2012年物理重点难点专练专题5:动能定理与功能关系专题
高考必刷题物理动能与动能定理题及解析
高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
高中物理动能与动能定理试题(有答案和解析)及解析
高中物理动能与动能定理试题(有答案和解析)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
专题五动能定理
考点五:机车启动类问题一、对P=FV 的理解1、当P 一定时:2、当F 一定时:3、当V 一定时:二、机车启动的两种方式: 建立模型:恒定功率启动 恒定加速度启动 基本方程过程分析运动性质转折点各量变化图像最大速度位移时间方程匀加速运动最大速度与时间例1、汽车在平直公路上以速度v 0匀速行驶,发动机功率为P ,牵引力为F o ,t 1时刻,司机减小了油门,使汽车的功率立即减小一半,并保持该功率继续行驶,到t 2时刻,汽车又恢复了匀速直线运动。
能正确表示这一过程中汽车牵引力F 和速度v 随时间t 变化的图象是( )例2、质量为m =4×103 kg 的汽车发动机的额定功率P 0=40×103 W ,汽车从静止开始,以a =0.5 m/s 2的加速度做匀加速直线运动,所受阻力恒为F f =2×103 N ,求:(1)汽车匀加速运动所用的时间t ?汽车可达的最大速度v m ?(2)汽车速度为2v m /3时的加速度a ′?汽车运动40s 的位移?考点六:动能定理和功能关系一、知识点拨1、动能定理: 适用条件:重要提示:思维误区提示:2、功能关系:(1)、合外力做功是动能变化的量度:(2)、重力做功与重力势能变化的关系:(3)、弹簧弹力做功与弹性势能变化的关系:(4)、一对相互作用的滑动摩擦力做功与内能变化的关系:(5)、只有重力和弹力做功与机械能变化的关系:(6)、其它力(除弹力和重力以外)做功与机械能变化的关系3、求变化量的方法(1)动能变化量:(2)势能变化量(3)机械能变化量4、动能定理的解题步骤:二、题型分析1.活用动能定理巧求变力做功2.活用动能定理巧求多过程问题例1、如图2所示,在一个固定盒子里有一个质量为m的滑块,它与盒子底面摩擦系数为μ,开始滑块在盒子中央以足够大的初速度v0向右运动,与盒子两壁碰撞若干次后速度减为零,若盒子长为L,滑块与盒壁碰撞没有能量损失,求整个过程中物体与两壁碰撞的次数。
精品专题 专题六 动能定理与功能关系
高二智慧课堂专题六动能定理与功能关系动能定理理解:W=Ek2-Ek1合力做的功即总功=末动能-初动能说明:对任何过程的恒力、变力;匀变速、非匀变速;直线运动、曲线运动;时间长或短过程、瞬间过程都能运用。
1、合外力做正功,动能增加合外力做负功,动能减少2、动能定理中的功是合外力做的总功总功的求法:(1)先求合力,再求合力功(2)先求每个力做的功,再求代数和3、适用范围:既适用于恒力做功,也适用于变力做功;既适用于直线运动,也适用于曲线运动。
解题思路:(1)选取研究对象.一般选取某一个物体或相对静止的多个物体做研究对象.(2)确定研究过程.研究过程可以是物体运动中的某一阶段,也可以是由物体运动的多个阶段所组成的全过程.(3)在确定的研究过程内,对研究对象进行力的分析和功的分析.在进行功的分析时,不但要分析哪些力做功,还要分析其做功性质.(4)确定研究对象的初、末动能及动能的变化.这里的初和末是相对所选取的研究过程来讲的.(5)应用动能定理列出相应关系式.恒力---直线过程练习1:一质量为1kg的物体被人用手由静止向上提高1m,这时物体的速度是2m/s,下列说法正确的是: A、手对物体做功10J B、合外力对物体做功12JC、合外力对物体做功2JD、物体克服重力做功2J练习2:A、B两物体放在光滑的水平面上,分别在相同的水平恒力作用下,由静止开始通过相同的位移,若A的质量大于B的质量,则在这一过程A. A获得的动能大B. B获得的动能大C. A、B获得的动能一样大D. 无法比较谁获得的动能练习3:一辆质量为m,速度为v0的汽车在关闭发动机后于水平地面滑行了距离L后停下来,试求汽车受到的阻力.练习4:一架喷气式飞机,质量为m=5000kg,起飞过程中从静止开始滑跑的路程为l=530m 时,达到起飞速度v=60m/s。
在此过程中飞机受到的平均阻力f阻是飞机重量的0.02倍(k=0.02)。
求飞机受到的牵引力F。
2012年高考物理热点:功能关系、机械能守恒定律
(1)轻绳即将伸直时,绳与竖直方向的夹角为多少?
(2)当质点到达O点的正下方时,绳对质点的拉力为多大?
解析:
第一过程:质点做平抛运动.设绳即将伸直时,绳与竖直方向的夹角为θ,如题图所示,
则:v0t=Rsinθ,gt2/2=8R/9-Rcosθ其中v0=
联立解得θ= ,t= .
2012年高考物理热点:功能关系、机械能守恒定律
本章内容是中学物理核心内容之一,是高考考查的重点章节。功、功率、动能、势能等概念的考查,常以选择题型考查。动能定理的综合应用,可能结合电场知识考查。功能关系、机械能守恒定律的应用,往往以非选择题的形式出现,常综合牛顿运动定律、动量守恒定律、圆周运动知识、电磁学等内容。特点是综合性强,难度大。本部分的知识与生产、生活、科技相结合考查。
9. 如图甲所示,质量分别为m=1kg,M=2kg的A、B两个小物块用轻弹簧相连而静止在光滑水平面上,在A的左侧某处另有一个质量也为m=1kg的小物块C以v0=4m/s的速度正对A向右匀速运动,一旦与A接触就将粘合在一起运动,若在C与A接触前,使A获得一初速度vA0,并从此时刻开始计时,向右为正方向,其速度随时间变化的图像如图乙所示(C与A未接触前),弹簧始终未超过弹簧性限度。
3. 如图为某探究活动小组设计的节能运动系统。斜面轨道倾角为30°,质量为M的小车与轨道的动摩擦因数为。小车在轨道顶端时,自动装货装置将质量为m的货物装入小车,然后小车载着货物沿轨道无初速滑下,将轻弹簧压缩至最短时,自动卸货装置立即将货物卸下,然后小车恰好被弹回到轨道顶端,之后重复上述过程。根据以上条件,下列选项正确的是( )
对a下落动能定理:得到=6m/s
对a对穿越磁场i过程动能定理:
对b运动过程动能定理:
高中物理专题练习-动能定理 机械能守恒定律及功能关系的应用(含答案)
高中物理专题练习-动能定理机械能守恒定律及功能关系的应用(含答案)满分:100分时间:60分钟一、单项选择题(本题共6小题,每小题5分,共30分.每小题只有一个选项符合题意.)1.(四川理综,1)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大2.(新课标全国卷Ⅱ,17)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()3.(新课标全国卷Ⅱ,16)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1, W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1, W f2<2W f14.(新课标全国卷Ⅰ,17)如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离5.(海南单科,4)如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( ) A.14mgR B.13mgRC.12mgRD.π4mgR 6.(天津理综,5)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( ) A .圆环的机械能守恒 B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变二、多项选择题(本题共4小题,每小题7分,共计28分.每小题有多个选项符合题意.全部选对的得7分,选对但不全的得4分,错选或不答的得0分.)7.(浙江理综,18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105 N ;弹射器有效作用长度为100 m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( ) A .弹射器的推力大小为1.1×106 N B .弹射器对舰载机所做的功为1.1×108 J C .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 28.(新课标全国卷Ⅱ,21)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为g.则() A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg9.(江苏单科,9)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14m v2C.在C处,弹簧的弹性势能为14m v2-mghD.上滑经过B的速度大于下滑经过B的速度10.(江苏南通一模)一质点在0~15 s内竖直向上运动,其加速度-时间图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是()A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能减少D.在t=15 s时质点的机械能大于t=5 s时质点的机械能三、计算题(本题共2小题,共计42分.解答时写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不得分.)11.(江苏单科,14)(20分)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O与小环之间,原长为L.装置静止时,弹簧长为32L.转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g.求:(1)弹簧的劲度系数k;(2)AB杆中弹力为零时,装置转动的角速度ω0;(3)弹簧长度从32L缓慢缩短为12L的过程中,外界对转动装置所做的功W.12.(福建理综,21)(22分)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车.已知滑块质量m=M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m;②滑块从B到C运动过程中,小车的位移大小s. 答案1. A [由机械能守恒定律mgh +12m v 21=12m v 22知,落地时速度v 2的大小相等,故 A 正确.]2.A [当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-f =ma 1,f 不变,所以汽车做加速度减小的加速运动,当F 1=f 时速度最大,且v m =P 1F 1=P 1f .当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-f =ma 2,所以加速度逐渐减小,直到F 2=f 时,速度最大v m ′=P 2f ,以后匀速运动.