2018届高三立体几何高考真题单元检测答案

合集下载

2018年数学理科高考题分类 真题与模拟题 立体几何

2018年数学理科高考题分类 真题与模拟题 立体几何

G 单元 立体几何G1 空间几何体的结构16.G1,G12[2018·全国卷Ⅱ] 已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为5√15,则该圆锥的侧面积为 .16.40√2π [解析] 设圆锥的底面圆的半径为r ,因为SA 与圆锥底面所成角为45°,所以SA=√2r.由cos ∠ASB=78得sin ∠ASB=√158,所以12SA ·SB ·sin ∠ASB=12×√2r×√2r×√158=5√15,所以r 2=40,所以圆锥的侧面积为√2πr 2=40√2π.G2 空间几何体的三视图和直观图7.G2,G11[2018·全国卷Ⅰ] 某圆柱的高为2,底面周长为16,其三视图如图1-2所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 ( )图1-2A .2√17B .2√5C .3D .27.B [解析] 由三视图可知圆柱表面上的点M ,N 的位置如图1,将圆柱的侧面展开得到图2,在圆柱侧面上,从M 到N 的路径中,最短路径即为侧面展开图中的线段MN ,所以最短路径的长度为MN=√22+42=2√5.3.G2[2018·全国卷Ⅲ] 中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图1-1中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 ( )图1-1图1-23.A[解析] 卯眼的空间立体图如图,同时需要注意在三视图中,看不见的线用虚线表示,故选A.5.G2[2018·北京卷]某四棱锥的三视图如图1-2所示,在此四棱锥的侧面中,直角三角形的个数为()图1-2A.1B.2C.3D.45.C[解析] 由三视图可得该几何体的直观图如图所示,且PD⊥平面ABCD,∴△P AD和△PDC 均为直角三角形.又∵PD⊥AB,AB⊥AD,PD∩AD=D,∴AB⊥平面P AD,∴AB⊥P A,∴△P AB为直角三角形.故选C.3.G2[2018·浙江卷]某几何体的三视图如图1-1所示(单位:cm),则该几何体的体积(单位:cm3)是()图1-1A.2B.4C.6D.83.C[解析] 该几何体为直四棱柱,如图所示,底面是直角梯形,其面积为12×(1+2)×2=3,又四棱柱的高为2,故体积为2×3=6,故选C.G3 平面的基本性质、空间两条直线G4 空间中的平行关系12.G4,G11[2018·全国卷Ⅰ]已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.3√34B.2√33C.3√24D.√3212.A[解析] 平面α与正方体的每条棱所在直线所成的角都相等,只需与过同一顶点的三条棱所成的角相等即可,如图,AP=AR=AQ,则平面PQR与正方体过点A的三条棱所成的角相等.若点E,F,G,H,M,N分别为相应棱的中点,易证得平面EFGHMN平行于平面PQR,且六边形EFGHMN 为正六边形.正方体棱长为1,所以正六边形EFGHMN 的边长为√22,可得此正六边形的面积为3√34,而在四个选项中,选项B,C,D 中的值都小于3√34,所以选A .15.G4,G5[2018·江苏卷] 在平行六面体ABCD - A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ; (2)平面ABB 1A 1⊥平面A 1BC.图1-415.证明:(1)在平行六面体ABCD - A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C.(2)在平行六面体ABCD - A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B.又因为AB 1⊥B 1C 1,BC ∥B 1C 1,所以AB 1⊥BC. 又因为A 1B ∩BC=B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC. 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC.6.G4[2018·浙江卷] 已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.A [解析] 因为m 在平面α外,n 在平面α内,所以若m ∥n ,则m ∥α;反之,若m ∥α,则m 和n 可能平行或异面.故“m ∥n ”是“m ∥α”的充分不必要条件,故选A .G5 空间中的垂直关系18.G5,G11[2018·全国卷Ⅰ] 如图1-4所示,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF . (1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.图1-418.解:(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD. (2)作PH ⊥EF ,垂足为H. 由(1)得,PH ⊥平面ABFD.以H 为坐标原点,HF ⃗⃗⃗⃗⃗ 的方向为y 轴正方向,|BF ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系H - xyz.由(1)可得,DE ⊥PE.又DP=2,DE=1,所以PE=√3.又PF=1,EF=2,故PE ⊥PF , 可得PH=√32,EH=32, 则H (0,0,0),P 0,0,√32,D -1,-32,0,DP ⃗⃗⃗⃗⃗ =1,32,√32,HP ⃗⃗⃗⃗⃗⃗ =0,0,√32为平面ABFD 的法向量.设DP 与平面ABFD 所成的角为θ,则sin θ=HP ⃗⃗⃗⃗⃗⃗ ·DP ⃗⃗⃗⃗⃗⃗ |HP⃗⃗⃗⃗⃗⃗ ||DP ⃗⃗⃗⃗⃗⃗ |=34√3=√34,所以DP 与平面ABFD 所成角的正弦值为√34.20.G5,G11[2018·全国卷Ⅱ] 如图1-4,在三棱锥P-ABC 中,AB=BC=2√2,P A=PB=PC=AC=4,O 为AC 的中点.图1-4(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M-P A-C 为30°,求PC 与平面P AM 所成角的正弦值. 20.解:(1)证明:因为AP=CP=AC=4,O 为AC 的中点,所以OP ⊥AC ,且OP=2√3. 连接OB.因为AB=BC=√22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB=12AC=2.由OP 2+OB 2=PB 2知PO ⊥OB.由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC. (2)如图,以O 为坐标原点,OB ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系O-xyz.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,2√3),AP⃗⃗⃗⃗⃗ =(0,2,2√3).取平面P AC 的法向量OB⃗⃗⃗⃗⃗ =(2,0,0). 设M (a ,2-a ,0)(0<a ≤2),则AM ⃗⃗⃗⃗⃗⃗ =(a ,4-a ,0). 设平面P AM 的法向量为n=(x ,y ,z ).由AP ⃗⃗⃗⃗⃗ ·n=0,AM ⃗⃗⃗⃗⃗⃗ ·n=0得 {2y +2√3z =0,ax +(4-a)y =0,可取n=(√3(a-4),√3a ,-a ), 所以cos <OB ⃗⃗⃗⃗⃗ ,n>=√3(a 2√3(a -4)2+3a 2+a 2.由已知可得|cos <OB⃗⃗⃗⃗⃗ ,n>|=√32, 所以√3|a 222=√32,解得a=-4(舍去),a=43, 所以n=(-8√33,4√33,-43),又PC ⃗⃗⃗⃗⃗ =(0,2,-2√3),所以cos <PC⃗⃗⃗⃗⃗ ,n>=√34, 所以PC 与平面P AM 所成角的正弦值为√34.19.G5[2018·全国卷Ⅲ] 如图1-5,边长为2的正方形ABCD 所在的平面与半圆弧CD ⏜所在平面垂直,M 是CD⏜上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M-ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.图1-519.解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD.因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM.因为M 为CD⏜上异于C ,D 的点,且DC 为直径,所以DM ⊥CM. 又BC ∩CM=C ,所以DM ⊥平面BMC.而DM ⊂平面AMD ,故平面AMD ⊥平面BMC. (2)以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC 体积最大时,M 为CD⏜的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(-2,1,1),AB ⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0).设n=(x ,y ,z )是平面MAB 的法向量,则{n ·AM ⃗⃗⃗⃗⃗⃗ =0,n ·AB ⃗⃗⃗⃗⃗ =0, 即{-2x +y +z =0,2y =0,可取n=(1,0,2).DA ⃗⃗⃗⃗⃗ 是平面MCD 的法向量,因此cos <n ,DA ⃗⃗⃗⃗⃗ >=n ·DA ⃗⃗⃗⃗⃗⃗ |n||DA ⃗⃗⃗⃗⃗⃗ |=√55,sin <n ,DA ⃗⃗⃗⃗⃗ >=2√55. 所以面MAB 与面MCD 所成二面角的正弦值是2√55. 16.G5、G11[2018·北京卷] 如图1-3,在三棱柱ABC - A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB=BC=√5,AC=AA 1=2. (1)求证:AC ⊥平面BEF ;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.图1-3 16.解:(1)证明:在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC,∴AC⊥BE,∴AC⊥平面BEF.(2)由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE⊂平面ABC,∴EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1), ⃗⃗⃗⃗⃗ =(2,0,1),CB⃗⃗⃗⃗ =(1,2,0).∴CD设平面BCD的法向量为n=(a,b,c),∴{n ·CD ⃗⃗⃗⃗⃗=0,n ·CB⃗⃗⃗⃗⃗ =0,∴{2a +c =0,a +2b =0,令a=2,则b=-1,c=-4,∴平面BCD 的一个法向量为n=(2,-1,-4).又∵平面CDC 1的一个法向量为EB ⃗⃗⃗⃗⃗ =(0,2,0), ∴cos <n ,EB⃗⃗⃗⃗⃗ >=n ·EB⃗⃗⃗⃗⃗⃗ |n||EB ⃗⃗⃗⃗⃗⃗ |=-√2121. 由图可得二面角B - CD - C 1为钝二面角,∴二面角B - CD - C 1的余弦值为-√2121. (3)证明:平面BCD 的一个法向量为n=(2,-1,-4).∵G (0,2,1),F (0,0,2),∴GF ⃗⃗⃗⃗ =(0,-2,1),∴n ·GF ⃗⃗⃗⃗ =-2,∴n 与GF ⃗⃗⃗⃗ 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交.17.G5、G10[2018·天津卷] 如图1-4所示,AD ∥BC 且AD=2BC ,AD ⊥CD ,EG ∥AD 且EG=AD ,CD ∥FG 且CD=2FG ,DG ⊥平面ABCD ,DA=DC=DG=2. (1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E - BC - F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.图1-417.解:依题意,可以建立以D 为原点,分别以DA⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DG ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M 0,32,1,N (1,0,2).(1)证明:依题意DC ⃗⃗⃗⃗⃗ =(0,2,0),DE ⃗⃗⃗⃗⃗ =(2,0,2). 设n 0=(x ,y ,z )为平面CDE 的法向量,则{n 0·DC ⃗⃗⃗⃗⃗ =0,n 0·DE⃗⃗⃗⃗⃗ =0,即{2y =0,2x +2z =0,不妨令z=-1,可得n 0=(1,0,-1).又MN ⃗⃗⃗⃗⃗⃗ =1,-32,1,可得MN ⃗⃗⃗⃗⃗⃗ ·n 0=0,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE. (2)依题意,可得BC ⃗⃗⃗⃗ =(-1,0,0),BE ⃗⃗⃗⃗⃗ =(1,-2,2),CF ⃗⃗⃗⃗ =(0,-1,2). 设n=(x ,y ,z )为平面BCE 的法向量,则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-x =0,x -2y +2z =0,不妨令z=1,可得n=(0,1,1).设m=(x ,y ,z )为平面BCF 的法向量,则{m ·BC⃗⃗⃗⃗⃗ =0,m ·CF⃗⃗⃗⃗⃗ =0,即{-x =0,-y +2z =0,不妨令z=1,可得m=(0,2,1). 因此有cos <m ,n>=m ·n|m||n|=3√1010,于是sin <m ,n>=√1010.所以,二面角E - BC - F 的正弦值为√1010.(3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP⃗⃗⃗⃗⃗ =(-1,-2,h ). 易知DC ⃗⃗⃗⃗⃗ =(0,2,0)为平面ADGE 的一个法向量,故|cos <BP ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ ||DC⃗⃗⃗⃗⃗⃗ |=√ℎ+5.由题意,可得ℎ+5=sin 60°=√32,解得h=√33∈[0,2],所以,线段DP 的长为√33.15.G4,G5[2018·江苏卷] 在平行六面体ABCD - A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ; (2)平面ABB 1A 1⊥平面A 1BC.图1-415.证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.19.G5,G11,G12[2018·浙江卷]如图1-3所示,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.图1-3(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.19.解: 方法一:(1)证明:由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB得AB1=A1B1=2√2,所以A1B12+A B12=A A12, 故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC得B1C1=√5,由AB=BC=2,∠ABC=120°得AC=2√3,由CC1⊥AC,得AC1=√13,所以A B12+B1C12=A C12,故AB1⊥B1C1.