抛物线
抛物线的概念
抛物线的概念1. 定义抛物线是指一个平面曲线,它的形状类似于一个由一个定点(称为焦点)和一条曲线(称为准线)上的所有点构成的路径。
它是一个二次曲线,由一个二次方程所描述。
抛物线的标准方程是:y = ax^2 + bx + c,其中 a、b 和 c 是实数,且 a ≠ 0。
具体来说,在抛物线上任意一点的坐标(x,y)满足上述方程。
2. 关键概念抛物线的关键概念包括焦点、准线、顶点、对称性和方程参数的含义。
2.1 焦点和准线抛物线的焦点是指一个定点,位于抛物线的内部,并且到抛物线上的任意一点的距离到焦点都相等。
抛物线的准线是指一条直线,位于抛物线的水平轴上方或下方,并与焦点的距离相等。
2.2 顶点抛物线的顶点是指抛物线的最高点或最低点,位于焦点与准线的交点处。
顶点的坐标可以通过将抛物线的标准方程转化为顶点形式来确定。
抛物线的顶点坐标为:(-b/2a, f(-b/2a)),其中 f(x) = ax^2 + bx + c。
2.3 对称性抛物线具有轴对称性,也就是说,它关于一条垂直于准线通过顶点的直线对称。
抛物线的焦点和顶点都位于对称轴上。
对称轴的方程为:x = -b/2a。
2.4 方程参数的含义抛物线方程中的参数 a、b 和 c 分别对应于抛物线的形状、方向和位置。
•参数 a 控制了抛物线的开口方向和形状:–当 a > 0 时,抛物线开口向上,形状为向上的 U 形。
–当 a < 0 时,抛物线开口向下,形状为向下的 U 形。
•参数 b 控制了抛物线的位置和对称性:–当 b = 0 时,抛物线的对称轴与 y 轴平行,抛物线是关于 y 轴对称的。
–当b ≠ 0 时,抛物线的对称轴与 y 轴不平行,抛物线不是关于 y 轴对称的,而是关于一个垂直于 y 轴的直线对称的。
•参数 c 控制了抛物线的位置:–当 c > 0 时,抛物线在 y 轴以下。
–当 c < 0 时,抛物线在 y 轴以上。
抛物线的全部知识点
抛物线的全部知识点抛物线是数学中非常重要的曲线之一,它在物理、工程和计算机图形学等领域都有广泛的应用。
以下是抛物线的全部知识点:1. 抛物线的定义:抛物线是平面上各点到一个定点(焦点)与该定点所在直线(准线)的距离相等的点的轨迹。
通常我们用二次函数的标准形式来表示抛物线:y = ax^2 + bx + c,其中a,b和c是常数,且a≠0。
2.抛物线的焦点和准线:焦点是抛物线上到该点的距离与抛物线与x 轴的距离之比为常数的点。
准线是与焦点等距的直线。
3.抛物线的对称轴:对称轴是通过焦点和抛物线上其它任意一点的直线,它将抛物线分成两部分,且两部分是对称关系。
4.抛物线的顶点:顶点是抛物线上曲线最高或最低点的坐标。
在标准形式的二次函数中,顶点的x坐标为-x轴的对称轴的值,y坐标为函数的极值。
5.抛物线的开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
6.抛物线的焦距和直径:焦距是焦点到准线的距离,直径是准线上两个焦点之间的距离,直径是焦距的两倍。
7. 抛物线的标准形式和顶点形式转换:通过平移和缩放,可以将二次函数转换为标准形式或顶点形式。
标准形式的抛物线方程为y = ax^2 + bx + c,其中a,b和c是常数;顶点形式的抛物线方程为y = a(x-h)^2 + k,其中(a,b)为顶点的坐标,h为顶点的x坐标,k为顶点的y坐标。
8. 抛物线的焦点和准线的坐标计算:焦点的坐标为(x,y),其中x = -b/2a,y = (4ac-b^2)/4a。
准线的方程为x = -b/2a。
9.抛物线的性质:抛物线是连续曲线,没有断点;抛物线是光滑曲线,没有拐点;对于开口向上(a>0)的抛物线,它是上升曲线;对于开口向下(a<0)的抛物线,它是下降曲线。
10.抛物线的切线和法线:切线是曲线上其中一点的切线,与曲线在该点的切点重合。
法线是与切线垂直的直线。
11.抛物线的渐近线:抛物线的对称轴和渐近线没有交点,但抛物线的顶点离开对称轴趋近于无穷远时,它会与对称轴越来越接近,近似成为渐近线。
抛物线初中知识点总结
抛物线初中知识点总结:
抛物线是轴对称图形,对称轴为直线x=-b/2a,这条直线与抛物线只有一个交点,即抛物线的顶点P,当b=0时,对称轴是y轴。
抛物线的顶点坐标为P(-b/2a,(4ac-b^2)/4a),当-b/2a=0时,P点在y轴上。