综合以上分析可知选项A 正确.]3.C [两次物体均做匀加速运动,由于时间相等,两次的末速度之比为1∶2,则由v =at 可知两次的加速度之比为a 1a 2=12,F 1合F 2合=12,又两次的平均速度分别为v 2、v ,故两次的位移之比为x 1x 2=12,由于两次的摩擦阻力相等,由W f =fx 可知,W f 2=2W f 1;由动能定理知W 合1W 合2=ΔE k1ΔE k2=14,因为W 合=W F -W f ,故W F =W 合+W f ;W F 2=W 合2+W f 2=4W 合1+2W f 1<4W 合1+4W f 1=4W F 1;选项C 正确.]4.C [根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg-mg =m v 2R ,所以N 点动能为E k N =3mgR2,从P 点到N 点根据动能定理可得mgR -W =E k N -E k P ,即克服摩擦力做功W =mgR2.质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理-mgR -W ′=E k Q -E k N ,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确.]5.C [在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R ,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12m v 2,解得W f =12mgR ,所以克服摩擦力做功 12mgR ,C 正确.]6.B [圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组成的系统机械能守恒,故A 、D 错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C 错误;圆环重力势能减少了3mgl ,由能量守恒定律知弹簧弹性势能增加了3mgl ,故B 正确.]7.ABD [设总推力为F ,位移x ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x=12m v 2,解得F =1.2×106 N,弹射器推力F 弹=F -F 发=1.2×106 N -1.0×105 N =1.1×106 N,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100 J =1.1×108 J,B 正确;弹射器对舰载机做功的平均功率P -=F 弹·0+v2=4.4×107 W,C 错误;根据运动学公式v 2=2ax ,得a =v 22x =32 m/s 2,D 正确.]8.BD [滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12m v 2a +0,即v a =2gh ,选项B 正确;a 、b 的先后受力如图所示.由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.] 9.BD [由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 有mgh 1=12m v 2B 1+ΔE p1+W f 1,从C 到B 有12m v 2+ΔE p2=12m v 2B 2+W f 2+mgh 2,又有12m v 2+E p =mgh +W f ,联立可得v B 2>v B 1,所以D 正确.]10.CD [质点竖直向上运动,0~15 s 内加速度方向向下,质点一直做减速运动,B 错误;0~5 s内,a=10 m/s2,质点只受重力,机械能守恒;5~10 s内,a=8 m/s2,受重力和向上的力F1,F1做正功,机械能增加;10~15 s内,a=12 m/s2,质点受重力和向下的力F2,F2做负功,机械能减少,A错误,C正确;由F合=ma可推知F1=F2,由于做减速运动,5~10 s内通过的位移大于10~15 s内通过的位移,F1做的功大于F2做的功,5~15 s内增加的机械能大于减少的机械能,所以D正确.]11.解析(1)装置静止时,设OA、AB杆中的弹力分别为F1、T1,OA杆与转轴的夹角为θ1小环受到弹簧的弹力F弹1=k·L2小环受力平衡:F弹1=mg+2T1cos θ1小球受力平衡:F1cos θ1+T1cos θ1=mg, F1sin θ1=T1sin θ1解得k=4mg L(2)设OA、AB杆中的弹力分别为F2、T2,OA杆与转轴的夹角为θ2,弹簧长度为x 小环受到弹簧的弹力F弹2=k(x-L)小环受力平衡:F弹2=mg,得x=54L对小球:F2cos θ2=mg, F2sin θ2=mω20l sin θ2且cos θ2=x 2l解得ω0=8g 5L(3)弹簧长度为L2时,设OA、AB杆中的弹力分别为F3、T3,OA杆与弹簧的夹角为θ3小环受到弹簧的弹力F弹3=k·L2小环受力平衡:2T3cos θ3=mg+F弹3,且cos θ3=L 4l对小球:F3cos θ3=T3cos θ3+mg;F3sin θ3+T3sin θ3=mω23l sin θ3解得ω3=16g L整个过程弹簧弹性势能变化为零,则弹力做的功为零, 由动能定理:W -mg ⎝ ⎛⎭⎪⎫3L 2-L 2-2mg ⎝ ⎛⎭⎪⎫3L 4-L 4=2×12m (ω3l sin θ3)2解得:W =mgL +16mgl 2L 答案 (1)4mgL (2)8g 5L (3)mgL +16mgl 2L12.解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12m v 2B ①滑块在B 点处,由牛顿第二定律知 N -mg =m v 2B R ② 解得N =3mg ③ 由牛顿第三定律知 N ′=3mg ④(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒 mgR =12M v 2m +12m (2v m )2⑤ 解得v m =gR3⑥②设滑块运动到C 点时,小车速度大小为v C ,由功能关系 mgR -μmgL =12M v 2C +12m (2v C )2⑦ 设滑块从B 到C 过程中,小车运动加速度大小为a ,由牛顿第二定律 μmg =Ma ⑧ 由运动学规律v 2C -v 2m =-2as ⑨解得s =13L ⑩ 答案 (1)3mg (2)①gR 3 ②13L1.运用功能关系分析问题的基本思路(1)选定研究对象或系统,弄清物理过程;(2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化;(3)仔细分析系统内各种能量的变化情况、变化数量.2.功能关系。
专题 动能定理与功能关系
m4
解析:由于轨道的水平宽度 x 相等,物体沿着轨道从左端运
v4
动到右端,初速度 v0 相同,虽然滑动摩擦阻力不同,但滑动摩
图4
擦阻力做的功相同,均为 W= -μmgx,重力做功为零。
根据动能定理: mgx
1 2
mv 2
1 2
mv02
解得: v v02 2 gx
可见物体到达右端时速度大小相同,与物体质量无关,与斜面的倾角无关。
变式训练:
变式 1、已知物体与轨道之间的滑动摩擦因数相同,轨道两 m1 端的宽度相等,且轨道两端位于同一水平面上。问质量不同的物
v1
体,以相同的初速度沿着如图 4 所示的不同运行轨道运动时,末 m2
速度的大小关系( )
v2
A.v1 v2 B.v1 v4
m3
v3
C.v2 v3 D. v3 v4
v0
的滑块,距挡板 P 为 l0,以初速度 v0 沿斜面上滑,滑块与斜面
m
间的动摩擦因数为 μ,滑块所受摩擦力小于滑块沿斜面方向的重
力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面 P α
上经过的总路程为多少?
图1
解析:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受
摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。
正确答案:C
变式 2、如图 5 所示,在竖直平面内的 AC 两点间有两点间有三条轨道。一个质量为
m 的质点从顶点 A 由静止开始先后沿三条不同的轨道下滑,三条轨道的摩擦因数都是 μ,
转折点能量损耗不计,由该物体分别沿着 AC、AEC、ADC 到达 C 点时的速度大小正确的
说法是( )
A. 物体沿 AC 轨道下滑到达 C 点速度最大 B. 物体沿 AEC 轨道下滑到达 C 点速度最大 C.物体沿 ADC 轨道下滑到达 C 点速度最大
2012年高考物理试题分类汇编:动能定理_机械能守恒定律_功能关系
专题6机械能、功能关系(2012上海)15.质量相等的均质柔软细绳A 、B 平放于水平地面,绳A 较长。
分别捏住两绳中点缓慢提起,直到全部离开地面,两绳中点被提升的高度分别为hA 、hB ,上述过程中克服重力做功分别为W A 、WB 。
若( )(A )hA =hB ,则一定有WA =WB (B )hA >hB ,则可能有WA <WB(C )hA <hB ,则可能有WA =WB (D )hA >hB ,则一定有WA >WB(2012上海)16.如图,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 有光滑圆柱,A 的质量为B 的两倍。
当B 位于地面时,A 恰与圆柱轴心等高。
将A 由静止释放,B 上升的最大高度是( ) (A )2R (B )5R/3 (C )4R/3 (D )2R/3(2012上海)18.位于水平面上的物体在水平恒力F1作用下,做速度为v1的匀速运动;若作用力变为斜面上的恒力F2,物体做速度为v2的匀速运动,且F1与F2功率相同。
则可能有( )(A )F2=F1,v1>v2 (B )F2=F1,v1<v2(C )F2>F1,v1>v2 (D )F2<F1,v1<v2(2012 大纲版)26.(20分)(注意:在试题卷上作答无效)一探险队员在探险时遇到一山沟,山沟的一侧竖直,另一侧的坡面呈抛物线形状。
此队员从山沟的竖直一侧,以速度v0沿水平方向跳向另一侧坡面。
如图所示,以沟底的O 点为原点建立坐标系Oxy 。
已知,山沟竖直一侧的高度为2h ,坡面的抛物线方程为221x h y,探险队员的质量为m 。
人视为质点,忽略空气阻力,重力加速度为g 。
求此人落到破面试的动能;此人水平跳出的速度为多大时,他落在坡面时的动能最小?动能的最小值为多少?(2012 广东)17图4是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,滑道底部B 处安装一个压力传感器,其示数N 表示该处所受压力的大小,某滑块从斜面上不同高度h 处由静止下滑,通过B 是,下列表述正确的有A.N 小于滑块重力B.N 大于滑块重力C.N 越大表明h 越大D.N 越大表明h 越小(2012 北京)22.(16分)如图所示,质量为m 的小物块在粗糙水平桌面上做直线运动,经距离l 后以速度v飞离桌面,最终落在水平地面上。
动能定理功能关系