因此AB1⊥平面A1B1C1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD.由AB 1⊥平面A 1B 1C 1得平面A 1B 1C 1⊥平面ABB 1, 由C 1D ⊥A 1B 1得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21得 cos ∠C 1A 1B 1=√67,sin ∠C 1A 1B 1=7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913. 方法二:(1)证明:如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知,各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1).因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3). 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0得AB 1⊥A 1B 1. 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0得AB 1⊥A 1C 1. 所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的法向量n=(x ,y ,z ). 由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,得{x +√3y =0,2z =0,可取n=(-√3,1,0).所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n>|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ·n||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |·|n|=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913. G6 三垂线定理4.G6[2018·全国卷Ⅲ] 若sin α=13,则cos 2α=( )A .89B .79C .-79D .-894.B [解析] cos 2α=1-2sin 2α=79.G7 棱柱与棱锥11.G7[2018·天津卷] 已知正方体ABCD - A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图1-3所示),则四棱锥M - EFGH 的体积为 .图1-311.112 [解析] 四棱锥M - EFGH 的高为12,底面积为12,故其体积为13×12×12=112.G8 多面体与球10.G8[2018·全国卷Ⅲ] 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为 ( ) A .12√3 B .18√3 C .24√3 D .54√310.B [解析] 由题易知当点D 到平面ABC 的距离最大时,三棱锥D-ABC 的体积最大.∵S △ABC =√34AB 2=9√3,∴AB=6.设△ABC 的中心为M ,由等边三角形的性质得,AM=BM=CM=2√3.设球心为O ,则OA=OB=OC=4,∴OM=√OB 2-BM 2=2,∴点D 到平面ABC 的距离的最大值为OM+4=6.故三棱锥D-ABC 体积的最大值为13×9√3×6=18√3.G9 空间向量及运算G10 空间向量解决线面位置关系17.G5、G10[2018·天津卷] 如图1-4所示,AD ∥BC 且AD=2BC ,AD ⊥CD ,EG ∥AD 且EG=AD ,CD ∥FG 且CD=2FG ,DG ⊥平面ABCD ,DA=DC=DG=2. (1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E - BC - F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.图1-417.解:依题意,可以建立以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DG ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M 0,32,1,N (1,0,2).(1)证明:依题意DC ⃗⃗⃗⃗⃗ =(0,2,0),DE ⃗⃗⃗⃗⃗ =(2,0,2). 设n 0=(x ,y ,z )为平面CDE 的法向量,则{n 0·DC ⃗⃗⃗⃗⃗ =0,n 0·DE⃗⃗⃗⃗⃗ =0,即{2y =0,2x +2z =0,不妨令z=-1,可得n 0=(1,0,-1).又MN ⃗⃗⃗⃗⃗⃗ =1,-32,1,可得MN ⃗⃗⃗⃗⃗⃗ ·n 0=0,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE. (2)依题意,可得BC ⃗⃗⃗⃗ =(-1,0,0),BE ⃗⃗⃗⃗⃗ =(1,-2,2),CF ⃗⃗⃗⃗ =(0,-1,2). 设n=(x ,y ,z )为平面BCE 的法向量,则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-x =0,x -2y +2z =0,不妨令z=1,可得n=(0,1,1).设m=(x ,y ,z )为平面BCF 的法向量,则{m ·BC⃗⃗⃗⃗⃗ =0,m ·CF⃗⃗⃗⃗⃗ =0,即{-x =0,-y +2z =0,不妨令z=1,可得m=(0,2,1). 因此有cos <m ,n>=m ·n|m||n|=3√1010,于是sin <m ,n>=√1010.所以,二面角E - BC - F 的正弦值为√1010.(3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP⃗⃗⃗⃗⃗ =(-1,-2,h ). 易知DC ⃗⃗⃗⃗⃗ =(0,2,0)为平面ADGE 的一个法向量,故|cos <BP ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗⃗||BP⃗⃗⃗⃗⃗⃗ ||DC ⃗⃗⃗⃗⃗⃗ |=2ℎ+5.由题意,可得√ℎ+5=sin 60°=√32,解得h=√33∈[0,2],所以,线段DP 的长为√33.G11 空间角与距离的求法7.G2,G11[2018·全国卷Ⅰ] 某圆柱的高为2,底面周长为16,其三视图如图1-2所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 ( )图1-2A .2√17B .2√5C .3D .27.B [解析] 由三视图可知圆柱表面上的点M ,N 的位置如图1,将圆柱的侧面展开得到图2,在圆柱侧面上,从M 到N 的路径中,最短路径即为侧面展开图中的线段MN ,所以最短路径的长度为MN=√22+42=2√5.12.G4,G11[2018·全国卷Ⅰ] 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 ( )A .3√34B .2√33C .3√24D .√3212.A [解析] 平面α与正方体的每条棱所在直线所成的角都相等,只需与过同一顶点的三条棱所成的角相等即可,如图,AP=AR=AQ ,则平面PQR 与正方体过点A 的三条棱所成的角相等.若点E ,F ,G ,H ,M ,N 分别为相应棱的中点,易证得平面EFGHMN 平行于平面PQR ,且六边形EFGHMN 为正六边形.正方体棱长为1,所以正六边形EFGHMN 的边长为√22,可得此正六边形的面积为3√34,而在四个选项中,选项B,C,D 中的值都小于3√34,所以选A .18.G5,G11[2018·全国卷Ⅰ] 如图1-4所示,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.图1-418.解:(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD. (2)作PH ⊥EF ,垂足为H. 由(1)得,PH ⊥平面ABFD.以H 为坐标原点,HF ⃗⃗⃗⃗⃗ 的方向为y 轴正方向,|BF ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系H - xyz.由(1)可得,DE ⊥PE.又DP=2,DE=1,所以PE=√3.又PF=1,EF=2,故PE ⊥PF , 可得PH=√32,EH=32,则H (0,0,0),P 0,0,√32,D -1,-32,0,DP ⃗⃗⃗⃗⃗ =1,32,√32,HP ⃗⃗⃗⃗⃗⃗ =0,0,√32为平面ABFD 的法向量.设DP 与平面ABFD 所成的角为θ,则sin θ=HP ⃗⃗⃗⃗⃗⃗ ·DP ⃗⃗⃗⃗⃗⃗ |HP⃗⃗⃗⃗⃗⃗ ||DP ⃗⃗⃗⃗⃗⃗ |=34√3=√34, 所以DP 与平面ABFD 所成角的正弦值为√34.9.G11[2018·全国卷Ⅱ] 在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=√3,则异面直线AD 1与DB 1所成角的余弦值为 ( ) A .15 B .√56C .√55D .√229.C [解析] 方法一:以D 为坐标原点,DA ,DC ,DD 1所在直线分别x ,y ,z 轴建立空间直角坐标系,如图所示,则A (1,0,0),D 1(0,0,√3),B 1(1,1,√3),所以AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√3),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3),所以cos <AD 1⃗⃗⃗⃗⃗⃗⃗ ,DB 1⃗⃗⃗⃗⃗⃗⃗⃗ >=√1+3×√1+1+3=√55,所以异面直线AD 1与DB 1所成角的余弦值为√55.方法二:如图,在长方体ABCD-A 1B 1C 1D 1的面ABB 1A 1的一侧再补填一个完全一样的长方体ABC 2D 2-A 1B 1B 2A 2,连接AB 2,B 2D 1.易知AB 2∥DB 1,所以异面直线AD 1与DB 1所成的角即为AD 1与AB 2所成的角. 因为AB=BC=1,AA 1=√3,所以AD 1=2,AB 2=√5,B 2D 1=√5. 在△AB 2D 1中,cos ∠D 1AB 2=2√5)2√5)22×2×√5=√55, 所以异面直线AD 1与DB 1所成角的余弦值为√55.20.G5,G11[2018·全国卷Ⅱ] 如图1-4,在三棱锥P-ABC 中,AB=BC=2√2,P A=PB=PC=AC=4,O 为AC 的中点.图1-4(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M-P A-C 为30°,求PC 与平面P AM 所成角的正弦值. 20.解:(1)证明:因为AP=CP=AC=4,O 为AC 的中点,所以OP ⊥AC ,且OP=2√3. 连接OB.因为AB=BC=√22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB=12AC=2.由OP 2+OB 2=PB 2知PO ⊥OB.由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC.(2)如图,以O 为坐标原点,OB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系O-xyz.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,2√3),AP⃗⃗⃗⃗⃗ =(0,2,2√3).取平面P AC 的法向量OB⃗⃗⃗⃗⃗ =(2,0,0). 设M (a ,2-a ,0)(0<a ≤2),则AM ⃗⃗⃗⃗⃗⃗ =(a ,4-a ,0). 设平面P AM 的法向量为n=(x ,y ,z ). 由AP ⃗⃗⃗⃗⃗ ·n=0,AM ⃗⃗⃗⃗⃗⃗ ·n=0得 {2y +2√3z =0,ax +(4-a)y =0,可取n=(√3(a-4),√3a ,-a ), 所以cos <OB ⃗⃗⃗⃗⃗ ,n>=√3(a 222.由已知可得|cos <OB⃗⃗⃗⃗⃗ ,n>|=√32, 所以√3|a 2√3(a -4)2+3a 2+a2=√32,解得a=-4(舍去),a=43, 所以n=(-8√33,4√33,-43), 又PC ⃗⃗⃗⃗⃗ =(0,2,-2√3),所以cos <PC⃗⃗⃗⃗⃗ ,n>=√34, 所以PC 与平面P AM 所成角的正弦值为√34.16.G5、G11[2018·北京卷]如图1-3,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=√5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.图1-316.解:(1)证明:在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC,∴AC⊥BE,∴AC⊥平面BEF.(2)由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE⊂平面ABC,∴EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1), ∴CD ⃗⃗⃗⃗⃗ =(2,0,1),CB ⃗⃗⃗⃗ =(1,2,0).设平面BCD 的法向量为n=(a ,b ,c ),∴{n ·CD ⃗⃗⃗⃗⃗=0,n ·CB⃗⃗⃗⃗⃗ =0,∴{2a +c =0,a +2b =0,令a=2,则b=-1,c=-4,∴平面BCD 的一个法向量为n=(2,-1,-4).又∵平面CDC 1的一个法向量为EB ⃗⃗⃗⃗⃗ =(0,2,0), ∴cos <n ,EB⃗⃗⃗⃗⃗ >=n ·EB⃗⃗⃗⃗⃗⃗ |n||EB ⃗⃗⃗⃗⃗⃗ |=-√2121. 由图可得二面角B - CD - C 1为钝二面角,∴二面角B - CD - C 1的余弦值为-√2121. (3)证明:平面BCD 的一个法向量为n=(2,-1,-4). ∵G (0,2,1),F (0,0,2),∴GF ⃗⃗⃗⃗ =(0,-2,1), ∴n ·GF ⃗⃗⃗⃗ =-2,∴n 与GF ⃗⃗⃗⃗ 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交.22. G 11[2018·江苏卷] 如图1-8所示,在正三棱柱ABC - A 1B 1C 1中,AB=AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.图1-822.解:如图,在正三棱柱ABC - A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O - xyz. 因为AB=AA 1=2,所以A (0,-1,0),B (√3,0,0),C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P √32,-12,2,从而BP ⃗⃗⃗⃗⃗ =-√32,-12,2,AC 1⃗⃗⃗⃗⃗⃗ =(0,2,2), 故|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||BP ⃗⃗⃗⃗⃗⃗|·|AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|-1+4|√5×22=3√1020. 