Matlab提供的 0-1 整数规划求解函数,将数学模型转换成 0-1 整数规划求解函数可传递的数值参数,最终实现对问题的寻优求解过程,具体可参见中 bintprog 函数描述和示例。
四、实验内容和步骤:用 Excel 和 Matlab 完成下列公司选址问题。
某销售公司打算通过在武汉或长春设立分公司(也许在两个城市都设分公司)增加市场份额,管理层同时也计划在新设分公司的城市最多建一个配送中心,当然也可以不建配送中心。
经过计算,每种选择对公司收益的净现值列于下表的第四列、第五列中记录了每种选择所需的费用,总的预算费用不得超过20 万元。
决策编号问题决策变量净现值(万元)所需资金(万元)1 是否在长春设分公司x1 18 122 是否在武汉设分公司x2 10 63 是否在长春建配送中心x3 12 104 是否在武汉建配送中心x 4 8 4问:如何决策才能使总的净现值最大建立模型:设=0 表示不建立,=1 表示建立,i=1,2,3,4用z表示预算费用总的净现值。
则目标函数 maxz=18 +10 +12 +8先确立约束不等式:总的预算费用不得超过20 万元;设立的分公司数目大于等于 1;且建立配送中心数目一定要小于分公司数目。
运筹学综合实验报告
运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。
一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。
二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。
它将优化目标函数的线性组合与整数限制相结合。
一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。
最后两个约束条件要求自变量只能是整数。
2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。
Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。
Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。
三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。
运筹学实践报告
运筹学实践报告运筹学实践报告运筹学,是使用数学、计算机科学和工程技术等理论和方法,对复杂的问题进行优化、创新和预测的学科。
在现代经济、科学、工程、管理等领域中,都有着广泛的应用。
本文将介绍本人在对车辆运输问题应用运筹学的实践报告。
1. 问题的背景本次实践是企业进行运输管理时遇到的问题。
该企业是一家以物流为主营业务的公司,为满足客户的需求,要将所需的货物从地点A运输到地点B。
企业的运输车辆比较多,在保证货物安全的情况下,如何最大化运输效益,成为了他们的难点之一。
2. 运筹学方法的应用为了解决以上问题,本人运用了运筹学中的方法。
首先,需要对问题进行数学建模,得到运输成本的数学模型。
其次,使用数学模型进行求解,得出运输最优方案,并对模型进行模拟验证。
最后,将模型应用在实际中,达到优化运输的目的。
2.1 数学建模车辆运输成本的大小与许多因素有关,包括路线长度、车速、用油量、车辆负载、维护费用等。
为了简化模型,考虑以下因素:车辆数、路线长、油量、维护费用。
我们用C表示总运输成本,F1表示油量费用,F2表示维护费用,N表示车辆数,L表示路线长,则C可表示为:C=F1+F2F1=a*L F2=b*L*Na、b为系数。
2.2 模型求解将模型输入到运筹算法中,使用 MATLAB 软件编写实现,结果如下:当车辆数为 1 时,C=227;当车辆数为 2 时,C=212;当车辆数为 3 时,C=208;当车辆数为 4 时,C=206。
由此可知,当车辆数为4时,运输成本最小。
2.3 模拟验证为了验证模型的可靠性,我使用 ArcGIS 出租车数据进行了模拟验证。
结果表明,运输成本减少了近20%,证明该模型的可行性和有效性。
3. 实际应用将该模型应用于实际车辆运输管理中,达到了优化成本的目的。
在相应的平台上,对可利用资源进行优化配送,实现了成本控制和资源优化的目标。
4. 总结运筹学在车辆运输管理中的应用,大大提高了运输效率,使企业在保证货物安全的同时降低成本。
运筹学实验报告
运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。
每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。
生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。
已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。
(2)将电子表格格式转换成标准模型。
(3)将结果复制到Excel或Word文档中。
(4)分析结果。
解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。
运筹学实验总结
运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。
在这学期的运筹学课程中,我们进行了一系列实验。
这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。
在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。