动能定理和功能关系教学目标 知识点: 动能、动能定理、功能关系考点: 动能定理的应用,功与能能力: 能够理解动能定理并能运用动能定理解决问题方法: 知识的理解与运用重点难点动能定理的运用、功能关系 课前检查 作业完成情况:优□ 良□ 中□ 差□ 建议__________________________________________课前练习:【1】质点在恒力作用下,由静止开始做直线运动,关于质点动能的大小有以下说法正确的是 ( )A .动能与它通过的位移成正比;B .动能与它通过的位移的平方成正比;C .动能与它运动的时间成正比;D .动能与它运动的时间的平方成正比.【2】如图4-2-2所示,两人打夯,同时用与竖直方向成θ角的恒力F ,将质量为M 的夯锤举高H ,然后松手;夯锤落地后,打入地面下h 深处时停下.不计空气阻力,求地面对夯锤的平均阻力是多大?【3】一质量为1.0kg 的物体,以4m/s 的速度在光滑的水平面上向左滑行,从某一时刻起对物体施一水平向右的恒力,经过一段时间,物体的速度方向变为向右,大小仍为4m/s ,则在这段时间内水平力对物体所做的功为( )A .0B .-8JC .-16JD .-32J知识要点回顾:1.重力做功的特点: 与 无关.只取决于 . 2 重力势能;表达式(l )具有相对性.与的选取有关.但重力势能的改变与此 (2)重力势能的改变与重力做功的关系.表达式 .重力做正功时.重力势能 .重力做负功时.重力势能 .图4-2-23.弹性势能;发生形变的物体,在恢复原状时能对 ,因而具有 . 这种能量叫弹性势能。
弹性势能的大小跟 有关 4.机械能.包括 、 、 . 5.机械能守恒的条件;系统只 或 做功 6 机械能守恒定律应用的一般步骤;(1)根据题意.选取 确定研究过程(2)明确运动过程中的 或 情况.判定是否满足守恒条件 (3)选取 根据机械能守恒定律列方程求解二、典型例题:1.质量为m 的小球.从桌面上竖直抛出,桌面离地高为h .小球能到达的离地面高度为H , 若以桌面为零势能参考平面,不计空气气阻力 则小球落地时的机械能为( ) A 、mgH B .mgh C mg (H +h ) D mg (H-h )2.如图,一小球自A 点由静止自由下落 到B 点时与弹簧接触.到C 点时弹簧被压缩到最短.若不计弹簧质量和空气阻力 在小球由A -B —C 的运动过程中( )A 、小球和弹簧总机械能守恒B 、小球的重力势能随时间均匀减少C 、小球在B 点时动能最大D 、到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量3、 如图 一根铁链长为L , 放在光滑的水平桌面上,一端下垂,下垂长度为a , 若将链条由静止释放,则链条刚好离开桌子边缘时的速度是多少?4、如图所示,有一根轻杆AB ,可绕O 点在竖直平面内自由转动,在AB 端各固定一质量为m 的小球,OA 和OB 的长度分别为2a 和a ,开始时,AB 静止在水平位置,释放后,AB 杆转到竖直位置,A 、B 两端小球的速度各是多少?A B CA BO5.某同学在做“验证机械能守恒定律”的实验时,不慎将一条选择好的纸带的前面部分损坏了,剩下的一段纸带上各点间的距离,他测出并标在纸带上,如图1-66所示.已知打点计时器的周期为0.02s,重力加速度为g=9.8m/s2.图1-66(1)利用纸带说明重锤(质量为mkg)通过对应于2、5两点过程中机械能守恒. ________________________________________________________________________.(2)说明为什么得到的结果是重锤重力势能的减小量ΔEP,稍大于重锤动能的增加量ΔEK? 针对练习1.如图4-2-3所示,DO 是水平面,AB 是斜面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零.如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度( ).(已知物体与路面之间的动摩擦因数处处相同且不为零.) A .大于0v B .等于0vC .小于0vD .取决于斜面的倾角2.如图4-2-4中ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC AB CD 是与和都相切的一段小圆弧,其长度可以略去不计,一质量为A m 的小滑块在点从静止状态释放,沿轨道滑下,最后停在D A D 点,点和点的位置如图所示,现用一沿着轨道方向的力推滑块,使它缓慢地由D A 点推到点停下,设滑块与轨道间滑动摩擦系数为μ,则推力对滑块做的功等于( )图4-2-4A .mghB .2mghC .μθmg s h +⎛⎝⎫⎭⎪sin D .θμμmghctg mgs +图4-2-33.如图4-2-5所示,m A =4kg ,m B =1 kg ,A 与桌面间的动摩擦因数μ=0.2,B 与地面间的距离h=0.8m ,A 、B 原来静止,则B 落到地面时的速度为________m /s ;B 落地后,A 在桌面上能继续滑行_________m 远才能静止下来.(g 取10rn /s 2;).图4-2-54. 一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 的作用下,从平衡位置P 点很缓慢的移动到Q 点,如图4-2-6所示,则F 所做的功为( ) θcos ..mgl A θsin .Fl B )cos 1(.θ-mgl C θFl D .5.总质量为M 的列车在平直的铁路上匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?课堂训练:1.一质量为lkg 的物体被人用手由静止向上提升1m 时物体的速度是s m /2,下列说法中错误的是(g 取l0rn/s 2); ( )A .提升过程中手对物体做功12JB .提升过程中合外力对物体做功12JC .提升过程中手对物体做功2JD .提升过程中物体克服重力做功l 0J2.某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,在着地过程中地面对双脚的平均作用力估计为( )A .自身重力的2倍B .自身重力的5倍C .自身重力的8倍D .自身重力的10倍3.某人从12.5m 高的楼顶抛出一小球,不计空气阻力,小球落地时的动能是抛出时的11倍,小球的质量为0.6kg ,取g =l0m /s 2,则人对小球做功是( )A .7.5JB .8.0JC .6.5JD 以上答案都不正确4.质量为m 的汽车,以恒定功率P从静止开始沿平直公路行驶,经时间t 行驶距离为s 时速度达到最大值v m ,已知所受阻力恒为f ,则此过程中发动机所做的功为 ( )A .PtB .21mv m 2+fs C .fv m t D .s v Pm 221 FQPLOθ图4-2-65.如图4-2-7所示,一水平方向足够长的传送带以恒定的速率1v 沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面.一物块以初速度2v 沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,此时其速率为2v ',则下列说法正确的是( )A .只有1v =2v 时,才有2v '=1v B .若1v <2v ,则2v =2v ' C .若1v <2v ,则2v '=1v D .不管多大,总有 2v '=2v 6.速度为v 0的子弹,恰可穿透一固定着的木板,如果子弹速度为2v 0,子弹穿透木板的阻力视为不变,则可穿透同样的木块 ( )A .2块B .3块C .4块D .1块7.汽车在平直的公路上行驶,在它的速度从零增加到v 的过程中,汽车发动机做的功为w 1,在它的速度从v 增加到2v 的过程中,汽车发动机做的功为w 2,设汽车在行驶过程中发动机的牵引力和所受的阻力都不变,则有( )A .W 2=2W 1B .W 2=3W lC .W 2=4W lD .仅能判定W 2>W 18.质量kg m 2=的物体以50J 的初动能在粗糙的水平地面上滑行,其动能与位移关系如图4-2-8所示,则物体在水平面上的滑行时间t 为( )A .s 5B .s 4C .s 22D .2s9.一艘由三个推力相等的发动机驱动的气垫船,在湖面上由静止开始加速前进s 距离后关掉一个发动机,气垫船匀速运动;将到码头时,又关掉两个发动机,最后恰好停在码头上,则三个发动机关闭后船通过的距离为多少?图4-2-7图4-2-811.质量为m 的物体以速度v 0竖直向上抛出,物体落回地面时度大小为043v ,设物体在运动中所受空气阻力大小不变,求:(1)物体运动过程中所受空气阻力的大小;(2)若物体与地面碰撞过程中无能量损失,求物体运动的总路程12.质量M=2×103kg 的汽车,额定功率P=80kW ,在平直公路上能达到的最大行驶速度为v m =20m/s .若汽车从静止开始以加速度a=0.2m/s 2做匀加速直线运动,且经t=30 s 达到最大速度,则汽车做匀加速直线运动的最长时间及30s 内通过的总路程各是多少?。
功能关系、动能定理与动量计算题
功能关系、动能定理与动量题集一、计算题1. 如图所示,一辆质量为M=6kg的平板小车停靠在墙角处,地面水平且光滑,墙与地面垂直.一质量为m=2kg的小铁块(可视为质点)放在平板小车最右端,平板小车上表面水平且与小铁块之间的动摩擦因数μ=0.45,平板小车的长度L=1m.现给铁块一个v0=5m/s的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,碰撞过程中无能量损失,求:(1)最终的车速大小;(2)小铁块在平板小车上运动的过程中系统损失的机械能(g取10m/s2).2. 如图所示,传送带水平部分AB的长度L=1.5m,与一圆心在O点、半径R=1m的竖直光滑圆轨道的末端相切于A点.AB高出水平地面H=1.25m.一质量m=0.1kg的小滑块(可视为质点),由因轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin37°=0.6,cos37°=0.8,g取10m/s2,滑块与传送带的动摩擦因数μ=0.2,转轮与传送带间不打滑.不计空气阻力.(1)求滑块对圆轨道末端的压力的大小.(2)若传送带以速度为v1=1.0m/s顺时针匀速转动.滑块运动至B点水平抛出.求此种情况下,滑块的落地点与B点的水平距离.(3)若传送带以速度为V2=0.8m/s顺时针匀速转动,求滑块在传送带上滑行过程中产生的热量.3. 如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m=2kg的小物体轻轻放在传送带的A端,物体相对地面的速度随时间变化的关系如图乙所示,2s末物体到达B端,取沿传送带向下为正方向,g=10m/s2,sin37°=0.6,求:(1)小物体在传送带A、B两端间运动的平均速度v;(2)物体与传送带间的动摩擦因数μ;(3)2s内物体机械能的减少量ΔE及因与传送带摩擦产生的内能Q。
4. (加试题)如图17所示,在光滑的水平面上有木块A和B,m A=0.5kg,m B=0.4kg,它们的上表面是粗糙的.今有一小铁块C,m C=0.1kg,以初速度v0=10m/s沿两木块表面滑过,最后停留在B上,此时B、C以共同速度v=1.5m/s运动,求:(1)A最终运动的速度v A;(2)C刚离开A时的速度v C;(3)整个过程中因摩擦而产生的内能.5. 如图所示,质量为M.内间距为L的箱子静止在光滑水平面上,箱子中间有一质量为m的小物块(可视为质点),初始时小物块停在箱子正中间。
【高中物理】动能定理
湛江市二中物理
组
、3
一、动能EK 1.定义:物体由于运动而具有的能叫动能, 2.公式:Ek=1/2mv2,单位:J. 3.动能是标量,是状态量,V 4.动能的变化△Ek=1/2mVt2-1/2mV02. △Ek>0, 表示物体的动能增加; △Ek<0,表示物体的 动能减少.