因此,异面直线BP 与AC 1所成角的余弦值为3√1020. (2)因为Q 为BC 的中点,所以Q √32,12,0,因此AQ⃗⃗⃗⃗⃗ =√32,32,0,AC 1⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗ =(0,0,2).设n=(x ,y ,z )为平面AQC 1的一个法向量,则{AQ ⃗⃗⃗⃗⃗ ·n =0,AC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√32x +32y =0,2y +2z =0. 不妨取n=(√3,-1,1),设直线CC 1与平面AQC 1所成的角为θ,则sin θ=|cos <CC 1⃗⃗⃗⃗⃗⃗ ,n>|=|CC 1⃗⃗⃗⃗⃗⃗⃗⃗·n||CC 1⃗⃗⃗⃗⃗⃗⃗⃗ |·|n|=√5×2=√55, 所以直线CC 1与平面AQC 1所成角的正弦值为√55.8.G11[2018·浙江卷] 已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S-AB-C 的平面角为θ3,则 ( ) A .θ1≤θ2≤θ3 B .θ3≤θ2≤θ1 C .θ1≤θ3≤θ2 D .θ2≤θ3≤θ18.D [解析] 过S 作SO ⊥平面ABCD ,连接OE ,则θ2=∠SEO ,sin θ2=SOSE .取AB 的中点F ,连接OF ,则θ3=∠SFO,sin θ3=SOSF ,∵SE≥SF,∴sin θ2≤sin θ3,又θ2,θ3∈(0,π2),∴θ2≤θ3.作GE∥BC,OG⊥GE,连接SG,则GE⊥SG,θ1=∠SEG,tan θ1=SGGE ,∵OF=GE,SO≤SG,tan θ3=SOOF,∴tan θ3≤tanθ1,∴θ2≤θ3≤θ1,故选D.19.G5,G11,G12[2018·浙江卷]如图1-3所示,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.图1-3(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.19.解: 方法一:(1)证明:由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB得AB1=A1B1=2√2,所以A1B12+A B12=A A12, 故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC得B1C1=√5,由AB=BC=2,∠ABC=120°得AC=2√3,由CC1⊥AC,得AC1=√13,所以A B12+B1C12=A C12,故AB1⊥B1C1.因此AB1⊥平面A1B1C1.(2)如图,过点C1作C1D⊥A1B1,交直线A1B1于点D,连接AD.由AB1⊥平面A1B1C1得平面A1B1C1⊥平面ABB1,由C 1D ⊥A 1B 1得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21得 cos ∠C 1A 1B 1=√6√7,sin ∠C 1A 1B 1=√7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.方法二:(1)证明:如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知,各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1).因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3). 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0得AB 1⊥A 1B 1. 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0得AB 1⊥A 1C 1. 所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的法向量n=(x ,y ,z ). 由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,得{x +√3y =0,2z =0,可取n=(-√3,1,0).所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n>|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗·n||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |·|n|=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.G12 单元综合16.G1,G12[2018·全国卷Ⅱ] 已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为5√15,则该圆锥的侧面积为 .16.40√2π [解析] 设圆锥的底面圆的半径为r ,因为SA 与圆锥底面所成角为45°,所以SA=√2r.由cos ∠ASB=78得sin ∠ASB=√158,所以12SA ·SB ·sin ∠ASB=12×√2r×√2r×√158=5√15,所以r 2=40,所以圆锥的侧面积为√2πr 2=40√2π.10.G12[2018·江苏卷] 如图1-3所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .图1-310.43 [解析] 该几何体是一个正八面体,而正八面体是由两个相同的正四棱锥组成的,由图可知一个正四棱锥的高为1,底面边长为12√22+22=√2,所以正八面体的体积V=2×13×(√2)2×1=43. 19.G5,G11,G12[2018·浙江卷] 如图1-3所示,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.图1-3(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值. 19.解: 方法一:(1)证明:由AB=2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB 得AB 1=A 1B 1=2√2,所以A 1B 12+A B 12=A A 12, 故AB 1⊥A 1B 1.由BC=2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC 得B 1C 1=√5, 由AB=BC=2,∠ABC=120°得AC=2√3,由CC 1⊥AC ,得AC 1=√13,所以A B 12+B 1C 12=A C 12,故AB 1⊥B 1C 1. 因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD.由AB 1⊥平面A 1B 1C 1得平面A 1B 1C 1⊥平面ABB 1, 由C 1D ⊥A 1B 1得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21得 cos ∠C 1A 1B 1=√6√7,sin ∠C 1A 1B 1=√7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.方法二:(1)证明:如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知,各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1).因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3). 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0得AB 1⊥A 1B 1. 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0得AB 1⊥A 1C 1. 所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的法向量n=(x ,y ,z ). 由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,得{x +√3y =0,2z =0,可取n=(-√3,1,0).所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n>|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ·n||AC1⃗⃗⃗⃗⃗⃗⃗⃗ |·|n|=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.4.[2018·马鞍山一检]已知某圆锥的侧面展开图是一个半径为2的半圆,则该圆锥的外接球的表面积是()A.4π3B.4πC.16π3D.16π4.C[解析] 设圆锥的底面半径为r,则由题意得2πr=2π,解得r=1,∴圆锥的轴截面是边长为2的正三角形,圆锥外接球的球心是正三角形的中心,外接球的半径等于正三角形外接圆的半径,∴外接球的半径R=√33×2=2√33,故外接球的表面积为4πR2=16π3.故选C.6.[2018·厦门期末]若m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若α⊥β,m⊥β,则m∥αB.若m∥α,n⊥m,则n⊥αC.若m∥α,n∥α,m⊂β,n⊂β,则α∥βD.若m∥β,m⊂α,α∩β=n,则m∥n6.D[解析] 选项A中,m与α的关系是m∥α或m⊂α,故A不正确.选项B中,n与α的关系是n⊥α或n与α相交但不垂直或n∥α,故B不正确.选项C中,α与β的关系是α∥β或α与β相交,故C不正确.由线面平行的性质可得选项D正确.2.[2018·北京石景山区一模]如图K33-6,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3F C.(1)求三棱锥D-ABC的体积;(2)求证:AC⊥平面DEF;(3)若M为DB的中点,N在棱AC上,且CN=38CA,求证:MN∥平面DEF.图K33-62.解:(1)因为△BCD是正三角形,且AB=BC=a,所以S△BCD=√34a2,又AB⊥平面BCD,所以V三棱锥DABC =V三棱锥ABCD=13·AB·S△BCD=13×√34a2·a=√312a3.(2)证明:在底面ABC中,取AC的中点H,连接BH.因为AB=BC,所以BH⊥AC.因为AF=3FC,所以F为CH的中点.又E为BC的中点,所以EF∥BH,所以EF⊥AC.因为AB⊥平面BCD,AB⊂平面ABC,所以平面ABC⊥平面BCD.因为△BCD是正三角形,E为BC的中点,所以DE⊥BC,又平面ABC∩平面BCD=BC,DE⊂平面BCD,所以DE⊥平面ABC.因为AC⊂平面ABC,所以DE⊥AC.又DE∩EF=E,所以AC⊥平面DEF.(3)证明:当CN=38CA时,连接CM,交DE于点O,连接OF.因为E为BC的中点,M为DB的中点,所以O为△BCD的重心,CO=23CM.因为AF=3FC,CN=38CA,所以CF=23CN,故MN∥OF.又OF⊂平面DEF,MN⊄平面DEF,所以MN∥平面DEF.4.[2018·武汉二月调研]如图K34-12,在四棱锥E-ABCD中,平面ABE⊥平面ABCD,底面ABCD 为平行四边形,∠DAB=∠BAE=60°,∠AEB=90°,AB=4,AD=3.(1)求CE的长;(2)求二面角A-DE-C的余弦值.图K34-124.解:(1)过点E 作OE ⊥AB ,垂足为O.∵平面ABE ⊥平面ABCD ,平面ABE ∩平面ABCD=AB ,EO ⊂平面ABE ,∴EO ⊥平面ABCD.过O 点在平面ABCD 内作OF ⊥AB 交AD 于F.以O 为坐标原点,OE 所在直线为x 轴,OB 所在直线为y 轴,OF 所在直线为z 轴,建立空间直角坐标系.∵∠DAB=∠EAB=60°,∠AEB=90°,AB=4,AD=3,∴OE=OF=√3,∴E (√3,0,0),B (0,3,0),A (0,-1,0),D (0,12,3√32),C 0,92,3√32,∴|EC⃗⃗⃗⃗⃗ |2=(√3)2+(92)2+(3√32)2=30,∴EC 的长为√30. (2)设平面ADE 的法向量n 1=(x 1,y 1,z 1).∵AE⃗⃗⃗⃗⃗ =(√3,1,0),AD ⃗⃗⃗⃗⃗ =(0,32,3√32), ∴由AE ⃗⃗⃗⃗⃗ ·n 1=0及AD ⃗⃗⃗⃗⃗ ·n 1=0可得{√3x 1+y 1=0,32y 1+3√32z 1=0,取x 1=1,则y 1=-√3,z 1=1,∴n 1=(1,-√3,1).设平面DEC 的法向量n 2=(x 2,y 2,z 2).∵DC ⃗⃗⃗⃗⃗ =(0,4,0),DE ⃗⃗⃗⃗⃗ =(√3,-12,-32√3),∴由{DC ⃗⃗⃗⃗⃗·n 2=0,DE ⃗⃗⃗⃗⃗·n 2=0,得{4y 2=0,√3x2-12y 2-32√3z 2=0,∴可取n 2=(3,0,2).设二面角A -DE -C 的平面角为θ,∴cos θ=n 1·n 2|n 1|·|n 2|=5√5×√13=√6513.∴二面角A -DE -C 的余弦值为√6513.3.[2018·长沙一模] 如图T7-5,在多面体ABCDEF 中,四边形ABCD 为矩形,△ADE ,△BCF 均为等边三角形,EF ∥AB ,EF=AD=12AB.(1)过BD 作截面与线段FC 交于点N ,使得AF ∥平面BDN ,试确定点N 的位置,并予以证明; (2)在(1)的条件下,求直线BN 与平面ABF 所成角的正弦值.图T7-53.解:(1)当N 为线段FC 的中点时,AF ∥平面BDN.证明如下:如图所示,连接AC ,记AC 与BD 的交点为O ,连接ON.∵四边形ABCD 为矩形,∴O 为AC 的中点,又N 为FC 的中点,∴AF ∥ON.∵AF ⊄平面BDN ,ON ⊂平面BDN ,∴AF ∥平面BDN.故当N 为FC 的中点时,AF ∥平面BDN.(2)过O 作PQ ∥AB 分别与AD ,BC 交于P ,Q ,∵O 为AC 的中点,∴P ,Q 分别为AD ,BC 的中点,∵△ADE 与△BCF 均为等边三角形且AD=BC ,∴△ADE ≌△BCF.连接EP ,FQ ,则EP=FQ ,∵EF ∥AB ,AB PQ ,EF=12AB ,∴EF ∥PQ ,EF=12PQ ,∴四边形EPQF 为等腰梯形.取EF 的中点M ,连接MO ,则MO ⊥PQ ,又AD ⊥EP ,AD ⊥PQ ,EP ∩PQ=P ,∴AD ⊥平面EPQF.过点O 作OG ⊥AB 于点G ,则OG ∥AD ,∴OG ⊥平面EPQF ,∴OG ⊥OM ,OG ⊥OQ.分别以OG⃗⃗⃗⃗⃗ ,OQ ⃗⃗⃗⃗⃗⃗ ,OM ⃗⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系O -xyz ,不妨设AB=4,则由条件可得O (0,0,0),A (1,-2,0),B (1,2,0),F (0,1,√2),D (-1,-2,0),N (-12,32,√22),则AB ⃗⃗⃗⃗⃗ =(0,4,0),AF⃗⃗⃗⃗⃗ =(-1,3,√2).设n=(x ,y ,z )是平面ABF 的法向量,则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AF ⃗⃗⃗⃗⃗=0,即{4y =0,-x +3y +√2z =0,∴可取n=(√2,0,1),由BN ⃗⃗⃗⃗⃗⃗ =-32,-12,√22,可得|cos <BN ⃗⃗⃗⃗⃗⃗ ,n>|=|BN ⃗⃗⃗⃗⃗⃗⃗·n||BN⃗⃗⃗⃗⃗⃗⃗ |·|n|=√23,∴直线BN 与平面ABF 所成角的正弦值为√23.。