实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。
我选择了一个典型的生产调度问题作为实验题目。
通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。
通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。
实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。
在这个实验中,我选择了货物配送路线问题作为研究对象。
通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。
这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。
实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。
在这个实验中,我们学习了动态规划的基本原理和设计思想。
我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。
这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。
实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。
在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。
通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。
实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
在这个实验中,我选择了装箱问题作为研究对象。
通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。
这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。
运筹学实验报告
《运筹学》实验报告指派问题班级:姓名:学号:指导教师:《运筹学》实验报告(一)一.实验目的熟练的掌握整数规划,0-1规划问题的数学模型的建立于求解和数据分析二.实验要求利用EXCEL软件求解整数规划和0-1规划模型三.实验准备Pc486微机、Windows环境、Excel软件四.实验内容及步骤实验内容:某公司面临5项任务,计划派甲、乙、丙、丁、戊分别去做。
由于戊临时被公司派往国外,因此公司只有让甲、乙、丙、丁中的一个人同时担任两项任务,其他三人仍旧单独完成一项任务。
各人完成相应任务时间如下表。
请为公司制定一个总工时最小的指派方案。
实验内容分析:本题中研究的是制定一个总工时最小的工作任务分配方案即本题是一个0-1规划问题。
又本题中是四个员工五个任务的不平衡的分配任务,所以可以有增加虚拟人物的方式来解决不平衡问题也可以直接用抽屉原则来解决不平衡问题。
方法一:(虚拟人物法)建立数学模型:变量:甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A 任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45,虚拟员工做A任务为X51,虚拟员工做B任务为X52,虚拟员工做C任务为X53,虚拟员工做D任务为X54 ,虚拟员工做E任务为X55目标:总工时最小的人员安排方法约束:每人(包括虚拟人物)只能做一项任务即决策变量的0-1约束。
规划模型如下:MINZ(x)=25X11+29X12+31X13+42X14+37X15+39X21+38X22+26X23+20X24 +33X25+34X31+27X32+28X33+40X34+32X35+24X41+42X42+36X43+23X44+45X45+24X51+27X52+26X53+20X54+32X55X11+ X21+ X31+ X41+ X51=1X12+ X22+ X32+ X42+ X52=1X13+ X23+ X33+ X34+ X35=1X14+ X24+ X34+ X44+ X45=1X15+ X25+ X35+ X45+ X55=1 s.t. X11+ X12+ X13+ X14+ X15=1X21+ X22+ X23+ X24+ X25=1X31+ X32+ X33+ X34+ X35=1X41+ X42+ X43+ X44+ X45=1X51+ X52+ X53+ X54+ X55=1X ij=0或1(i=0-5,j=0-5)用EXCEL求解上式,过程如下:输入效率矩阵、方案矩阵和约束条件单元格公式:求解参数对话框如图所示:最终结果为:最小总工时131甲做A任务乙做C任务和D任务丙做E任务丁做B任务方法二:(抽屉原则法)建立数学模型:设甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45。
运筹学实验报告_7
运筹学实验(注: 此代码还有一些未完善的地方, 仅供参考, 此实验报告纯属个人意见, 同样仅供参考。
话说一样的内容多了老师会发现的)一、实验目的通过实验熟悉单纯形法的原理, 掌握matlab循环语句的应用, 提高编程的能力和技巧, 体会matlab在进行数学求解方面的方便快捷。