二、动能定理
我们在处理问题时可以从能量变化来求功,也可以从物体做功的多少来求能量的变化.
P初
P末,
力做功等于重力势能的增加量W =ΔE =E -E 动能是标量,是状态量,V是瞬时速度。
(2)动能定理适用于单个物体,也适用于系统; 外力对物体做的总功为正功,则物体的动能增加;
克
P增 P末 P
初应用:利用动能定理求变力的功
(3)应用动能定理解题,一般比牛顿第二定律解题要简便. 一般牵扯到力与位移关系的题目中,优先考虑使用动能 定理
3.应用动能定理解题的基本步骤: (1) (2)分析研究对象的受力情况和各个力的做功情 况:受哪些力?每个力是否做功,做正功还ห้องสมุดไป่ตู้做 负功?做多少功?然后求各个力做功的代数和. (3)明确物体在过程的始未状态的动能EK0和EKt (4)列出动能的方程W合=EKt-EK0,及其他必要辅 助方程,进行求解.
P91 题型二
4、使用动能定理应注意的问题:
①物体动能的变化是由于外力对物体做功 引起的.外力对物体做的总功为正功,则 物体的动能增加;反之将减小.外力对物 体所做的总功,应为所有外力做功的代数 和,包含重力.
②有些力在物体运动全过程中不是始终存在的, 若物体运动过程中包含几个物理过程,物体运动 状态、受力等情况均发生变化,因而在考虑外力 做功时,必须根据不同情况分别对待.
动能定理与功能关系专题
- 1 -动能定理、机械能守恒与功能关系专题几种常见的功和能量转化的关系(1) 动能定理:合外力对物体所做的功等于物体动能的变化W 合=E K2-E K1(2)只有重力(或弹簧弹力)做功时,物体的机械能守恒:E 1=E 2 (3)重力(弹簧弹力)做多少正功,重力势能(弹性势能)减少多少;重力(弹簧弹力)做多少负功,重力势能(弹性势能)增加多少 W G =-△E P =E P1-E P2(4)重力和弹簧弹力之外的其它外力对物体所做的功W F ,等于物体机械能的变化,即W F =△E =E 2-E 1 W F >0,机械能增加. W F <0,机械能减少.专题训练:1.滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且12v v ,若滑块向上运动的位移中点为A ,取斜面底端重力势能为零,则 ( ) A 上升时机械能减小,下降时机械能增大。
B 上升时机械能减小,下降时机械能减小。
C 上升过程中动能和势能相等的位置在A 点上方 D 上升过程中动能和势能相等的位置在A 点下方2.如图所示,具有一定初速度的物块,沿倾角为30°的粗糙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力F 作用,这时物块的加速度大小为4 m/s 2,方向沿斜面向下,那么,在物块向上运动的过程中,下列说法正确的是( ) A .物块的机械能一定增加B .物块的机械能一定减小C .物块的机械能可能不变D .物块的机械能可能增加也可能减小3.如图所示,DO 是水平面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零。
如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度 ( )(已知物体与路面之间的动摩擦因数处处相同且为零。
)A .大于 v 0B .等于v 0C .小于v 0D .取决于斜面的倾角AB C D4、半径为r和R(r <R)的光滑半圆形槽,其圆心均在同一水平面上,如图所示,质量相等的两物体分别自半圆形槽左边缘的最高点无初速地释放,在下滑过程中两物体( )A、机械能均逐渐减小B、经最低点时动能相等C、在最低点对轨道的压力相等D、在最低点的机械能相等5.如图甲所示,在倾角为θ的光滑斜面上,有一个质量为m的物体在沿斜面方向的力F的作用下由静止开始运动,物体的机械能E随位移x的变化关系如图乙所示.其中0~x1过程的图线是曲线,x1~x2过程的图线为平行于x轴的直线,则下列说法中正确的是()A.物体在沿斜面向上运动B.在0~x1过程中,物体的加速度一直减小C.在0~x2过程中,物体先减速再匀速D.在x1~x2过程中,物体的加速度为g sinθ7. 如图所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经过a点,乙小球竖直下落经过b点,a、b两点在同一水平面上,不计空气阻力,下列说法中正确的是()A.甲小球在a点的速率等于乙小球在b点的速率B.甲小球到达a点的时间等于乙小球到达b点的时间C.甲小球在a点的机械能等于乙小球在b点的机械能(相对同一个零势能参考面)D.甲小球在a点时重力的功率等于乙小球在b点时重力的功率8.在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降高度为h的过程中,下列说法正确的是(g为当地的重力加速度)()A.他的动能减少了FhB.他的重力势能增加了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh- 2 -9.如图所示,一个质量为m的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为()A. 18mgR B.14mgR C.12mgR D.34mgR10.(多选)(2015·周口一模) 如图,一物体从光滑斜面AB底端A点以初速度v0上滑,沿斜面上升的最大高度为h。
第2章 专题 动能定理、机械能守恒定律及功能关系应用
鲁科版物理 · 必修2
返回导航 上页
下页
解法一:利用机械能守恒解
以 m1、m2 弹簧组成的系统为研究对象,由机械能守恒得 ΔEk=-ΔEp, 即12(m1+m2)v2=-(12kx2-m2gx)②
将①式代入②式解得 v=±
m2g m1+m2k
故速度大小为
m2g m1+m2k
.
鲁科版物理 · 必修2
解法二:利用动能定理解 以 m1、m2 组成的系统为研究对象,由动能定理得 12(m1+m2)v2-0=W 弹+m2gx W 弹=-Ep=-12kx2 x=mk2g 解以上三式得 v= mm1+2gm2k.
返回导航 上页
下页
鲁科版物理 · 必修2 解法三:利用功能关系解
返回导航 上页
下页
以 m1、m2 组成的系统为研究对象,对系统除重力外只有弹簧弹力做功 由功能关系得
鲁科版物理 · 必修2
返回导航 上页
下页ห้องสมุดไป่ตู้
1.应用动能定理解题时,要善于画出其过程示意图,便于建立清晰的物理情景, 有助于找出物理量间的正确关系以及解决的方法;
2.对于较复杂的运动过程,既可以全程列式,也可以分段列式.
鲁科版物理 · 必修2
返回导航 上页
下页
[典例 2] 如图所示,已知轻弹簧发生弹性形变时所具有 的弹性势能 Ep=12kx2.其中 k 为弹簧的劲度系数,x 为其形变 量.现有质量为 m1 的物块与劲度系数为 k 的轻弹簧相连并静 止地放在光滑的水平桌面上,弹簧的另一端固定,按住物块 m1,弹簧处于自然长度, 在 m1 的右端连一细线并绕过光滑的定滑轮接一个挂钩.现在将质量为 m2 的小物体轻 轻地挂在挂钩上.设细线不可伸长,细线、挂钩、滑轮的质量及一切摩擦均不计,释 放 m1,求:
新课标2012届高考物理总复习配套课件5-1课时1 功 功率
高三总复习
人教版· 人教版· 物理
快 2.物理意义:描述做功的 快慢 ,功率大则做功 .物理意义: 慢 做功 .