18年高考真题与模拟题—理科数学5:立体几何

18年高考真题与模拟题—理科数学5:立体几何

2018高考真题与模拟题分类汇编:立体几何一.高考真题1.【2018全国III 卷 3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。

若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )2.【2018浙江 3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )(A )2(B )4(C )6(D )83.【2018全国I 卷 7】某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )(A ) (B ) (C )3 (D )24.【2018浙江 8】已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) (A )123θθθ≤≤ (B )321θθθ≤≤ (C )132θθθ≤≤ (D )231θθθ≤≤5.【2018全国II 卷 9】在长方体1111ABCD A B C D -中,1AB BC ==,1AA 则异面直线1AD与1DB 所成角的余弦值为( ) (A )15 (B (C (D )26.【2018全国III 卷 10】设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为( )(A ) (B ) (C ) (D )7.【2018全国I 卷 12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为( )(A (B (C )4 (D 8.【2018江苏 10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为_________。

最新-2018年高考数学真题汇编 7:立体几何 理 精品

最新-2018年高考数学真题汇编 7:立体几何 理 精品

2018高考真题分类汇编:立体几何一、选择题1.【2018高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B2.【2018高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。

将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C3.【2018高考真题新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 6 ()B ()C 3 ()D 2【答案】A4.【2018高考真题四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C5.【2018高考真题四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠= ,则A 、P两点间的球面距离为( )A 、arccos 4R 、4R π C 、R 、3R π【答案】A6.【2018高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )35【答案】A.7.【2018高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D8.【2018高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π【答案】B9.【2018高考真题广东理6】某几何体的三视图如图所示,它的体积为A.12π B.45π C.57π D.81π【答案】C10.【2018高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱【答案】D.11.【2018高考真题重庆理9】设四面体的六条棱的长分别为1,1,1,1a,且长为aa的取值范围是(A) (B) (C) (D)(1【答案】A12.【2018高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B13.【2018高考真题全国卷理4】已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为【答案】D二、填空题14.【2018高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.【答案】115.【2018高考真题四川理14】如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

【高三数学试题精选】2018届高三数学立体几何测试题(有答案)

【高三数学试题精选】2018届高三数学立体几何测试题(有答案)

2018届高三数学立体几何测试题(有答案)
5 c 2018届高三数学末综合测试题(14)立体几何
一、选择题本大题共12小题,每小题5分,共60分.
1 .建立坐标系用斜二测画法画正△ABc的直观图,其中直观图不是全等三角形的一组是( )
解析由直观图的画法知选项c中两三角形的直观图其长度已不相等
答案c
2.已知几何体的三视图(如下图),若图中圆的半径为1,等腰三角形的腰为3,则该几何体的表面积为( )
A.4π B. 3π c.5π D.6π
解析由三视图知,该几何体为一个圆锥与一个半球的组合体,而圆锥的侧面积为π×1×3=3π,半球的表面积为2π×12=2π,∴该几何体的表面积为3π+2π=5π
答案c
3.已知a,b,c,d是空间中的四条直线,若a⊥c,b⊥c,a⊥d,b⊥d,那么( )
A.a∥b,且c∥d
B.a,b,c,d中任意两条都有可能平行
c.a∥b或c∥d
D.a,b,c,d中至多有两条平行
解析如图,作一长方体,从长方体中观察知c选项正确
答案c
4.设α、β、γ为平面,、n、l为直线,则⊥β的一个充分条是( )
A.α⊥β,α∩β=l,⊥l B.α∩γ=,α⊥γ,β⊥γ
c.α⊥γ,β⊥γ,⊥α D.n⊥α,n⊥β,⊥α。

2018年高考数学专题08立体几何分项试题(含解析)理

2018年高考数学专题08立体几何分项试题(含解析)理

专题立体几何一、选择题1.【2018河南洛阳市尖子生联考】已知球与棱长为4的正四面体的各棱相切,则球的体积为()A. B. C. D.【答案】A点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.2.【2018浙江温州一模】某几何体的三视图如图所示,则该几何体的体积(单位:)是()A. B. C. D.【答案】A【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.3.【2018广西三校联考】若某几何体的三视图如图所示,则此几何体的外接球表面积等于()B. 30πC. 43πD. 15π【答案】C【解析】由题意可知该几何体的直观图如下图所示,故选C.4.【2018河南中原名校质检二】某几何体的三视图如图所示(单位:),则该几何体的体积等于().A. B. C. D.【答案】D点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.5.【2018湖南省两市九月调研】如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为()D. 4【答案】B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.6.【2018湖南永州市一模】已知某三棱锥的三视图如图所示,则在该三棱锥中,最长的棱长为()【答案】C【解析】【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状. 7.【2018广东珠海市九月摸底】如图,是某几何体的三视图,则该几何体的体积是A. 11B. 7C. 14D. 9 【答案】B【解析】该几何体为两个几何体拼接而成,上方为四棱锥,下方为四棱柱,故其体积为:故选:B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.8.【2018湖北武汉市调研】设点M 是棱长为2的正方体1111ABCD A BC D -的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( )【答案】A【方法点晴】本题主要考查的是正方体的性质、二面角的求法、空间直角坐标系和空间向量在立体几何中的应用,属于难题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误,求二面角的常见方法有:1、利用定义找到二面角的平面角,根据平面几何知识求解;2,求出二面角的余弦,从而求得二面角的大小;3、利用空间相夹角余弦公式.9.【2018陕西西工大附中七模】在下列命题中,属于真命题的是( ) A. 直线,m n 都平行于平面α,则//m nB. 设l αβ--是直二面角,若直线m α⊥,则//m βC. 若直线,m n 在平面α内的射影依次是一个点和一条直线,(且m n ⊥),则n 在α内或n 与α平行D. 设,m n 是异面直线,若m 与平面α平行,则n 与α相交 【答案】C10.【2018广东茂名市五校联考】在长方体中,,,,点在平面内运动,则线段的最小值为( )A. B. C. D.【答案】C【解析】由题意问题转化为求点到平面的距离,由于,所以边上的高,故三角形的面积为,又三棱锥的体积,所以,应选答案C 。

2018-江苏高考立体几何(含解析)

2018-江苏高考立体几何(含解析)

