数学建模试题

合集下载

2023年高教社杯数学建模试题

2023年高教社杯数学建模试题

2023年高教社杯数学建模试题1. 题目:一家快递公司希望优化其送货路线以降低成本。

他们有一个仓库和10个送货点,需要找出从仓库出发,经过所有送货点并最终返回仓库的最短路线。

答案:这是一个旅行商问题(TSP),可以使用动态规划、遗传算法、模拟退火等方法进行求解。

2. 题目:一个城市有100个交通路口,每个路口的交通流量不同。

如何设置交通信号灯的时间,使得城市的总交通延误最小?答案:可以使用整数线性规划(ILP)或者模拟方法来解决这个问题。

3. 题目:一家电力公司需要预测未来一周的电力需求。

他们拥有过去几年的电力需求数据,以及天气、温度等相关数据。

如何建立一个预测模型?答案:可以使用时间序列分析、线性回归、支持向量机(SVM)、神经网络等方法进行预测。

4. 题目:一家电商公司希望通过分析用户的购买行为来提供个性化的推荐。

他们拥有用户的购买历史、浏览历史、搜索历史等数据。

如何建立一个推荐系统?答案:可以使用协同过滤、内容过滤、深度学习等方法进行推荐。

5. 题目:一家银行希望评估其贷款申请人的信用风险。

他们拥有申请人的个人信息、财务信息、信用历史等数据。

如何建立一个信用评分模型?答案:可以使用逻辑回归、决策树、随机森林、神经网络等方法进行信用评分。

6. 题目:一个生态系统中有多个物种,每个物种的数量受到其他物种的影响。

如何建立一个模型来描述这个生态系统的动态变化?答案:可以使用微分方程、差分方程、系统动力学等方法进行建模。

7. 题目:一家医院希望优化其手术室的调度计划,以最大化手术室的利用率并减少患者的等待时间。

他们拥有手术的时间、类型、医生等信息。

如何建立一个调度模型?答案:可以使用整数规划、遗传算法、启发式方法等方法进行建模和优化。

8. 题目:一家制造公司希望优化其生产线的布局,以最小化物料搬运成本和最大化生产效率。

他们拥有生产线的设备、物料搬运距离等信息。

如何建立一个布局优化模型?答案:可以使用设施布局优化方法,如SLP(Systematic Layout Planning)方法进行建模和优化。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

数学建模试题及答案

数学建模试题及答案

1. 食品厂用三种原料生产两种糖果,糖果的成分要求和销售价见表1。

各种原料的可供量和成本见表2。

该厂根据订单至少需要生产600公斤高级奶糖,800公斤水果糖,为求最大利润,试建立线性规划模型并求解。

2.某商业公司计划开办5家新商店。

为了尽早建成营业,商业公司决定由5家建筑公司分别承建。

已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。

商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?
3.求解下列方程的三个实根
x x 24=
提示:首先在21≤≤-x 和172≤≤x 两个不同区域中绘制函数图形。