,功率小则
3.额定功率:机器 .额定功率: 明.
工作的功率. 正常 工作的功率.一般在机器的铭牌上标
4.实际功率:机器 实际工作 时输出的功率.要求 小于等于 额定 .实际功率: 时输出的功率. 功率. 功率.
高三总复习
人教版· 人教版· 物理
知识点二
功率 ——知识回顾 知识回顾—— 知识回顾
1.公式 . W (1)P= t ,P为时间 内的 平均功率 . 为时间t内的 = 为时间 (2)P= Fvcosα ,α为F与v的夹角. = 的夹角. 为 与 的夹角 为平均速度, ①若v为平均速度,则P为 平均功率 , 为平均速度 为 为瞬时速度, ②若v为瞬时速度,则P为 瞬时功率 . 为瞬时速度 为
高三总复习习本章内容时应注意: .复习本章内容时应注意: 对本章的复习应抓住功和能的关系这一基本线索,通过“ 对本章的复习应抓住功和能的关系这一基本线索,通过“能量转 化”把知识联系在一起. 把知识联系在一起. (1)求一个力做功及做功功率,应从恒力做功、变力做功及功能关 求一个力做功及做功功率,应从恒力做功、 求一个力做功及做功功率 动能定理多角度进行训练,并应进一步使学生明确“ 系、动能定理多角度进行训练,并应进一步使学生明确“ 功是能量转 化的量度”这一说法的内涵. 化的量度”这一说法的内涵.
高三总复习
人教版· 人教版· 物理
(2)从P=Fv可见: 从 = 可见 可见: 一定时, ①当 P一定时, 要增加 ,必须减小 ,故汽车爬坡时 , 司机常换 一定时 要增加F,必须减小v,故汽车爬坡时, 低挡降低速度来增大牵引力. 一定时, 增加 如匀加速运动), 增加(如匀加速运动 低挡降低速度来增大牵引力 . ② 当 F一定时, v增加 如匀加速运动 , 一定时 则P也会增加,但这样的过程是有限度的.③当v一定时,P越大 就越 也会增加, 一定时, 越大 越大F就越 也会增加 但这样的过程是有限度的. 一定时 大.如功率越大的起重机可吊起的重物的质量越大. 如功率越大的起重机可吊起的重物的质量越大.
功能关系和动能定理
第2课时 功率重点难点例析一、 功率的计算1.平均功率即某一过程的功率,其计算既可用tWP =,也可用P = F ·v 2.瞬时功率即某一时刻的功率,其计算只能用P =F ·v【例1】一个质量为m 的物体,从高度为h ,长度为L 的光滑斜面顶端由静止开始下滑,求物体到达斜面底端时重力做功的功率?【解析】本题所求重力做功的功率,应为瞬时功率 P =mgv cosα,而速度v 是沿着斜面向下的.如图5-2-1,设斜面的倾角为θ,根据θs in 22gL al v ==而α=(90°-θ),所以Lgh mgh gL mg mgv P /2sin sin 2cos ===θθα【点拨】本题主要考查对瞬时功率的计算,要求同学们对三角关系理解通彻,并且灵活运用公式.θ图5-3-1第3课时 动能及动能定理【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-=对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位臵间的水平距离.故ShS S h =+=21μ【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.●拓展从离地面H 高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k (k <1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求: (1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少?(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?第4课时势能机械能守恒定律一、重力做功的特点1.重力做功与路径无关,只与物体的始末位置的高度差和重力大小有关.2.重力做功的大小W G=mgh,h为始末位置的高度差.3.重力做正功,物体重力势能减少;重力做负功,物体重力势能增加.【例1】沿着高度相同,坡度不同,粗糙程度也不同的斜面向上拉同一物体到顶端,以下说法中正确的是()A.沿坡度小,长度大的斜面上升克服重力做的功多B.沿长度大、粗糙程度大的斜面上升克服重力做的功多C.沿坡度大、粗糙程度大的斜面上升克服重力做的功少D.上述几种情况重力做功同样多【解析】重力做功的特点是,重力做功与物体运动的具体路径无关,只与初末位臵物体的高度差有关,不图5-4-15-4-6图5-4-7第5课时 机械能守恒定律的应用基重点难点例析一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+=解得R h 25=同理,小球在最低点机械能 221BB mv E =gR v E E B C B 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B 62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.●拓展如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k=∆.机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv 整理得)60cos 1(202-=mg lv m 又在最低图5-5-1 图5-5-2第6课时 功能关系 能量守恒定律【例1】一质量均匀不可伸长的绳索,重为G ,A 、B两端固定在天花板上,如图5-6-1所示,今在最低点C 施加一竖直向下的力,将绳索拉至D 点,在此过程中,绳索AB 的重心位置将 ( )第8课时实验:验证机械能守恒定律)图5-9-54.(2008江苏)如图5-9-8所示,两光滑斜面的倾角O O图5-9-7x【解析】(1)从图中可以看邮,在t =2s 内运动员做匀加速运动,其加速度大小为216==t v a t m/s 2=8m/s 2设此过程中运动员受到的阻力大小为f ,根据牛顿第二定律,有mg -f =ma f =m (g -a )=80×(10-8)N =160N 图5-9-11图5-9-13(3)对比实验结果与理论计算得到的s2—h关系(3)小于(4)摩擦,转动(回答任一即可)(2008全国)图5-9-13中滑块和小球的质量均m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为l1开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,mgl = 12mv12 +12mv22 ①由系统的水平方向动量守恒定律有:mv1 = mv2 ②对滑块与挡板接触到速度刚好变为零的过程中,挡阳光家教网 高中(高考)物理复习资料23。
高中二轮复习专题05 动能定理、机械能守恒定律、功能关系的应用
专题05 动能定理、机械能守恒定律、功能关系的应用核心要点1、功恒力做功:W=Flcosa合力做功:W合=F合lcosa变力做功:图像法、转换法等2、功率瞬时功率:P=Fvcosa平均功率:P=wt机车启动:P=Fv3、动能定律表达式:W=12mv22−12mv12备考策略1、动能定理(1)应用思路:确定两状态(动能变化),一过程(各个力做的功)(2)适用条件:直线运动曲线运动均可;恒力变力做功均可;单个过程多个过程均可(3)应用技巧:不涉及加速度、时间和方向问题是使用2、机械能守恒定律(1)守恒条件:在只有重力或弹力做功的物体系统内守恒角度E1=E2(2)表达形式:转化角度△E k=△E p转移角度△E A=-△E p3、功能关系:(1)合力的功等于动能的增量(2)重力的功等于重力势能增量的负值(3)弹力的功等于弹性势能增量的负值(4)电场力的功等于电势能增量的负值(5)除了重力和系统内弹力之外的其他力的功等于机械能的增量考向一动能定理的综合应用1.应用动能定理解题的步骤图解2.应用动能定理的四点提醒(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2020·江苏卷·4)如图1所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图像是()图1解析:由题意可知设斜面倾角为θ,动摩擦因数为μ1,则物块在斜面上下滑水平距离x时根据=E k,整理可得(mgtanθ-μ1mg)x=E k,即在斜面上运动能定理有mgxtan θ-μ1mgcos θxcosθ动时动能与x成线性关系;当小物块在水平面运动时,设水平面的动摩擦因数为μ2,由动能定理有一μ2mg(x一x0)=E k一E k0,其中E0为物块滑到斜面底端时的动能, x0为在斜面底端对应的水平位移,解得E k=E k0一μ2mg(x-x0),即在水平面运动时动能与x也成线性关系;综上分析可知A 项正确。
高考物理复习专题五 动能定理 能量守恒定律练习题(含详细答案)
高考物理复习专题五动能定理能量守恒定律一、单选题1.如图所示,在竖直平面内有一固定轨道,其中AB是长为R的粗糙水平直轨道,BCD是圆心为O,半径为R的3/4光滑圆弧轨道,两轨道相切于B点.在推力作用下,质量为m的小滑块从A 点由静止开始做匀加速直线运动,到达B点时即撤去推力,小滑块恰好能沿圆轨道经过最高点C。
重力加速度大小为g,取AB所在的水平面为零势能面。
则小滑块()A.在AB段运动的加速度为2gB.经B点时加速度为零C.在C点时合外力的瞬时功率为D.上滑时动能与重力势能相等的位置在直径DD′上方2.运输人员要把质量为,体积较小的木箱拉上汽车。
现将长为L的木板搭在汽车尾部与地面间,构成一固定斜面,然后把木箱沿斜面拉上汽车。