2018 年-2008 年江苏高考立体几何解答题(共 11 题)说明:三角向量解答题考在 15题或 16 题,是解答题的前两题之一,要求学生必须做对,而且书写规范,条理清楚1.在平行六面体 ABCD A 1B 1C 1D 1 中, AA 1 AB , AB 1 B 1C 1.求证:( 1) AB ∥平面A 1B 1C ; (2)平面ABB 1 A 1 平面A 1 BC .2) BC 1 AB 1 .5.如图在三棱锥 P-ABC 中, D,E,F 分别为棱 PC,AC,AB 的中点,已知 PA AC,PA 6,BC 8,DF 5,2.如图 ,在三棱锥 A-BCD 中,AB ⊥AD, BC ⊥BD, 平面 ABD ⊥平面 且 EF ⊥ AD. BCD, 点E,F (E 与A,D 不重合 )分别在棱 AD,BD 上,求证:(1) EF ∥平面 ABC ; 2)AD ⊥AC.3. 如图,在直三棱柱 ABC-A 1B 1C 1 中,D ,E 分别为 AB ,BC 的中点,点 F 在侧棱 B 1B 上,且 B 1D A 1F, A 1C 1 A 1B 1.求证:( 1)直线 DE ∥平面 A 1C 1F ;2)平面 B 1DE ⊥平面 A 1C 1F.4.如图,在直三棱柱 ABC A 1B 1C 1中,已知 AC BC ,BC CC 1,设 AB 1的中点为D , B 1C BC 1E .求证:1) DE // 平面 AA 1C 1C ;求证( 1)直线 PA 平面 DEF ; 2)平面 BDE 平面 ABC 。

6.如图,在三棱锥 S ABC 中,平面 SAB 平面SBC , AB BC ,AS AB ,过A 作AF SB ,垂足为 F , 点 E ,G 分别是棱SA ,SC 的中点.求证:(1)平面 EFG //平面 ABC ;(2) BC SA .7. 如图,在直三棱柱ABC A 1B 1C 1中, A 1B 1 A 1C 1 ,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点 C ),且AD DE ,F 为B 1C 1 的中点.求证:( 1)直线 EF ‖平面 PCD ;(2)平面 BEF ⊥平面 PAD 9、如图,在四棱锥 P-ABCD 中, PD ⊥平面 ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900。

立体几何真题(2018年11月整理)

立体几何真题(2018年11月整理)

空间几何体的三视图、表面积和体积一、选择题1.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图A.1 B.2 C.3 D.42.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为BAA.172B.52C.3 D.23.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为 A.B.C.D.5.(2018上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( )A 1AA .4B .8C .12D .166.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图A .2B .4C .6D .87.(2017新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为A .90πB .63πC .42πD .36π9.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2π D .4π10.(2017浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图A .12π+ B .32π+ C .312π+ D . 332π+ 11.(2017北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .B .C .D .212.(2016山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233+π B .13+ C .13+ D .1+ 13.(2016全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π14.(2016全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .18+B .54+C .90D .8116.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .1B .2C .1+D .21.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)A.89πB.169πC.31)πD.31)π22.(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=A.1 B.2 C.4 D.823.(2014新课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .6C .D .424.(2014新课标Ⅱ)如图,网格纸上正方形小格的边长 为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A .1727B .59C .1027D .1325.(2014安徽)一个多面体的三视图如图所示,则该多面体的表面积为A .21B .18C .21D .1826.(2014福建)某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱B.圆锥C.四面体D.三棱柱27.(2014浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是俯视图侧视图正视图A.902cm B.1292cm C.1322cm D.1382cm28.(2014新课标Ⅱ)正三棱柱111ABC A B C-的底面边长为2D为BC中点,则三棱锥11A B DC-的体积为A.3 B.32C.1 D29.(2014福建)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于A.2πB.πC.2 D.130.(2014辽宁)某几何体三视图如图所示,则该几何体的体积为俯视图左视图主视图俯视A .82π-B .8π-C .82π-D .84π- 31.(2014陕西)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为A .4πB .3πC .2πD .π32.(2014江西)一几何体的直观图如右图,下列给出的四个俯视图中正确的是ABCD33.(2013新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+ 34.(2013江西)一几何体的三视图如右所示,则该几何体的体积为俯视图侧视图正视图A .200+9πB .200+18πC .140+9πD .140+18π 35.(2012广东)某几何体的三视图如图所示,它的体积为A .12πB .45πC .57πD .81π36.(2012湖北)已知某几何体的三视图如图所示,则该几何体的体积为俯视图正视图A .8π3 B .3π C .10π3D .6π 37.(2011新课标)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A38.(2011安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为侧视图A.48 B.C.D.8039.(2011辽宁)如图,四棱锥S—ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正..确.的是B CAS DA.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角40.(2010安徽)一个几何体的三视图如图,该几何体的表面积为A.280 B.292 C.360 D.372 41.(2010浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是侧视图A.3523cm3B.3203cm3 C.2243cm3D.1603cm3二、填空题42.(2018天津)已知正方体1111ABCD A BC D-的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH-的体积为.1AC43.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.44.(2017新课标Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC ∆,ECA ∆,FAB ∆分别是以BC ,CA ,AB 为底边的等腰三角形。

2018届高考数学(理)热点题型:立体几何(含答案解析)

2018届高考数学(理)热点题型:立体几何(含答案解析)

立体几何热点一 空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO⊥平面ABC ,2DA =2AO =PO ,且DA∥PO. (1)求证:平面PBD⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z), ∴⎩⎪⎨⎪⎧n·BC →=0,n·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n| =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F. (1)证明:EF∥B 1C.(2)求二面角E­A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB→,AD→,AA1→为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B 1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为⎝⎛⎭⎪⎫12,12,1.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E→=⎝⎛⎭⎪⎫12,12,0,A1D→=(0,1,-1),由n1⊥A1E→,n 1⊥A1D→得r1,s1,t1应满足的方程组⎩⎨⎧12r1+12s1=0,s1-t1=0,(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1→=(1,0,0),A1D→=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E­A1D­B1的余弦值为|n1·n2||n1|·|n2|=23×2=63.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB =1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,AB ⊥AD , 所以AB⊥平面PAD ,所以AB⊥PD.又PA⊥PD,AB ∩PA =A ,所以PD⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z),则 ⎩⎪⎨⎪⎧n·PD →=0,n·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n·PB →|n||PB→|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →. 因此点M(0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM∥平面PCD ,此时AM AP =14. 【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45°,E 为PA 的中点. (1)求证:DE∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF⊥DB?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN⊥AB,垂足为点N.∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB∥CD,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点, ∴EM ∥AB 且EM =6,又DC∥AB,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8). 假设AB 上存在一点F 使CF⊥BD, 设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z). 又PC →=(0,6,-8),FC →=⎝⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n·PC →=0,n·FC →=0,得⎩⎨⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n·m |n||m|=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817.热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H.将△DEF 沿EF 折到△D′EF 的位置,OD ′=10.(1)证明:D′H⊥平面ABCD ; (2)求二面角B -D′A-C 的正弦值.(1)证明 由已知得AC⊥BD,AD =CD. 又由AE =CF 得AE AD =CFCD,故AC∥EF. 因此EF⊥HD,从而EF⊥D′H.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D′H 2+OH 2=32+12=10=D′O 2,故D′H⊥OH. 又D′H⊥EF,而OH∩EF=H , 所以D′H⊥平面ABCD.(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz. 则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD′的一个法向量, 则⎩⎪⎨⎪⎧m·AB →=0,m·AD′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD′的一个法向量, 则⎩⎪⎨⎪⎧n·AC →=0,n·AD′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m·n |m||n|=-1450×10=-7525.sin 〈m ,n 〉=29525. 因此二面角B -D′A-C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE⊥AC.即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE⊥平面A 1OC.又CD∥BE,所以CD⊥平面A 1OC. (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

高三数学-2018年高考立体几何题 精品

高三数学-2018年高考立体几何题 精品

2018年高考立体几何题1. 在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ;(Ⅲ)求点P 到平面ABD 1的距离.(2018年江苏省试题)2.三棱锥P-ABC 中,侧面PAC 与底面ABC 垂直,PA=PB=PC=3, (1) 求证:AB ⊥ BC ; (2) 设AB=BC=32,求AC 与平面PBC 所成角的大小. (2018文科试题)3.如图,已知四棱锥P -ABCD ,PB ⊥AD ,侧面PAD 为边长为2的正三角形,底面ABCD 为菱形,侧面PAD 与平面ABCD 所成的二面角为120o 。

(1)求点P 到平面ABCD 的距离;(2)求面APB 与面CPB 所成的二面角的大小。

(2018年全国理科试题)4.在三棱锥S -ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=M 、N 分别为AB 、SB 的中点。

(1) 证明AC ⊥SB ;(2) 求二面角N -CM -B 的大小; (3) 求点B 到面CMN 的距离。

(2018年福建省理科试题)5.在三棱锥S -ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=M 、N 分别为AB 、SB 的中点。

(1)证明AC ⊥SB ;(2)求二面角S -CM -A 的大小; (3)求点B 到面SCM 的距离。

(2018年福建省文科试题)· B 1P ACD A 1C 1D 1BO H·CBSABCP6.如图,已知正方形ABCD 和矩形ACEF 所在平面互相垂直,AF=1,M 是线段EF 的中点。

(1) 求证:AM ∥平面BDE ; (2) 求证:AM ⊥平面BDF ; (3) 求二面角A -DF -B 的大小;(2018年浙江试题)7.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是棱BC 的中点,点F 是棱CD 上的动点。

2018年高考题和高考模拟题数学(理)——专题05立体几何分类汇编(解析版)

2018年高考题和高考模拟题数学(理)——专题05立体几何分类汇编(解析版)

5.立体几何1.【2018年XX卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年XX卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3.【2018年理新课标I卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.学/科-网+4.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以与其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.5.【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。