4\.求图1所示网络中s v 到t v 的最短路径及长度。

2
v 5
t
图1 网络图
5.某商业公司计划开办5家新商店。

为了尽早建成营业,商业公司决定由5家建筑公司分别承建。

已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。

商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?。

2023数学建模赛题

2023数学建模赛题

有关“数学建模”的赛题
数学建模赛题通常涉及到各种实际问题,需要通过建立数学模型进行解决。

有关“数学建模”的赛题如下:
1.人口预测问题:给定历史人口数据,要求预测未来人口数量和年龄结构。

2.传染病传播问题:给定传染病传播的参数和初始感染人数,要求预测疾病传播的趋势
和影响。

3.物流优化问题:给定运输网络和货物需求,要求设计最优的运输方案,降低运输成
本。

4.金融风险管理问题:给定投资组合和风险因子,要求评估投资组合的风险和回报,制
定最优投资策略。

5.生产计划问题:给定市场需求和生产成本,要求制定最优的生产计划,满足市场需求
并实现利润最大化。

6.资源分配问题:给定有限资源的数量和各种需求,要求分配资源以满足需求,并实现
资源利用的最大化。

7.交通运输问题:给定运输网络和货物需求,要求设计最优的运输方案,提高运输效率
并降低成本。

8.环境保护问题:给定环境污染数据和环境质量标准,要求制定最优的环境治理方案,
改善环境质量。

数学建模考核试题

数学建模考核试题

数学建模考核试题试题说明部分:(3)将打印稿交至5号楼(卫生所)202。

截止日期:2022年6月10日。

(4)列出模型的关键假设;列清主要符号、变量及其含义;列清主要步骤及模型;尽可能使用计算机软件给出计算结果,包括计算结果的图形展示。

(5)友情提醒:鼓励相互讨论,但不允许抄袭他人结果,凡是雷同答卷均按无效处理。

试题部分1、汽车刹车距离问题(15分)附表的数据展示了一辆汽车的速率n(以5英里/小时的增量计)以及从刹车到停止的(滑行)距离an,例如,n6(表示6某5=30英里/小时)时所需的停止距离为a647ft.(a)计算并画出变化an对n的图形,该图形能合理地近似表示一种线性关系么(b)根据你在(a)中的计算,对停止距离数据求一个差分方程模型,通过画出与n相对应的预测值的误差来测试你的模型,讨论模型的正确性.n12345678an36112132476587n910111213141516an11214017120424128 23253762、斑点猫头鹰与老鼠的食物链问题(20分)Mn11.2Mn0.001OnMnOn10.7On0.002OnMn生态学家想知道在栖息地里两个种群能否共存以及结果是否对起始种群量敏感.(a)比较上面模型中系数的正负号和例3中模型系数的正负号.依次解释四个系数1.2,-0.001,0.7,0.002的正负号的意义.(b)对下表中的初始种群量进行检验并预测其长期行为:情形1情形2情形3情形4猫头鹰O015015010010老鼠M0200300200202(c)用不同的系数来做实验.然后再用不同的起始值.什么是其长期行为你的实验结果是否表明模型对(1)系数;(2)起始值是敏感的呢3、产品包装问题(20分)市场上有多种品牌的易拉罐型饮料,它们的容积都是355ml,虽然品牌不同,但是外包装尺寸(易拉罐的高与底面直径的比值)却都是一样的,请提出合理的假设,利用数学模型,定量地解释这一现象。

数学建模试题

数学建模试题

一、填空题(2’*8=16’) 1.对于人口模型0()t x t x e λ=,当t →∞时,人口变化趋势是()。

2.数学建模方法相结合,可以用()建立模型结构,用()确定模型参数。

3.传染病模型中,设λ为日接触率,μ为日治愈率,则/λμ表示()。

4.若线性回归模型的2R 统计量的值为0.98,F 统计量为206,则该模型()(线性显著、线性不显著)。

5.对于经济批量订购公式T Q rT ===若订购费1c 增加,则订购周期和订购量的变化趋势是()。

6.变量123,,x x x 与y 之间的多元线性回归模型为()。

7.对于模型1max ,nj j j Z c x ==∑1,1,2,...,,0,1,2,...,nij j i j ja xb i mx j n=⎧≤=⎪⎨⎪≥=⎩∑变量1x 的价值系数为( )。

8.二维线性规划问题的可行域若存在,则一定为( )。

二、判断题(2*6’=12’)9.线性规划问题12max 2,Z x x =+212121,251562245,0x x x x x x x ⎧≤⎪+≤⎨⎪+≤≥⎩的最优解为*7/2,3/2x ⎛⎫= ⎪⎝⎭若三个约束分别代表A 、B 、C 三种资源,则哪种资源的影子价格为0?那种资源在生产中已耗费完毕?那种资源未得到充分利用? 10.“生猪出售时机”模型中,(1)第t 天生猪体重函数为w(t)=w(0)+rt 时,表示体重变化趋势是什么?(2)体重函数为0()(0)/[(0)()]at m m w t w w w w w e -=+-时,表示体重变化趋势是什么?(3)哪个函数更符合实际? 三、模型分析题(2*6’=12’) 11.物体在时刻t 的温度为().xx t =在常温A 下,假设物体温度对时间的变化率与物体温度和周围温度之差成正比。

比例系数为k>0.(1)建立数学模型。

(2)在初始条件00()x t x =下,求平衡点。

数学建模试题

数学建模试题
二、选择题
1、反映某种股票的涨跌情况,最好选择( )
A、条形统计图 B、折线统汁 C、扇形统计圈
2、用15克盐配制成含盐率为5%的盐水,需加水多少克?正确的列式是( )
A、(15-155%)5% B、15×5%-15
C、15÷5%+15
D、15÷5%-15
3、甲筐苹果16千克,乙筐苹果20千克,从乙筐取一部分放入甲管,使甲筐增加(
等于自然数__________的平方.
2、
EMBED Equation.DSMT4
, EMBED Equation.DSMT4
试比较a与b的大