斜面与水平地面成30o角,拉力与斜面平行。
木箱与斜面间的动摩擦因数为,重力加速度为g。
则将木箱运上汽车,拉力至少做功()A.B.C.D.3.如图所示,轻质弹簧的一端固定在粗糙斜面的挡板O点,另一端固定一个小物块。
小物块从P1位置(此位置弹簧伸长量为零)由静止开始运动,运动到最低点P2位置,然后在弹力作用下上升运动到最高点P3位置(图中未标出)。
在此两过程中,下列判断正确的是()A.下滑和上滑过程弹簧和小物块系统机械能守恒B.下滑过程物块速度最大值位置比上滑过程速度最大位置高C.下滑过程弹簧和小物块组成系统机械减小量比上升过程小D.下滑过程克服弹簧弹力和摩擦力做功总值比上滑过程克服重力和摩擦力做功总值小4.如图所示,水平桌面上有一小车,装有砂的砂桶通过细绳给小车施加一水平拉力,小车从静止开始做直线运动。
保持小车的质量M不变,第一次实验中小车在质量为m1的砂和砂桶带动下由静止前进了一段距离s;第二次实验中小车在质量为m2的砂和砂桶带动下由静止前进了相同的距离s,其中。
两次实验中,绳对小车的拉力分别为T1和T2,小车,砂和砂桶系统的机械能变化量分别为和,若空气阻力和摩擦阻力的大小保持不变,不计绳,滑轮的质量,则下列分析正确的是()A.B.C.D.5.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置无初速释放,在小球下摆到最低点的过程中,下列说法正确的是( )A.绳对球的拉力不做功B.球克服绳拉力做的功等于球减少的机械能C.绳对车做的功等于球减少的动能D.球减少的重力势能等于球增加的动能6.如图所示,自动卸货车静止在水平地面上,车厢在液压机的作用下,θ角缓慢增大,在货物相对车厢仍然静止的过程中,下列说法正确的是()A.货物受到的支持力变小B.货物受到的摩擦力变小C.货物受到的支持力对货物做负功D.货物受到的摩擦力对货物做负功7.一质量为0.6kg的物体以20m/s的初速度竖直上抛,当物体上升到某一位置时,其动能减少了18J,机械能减少了3J。
5专题五 动能定理与功能关系专题
专题五 动能定理与功能关系专题复习目标:1.多过程运动中动能定理的应用;2.变力做功过程中的能量分析;3.复合场中带电粒子的运动的能量分析。
专题训练:1.在离地面高为A 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于A .2201122mgh mv mv -- B .2201122mv mv mgh --- C .2201122mgh mv mv +- D .2201122mgh mv mv +- 2.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 为水平的,其距离d =0.50m 盆边缘的高度为h =0.30m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为A .0.50mB .0.25mC .0.10mD .03.图中ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC 是与AB 和CD 都相切的一小段圆弧,其长度可以略去不计.一质量为m 的小滑块在A 点从静止状态释放沿轨道滑下,最后停在D 点.A 点和D 点的位置如图所示.现用一沿着轨道方向的力推滑块,使它缓慢地由D 点推回到A 点时停下.设滑块与轨道间的摩擦系数为μ,则推力对滑块做的功等于A .mghB .2mghC .()sin h mg s μθ+D .cot mgs mgh μμθ+4.滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且12v v <,若滑块向上运动的位移中点为A ,取斜面底端重力势能为零,则 ( )A .上升时机械能减小,下降时机械能增大。
B .上升时机械能增大,下降时机械能减小。
功能关系和动能定理的区别
功能关系和动能定理的区别
功能关系和动能定理的区别
功能关系和动能定理是物理学中的两个重要概念,它们之间有很多相似之处,但也有一些不同之处。
首先,功能关系是一组数学表达式,它们描述了两个变量之间的关系,即当一个变量发生改变时,另一个变量也会发生改变。
而动能定理是一种物理定律,它描述了动能和物体的质量和速度之间的关系,即动能等于物体的质量乘以它的速度的平方。
其次,功能关系可用于分析两个变量之间的变化,但它不能用于描述物体的动能。
而动能定理可用于描述物体的动能,而不仅仅是它们之间的关系。
最后,功能关系是一种抽象的概念,它们不会改变实际的运动,而动能定理是一种具体的物理定律,它可以说明物体的动能是如何由它们的质量和速度所决定的。
总之,功能关系和动能定理是物理学中两个重要的概念,它们在某种程度上是相同的,但它们之间也有一些明显的区别。
高考物理二轮复习考前基础练:动能定理功能关系
回扣练7:动能定理 功能关系1.在光滑的水平面上有一静止的物体,现以水平恒力F 1推这一物体,作用一段时间后换成相反方向的水平恒力F 2推这一物体,当恒力F 2作用的时间与恒力F 1作用的时间相等时,物体恰好回到原处,此时物体的动能为32 J ,则在整个过程中,恒力F 1、F 2做的功分别为( )A .16 J 、16 JB .8 J 、24 JC .32 J 、0 JD .48 J 、-16 J解析:选B.设加速的末速度为v 1,匀变速的末速度为v 2,由于加速过程和匀变速过程的位移相反,又由于恒力F 2作用的时间与恒力F 1作用的时间相等,根据平均速度公式有v 12=-v 1+v 22 ,解得v 2=-2v 1,根据动能定理,加速过程W 1=12mv 21,匀变速过程W 2=12mv 22-12mv 21根据题意12mv 22=32 J ,故W 1=8 J ,W 2=24 J ,故选B.2.如图甲所示,一次训练中,运动员腰部系着不可伸长的绳,拖着质量m =11 kg 的轮胎从静止开始沿着笔直的跑道加速奔跑,绳与水平跑道的夹角是37°,5 s 后拖绳从轮胎上脱落.轮胎运动的vt 图象如图乙所示,不计空气阻力,已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.则下列说法正确的是( )A .轮胎与水平地面间的动摩擦因数μ=0.2B .拉力F 的大小为55 NC .在0~5 s 内,轮胎克服摩擦力做功为1 375 JD .在6 s 末,摩擦力的瞬时功率大小为275 W解析:选D.撤去F 后,轮胎的受力分析如图1所示,由速度图象得5 s ~7 s 内的加速度a 2=-5 m/s 2,根据牛顿运动定律有N 2-mg =0,-f 2=ma 2,又因为f 2=μN 2,代入数据解得μ=0.5,故A 错误; 力F 拉动轮胎的过程中,轮胎的受力情况如图2所示,根据牛顿运动定律有Fcos 37°-f 1=ma 1,mg -Fsin 37°-N 1=0, 又因为f 1=μN 1,由速度图象得此过程的加速度a 1=2 m/s 2,联立解得:F =70 N ,B 错误;在0 s ~5 s 内,轮胎克服摩擦力做功为0.5×68×25 J=850 J ,C 错误;因6 s 末轮胎的速度为5 m/s ,所以在6 s 时,摩擦力的瞬时功率大小为0.5×110×5 W=275 W ,D 正确;故选D.3.一质量为m 的电动汽车在平直公路上以恒定的功率加速行驶,当速度大小为v 时,其加速度大小为a ,设汽车所受的阻力恒为f.以下说法正确的是( )A .汽车的功率为fvB .当汽车的速度增加到2v 时,加速度为a2C .汽车行驶的最大速率为⎝⎛⎭⎪⎫1+ma f v D .当汽车的速度为v 时,行驶的距离为v22a解析:选C.汽车做加速运动,由牛顿第二定律有:F -f =ma ,所以F =f +ma ,所以汽车的功率为P =Fv =(f +ma)v ,故A 错误;当汽车的速度增加到2v 时,此时的牵引力为F =P 2v =(f +ma )v 2v =(f +ma )2,由牛顿第二定律有:F -f =ma 1,即(f +ma )2-f =ma 1,解得:a 1=ma -f2m ,故B 错误;当汽车的牵引力与阻力相等时,汽车速度最大,即v m =P f =(f +ma )v f =⎝ ⎛⎭⎪⎫1+ma f v ,故C 正确;由于以恒定的功率行驶,即做加速度减小的加速运动,行驶的距离不能用2ax =v 2求解.故D 错误.4.如图,两个相同的小球P 、Q 通过铰链用刚性轻杆连接,P 套在光滑竖直杆上,Q 放在光滑水平地面上.开始时轻杆贴近竖直杆,由静止释放后,Q 沿水平地面向右运动.下列判断正确的是( )A .P 触地前的速度一直增大B .P 触地前的速度先增大后减小C .Q 的速度一直增大D .P 、Q 的速度同时达到最大解析:选A.开始时P 、Q 的速度都为零,P 受重力和轻杆的作用下做加速运动,而Q 由于轻杆的作用,则开始时轻杆对Q 做正功,Q 加速,后对Q 做负功,Q 减速,当P 到达底端时,P 只有竖直方向的速度,而水平方向的速度为零,故Q 的速度为零,所以在整个过程中,P 的速度一直增大,Q 的速度先增大后减小,故A 正确,BCD 错误;故选A.5.如图所示,两光滑直杆成直角竖直固定,OM 水平,ON 竖直,两个质量相同的有孔小球A 、B(可视为质点)串在杆上通过长为L 的非弹性轻绳相连,开始时小球A 在水平向左的外力作用下处于静止状态,此时OB =45L ,重力加速度为g ,现将外力增大到原来的4倍(方向不变),则小球B 运动到与O 点的距离为35L 时的速度大小为( )A.1510gL B .1515gL C.8255gL D .6255gL 解析:选C.