二次项系数a决定了抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口,|a|越大,开口越小。
一次项系数b和二次项系数a共同决定了对称轴的位置,当a与b同号时,对称轴在y轴的左侧;当a与b异号时,对称轴在y轴的右侧。
常数项c决定了抛物线与y轴的交点,抛物线与y轴的交点为(0,c)。
抛物线与x轴的交点可以通过Δ=b^2-4ac来判断,当Δ>0时,抛物线与x轴有2个交点;当Δ=0时,抛物线与x轴有1个交点;当Δ<0时,抛物线与x轴没有交点。
抛物线的基本知识点
抛物线的基本知识点
抛物线是数学中的一种曲线,它具有独特的形状和特征。
下面是关于抛物线的基本知识点。
1. 抛物线的定义:抛物线是指平面上满足特定形式的二次方程所表示的曲线。
其一般方程为y = ax^2 + bx + c,其中a、b和c为常数,且a不为零。
2. 抛物线的性质:
- 对称性:抛物线关于纵轴的直线x = -b/(2a)对称,称为对称轴。
- 顶点:抛物线的最高或最低点称为顶点,顶点坐标为(-
b/(2a), c - (b^2 - 4ac)/(4a))。
- 开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
- 零点:抛物线与x轴相交的点称为零点,可通过方程y = 0来求解。
- 平移和伸缩:通过调整抛物线的参数a、b和c,可以实现对抛物线的平移和伸缩。
3. 抛物线的应用:
- 物理学:抛物线是描述抛射物运动的理论模型,可以用来计算抛射物的轨迹和落点位置。
- 工程学:抛物线的形状被广泛应用于工程设计中,例如隧道、拱桥和天棚的构造。
- 经济学:抛物线常被用于经济学中的成本曲线、收益曲线和市场需求曲线等模型的分析和预测。
4. 抛物线的变种:
- 椭圆:当抛物线的参数a和参数b相等时,抛物线变为椭圆。
- 双曲线:当抛物线的参数a和参数b反号时,抛物线变为双曲线。
总结起来,抛物线是一种具有独特形状和特征的曲线,可以通过它的定义、性质和应用来理解和应用。
掌握抛物线的基本知识对于数学和相关领域的学习和研究具有重要意义。
抛物线的三种表达式
抛物线的三种表达式一、抛物线的定义和特点1. 抛物线的定义抛物线是一种二次曲线,由一个定点F和一条定直线L组成。
在平面几何中,抛物线可以通过多种方式来表达和描述。
本文将介绍抛物线的三种常见表达式。
2. 抛物线的特点抛物线的特点主要包括: 1. 对称性:抛物线是关于焦点F的对称曲线。
2. 函数性:抛物线可以表示为函数的形式,即y = f(x)。
3. 焦点和准线:焦点F是抛物线上的一个特殊点,准线是与抛物线垂直且通过焦点F的直线。
二、一般式表达式1. 一般式表达式的形式抛物线的一般式表达式是最常见和最基本的形式,它可以表示为: Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0其中,A、B、C、D、E、F为常数,且A和C不同时为0。
2. 一般式表达式的特点一般式表达式具有以下特点: 1. 既包括了二次项又包括了一次项,可以表示出抛物线的倾斜程度和位置。
2. 通过系数A、B、C的符号和大小,可以确定抛物线的朝向和形状。
三、顶点式表达式1. 顶点式表达式的形式抛物线的顶点式表达式是以抛物线的顶点为基准,它可以表示为: y = a(x - h)^2 + k其中,a、h、k为常数,且a不等于0。
2. 顶点式表达式的特点顶点式表达式具有以下特点: 1. 通过顶点坐标(h, k)可以确定抛物线在平面坐标系中的位置。
2. 通过参数a的值可以确定抛物线的开口方向和形状。
四、焦点和准线式表达式1. 焦点和准线式表达式的形式抛物线的焦点和准线式表达式是以抛物线的焦点和准线为基准,它可以表示为:4a(x - p)^2 = 4a(p - q)(y - k)其中,a、p、q、k为常数,且a不等于0。
2. 焦点和准线式表达式的特点焦点和准线式表达式具有以下特点: 1. 通过焦点坐标(p, k)和准线的位置可以确定抛物线的位置和形状。
2. 通过参数a的值可以确定抛物线的开口方向和准线的位置。
五、总结抛物线是一种常见的二次曲线,本文介绍了抛物线的三种常见表达式:一般式表达式、顶点式表达式和焦点和准线式表达式。
抛物线