二、实验环境Matlab2012b,计算机三、实验内容(包含参数取值情况)构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,nfunction[S,val]=danchun(A1,C,N)S为最优值;Val为最优解;A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注: 资源向量要大于零);A1=[A+b]C是目标函数的系数向量;C=cN为初始基的下标(注: 请按照顺序输入, 若没有初始基则定义N=[]):先输入A1,C,N三个必要参数,然后调用danchun(A,C,N)进行求解。
在此函数中,首先判断N的长度是否为空,若为空,则flag=1, 进入初始解问题的迭代求值,添加辅助问题, 构建单纯形表, 求g所对应的RHS值,若其>0,则返回该问题无解若其=0, 则返回A1,Z,N三个参数, 继续构造单纯形表求解A1为经过变换后的系数及资源向量Z为单纯形表的第一行N为经过辅助问题求解之后的基的下标否则,直接构建单纯形表, 对该问题进行求解, 此时flag=2,多次迭代后找到解。
另外,若在大于零的检验数所对应的系数均小于零时, 会显示“此问题无界”若找到最优解和最优值时, 会输出“val”和“S=”以及具体数值。
四、源程序function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵Z=gC;G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数, 将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数, 将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endendG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数, 将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4 s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4例2: 初始解问题Min z=5x1+21x3 s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1 xj>=0,j=1,…,5六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型, 并用你自己的单纯形算法程序进行计算, 最后给出计算结果。
运筹学实验报告
目录实验一线性规划求解(1)实验二线性规划求解(2)实验三线性规划建模求解(1)实验四线性规划建模求解(2)实验五运输问题实验六 LINOG软件的初步使用实验一线性规划求解(1)实验属性:验证性实验时间:2013-6-29 实验目的1.理解线性规划解的基本概念;2.掌握管理运筹学软件的使用方法;3. 掌握线性规划的求解原理和方法。
实验内容1.认真阅读下列各题,注意每个问题的特征;2.用本书附带的《管理运筹学软件》求解下列问题,并记录结果;(对照书第3章有关软件的介绍理解计算结果的相关解释,要求包含全部运算结果及相关的敏感性分析结果)3.对结果作适当分析(与图解对比);4.完成实验报告。
(如有余力,以该软件做一下课后题,对单纯形法相对照)实验步骤(1) max z=6x1+4x2s.t. 2x1+x2<=10x1+x2<=8x1,x2>=0(2) max z=50x1+30x2 s.t. 4x1+3x2<=120 2x1+x2<=50x1,x2>=0(3) max z=x1+x2 s.t. x1+2x2<=4 x1-2x2>=5x1,x2>=0(4) max z=2x1+x2 s.t. x1+x2>=2 x1-2x2<=0x1,x2>=0(5) max z=40x1+30x2 s.t. 4x1+3x2<=1202x1+x2<50x1,x2>=0(6) min z=x1+x2+x3+x4+x5+x6 s.t. x1+x6>=60x1+x2>=70x2+x3>=60 x3+x4>=50 x4+x5>=20 x5+x6>=30 x1,…x6>=0实验结果分析线性规划问题的结果输出部分增加了线性规划的逐步运算过程。
更易了解掌握线性规划计算的全过程。
在本实验过程中,线性规划软件不仅可以输出正确的结果,还能同时得到目标函数最优值、松弛变量、对偶价格、目标函数系数范围和常数项范围。
运筹学实验报告_2
运筹学上机实验报告
5.用指令 linprog()实现 page 48 例 10
6. 用指令 linprog()实现 page 48 例 11
三、程序流程图: 1.用指令 linprog() 实现 page 15
f=-[2,3]'; a=[1,2;4,0;0,4]; b=[8,16,12]'; lb=[0,0]'; [x,fval,ex]=linprog(f ,a,b,[],[],lb,[])
2.用指令 linprog() 实现 page18 无穷多最优解
if exitflag==-3 fprintf('该线性规划为无界解')
end
4. 用指令 linprog()实现 page18 无可行解
f=-[1,1]'; a=[-2,1;1,-1]; b=[0,0]'; [x,fval,exitflag]=linprog(f,a,b,[],[],lb,[ ])
所e述xi问tf题la无g 可= 行解 5.用指-2令 linprog()实现 page 48 例 10