3、甲、乙两数的最大公约数是75,最小公倍数是450.若它们 的差最小,则两个数为______和______. 4、小虎在计算算式399+(3417-口)17时,由于没有注意到括号, 所以计算出来的结果是3737,那么这个算式的正确结果应该是 ___________. 5、已知小强比小刚早出生6年,今年小强的年龄是小刚年龄的2 倍少3岁,那么两人今年的年龄之和是________岁。 6 、 某 班 有 49 名 同 学 , 其 中 男 同 学 的 EMBED Equation.DSMT4 和女同学的 EMBED Equation.DSMT4 参加了数学小组,那么这 个班中没有参加数学 小组的同学有_______名。
8、客车和货车分别从甲、乙两地出发相向而行。如果两车出发的时间都是6:00,那么它们 在11:00相遇;如果客车和货车分别于7:00和8:00出发,那么它们在12:40相遇。现在,客车 和货车出发的时间分别是10:00和8:00,则它们相遇的时间是____。(本题中所述的时间均为 同一天,采用24小时制计法。)
(2)桌子上有8枚棋子,甲乙二人轮流拿棋子。规定先拿的只要不都拿走,拿几枚都成,后 拿者不能多于先拿的2倍,如此进行下去,谁拿最后一枚棋子谁就算胜利。请你回答,怎样 拿必然取胜,为什么?

数学建模期末考试试题

数学建模期末考试试题

数学建模期末考试试题# 数学建模期末考试试题## 第一部分:选择题### 题目1在数学建模中,以下哪个选项不是模型的组成部分?A) 假设B) 目标C) 约束条件D) 计算工具### 题目2以下哪个是线性规划问题的一个特征?A) 目标函数和约束条件都是非线性的B) 目标函数和约束条件都是线性的C) 目标函数是线性的,约束条件是非线性的D) 目标函数是非线性的,约束条件是线性的### 题目3在数学建模中,敏感性分析的主要目的是什么?A) 确定模型的最优解B) 评估模型参数变化对结果的影响C) 简化模型结构D) 确定模型的稳定性## 第二部分:简答题简述数学建模中模型的校验过程。

### 题目2解释什么是多目标优化问题,并给出一个实际应用的例子。

### 题目3在进行数学建模时,为什么需要对模型进行敏感性分析?请说明其重要性。

## 第三部分:应用题### 题目1假设你被要求为一家工厂设计一个生产调度模型。

工厂有三种产品A、B和C,每种产品都需要经过三个不同的生产阶段:加工、装配和包装。

每个阶段的机器数量有限,且每种产品在每个阶段所需的时间不同。

请建立一个线性规划模型来最大化工厂的日利润。

### 题目2考虑一个城市交通流量的优化问题。

城市有多个交叉路口,每个交叉路口在不同时间段的交通流量是不同的。

如何建立一个数学模型来预测交通流量,并提出减少交通拥堵的策略?### 题目3一个公司想要评估其产品在市场上的竞争力。

公司有多个产品,每个产品都有不同的成本和利润率。

同时,公司需要考虑市场需求和竞争对手的情况。

请为该公司设计一个多目标优化模型,以确定最优的产品组合和市场策略。

## 第四部分:论文题选择一个你感兴趣的实际问题,建立一个数学模型来解决这个问题。

请详细描述你的建模过程,包括问题的定义、模型的假设、模型的建立、求解方法以及模型的验证。

### 题目2在数学建模中,模型的可解释性是一个重要的考虑因素。

请讨论模型可解释性的重要性,并给出一个例子来说明你的观点。

数学建模模拟试题及答案

数学建模模拟试题及答案

数学建模模拟试题及答案一、填空题(每题5分,共20分) 1。

若,,x z z y ∝∝则y 与x 的函数关系是.2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .3。

马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.二、分析判断题(每小题15分,满分30分)1。

要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2。

一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)ml /mg (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆-=-∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分)1。

一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位。

试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由。

(2) 原材料的利用情况。

2。

三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表。

2023年全国数学建模竞赛赛试题

2023年全国数学建模竞赛赛试题

2023年全国数学建模竞赛赛试题一、选择题(每题3分,共30分)下列运算正确的是( )A. 3a + 2b = 5abB. a6÷a2=a3C. (a+b)2=a2+b2D. a3⋅a2=a5下列函数中,是正比例函数的是( )A. y=2xB. y=2x+1C. y=x1D. y=x2下列调查方式中,最适合采用全面调查(普查)的是( )A. 对重庆市中学生每天学习所用时间的调查B. 对端午节期间市场上粽子质量情况的调查C. 对某校七年级(1)班学生视力情况的调查D. 对“神舟十二号”飞船零部件安全性能的检查下列几何体中,主视图是三角形的是_______。