2007-2018全国卷高考真题——立体几何解答题(理科)解析

2007-2018全国卷高考真题——立体几何解答题(理科)解析

专题 立体几何 空间向量与立体几何答案部分1.(2018全国卷Ⅰ)【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF u u u r的方向为y 轴正方向,||BF uuu r 为单位长,建立如图所示的空间直角坐标系-H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE又PF =1,EF =2,故PE ⊥PF .可得=PH ,32=EH . 则(0,0,0)H,P ,3(1,,0)2--D,3(1,2=u u u r DP , (0,0,)2HP =u u u r 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin ||4||||HP DP HP DP θ⋅===⋅u u u r u u u ru u u r u u u r .所以DP 与平面ABFD. 2.(2018全国卷Ⅱ)【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥.由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.A由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)-A ,(0,2,0)C,(0,0,P ,=AP u u u r,取平面PAC 的法向量(2,0,0)OB =u u u r . 设(,2,0)(02)-<≤M a a a ,则(,4,0)AM a a =-u u u r.设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn.由已知得|cos ,|OB =uu u r n .2.解得4a =-(舍去),43a =.所以4()3=-n.又(0,2,PC =-u u u r,所以cos ,PC =uu u r n . 所以PC 与平面PAM所成角的正弦值为4. 3.(2018全国卷Ⅲ)【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又BC I CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.当三棱锥M ABC -体积最大时,M 为»CD的中点. 由题设得(0,0,0)D ,(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(0,1,1)M ,(2,1,1)AM =-u u u u r ,(0,2,0)AB =u u u r ,(2,0,0)DA =u u u r设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u ur n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA u u u r是平面MCD 的法向量,因此cos ,5||||DA DA DA ⋅==u u u ru u u r u u u r n n n ,sin ,5DA =u u u r n ,所以面MAB 与面MCD所成二面角的正弦值是5. 4.(2017新课标Ⅰ)【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内做PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2A,(0,0,2P,,1,0)2B,(2C -.所以(,1,)22PC =--u u u r,CB =u u u r,)22PA =-u u u r , (0,1,0)AB =u u u r.设(,,)x y z =n 是平面PCB 的法向量,则00PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n,即0220x y z ⎧-+-=⎪=,可取(0,1,=-n .设(,,)x y z =m 是平面PAB 的法向量,则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m,即0220x z y -=⎪⎨⎪=⎩, 可取(1,0,1)=n .则cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为 5.(2017新课标Ⅱ)【解析】(1)取PA 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF AD ∥,12EF AD =.由90BAD ABC ∠=∠=o 得BC AD ∥,又12BC AD =,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC =u u u r ,(1,0,0)AB =u u u r.x设(,,)M x y z (01)x <<,则(1,,)BM x y z =-u u u u r,(,1,PM x y z =-u u u u r.因为BM 与底面ABCD 所成的角为45o,而(0,0,1)=n 是底面ABCD 的法向量,所以|cos ,|sin 45BM <>=ou u u u r n2=, 即222(1)0x y z -+-=. ①又M 在棱PC 上,设PM PC λ=u u u u r u u u r,则x λ=,1y =,z =. ②由①,②解得121x y z ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(舍去),121x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩所以(12M -,从而(12AM =-u u u u r . 设000(,,)x y z =m 是平面ABM 的法向量,则0=0AM AB ⎧⋅=⎪⎨⋅⎪⎩u u u u ru u ur m m,即0000(2200x y x ⎧+=⎪⎨=⎪⎩,所以可取(0,2)=m,于是cos ,||||⋅<>==m n m n m n因此二面角M AB D --的余弦值为5. 6.(2017新课标Ⅲ)【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =. 又由于ABC ∆是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=o . 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA u u u r的方向为x 轴正方向,OA u u u r为单位长,建立如图所示的空间直角坐标系O xyz -,则(1,0,0)A,B ,(1,0,0)C -,(0,0,1)D .由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得1(0,)22E .故(1,0,1)AD =-u u u r ,(2,0,0)AC =-u u u r,1(1,)22AE =-u u u r设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩u u u r g u u u r g 0,0,n n即x z x y z -+=⎧⎪⎨-++=⎪⎩01022可取=n 设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩u u u r g u u u rg m m同理可得(0,=-m则cos ,==g 7n m n m n m 所以二面角D AE C --的余弦值为77.(2016全国I )【解析】(Ⅰ)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(Ⅱ)过D 作DG EF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ABEF .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,||GF uuu r为单位长度,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=o,则2DF =,DG =,可得(1,4,0)A ,(3,4,0)B -,(3,0,0)E -,D .由已知,AB EF ∥,所以AB ∥平面EFDC .又平面ABCD I 平面EFDC DC =,故AB CD ∥,CD EF ∥.由BE AF ∥,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,60CEF ∠=o.从而可得(C -.所以EC =u u u r ,(0,4,0)EB =u u u r,(3,AC =--u u u r ,(4,0,0)AB =-u u u r.设(),,n x y z =r是平面BCE 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r,即040x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,n =r.设m r 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u rr ,同理可取()4m =r.则cos ,19n m n m n m ⋅==-r r r r r r .故二面角C E-B -A的余弦值为19-.8.(2016全国II )【解析】(I )证明:∵54AE CF ==, ∴AE CFAD CD=,∴EF AC ∥. ∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AEOH OD AO=⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥. 又∵OH EF H =I ,∴'D H ⊥面ABCD .(Ⅱ)建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩u u r u u u r u u r u u u u r得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量()2301n =u u r,,, ∴12129575cos 5210n n n n θ⋅+==⋅u r u u ru r u u r ,∴295sin θ. 9.(2016全国III )【解析】(Ⅰ)由已知得232==AD AM , 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥, 且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-u u u u r ,)2,1,25(-=PN ,)2,1,25(=AN . 设(,,)x y z =r n 为平面PMN 的法向量,则00PM PN ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u rn n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =r,于是||85|cos ,|||||n AN n AN n AN ⋅<>==r u u u rr u u u r r u u u r .10.(2015新课标Ⅰ)【解析】(Ⅰ)连接BD ,设BD AC G =I ,连接,,EG FG EF .在菱形ABCD 中,不妨设1GB =,由120∠=oABC ,可得3AG GC =由⊥BE 平面ABCD ,AB BC =可知,AE EC =, 又∵⊥AE EC ,∴3EG =,⊥EG AC ,在Rt EBG ∆中,可得2BE 22DF =.在Rt FDG ∆中,可得62FG =.在直角梯形BDFE 中,由2BD =,BE =2DF =,可得2EF =, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG =G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,0),E(1,0,),F (-1,0,C (00), ∴AE u u u r =(1),CF uuu r =(-12).故cos ,3||||<>==-u u u r u u u ru u u r u u u r g u u u r u u u r AE CF AE CF AE CF .所以直线AE 与CF所成的角的余弦值为3. 11.(2015新课标II )【答案】(Ⅰ)详见解析;. 【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,所以10AH =.以D为坐标原点,DA u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =u u u r ,(0,6,8)HE =-u u u r.设(,,)n x y z =r 是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =r .又(10,4,8)AF =-u u u r,故cos ,n AF n AF n AF⋅<>==⋅r u u u r r u u u r r u u u r .所以直线AF 与平面α所成角的正弦值为4515. 【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.A 1AB 1BD 1DC 1CF E H GM12.(2014新课标1)【解析】(Ⅰ)连接1BC ,交1B C O 于点,连接AO ,因为侧面11BB C C 为菱形,所以1111,B C BC O B C BC ⊥且为及的中点. 又11,.AB B C B C ABO ⊥⊥所以平面1AO ABO B C AO ⊂⊥由于平面,故又11,=.B O CO AC AB =故(Ⅱ)因为11,.AC AB O B C AO CO ⊥=且为的中点,所以 又因为,AB BC BOA BOC =∆≅∆所以,1,,,OA OB OA OB OB ⊥故从而两两相互垂直,以O OB x OB 为坐标原点,的方向为轴正方向,为单位长, O xyz =建立如图所示的空间直角坐标系.zyO因为1160,.CBB CBB AB BC∠=︒∆=所以为等边三角形又,则111111(00(100),(0,(0,,(1,0,(1,,0),3333A B B CAB A B AB B C BC=-==-==--u u u r u u u u r u u u r u u u u r u u u r,,11111(,,)=00,330,0.x y z AA By zABA Bx z=-⎧⋅=⎪⎪⎨⎨⋅=⎪⎪⎩=⎪⎩=u u u ru u u u r设是平面的法向量,则,即所以可取nnnn11111110,0,(1,A BA B CB Cm⎧⋅=⎪⎨⋅=⎪⎩=u u u u ru u u u r设是平面的法向量,则同理可取mmm则1cos,.7⋅==n mn mn m1111.7A AB C--所以二面角的余弦值为13.(2014新课标2)【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(Ⅱ)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,ABu u u r的方向为x轴的正方向,APu u u r为单位长,建立空间直角坐标系A xyz-,则D1(0,),22E1(0,)22AE=u u u r.设(,0,0)(0)Bm m>,则(C m(AC m=u u u r.设1(,,)x y z=n为平面AEC的法向量,则110,0,ACAE⎧⋅=⎪⎨⋅=⎪⎩uu u ru u u rnn即0,10,22mxy z⎧+=+=⎪⎩,可取1=-n.又2(1,0,0)=n为平面DAE的法向量,由题设121cos,2=n n12=,解得32m=.因为E为PD的中点,所以三棱锥EACD-的高为12.三棱锥E ACD-的体积11313222V=⨯⨯=.14.(2013新课标Ⅰ)【解析】(Ⅰ)取AB中点E,连结CE,1A B,1A E,∵AB=1AA,1BAA∠=060,∴1BAA∆是正三角形,∴1A E⊥AB,∵CA=CB,∴CE⊥AB,∵1CE A E⋂=E,∴AB⊥面1CEA,∴AB⊥1A C;(Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA ,∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA u u u r 的方向为x 轴正方向,|EA u u u r|为单位长度,建立如图所示空间直角坐标系O xyz -,有题设知A (1,0,0),1A 3,0),C 3B (-1,0,0),则BC uuu r=(1,03,1BB u u u r =1AA u u u r =(-31AC u u u r=(0,33), 设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧•=⎪⎨•=⎪⎩u u u ru u u r n n ,即3030x z x ⎧=⎪⎨=⎪⎩,可取n =3,1,-1), ∴1cos ,AC u u u r n =11|AC AC •u u u ru u u r n |n ||105, ∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为105. 15.(2013新课标Ⅱ)【解析】(Ⅰ)连结1AC ,交1A C 于点O ,连结DO ,则O 为1AC 的中点,因为D 为AB 的中点,所以OD ∥1BC ,又因为OD ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1BC //平面1A CD ;(Ⅱ)由1AA =AC=CB=22AB 可设:AB=2a ,则1AA 2a ,所以AC⊥BC,又因为直棱柱,所以以点C为坐标原点,分别以直线CA、CB、1CC为x轴、y轴、z轴,建立空间直角坐标系如图,1则(0,0,0)C、1)A、D、E,1)CA=u u u r,,,0)22CD=u u u r,,)2CE=u u u r,1(,)2A E=-u u u r,设平面1A CD的法向量为(,,)n x y z=r,则0n CD⋅=r u u u r且1n CA⋅=r u u u r,可解得y x z=-=,令1x=,得平面1A CD的一个法向量为(1,1,1)n=--r,同理可得平面1A CE的一个法向量为(2,1,2)m=-ur,则cos,n m<>=r u r3,所以sin,3n m<>=r u r,所以二面角D-1A C-E的正弦值为316.(2012新课标)【解析】(Ⅰ)在Rt DAC∆中,AD AC=,得:45ADC︒∠=同理:1114590A DC CDC︒︒∠=⇒∠=得:111,DC DC DC BD DC⊥⊥⇒⊥面1BCD DC BC⇒⊥(Ⅱ)11,DC BC CC BC BC⊥⊥⇒⊥面11ACC A BC AC⇒⊥取11A B的中点O,过点O作OH BD⊥于点H,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则122aC O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒17.(2011新课标)【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD . 故 P A ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()3,0C -,()0,0,1P .(3,0),3,1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为(,,)x y z =n ,则0AB PB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu r n n ,即 3030x z ⎧-+=⎪⎨-=⎪⎩因此可取n =3,1,3)设平面PBC的法向量为m,则PBBC⎧⋅=⎪⎨⋅=⎪⎩uu ruu u rmm可取m=(0,-1,3-)27cos,27==-m n故二面角A-PB-C的余弦值为277-.18.(2010新课标)【解析】:以H为原点,,,HA HB HP分别为,,x y z轴,线段HA的长为单位长,建立空间直角坐标系如图,则(1,0,0),(0,1,0)A B(Ⅰ)设(,0,0),(0,0,)(0,0)C m P n m n<>,则1(0,,0),(,,0).22mD m E可得1(,,),(,1,0).22mPE n BC m=-=-因为0022m mPE BC⋅=-+=,所以PE BC⊥(Ⅱ)由已知条件可得331,33m n C=-=-故(313(0,(,(0,0,1)326D E P--设(,,)n x y x=为平面PEH的法向量则0,0,HEHP⎧⋅=⎪⎨⋅=⎪⎩nn即132x yz⎧-=⎪⎨⎪=⎩因此可以取3,0)=n,由(1,0,1)PA=-u u u r,可得2cos,4PA=u u u rn,.所以直线PA与平面PEH所成角的正弦值为4。