开始时A 到O 的距离: OA =L 2-⎝ ⎛⎭⎪⎫45L 2=35L ,以B为研究对象,开始时B受到重力、杆的支持力N和绳子的拉力T,如图,则:tan θ=Nmg;由几何关系:tan θ=OAOB=35L45L=34;联立得:N=34mg,以AB组成的整体为研究对象,在水平方向二者受到拉力F和杆对B的支持力N,由于水平方向受力平衡,所以F=N=34mg,现将外力增大到原来的4倍(方向不变),则:F′=4F=3mg,B球向上运动时,小球B运动到距O点的距离35L时,由几何关系得,A到O点的距离:OA′=L2-⎝⎛⎭⎪⎫35L2=45L,A向左的距离:Δs=45L-35L=15L,B上升的距离:Δh=45L-35L=15L此时细绳与竖直方向之间夹角的正切值:tan θ′=43,则得cos θ′=0.6,sin θ′=0.8由运动的合成与分解知识可知:A球与B球的速度之间的关系为:v B cos θ′=v A sin θ′可得v B=43v A以AB球组成的整体为研究对象,拉力和重力对系统做功,由动能定理得:F′·ΔS-mgΔh=12mv2A +12mv2B联立以上方程解得:v B=8255gL,选项C正确.故选C.6.(多选)某研究小组对一辆新能源实验小车的性能进行研究.小车的质量为1.0 kg,他们让这辆小车在水平的直轨道上由静止开始运动,其vt图象如图所示(除2~10 s时间段图象为曲线外,其余时间段图象均为直线).已知2 s后小车的功率P=9 W保持不变,可认为在整个运动过程中小车所受到的阻力大小不变,下列说法正确的有( )A.0~2 s时间内,汽车的牵引力是3.5 NB.汽车在第1 s时的功率等于第14 s时的功率的一半C.小车在0~10 s内位移的大小为42 mD .2~10 s 时间内,汽车的平均速度是4.5 m/s解析:选BC.汽车的最大速度为v m =6 m/s ,则阻力f =P v m =96 N =1.5 N ;在0~2 s 时间内,汽车的加速度a =32 m/s 2=1.5 m/s 2;则牵引力是F =ma +f =1×1.5 N+1.5 N =3 N ,选项A 错误;汽车在第1 s末时的功率:P 1=Fv 1=3×1.5 W=4.5 W =12P 14,选项B 正确;在0~2 s 内的位移:s 1=12×2×3 m=3 m ;在2 s ~10 s 内由动能定理:Pt -fs 2=12mv 210-12mv 22,解得s 2=39 m ,则小车在0~10 s 内位移的大小为s=s 1+s 2=42 m ,选项C 正确;2~10 s 时间内,汽车不是匀加速运动,则平均速度是v≠3+62m/s =4.5 m/s ,选项D 错误;故选BC.7.(多选)如图为“阿特伍德机”模型,跨过光滑的定滑轮用质量不计的轻绳拴接质量分别为m 和2m 的物体甲、乙.将两物体置于同一高度,将装置由静止释放,经一段时间甲、乙两物体在竖直方向的间距为l ,重力加速度用g 表示.则在该过程中( )A .甲的机械能一直增大B .乙的机械能减少了23mglC .轻绳对乙所做的功在数值上等于乙的重力所做的功D .甲的重力所做的功在数值上小于甲增加的动能解析:选AB.机械能等于动能与重力势能之和,甲加速上升,其动能和重力势能均增加,所以机械能增加,故A 正确;甲和乙组成的系统机械能守恒,由机械能守恒定律得:2mg l 2=mg l 2+12mv 2+12×2mv 2,则解得:v =13gl ,乙动能增加量为12×2mv 2=13mgl ,重力势能减小2mg l 2=mgl ,所以机械能减小23mgl ,故B 正确;由于乙加速下降,则轻绳的拉力小于重力,因此轻绳对乙所做的功在数值上小于乙的重力所做的功,故C 错误;甲动能增加量为:ΔE k =12mv 2=16mgl ,甲的重力所做的功在数值上等于12mgl ,由此可知甲的重力所做的功在数值上大于甲增加的动能,故D 错误.所以AB 正确,CD 错误.8.(多选)如图所示,倾角为θ=37°的传送带以速度v =2 m/s 沿图示方向匀速运动.现将一质量为2 kg 的小木块,从传送带的底端以v 0=4 m/s 的初速度,沿传送带运动方向滑上传送带.已知小木块与传送带间的动摩擦因数为μ=0.5,传送带足够长,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.小物块从滑上传送带至到达最高点的过程中,下列说法正确的是( )A .运动时间为0.4 sB .发生的位移为1.6 mC .产生的热量为9.6 JD .摩擦力对小木块所做功为12.8 J解析:选BC.第一阶段:根据牛顿第二定律,mgsin θ+μmgcos θ=ma 1,得a 1=10 m/s 2,第一阶段位移为x 1=v 2-v 20-2a 1=0.6 m ,所用时间为t 1=v -v 0-a 1=0.2 s ,传送带位移为x 传1=vt 1=0.4 m ,划痕为Δx 1=x 1-x 传1=0.2 m ;第二阶段:mgsin θ-μmgcos θ=ma 2,得a 2=2 m/s 2,第二阶段位移为x 2=v22a 2=1m ,所用时间为t 2=va 2=1 s ,传送带位移为x 传2=vt 2=2 m ,划痕为Δx 2=x 传1-x 2=1 m .由以上分析可知,物体运动总时间为t =t 1+t 2=1.2 s ;物体的总位移x =x 1+x 2=1.6 m ;产生总热量为Q =μmgcos θ·Δx 1+μmgcos θ·Δx 2=9.6 J ;摩擦力第一阶段做负功,第二阶段做正功,摩擦力对小木块所做功为W =-μmgcos θ·x 1+μmgcos θ·x 2=3.2 J ,综上分析可知BC 正确.9.(多选)如图所示,内壁光滑的绝缘管做成的圆环半径为R ,位于竖直平面内,管的内径远小于R.ab 为该环的水平直径,ab 及其以下区域处于水平向左的匀强电场中.现将质量为m 、电荷量为q 的带正电小球从管中a 点由静止开始释放,已知qE =mg.则下列说法正确的是( )A .小球释放后,可以运动过b 点B .小球释放后,到达b 点时速度为零,并在bda 间往复运动C .小球释放后,第一次和第二次经过最高点c 时对管壁的压力之比为1∶6D .小球释放后,第一次经过最低点d 和最高点c 时对管壁的压力之比为5∶1解析:选AD.从a 到b 的过程,由动能定理qE·2R=12mv 2b ,可知v b ≠0,故小球可以运动过b 点,则选项A 正确,B 错误;小球释放后,第一次经过最高点c 时有:N 1+mg =m v 21R ,-mgR +Eq·2R=12mv 21,因为qE =mg ,解得N 1=mg ;第二次经过最高点c 时有:Eq·2R=12mv 22-12mv 21,同理可得N 2=5mg ,所以比值为1∶5,选项C 错误;小球释放后,第一次经过最低点d ,由动能定理mgR +EqR =12mv 2,在d 点有:N -mg =m v2R,解得N =5mg.故D 正确;故选AD.10.(多选)如图所示,质量为M 、半径为R 的ABC 凹槽(为光滑圆槽的一部分)静止在光滑水平面上,B 为最低点,BC 为14圆弧,OA 与竖直方向夹角θ=60°,其右侧紧贴竖直墙壁PQ.一质量为m 的小物块(可视为质点)从D 处水平抛出,同时将ABC 凹槽锁定在地面上,小物块恰好从A 点无碰撞的射入凹槽 ,当其到达B 点时解除锁定,小物块刚好能达到C 点.不计空气阻力,重力加速度为g.则下列说法正确的是( )A.从D点抛出的初速度为v0=gR2;D点距A点高度差h=3R8B.小球第一次过B点时对槽底的压力大小为2mgC.小球从C点到B点过程中,竖直墙壁对槽的冲量为I=m2gR,方向水平向左D.小球从C到B向A运动的过程中,以小球、槽ABC作为一个系统,机械能守恒、动量守恒解析:选AC.A项:小物块恰好从A点无碰撞的射入凹槽,即小球进入凹槽时的速度方向与凹槽相切,将速度分解为水平方向和竖直方向可知,v=2v0,从A到C应用能量守恒可知,12m(2v0)2=mgRsi n 30°,解得v0=gR2,从D到A应用动能定理可得:mgh=12m(2v0)2-12mv20,解得:h=3R8,故A正确;B项:从A到B应用动能定理,mgR(1-sin 30°)=12mv2B-12mv2A,在B点由重力与支持力的合力提供向心力可得,F N-mg=mv2BR,由以上两式解得F N=3mg,故B错误;C项:小球到B时的速度为v B1=2gR,根据动量定理可得:I=mv B1-0=m2gR,故C正确;D项:小球从C到B向A运动的过程中,以小球、槽ABC作为一个系统,由于没有摩擦,所以机械能守恒,但在小球从C到B过程中,墙壁对槽有水平方向的作用力,所以系统所受外力不为零,故动量不守恒,故D错误.高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题5 动能定理与功能关系专题复习目标:1.多过程运动中动能定理的应用; 2.变力做功过程中的能量分析;3.复合场中带电粒子的运动的能量分析。
专题训练:1.滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且12v v <,若滑块向上运动的位移中点为A ,取斜面底端重力势能为零,则 ( )(A ) 上升时机械能减小,下降时机械能增大。
(B ) 上升时机械能减小,下降时机械能减小。
(C ) 上升过程中动能和势能相等的位置在A 点上方 (D )上升过程中动能和势能相等的位置在A 点下方2.半圆形光滑轨道固定在水平地面上,并使其轨道平面与地面垂直,物体m 1,m 2同时由轨道左右两端最高点释放,二者碰后粘在一起运动,最高能上升至轨道的M 点,如图所示,已知OM 与竖直方向夹角为060,则物体的质量21m m =( ) A . (2+ 1 ) ∶(2— 1) C .2 ∶1 B .(2— 1) ∶ (2+ 1 ) D .1 ∶23.如图所示,DO 是水平面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零。