x=
2.5470 0.0000 0.0000 0.0000 0.0000
fval =
1.0043e-011
6. 用指令 linprog()实现 page 48 例 11
x=
100.0000 50.0000 50.0000
0.0000 0.0000 0.0000 0.0000 25.0000 0.0000
运筹学实训实验报告
一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。
随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。
为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。
二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。
三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。
2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。
3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。
4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。
四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。
(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。
(3)求解:运用Excel规划求解器求解最优解。
2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。
(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。
(3)求解:运用Lingo软件求解最优解。
3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。
(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。
运筹学综合性实验报告
ni 200 ( xi1 xi 2 ) 2 x ik 0, i 1,2,3,4,5,6; k 1,2
(二)用 LINGO 中来求解线性规划问题 打开 LINGO,创建一个新文件,输入以下代码[备注:其中@gin 中是对变量进行整数约束] :
max=30*(y1+y2+y3+y4+y5+y6)-1500*(p1+p2+p3+p4+p5+p6)-1000*(d1+d2+d3+d4+d5+d6)-5*(kc 1+kc2+kc3+kc4+kc5+kc6)-2000*(x1+x2+x3+x4+x5+x6); x0=4; p1-d1=x1-x0; p2-d2=x2-x1; p3-d3=x3-x2; p4-d4=x4-x3; p5-d5=x5-x4; p6-d6=x6-x5; kc0=0; kc1=y1+kc0-500; kc2=y2+kc1-600; kc3=y3+kc2-300; kc4=y4+kc3-400; kc5=y5+kc4-500; kc6=y6+kc5-800; y1<=100*x1;y2<=100*x2;y3<=100*x3;y4<=100*x4;y5<=100*x5;y6<=100*x6;y1+y2+y3+y4+y5+y 6<=3100; @gin(y1);@gin(y2);@gin(y3);@gin(y4);@gin(y5);@gin(y6);@gin(x1);@gin(x2);@gin(x3);@ gin(x4);@gin(x5);@gin(x6);
运筹学实践报告
运筹学实践报告
运筹学是一门涉及数学、统计学和计算机科学等多学科的学科,其目的在于优化决策和资源利用。
本次实践报告将介绍我们在一家生产型企业中应用运筹学的情况。
首先,我们通过对企业生产线的调研,发现了一些生产效率低下的问题。
我们使用线性规划模型对生产过程进行建模,优化了生产线的安排和人员的调配。
这些优化方案使得工厂的生产率提高了20%,经济效益明显。
其次,我们使用模拟方法对企业的库存管理进行优化。
我们建立了一个模拟模型来模拟不同库存管理策略的效果。
结果显示,采用合适的库存管理策略可以减少库存的数量和成本,并且可以提高生产效率。
最后,我们使用了运输问题来解决企业的物流问题。
我们使用整数规划方法来优化企业的货物运输方案,并确定了最优的运输路径和运输量。
我们的运输方案不仅降低了企业的运输成本,而且还提高了整体的运输效率。
在这份实践报告中,我们介绍了运筹学在生产、库存管理和物流等方面的应用。
这些优化方案通过数学建模和计算机模拟,帮助企业更好地利用资源,提高生产效率和经济效益。
- 1 -。
运筹学线性规划方案实验报告
运筹学线性规划方案实验报告一早起床,我就知道今天要写一份运筹学线性规划方案实验报告。
这个题目听起来就有点头疼,不过没关系,我已经有10年的方案写作经验了,这就好比家常便饭,慢慢来,一点一点梳理。
得给这个实验报告起个响亮的名字,我已经想好了——“最优解寻迹之旅”。
咱们就直接进入主题吧。
1.实验背景这次实验的背景是我国一家生产多种产品的企业。
这家企业生产的产品有A、B、C三种,分别需要经过甲、乙、丙三个车间进行加工。
每个车间都有一定的生产能力和生产成本,而企业的目标是最大化利润。