【高三数学试题精选】2018年全国高考理科数学立体几何试题汇编

【高三数学试题精选】2018年全国高考理科数学立体几何试题汇编

2018年全国高考理科数学立体几何试题汇编5A1B1c1D1中,AB=2,AD=1,A1A=1,证明直线Bc1平行于平面DA1c,并求直线Bc1到平面D1Ac的距离【答案】因为ABcD-A1B1c1D1为长方体,故 ,故ABc1D1为平行四边形,故 ,显然B不在平面D1Ac上,于是直线Bc1平行于平面DA1c;直线Bc1到平面D1Ac的距离即为点B到平面D1Ac的距离设为考虑三棱锥ABcD1的体积,以ABc为底面,可得而中, ,故所以, ,即直线Bc1到平面D1Ac的距离为5.(cE-c1的正弦值(Ⅲ) 设点在线段c1E上, 且直线A与平面ADD1A1所成角的正弦值为 , 求线段A的长【答案】8.(1,0,0),则 =(1,0, ), = =(-1,0, ), =(0,- , ),设 = 是平面的法向量,则 ,即 ,可取 =( ,1,-1),∴ = ,∴直线A1c 与平面BB1c1c所成角的正弦值为9.(A1B1c1中,AA1c1c是边长为4的正方形, 平面ABc⊥平面AA1c1c,AB=3,Bc=5(Ⅰ)求证AA1⊥平面ABc;(Ⅱ)求二面角A1-Bc1-B1的余弦值;(Ⅲ)证明在线段Bc1存在点D,使得AD⊥A1B,并求的值【答案】解(I)因为AA1c1c为正方形,所以AA1 ⊥Ac因为平面ABc⊥平面AA1c1c,且AA1垂直于这两个平面的交线Ac,所以AA1⊥平面ABc(II)由(I)知AA1 ⊥Ac,AA1 ⊥AB 由题知AB=3,Bc=5,Ac=4,所以AB⊥Ac 如图,以A为原点建立空间直角坐标系A- ,则B(0,3,0),A1(0,0,4),B1(0,3,4),c1(4,0,4),设平面A1Bc1的法向量为 ,则 ,即 ,令 ,则 , ,所以同理可得,平面BB1c1的法向量为 ,所以由题知二面角A1-Bc1-B1为锐角,所以二面角A1-Bc1-B1的余弦值为(III)设D 是直线Bc1上一点,且所以解得 , ,所以由 ,即解得因为 ,所以在线段Bc1上存在点D,使得AD⊥A1B5。

2018年高三最新 高三数学测试试卷(立体几何) 精品

2018年高三最新 高三数学测试试卷(立体几何) 精品

高三数学测试试卷(立体几何)(全卷满分100分,练习时间90分钟)姓名_______________ 学号_________一、选择(每题4分,计40分,请将每题唯一正确答案的代号填入题前括号内) ( )1.下列命题,错误的一个是A .经过平面α外一点P ,有且只有一条直线与平面α垂直B .经过平面α外一点P ,有无数条直线与平面α平行C .经过平面α外一点P ,有且只有一个平面与平面α垂直D .经过平面α外一点P ,有且只有一个平面与平面α平行( )2.在正三棱柱ABC -111C B A 中,若AB =2,AA 1=1,则点A 到平面A 1BC 的距离为A .43 B.23 C.433 D.3 ( )3.在北纬60°圈上有A 、B 两地,它们的纬度圈上的弧长等于2Rπ(R 是地球的半径).则A 、B 两地的球面距离为A.32R π B.2R π C. 3R π D.4Rπ( )4.如图,定点A 和B 都在平面α内,定点α∉P ,α⊥PB ,点C 是α内异于A 和B 的动点,且AC PC ⊥,那么点C 在平面α内的轨迹是A .一条线段,但要去掉两点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点αPCB A( )5.如图,在棱长为2的正方体1111D C B A ABCD -中, O 是底面ABCD 的中心,E 、F 分别是1CC AD 的中点,那么异面直线1FD OE 和所成角的余弦值等于A .515 B.510C.54D.32( )6.若a 、b 是异面直线,l b a =⊂⊂βαβα ,,,则A. l 与a 、b 分别相交B. l 与a 、b 都不相交C. l 至多与a 、b 中的一条相交D. l 至少与a 、b 中的一条相交( )7.如图,已知四边形ABCD 是正方形,P A ⊥平面ABCD ,则图中所有互相垂直的平面共有A .8对 B.7对 C.6对 D.5对 ( )8.直线1l 、2l 互相平行的一个充分条件是A .1l 、2l 都平行于同一平面B .1l 、2l 与同一平面所成的角相等C .1l 平行于2l 所在的平面D .1l 、2l 都垂直于同一平面( )9.已知正四面体ABCD 的表面积为S ,其四个面中心分别为E 、F 、G 、H ,设四面体EFGH 表面积为T ,则ST等于 A .91 B.94 C.41 D.31 ( )10.若二面角βα--l 的大小为32π,直线α⊥m ,则β所在平面内的直线与m 所成角的取值范围是A .(2,0π) B.[3,6ππ] C.[2,3ππ] D.[2,6ππ]二、填充(每空4分,计16分)11.如图,把长、宽各为3、1的矩形ABCD 沿对角线AC 折成直二面角,则顶点B 和D 的距离______________.12.在体积为V 的斜三棱柱///C B A ABC -中,已知S 是侧棱C C /上的一点,过点S 、A 、B 的截面截得的三棱锥的体积为1V ,那么过点S 、/A 、/B 截面截得的三棱锥的体积用V 、V 1表示为________.13.如图,在半径为R 的半球内有一内接圆柱,则这个圆柱侧面积的最大值为_______________.14.有下列命题:(1)βαγβγα//,⇒⊥⊥;(2)γαγββα⊥⇒⊥⊥,;(3)1//αα,1//ββ,11βαβα⊥⇒⊥;(4)γβαγβγα⊥⇒=⊥⊥l l ,,;(5)如果在二面角111βα--l 与二面角222βα--l 中,已知:,,2121ββαα⊥⊥则二面角111βα--l 与二面角222βα--l 一定相等或互补.其中正确的有__________(只填序号).三、解答题(共4题,计44分)15.(本题11分,第1题7分,第2题4分)已知P 、A 、B 、C 是球O 的面上四个点,P A 、PB 、PC 两两垂直,且P A=PB=PC=1,求:(1)球O 的体积与表面积;(2)PC 所对的球心角的大小.16.(本题10分)如图,AB 是异面直线a 、b 的公垂线,l b a =⊥⊥βαβα ,,.试问直线AB 与直线l 的位置关系如何?并请证明你观察所得的结论.17.(本题12分,每题4分)如图,正三棱柱111C B A ABC -的底面边长为3,侧棱2331=AA ,D 是CB 延长线上一点,且BD=BC.(1) 求证:直线BC 1//平面AB 1D ; (2) 求二面角B AD B --1的大小; (3) 求三棱锥11ABB C -的体积.18.(本题11分,第(1)题4分,第(2)题7分)如图,在ABC ∆中,C ∠是直角,平面ABC 外有一点P ,PC =24cm ,点P 到直线AC 、BC 的距离PD 和PE 都等于cm 106,试解答下列两个问题:(1) 求点P 到平面ABC 的距离PF ;(2)求证PC 与平面ABC 所成的角是PC 和这个平面内过斜足C 的直线所成的一切角中最小的角.并求出这个最小角.高三数学测试试卷(立体几何)答案一、选择C BCBA DBD A D 二、填充 (11)210;(12)13V V -;(13)2R π;(14)(3)、(4).三、15.(1)解答参看课本第二册(下)P77例2. 答案:(1)球O 的体积π23=球V ,球O 的表面积π3=球S ; (2) 设PC 所对球心角为α,运用余弦定理可得:31arccos=α. 16.该题为课本复习题九B 组第4题,其中回答AB 与l 的关系占2分,证明占8分. 答案:AB ∥l .欲证此结论,只要过点B 作a 的平行线a /, 过a /、b 作一辅助平面γ,易知γ⊥AB ,又可证得:l =⊥⊥βαγβγα 而,,,这样容易推得,,.γγγ⊥⊥⊥AB l l∴AB ∥l .17.答案:(2)二面角B AD B --1的大小为3π. (3)82711=-ABB C V . 18.答案:(1)12cm ;(2)6π(注:证明“最小角”参看课本第二册(下)P25)。