下列说法正确的是_______。

A. 有理数就是有限小数和无限小数的统称B. 一个数的绝对值等于它本身,则这个数是正数C. 数轴上的点仅能表示整数D. 两个数互为相反数,则它们的和为零下列计算正确的是_______。

下列事件中,是必然事件的是_______。

下列各组线段中,能组成三角形的是_______。

若分式x−1x2−1 的值为零,则 x 的值为_______。

在平面直角坐标系中,点P(−2,3)关于 y 轴对称的点的坐标是_______。

二、填空题(每题3分,共18分)若∣x−3∣=5,则 x= _______。

多项式2x2y−3xy+5是_______ 次_______ 项式。

计算:(−a2)3= _______。

若关于 x 的方程 2x+m=3 的解是正数,则 m 的取值范围是_______。

已知一个圆锥的底面半径为 3cm,母线长为 5cm,则这个圆锥的侧面积为_______ cm2。

在平面直角坐标系中,点 A(2,0),点 B(0,4),以原点 O 为位似中心,相似比为 21,把线段 AB 缩小,则点 A 的对应点A′的坐标为_______。

三、解答题(共72分)(8分)解下列方程:(1)3(x−2)+x=4(x−1);(2)32x−1−610x+1=1。

数学建模试题(带答案)大全

数学建模试题(带答案)大全

(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0

bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2

历年数学建模题目

历年数学建模题目

历年数学建模题目
以下是部分历年的数学建模题目:
1. 1992年:施肥效果分析问题、实验数据分解问题。

2. 1993年:非线性交调的频率设计问题、足球排名次问题。

3. 1994年:逢山开路问题、锁具装箱问题。

4. 2002年:车灯线光源的优化设计、彩票中的数学、车灯线光源的计算(大专组)、赛程安排(大专组)。

5. 2003年:SARS的传播、露天矿生产的车辆安排、奥运会临时超市网点设计、电力市场的输电阻塞管理、饮酒驾车、公务员招聘。

6. 2005年:出版社的资源配置、艾滋病疗法的评价及疗效的预测、易拉罐形状和尺寸的最优设计、煤矿瓦斯和煤尘的监测与控制。

7. 2008年:数码相机定位、高等教育学费标准探讨、地面搜索、NBA赛程的分析与评价。

8. 2009年:制动器试验台的控制方法分析、眼科病床的合理安排、卫星和飞船的跟踪测控、会议筹备。

以上信息仅供参考,如需历年数学建模题目,建议查阅数学建模论坛或相关网站获取。

小学数学建模试题及答案

小学数学建模试题及答案

小学数学建模试题及答案
一、选择题
1. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?
A. 50
B. 100
C. 150
D. 200
答案:B
2. 一个班级有40名学生,其中男生人数是女生人数的两倍,那么这个班级有多少名男生?
A. 16
B. 20
C. 24
D. 28
答案:C
二、填空题
3. 如果一个数乘以3后再加上5等于22,那么这个数是______。