如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度 ( )(已知物体与路面之间的动摩擦因数处处相同且为零。
)A .大于 v 0B .等于v 0C .小于v 0D .取决于斜面的倾角4.光滑水平面上有一边长为l 的正方形区域处在场强为E 的匀强电场中,电场方向与正方形一边平行。
一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速0v 进入该正方形区域。
当小球再次运动到该正方形区域的边缘时,具有的动能可能为:( )(A )0 (B )qEl mv 212120+ (C )2021mv (D )qEl mv 322120+5.在光滑绝缘平面上有A .B 两带同种电荷、大小可忽略的小球。
开始时它们相距很远,AAB C D的质量为4m ,处于静止状态,B 的质量为m ,以速度v 正对着A 运动,若开始时系统具有的电势能为零,则:当B 的速度减小为零时,系统的电势能为 ,系统可能具有的最大电势能为 。
6.如图所示,质量为m ,带电量为q 的离子以v 0速度,沿与电场垂直的方向从A 点飞进匀强电场,并且从另一端B 点沿与场强方向成1500角飞出,A 、B 两点间的电势差为 ,且ΦA ΦB (填大于或小于)。
7.如图所示,竖直向下的匀强电场场强为E ,垂直纸面向里的匀强磁场磁感强度为B ,电量为q ,质量为m 的带正电粒子,以初速率为v 0沿水平方向进入两场,离开时侧向移动了d ,这时粒子的速率v 为(不计重力)8.1914年,弗兰克和赫兹在实验中用电子碰撞静止的原子的方法,使原子从基态跃迁到激发态,证明了玻意尔提出的原子能级存在的假设,设电子的质量为m ,原子的质量为M ,基态和激发态的能量差为ΔE ,试求入射电子的最小初动能。
9.如图所示,斜面倾角为θ,质量为m 的滑块距挡板P 为s 0,以初速度v 0。
沿斜面上滑。
滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面的下滑力。
若滑块每次与挡板相碰均无机械能损失。
问滑块经过的路程有多大?10.图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。
另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行。
当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回到出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变E 量为2l ,重力加速度为g 。
求A 从P 点出发时的初速度0v 。
11.图示装置中,质量为m 的小球的直径与玻璃管内径接近,封闭玻璃管内装满了液体,液体的密度是小球的2倍,玻璃管两端在同一水平线上,顶端弯成一小段圆弧。
玻璃管的高度为H ,球与玻璃管的动摩擦因素为μ(μ<t g 370=3,小球由左管底端由静止释放,试求: (1)小球第一次到达右管多高处速度为零? (2)小球经历多长路程才能处于平衡状态?12.在水平向右的匀强电场中,有一质量为m .带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时细线与竖直方向夹角为θ,现给小球一个垂直悬线的初速度,使小球恰 能在竖直平面内做圆周运动。
试问(1)小球在做圆周运动的过程中,在那一个位置的速度最小?速度最小值是多少?(2)小球在B 点的初速度是多大?13.如图,长木板ab 的b 端固定一挡板,木板连同挡板的质量为M =4.0kg ,a 、b 间距离s =2.0m 。
木板位于光滑水平面上。
在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数=0.10,它们都处于静止状态。
现令小物块以初速0v =4.0m/s 沿木板向前滑动,直到和挡板相碰。
碰撞后,小物块恰好回到a 端而不脱离木板。
求碰撞过程中损失的机械能。
214.如图所示,一块质量为M 长为L 的均质板放在很长的光滑水平桌面上,板的左端有一质量为m 的物块,物块上连接一根很长的细绳,细绳跨过位于桌面的定滑轮,某人以恒定的速率v 向下拉绳,物块最多只能到达板的中央,而此时的右端尚未到桌边定滑轮,试求 (1)物块与板的动摩擦因数及物体刚到达板的中点时板的位移(2)若板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面间的动摩擦因数范围 (3)若板与桌面之间的动摩擦因数取( 2 )问中的最小值,在物体从板的左端运动到 板的右端的过程中,人拉绳的力所做的功(其它阻力不计)15.滑雪者从A 点由静止沿斜面滑下,经一平台后水平飞离B 点,地面上紧靠平台有一个水平台阶,空间几何尺度如图所示。
斜面、平台与滑雪板之间的动摩擦因数为 。
假设滑雪者由斜面底端进入平台后立即沿水平方向运动,且速度大小不变。
求: (1)滑雪者离开B(2)滑雪者从B16.如图所示,一质量为M ,长为l 的长方形木板B 放在光滑的水平面上,其右端放一质量为m 的小物体A (m <M )。
现以地面为参照系,给A 和B 以大小相等,方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
(1)若已知A 和B 的初速度大小为v 0,求它们最后的速度大小和方向;(2)若初速度的大小未知,求小木块A 向左运动到达最远处(从地面上看)离出发点的距离。
17.如图所示,摆球质量为m ,摆线长为l ,若将小球拉至摆线与水平方向夹300角的P 点处,然后自由释放,试计算摆球到达最低点时的速度和摆线中的张力大小。
专项预测:18.如图所示,AB 是一段位于竖直平面内的光滑轨道,高度为h ,末端B 处的切线方向水平。
一个质量为m 的小物体P 从轨道顶端A 处由静止释放,滑到B 端后飞出,落到地面上的C 点,轨迹如图中虚线BC 所示,已知它落地时相对于B 点的水平位移OC = l 。
现在轨道下方紧贴B 点安装一水平传送带,传送带的右端与B 的距离为l /2。
当传送带静止时,让 P 再次从A 点由静止释放,它离开轨道并在传送带上滑行后从右端水平飞出,仍然落在地面的C 点,当驱动轮转动带动传送带以速度v 匀速向右运动时(其他条件不变),P 的落地点为 D 。
不计空气阻力。
a )求P 滑到B 点时的速度大小b )求P 与传送带之间的摩擦因数c )求出O .D 间的距离s 随速度v 变化的函数关系式。
19. 如图所示,A 、B 是静止在水平地面上完全相同的两块长木板。
A 的左端和B 的右端相接触。
两板的质量皆为M =2.0kg ,长度l =1.0m 。
C 是一质量为m =1.0kg 的小物块。
现给它一初速度0v =2.0m/s ,使它从B 板的左端开始向右滑动。
已知地面是光滑的,而C 与A 、B 之间的动摩擦因数皆为 =0.10。
求最后A 、B 、C 各以多大的速度做匀速运动(重力加速度g 取102/s m )参考答案:1.BC 2.B 3.B4.ABC 5.2252,83mv mv 6.,2320q mv 小于 7.m qEd v 220-8.E MmM ∆+ 9.θμθμtg s g v +cos 220 10.)1610(21L L g +μ 11.(1)H 348+μμ,(2)μ45H 12.(1)A 点是速度最小θcos min glv = 13.2.4J 14.(1)2l ,mgl Mv 2 (2)gl m M Mv )(22+≥μ (3)22Mv15.(1))(2L h H g μ-- (2))(2,21L h H h S h L H μμ--=<-;)(2,22L h H h S h L H μμ--=>-16.(1)gh 2,(2)l h 23(3)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥+〈〈+≤=)27)(71(2)2722)(221(2)22()(ghv l ghv gh ghv lghl l v S 17.A 球从P 点做自由落体运动至B 点,速度为gl v B 2=,方向竖直向下在B 点,由于绳绷紧,小球速度为'B v ,方向垂直于OB ,则B B B v v v 2330cos 0'== 小球从B 点沿圆弧运动至最低点C ,则2'202121)60cos 1(B C mv mv mgl -=- gl gl gl gl v v BC 25212243)60cos 1(202'2=⨯+⨯=-+= 则gl v C 5.2= 在C 点mg lglmmg T lmv mg T 5.35.22=+==- 18.(1)0v mM mM +- 方向向右(2)在(1)中:A 与B 相对静止,A .B 的对地位移大小分别为S A ,S B ,则S A +S B =l则20220221212121Mv Mv mgS mv mv mgS B A -=--=-μμ 得220)(21)(21v m M v m M mgl +-+=μ设A 向左运动最大位移为S A ‘,则20'210mv mgS A -=-μ M mM mM m M mM mv v v m M m l S A 4)(11222020'+=+--⋅+=-⋅+=∴ 所以l MmM S A 4'+=19. s m v A /563.0= , s m v B /155.0= , s m v c /563.0=w.w.w.k.s.5.u.c.o.m。