专题05 立体几何文-2018年高考题和高考模拟题数学分项版汇编 Word版含解析

专题05 立体几何文-2018年高考题和高考模拟题数学分项版汇编 Word版含解析

5.立体几何1.【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A.θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3.【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解. 4.【2018年新课标I卷文】在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.【答案】C点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.5.【2018年新课标I卷文】已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.6.【2018年全国卷Ⅲ文】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何答案1.(本小题14分)如图,在三棱柱ABC −中,平面ABC ,D ,E ,F ,G 分别为111A B C 1CC ⊥,AC ,,的中点,AB=BC,AC ==2.1AA 11A C 1BB 1AA(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥Q 平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,AC EF ∴⊥,AB BC =Q ,AC BE ∴⊥,AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥.又1CC ⊥平面ABC ,EF ∴⊥平面ABC .BE ⊂Q 平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G ,()=2,01CD ∴u u u r ,,()=1,2,0CB u u r ,设平面BCD 的法向量为(),a b c =,n ,00CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩u u u r u u r n n ,2020a c a b +=⎧∴⎨+=⎩,令2a =,则1b =-,4c =-,∴平面BCD 的法向量()2,14=--,,n ,又Q 平面1CDC 的法向量为()=0,2,0EB u u r ,cos =EB EB EB⋅∴<⋅>=-u u r u u r u u r n n n .由图可得二面角1B CD C --为钝角,所以二面角1B CD C --的余弦值为.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G Q ,()0,0,2F ,()=02,1GF ∴-u u u r ,,2GF ∴⋅=-u u u r n ,∴n 与GF u u u r 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交2.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥,Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥.(2)Q 底面ABCD 为矩形,AB AD ∴⊥,Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =,Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =,ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形,EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD ,EF ∴∥平面PCD .3.(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥,又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF ,BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD .(2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥,设4AB =,则4EF =,2PF =,∴PE =,过P 作PH EF ⊥交EF 于H 点,由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴PH ==,而4PD =,∴sin PH PDH PD ∠==,∴DP 与平面ABFD .4.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.C【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =,连结OB.因为AB BC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==,由222OP OB PB +=知PO OB ⊥,由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C,(P,(AP =u u u r ,取平面PAC 的法向量()2,0,0OB =u u u r ,设()(),2,002M a a a -<≤,则(),4,0AM a a =-u u u r ,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=u u u r n ,0AM ⋅=u u u r n ,得()2040y ax a y ⎧+=⎪⎨+-=⎪⎩,可取))4,a a =--n ,cos ,OB ∴<>=u u u rn ,由已知得cos ,OB <>=u u u r n,,解得4a =-(舍去),43a =,43⎛⎫∴=- ⎪⎪⎝⎭n ,又(0,2,PC =-u uu r Q ,所以cos ,PC <>=u u u r n .所以PC 与平面PAM .5.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧A CD所在平面垂直,M 是A CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.解答:(1)∵正方形半圆面,ABCD⊥CMD∴半圆面,∴平面.AD⊥CMD AD⊥MCD∵在平面内,∴,又∵是半圆弧上异于的点,∴CM MCD AD CM⊥M CD,C D .又∵,∴平面,∵在平面内,∴平面CM MD⊥AD DM D=I CM⊥ADM CM BCM平面.BCM⊥ADM(2)如图建立坐标系:∵面积恒定,ABCS∆∴,最大.MO CD⊥M ABCV-,,,,,(0,0,1)M(2,1,0)A-(2,1,0)B(0,1,0)C(0,1,0)D-设面的法向量为,设面的法向量为,MAB111(,,)m x y z=u rMCD222(,,)n x y z=r,,(2,1,1)MA=--(2,1,1)MB=-,,(0,1,1)MC=-(0,1,1)MD=--,11111120(1,0,2)20x y zmx y z--=⎧⇒=⎨+-=⎩同理,,(1,0,0)n=∴,∴.cosθ==sinθ=6.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.7.(本小题满分13分)如图,且AD =2BC ,,且EG =AD ,且AD BC ∥AD CD ⊥EG AD ∥CD FG ∥CD =2FG ,,DA =DC =DG =2.DG ABCD ⊥平面(I )若M 为CF 的中点,N 为EG 的中点,求证:;MN CDE ∥平面(II )求二面角的正弦值;E BCF --(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫ ⎪⎝⎭,()1,0,2N .(1)依题意()0,2,0DC = ,()2,0,2DE = .设()0,,x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即20220y x z =+=⎧⎨⎩,不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫= ⎪⎝⎭-,可得00MN ⋅= n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC = ,()1,2,2BE =- ,()0,1,2CF =- .设(),,x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,2,1=m .因此有cos ,⋅<>==m n m n m n,于是sin ,m n <>=.所以,二面角––E BC F.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =-- .易知,()0,2,0DC = 为平面ADGE 的一个法向量,故cos BP DC BP DC BP DC ⋅<⋅>== ,sin 60=︒=,解得[]0,2h =.所以线段DP.8.(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.解答:(1)∵,且平面,12AB B B ==1B B ⊥ABC∴,∴.1B B AB ⊥1AB =同理,1AC ===过点作的垂线段交于点,则且,∴.1C 1B B 1B B G 12C G BC ==11B G =11B C =在中,,11AB C ∆2221111AB B C AC +=∴,①111AB B C ⊥过点作的垂线段交于点.1B 1A A 1A A H则,,∴.12B H AB ==12A H =11A B =在中,,11A B A ∆2221111AA AB A B =+∴,②111AB A B ⊥综合①②,∵,平面,平面,11111A B B C B ⋂=11A B ⊂111A B C 11B C ⊂111A B C ∴平面.1AB ⊥111A B C (2)过点作的垂线段交于点,以为原点,以所在直线为轴,B AB AC I B AB x 以所在直线为轴,以所在直线为轴,建立空间直角坐标系.BI y 1B B z B xyz -则,,,,(0,0,0)B (2,0,0)A -1(0,0,2)B 1C 设平面的一个法向量,1ABB (,,)n a b c = 则,令,则,1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩ 1b =(0,1,0)n = 又∵,.1AC =1cos ,n AC <>== 由图形可知,直线与平面所成角为锐角,设与平面夹角为.1AC 1ABB 1AC 1ABB α∴.sin α=9.(本小题满分14分)在平行六面体中,.1111ABCD A B C D -1111,AA AB AB B C =⊥求证:(1);11AB A B C 平面∥(2).111ABB A A BC ⊥平面平面【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C .(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形.又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥.又因为1A B BC B = ,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A ,所以平面11ABB A ⊥平面1A BC .。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立 体 几 何 高 考 真 题 单 元 检 测满分150分,用时120分钟一.选择题:12小题,每题5分 共60分。

1.【2017课标3,文10】在正方体1111ABCD A B C D 中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1A E AC ⊥2.【2017课标II ,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A . 90π B. 63π C.42π D.36π3.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )A .B .C .D .4.【2017课标3,文9】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A .πB .3π4C .π2D .π45、【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17π B . 18π C . 20π D . 28π6、【2016高考山东文数】已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的( )A. 充分不必要条件B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件7、【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若//αβ,则//l mB .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若l β⊥,则αβ⊥8 、【2014年.浙江卷.文6】设m 、n 是两条不同的直线,α、β是两个不同的平面,则( )A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m9.【2016高考新课标Ⅲ文数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )A . 18+B. 54+ C . 90 D . 8110.【2015新课标2文6】 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.81B.7 1C.61D.511.【2014全国2,文7】正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为( )A .B . C. D .12.【2016高考新课标Ⅲ文数】在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()A . 4π B.C . 6πD .二. 填空题:4小题,每题5分,共20分13 . 【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为____________.14 . 【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为__________.15 . 【2014高考北京文第11题】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.16.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有__________斛.三 . 解答题:6小题,共70分,17题10分,其他各题均12分。

17. 【2017课标1,文18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠= ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.18 . 【2017课标II ,文18】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为,求四棱锥P ABCD -的体积.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.20 . 【2015高考新课标1,文18】如图四边形ABCD为菱形,G为AC与BD交点,,(I)证明:平面平面;(II)若,三棱锥的体积为,求该三棱锥的侧面积.如图,四棱锥中,平面,,,,为线段上一点,,为的中点.(I)证明MN //平面;(II)求四面体的体积.22.【2017课标3,文19】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.立体几何高考真题单元检测答案答案:CBABA|ADCBD|CB14π. 36π17 【答案】(1)证明见解析; (2)326+. 18. 【答案】(Ⅰ)见解析(Ⅱ)4 319.【答案】(Ⅰ)见解析(Ⅱ)ABC -A 1B 1C 1的高为.20.【答案】(I )见解析(II ) 21.【答案】(Ⅰ)见解析;(Ⅱ).22.(1)详见解析;(2)1 17由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得AD =,PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =.从而2PA PD ==,AD BC ==,PB PC ==. 可得四棱锥P ABCD-的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+.18.【答案】(Ⅰ)见解析(Ⅱ)4 3(1)在平面ABCD 内,因为∠BAD=∠ABC=90°,所以BC ∥AD.又BC PAD ⊄平面,AD PAD ⊂平面,故BC ∥平面PAD.(2)取AD 的中点M ,连结PM ,CM ,由12AB BC AD ==及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD.因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD∩平面ABCD=AD ,所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD ⊂底面,所以PM ⊥CM.设BC=x ,则CM=x ,CD= 2x ,PM= 3x ,PC=PD=2x.取CD 的中点N ,连结PN ,则PN ⊥CD,所以PN=142x因为△PCD的面积为27,所以1 2×2x×142x=27,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=23,所以四棱锥P-ABCD的体积V=13×2(2+4)2×23=43.19..解:(1)连接BC1,则O为B1C与BC1的交点.因为侧面BB1C1C为菱形,所以B1C⊥BC1.又AO⊥平面BB1C1C,所以B1C⊥AO,故B1C⊥平面ABO.由于AB⊂平面ABO,故B1C⊥AB.(2)作OD⊥BC,垂足为D,连接AD.作OH⊥AD,垂足为H.由于BC⊥AO,BC⊥OD,故BC⊥平面AOD,所以.由OH·AD=OD·OA,且,得.又O为B1C的中点,所以点B1到平面ABC的距离为.故三棱柱ABC-A1B1C1的高为.20 (I )因为四边形ABCD 为菱形,所以ACBD , 因为BE 平面ABCD ,所以AC BE ,故AC平面BED . 又AC 平面AEC ,所以平面AEC平面BED (II )设AB =,在菱形ABCD 中,由ABC =120°,可得AG =GC =,GB =GD =.因为AE EC ,所以在AEC 中,可得EG =.由BE 平面ABCD ,知EBG 为直角三角形,可得BE =.由已知得,三棱锥E-ACD 的体积.故=2 从而可得AE =EC =ED =.所以EAC 的面积为3,EAD 的面积与ECD 的面积均为. 故三棱锥E-ACD 的侧面积为.21试题解析:(1)证明:取AC 中点O ,连OB OD ,∵CD AD =,O 为AC 中点,∴OD AC ⊥,又∵ABC ∆是等边三角形,∴OB AC ⊥,又∵O OD OB = ,∴⊥AC 平面OBD ,⊂BD 平面OBD ,∴BD AC ⊥.(2)设2==CD AD ,∴22=AC ,22==CD AB ,又∵BD AB =,∴22=BD ,∴≅∆ABD CBD ∆,∴EC AE =,又∵EC AE ⊥,22=AC ,∴2==EC AE ,在ABD ∆中,设x DE =,根据余弦定理DEAD AE DE AD BD AD AB BD AD ADB ⋅-+=⋅-+=∠22cos 222222 x x ⨯⨯-+=⨯⨯-+=22222222)22()22(2222222 解得2=x ,∴点E 是BD 的中点,则ACE B ACE D V V --=,∴1=--ACEB ACE D V V .。

相关文档
最新文档