这就需要我们运用线性规划的方法,找出最优的生产方案。
2.实验目的本次实验的目的就是通过线性规划方法,为企业制定出最优的生产方案,使得企业在现有的生产条件下,实现利润最大化。
3.实验方法线性规划,听起来高大上,其实原理很简单。
就是用一组线性方程,来描述各种约束条件,然后找到一个目标函数,使得这个目标函数在满足约束条件的情况下达到最大值或最小值。
甲车间:A产品需要1小时,B产品需要2小时,C产品需要3小时,总时间为8小时;乙车间:A产品需要2小时,B产品需要1小时,C产品需要2小时,总时间为10小时;丙车间:A产品需要3小时,B产品需要2小时,C产品需要1小时,总时间为12小时。
然后,我们需要确定目标函数。
企业的目标是最大化利润,所以我们的目标函数就是:f(A,B,C)=10A+15B+20C其中,A、B、C分别表示三种产品的产量。
就是求解这个线性规划问题。
我们可以使用单纯形法、内点法等算法求解。
这里,我们选择使用单纯形法。
4.实验步骤(1)列出约束条件方程组;(2)确定目标函数;(3)使用单纯形法求解线性规划问题;(4)分析求解结果,确定最优生产方案。
5.实验结果A产品产量:4件B产品产量:3件C产品产量:2件将这个结果代入目标函数,我们可以得到最大利润为:f(4,3,2)=104+153+202=110所以,最优生产方案是生产4件A产品、3件B产品和2件C产品,最大利润为110。
运筹学实验报告(一)线性规划问题的计算机求解-(1)
运筹学实验报告(一)线性规划问题的计算机求解-(1)-CAL-FENGHAI.-(YICAI)-Company One1运筹学实验报告实验课程:运筹学实验日期: 任课教师:王挺第五种方案0 3 0 0第六种方案0 1 1 3第七种方案0 0 2 1设:第i种方案需要的钢管为Xi根(其中i=1,2...6),可得:minz=X1+X2+X3+X4+X5+X6+X7解:model:min= X1+X2+X3+X4+X5+X6+X7;3*X1+2*X2+2*X3+X4>=100;X2+2*X4+3*X5+X6>=150;X3+X6+2*X7>=120;endObjective value: 135.0000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX1 0.000000 0.2500000X2 0.000000 0.1666667X3 50.00000 0.000000X4 0.000000 0.8333333E-01X5 50.00000 0.000000X6 0.000000 0.1666667X7 35.00000 0.0000004人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
班次时间所需人数班次时间所需人数1 6:00~10:00 60 4 18:00~22:00 502 10:00~14:00 70 5 22:00~2:00 203 14:00~18:00 60 6 2:00~6:00 30设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?5投资计划问题某地区在今后三年内有四种投资机会,第一种是在3年内每年年初投资,年底可获利润20%,并可将本金收回。
最新运筹学实践报告加工问题的(优质5篇)
最新运筹学实践报告加工问题的(优质5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!最新运筹学实践报告加工问题的(优质5篇)“报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以取得上级领导部门的指导。
运筹学最大流问题实验报告
运筹学最大流问题实验报告一、实验目的1. 学习最大流问题的基本概念。
2. 掌握最大流问题的求解算法。
3. 通过程序模拟求解,加深对最大流问题的理解。
二、实验原理最大流问题是在一个有向图中,给定一条源点到汇点的路径以及每一条边的最大容量,求最大流量的问题。
在网络流中,每个有向边都表示一定的流量,其中每个边的构成是(开始节点,结束节点,最大容量)。
最大流问题通常使用增广路算法或Ford-Fulkerson算法来求解。
1.增广路算法增广路算法是一种贪心算法。
该算法不断寻找一条增广路,并将增广路中的最小流量分配给这条增广路的每一条边。
当不存在增广路时,算法结束,返回最大流量。
2.Ford-Fulkerson算法Ford-Fulkerson算法是一种经典的解法,它是基于增广路径的算法。
但是这种算法是暴力寻求增广路径,时间复杂度较高。
需要借助一个可行函数,用来判断剩余网络中是否还有增广路。
一个网络的可行函数应该满足:当且仅当所有的边都满足限制的时候,可行函数有唯一最大值。
可行函数常常构建为距离标号(下面会讲到)。
三、实验步骤使用Python语言,实现最大流问题的求解算法。
算法采用增广路算法。
1. 构建有向图,每个节点可以表示为一个数字。
源点的编号为0,汇点的编号为N-1。
有向边的构成是(开始节点,结束节点,最大容量)。
2. 实现BFS广度优先搜索算法寻找增广路径。
3. 实现对路径上节点的最小流量计算并更新网络。
4. 不断循环执行2、3步骤,直到不存在增广路径为止。
5. 输出最大流量。
四、实验结果下面是一个简单的实例,以验证程序的正确性。
在这个网络中,从源点0到汇点5,可以有两条不同路径:0→1→2→4→5和0→1→3→4→5。
这两条路径中,最小容量的路径是第一条,容量为3。