答案:5
4. 一个数的一半加上3等于9,那么这个数是______。

答案:12
三、解答题
5. 一个水池,每天注入水量是前一天的两倍,第一天注入了1升水。

请问第五天注入了多少升水?
答案:第五天注入了32升水。

6. 小明有若干个苹果,他给小华一半,然后又给小华两个,最后自己剩下3个。

问小明最初有多少个苹果?
答案:小明最初有10个苹果。

四、应用题
7. 一个农场有鸡和兔子共35只,脚的总数是94只。

问农场上有多少只鸡和多少只兔子?
答案:农场上有23只鸡和12只兔子。

8. 一个水果店早上卖出了苹果和橘子共100个,其中苹果的数量是橘子的两倍。

问水果店早上卖出了多少个苹果和橘子?
答案:水果店早上卖出了66个苹果和34个橘子。

全国数学建模大赛题目

全国数学建模大赛题目

全国数学建模大赛题目
题目一:城市交通优化方案
某城市的交通状况日益拥堵,为了解决交通问题,需要制定一个交通优化方案。

假设该城市的道路网络呈现网状结构,拥有多个交叉口和道路,每个交叉口都有多个入口和出口道路。

现在需要你们设计一个算法,以找到最优的交通优化方案,使得城市的车辆数最小化,同时满足交通流量平衡和道路容量约束。

题目二:无人机配送路径规划
某公司使用无人机进行货物配送,无人机需要从指定的起点出发,依次经过多个目标点进行货物的投放,最后返回起点。

每个目标点有不同的货物量和不同的时间窗限制。

现在需要你们设计一个路径规划算法,以最小化无人机在配送过程中的总飞行距离,同时满足货物量和时间窗的要求。

题目三:自然灾害预测与应急响应
某地区常常受到洪水的威胁,为了及时应对洪水灾害,需要建立一个洪水预测和应急响应系统。

现有该地区多个监测站点,能够实时测量水位、降雨量等数据,并预测洪水的发生时间和范围。

现在需要你们设计一个预测模型,以准确预测洪水的发生时间和范围,并制定相应的应急响应措施,以最大程度地减少洪灾对人民生命和财产的威胁。

题目四:物流中心选址与配送路径规划
某公司计划在某区域新建一个物流中心,以提高货物配送的效率。

现在需要你们选取一个最佳的物流中心位置,并设计一个配送路径规划算法,以最小化货物配送的总距离和成本。

同时,
由于该区域存在不同的道路类型和限制条件,需要考虑不同道路类型的通行能力和限制,以确保货物配送的顺利进行。

2023年数学建模大赛试题

2023年数学建模大赛试题

高考数学试卷一、单选题1.下列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -=2.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=- 3.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =124.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.56.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.307.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞8.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位9.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .10010.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .91011.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .33 D .63二、填空题13.25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩14.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。

数学建模试题及答案

数学建模试题及答案

数学建模试题及答案1.设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ 2分9431+-=+-n n kp p即: kp k p n n 531+-=- 经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑6分0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

10分 2.某植物园的植物基因型为AA 、Aa 、aa ,人们计划用AA 型植物与每种基 因型植物相结合的方案培育后代(遗传方式为常染色体遗传),经过若干代后,这种植物后代的三种基因型分布将出现什么情形?总体趋势如何?依题意设未杂交时aa 、Aa 、AA 的分布分别为000,,a c b ,杂交n 代后分别为an bn cn (向为白分手) 由遗传学原理有:⎪⎪⎪⎩⎪⎪⎪⎨⎧++⋅=⋅++=⋅+⋅+⋅=---------111111111210021000n n n n n n n n n n n n c b a c c b a b c b a a 4分设向量T n n n n c b a x )..(=1-⋅=n n X M x式中 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=12100211000M 递推可得:0X M X n n ⋅=对M 矩阵进行相似对角化后可得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ1000210000 其相似对角阵1111012001-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=p p 从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⋅Λ=-111012001)21(111012001101n n n p p M ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=----1)21(1)21(10)21()21(0001111n n n n nM10101010))21(1())21(1(0)21()21(0b ac c b a b a n n n n n n n ⋅-+⋅-+=++==---- 8分 当∞→n 时,1,0,0→→→n n n c b a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模试题
1、试简要说明数学建模的一般过程或步骤(可以用框图示意)。

(5分)
2、人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少。

(15分)
3、建立不允许缺货的生产销售存贮模型。

设生产速率为常数k ,销售速率为常数r ,k r >。

在每个生产周期T 内,开始的一段时间(0T t T <<)只销售不生产,画出贮存量()q t 的图形。

设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期。

讨论k r >>和k r ≈的情况。

(10分)
4、某公司有6个供货栈(仓库),库存货物总数分别为60,55,51,43,41,52,现有8个客户各要一批货,数量分别为 35,37,22,32,41,32,43,38.各供货栈到8个客户处的单位货物运输价如表1所示(元/每单位)。

试确定各货栈到各客户处的货物调运数量,使总的运输费用最小。

要求用Lingo 求出最优解。

(20分)
5、假设你要购买笔记本电脑,现有ThinkPad X201i (3249-A64)、宏碁(acer )AS7741G-482G75Mnsk 1、惠普(hp )DV3-4127TX 供选,请选择你考虑的因素(如CPU 性能、内存大小、外观等,建议因素以3-5个为宜):
(1)请你用层次分析法给出确定购买电脑的层次结构模型;
(2)并简要介绍运用层次分析法得到该问题最后方案的整个过程;
(3)给出成对比较矩阵A 一致性指标CI 的定义,并指出评价该矩阵在一致性方面是否可以接受的一般标准是什么。

(20分)
注:以上电脑的性能可在 上查找。

6、下图是5位网球选手循环赛的结果。

作为竞赛图,它是双向连通的吗? 找出几条完全路径,用适当方法排出5 位选手的名次。

(20分)
7、甲乙丙三人在购物过程中巧遇,甲购买物品原 价10¥,乙购买物品原价20¥,丙购买物品原价 18¥,甲乙合买26¥、甲丙合买23¥、乙丙合买 34¥,甲乙丙合买35¥,试建立模型分析三人是
否应当合作,如何合作,若合作那么如何出资?(10分)
注:交卷时间6月23日下午14:00 地点:F414 格式要求:8K 试卷纸
3。

相关文档
最新文档