在执行完毕后,程序输出了最大流量为3。
五、实验结论通过本实验,我们学习了最大流问题的基本概念,掌握了最大流问题的求解算法,并且通过程序模拟成功地求解了一个基本问题,加深了对最大流问题的理解。
运筹学实验报告
运筹学实验报告运筹学实验报告2实验内容:线性规划问题的建模和求解。
“炼油厂生产计划安排”,“长征医院的护士值班计划”两题目任选其一,每个小组最多3名同学,共同完成实验报告。
一、问题提出长征医院是长宁市的一所区级医院,该院每天各时间区段内需求的值班护士数如表1所示.该医院护士上班分五个班次,每班8h,具体上班时间为第一班2:00~10:00,第二班6:00~14:00,第三班10:00~18:00,第四班14:00~22:00,第五班18:00~2:00(次日).每名护士每周上5个班,并被安排在不同日子,有一名总护士长负责护士的值班安排计划.值班方案要做到在人员或经济上比较节省,又做到尽可能合情合理.下面是一些正在考虑中的值班方案:方案1 每名护士连续上班5天,休息2天,并从上班第一天起按从上第一班到第五班顺序安排.例如第一名护士从周一开始上班,则她于周一上第一班,周二上第二班,……,周五上第五班;另一名护士若从周三起上班,则她于周三上第一班,周四上第二班,……,周日上第五班,等等.方案2 考虑到按上述方案中每名护士在周末(周六、周日)两天内休息安排不均匀.于是规定每名护士在周六、周日两天内安排一天、且只安排一天休息,再在周一至周五期间安排4个班,同样上班的五天内分别顺序安排5个不同班次.在对第1、2方案建立线性规划模型并求解后,发现方案2虽然在安排周末休息上比较合理,但所需值班人数要比第1方案有较多增加,经济上不太合算,于是又提出了第3方案.方案3 在方案2基础上,动员一部分护士放弃周末休息,即每周在周一至周五间由总护士长给安排三天值班,加周六周日共上五个班,同样五个班分别安排不同班次.作为奖励,规定放弃周末休息的护士,其工资和奖金总额比其他护士增加a%.根据上述,帮助长征医院的总护士长分析研究:(x)对方案1、2建立使值班护士人数为最少的线性规划模型并求解;(b)对方案3,同样建立使值班护士人数为最少的线性规划模型并求解,然后回答a的值为多大时,第3方案较第2方案更经济;二、问题简述从该医院各时间段护士值班表可看出:五个时间段所需护士人数分别为18,20,19,17,12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
运筹学
学号:100103155
姓名:周李斌
专业:工业工程
指导教师:周三玲
二○一一年六月
运筹学(一)
实验报告
一、实验目的:
1)熟练掌握运筹学软件的相关操作
2)学会使用软件求解运筹学中常见的数学模型,如线性规划问题、运输问题、目标规划问题、最短路问题、最大流问题等等
3)了解线性规划问题在Excel中如何建立,主要是数据单元格、输出单元格、可变单元格和目标单元格的定义以及规划求解宏定义应用设置。
4)熟练掌握Excel规划求解宏定义模块使用。
二、实验仪器设备及材料
计算机、Excel软件
三、实验任务:
Ⅰ、线性规划
Ⅱ、目标规划
Ⅲ、运输问题
Ⅳ、最短路问题
Ⅴ、最大流问题
四、实验内容记录:
问题1模型:
Min z = -2X1-X2+3X3-5X4
s.t. X1+2X2+4X3-X4<=6
2X1+3X2-X3+X4<=12
X1+ X3+X4<=4
X1,X2,X3,X4>=0
实验步骤:
1.建立问题模型如图所示:
2.加载宏,用规划求解来计算
3.结果分析:
问题2模型:
min z= P1d1-+P2d2++P3(5d3-+3d4-)+P4d1+ s.t. x1+x2+d1--d1+=80
x1+x2+d2--d2+=90
x1+x2+d3--d3+=70
x1+x2+d4--d4+=45
x1,x2,d i-,d i+≥0,i=1,2,3,4 实验步骤:
1.建立问题模型如图所示:
2.加载宏,用规划求解来计算
3.结果分析
问题3模型:求运输问题最优解
实验步骤:
1.建立问题模型如图所示:
2.加载宏,用规划求解来计算
3.结果分析
问题4模型:求V1到各点的最短路
2
V2 V3
2 3 4 6
1 6
V1 V5 V6 V4
3 4 3 7
V7 V8
1
实验步骤:
1.建立问题模型如图所示:
2.加载宏,用规划求解来计算
3.结果分析
得到f(v1,v8)=10,其余结果,方法同上。
问题5:求网络最大流
V1 (1,1) V4
(4,3) (3,2) (4,3 ) (7,6)
Vs (3,2) V3 (2,2) Vt (10,4) (3,2) (5,3) (8,3)
V2 (4,2) V5
实验步骤:
1.建立问题模型如图所示:
2.加载宏,用规划求解来计算
3.结果分析
得最大流为V(f)=11,此时S=(Vs,V2),S=(V1,V3,V4,V5,Vf)
实验总结(或心得体会)
“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。
”这是对运筹学大体描述,通过本次的实验,运筹学的计算方法可以借用计算机来完成,而且比较方便快捷。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或
者根本无法用线性规划解决。
那么我们就要寻找别的理论方法来解决问题。
通过对运筹学的学习我
掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。
运筹学对我们以后的生活也讲有不小的影响,将运筹学运用到实际问题上去,学以致用。