抛物线一、基础知识1.抛物线的定义平面内与一个定点F和一条定直线l(点F不在直线l上) 的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.2.抛物线的标准方程和几何性质二、常用结论与抛物线焦点弦有关的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α为弦AB 的倾斜角.则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AF |=p 1-cos α,|BF |=p1+cos α.(3)弦长|AB |=x 1+x 2+p =2psin 2α.(4)1|AF |+1|BF |=2p. (5)以弦AB 为直径的圆与准线相切. 考点一 抛物线的定义及应用[典例] (1)若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )A.12 B .1 C.32D .2(2)设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则|PB |+|PF |的最小值为________. [解析] (1)设P (x P ,y P ),由题可得抛物线焦点为F (1,0),准线方程为x =-1. 又点P 到焦点F 的距离为2, ∴由定义知点P 到准线的距离为2. ∴x P +1=2,∴x P =1. 代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.(2)如图,过点B 作B Q 垂直准线于点Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|B Q |=4,即|PB |+|PF |的最小值为4.[答案] (1)B (2)4 [变透练清]1.若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( )A.12B .1C.32D .2解析:选D 由抛物线y 2=2px 知其准线方程为x =-p2.又点A 到准线的距离等于点A到焦点的距离,∴3x 0=x 0+p 2,∴x 0=p 4,∴A ⎝⎛⎭⎫p 4,2.∵点A 在抛物线y 2=2px 上,∴p 22=2.∵p >0,∴p =2.故选D.2.(变条件)若将本例(2)中的B 点坐标改为(3,4),则|PB |+|PF |的最小值为________. 解析:由题意可知点(3,4)在抛物线的外部. 因为|PB |+|PF |的最小值即为B ,F 两点间的距离, 所以|PB |+|PF |≥|BF |=22+42=4+16=25, 即|PB |+|PF |的最小值为2 5. 答案:2 53.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为________.解析:由题意知,抛物线的焦点为F (1,0). 点P 到y 轴的距离d 1=|PF |-1, 所以d 1+d 2=d 2+|PF |-1.易知d 2+|PF |的最小值为点F 到直线l 的距离, 故d 2+|PF |的最小值为|1+5|12+(-1)2=32, 所以d 1+d 2的最小值为32-1. 答案:32-1[解题技法] 与抛物线有关的最值问题的解题策略该类问题一般情况下都与抛物线的定义有关,实现由点到点的距离与点到直线的距离的相互转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中,垂线段最短”解决.考点二 抛物线的标准方程及性质[典例] (1)顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( )A .y 2=-xB .x 2=-8yC.y2=-8x或x2=-y D.y2=-x或x2=-8y(2)(2018·北京高考)已知直线l过点(1,0)且垂直于x轴,若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为________.[解析](1)(待定系数法)设抛物线为y2=mx,代入点P(-4,-2),解得m=-1,则抛物线方程为y2=-x;设抛物线为x2=ny,代入点P(-4,-2),解得n=-8,则抛物线方程为x2=-8y.(2)由题知直线l的方程为x=1,则直线与抛物线的交点为(1,±2a)(a>0).又直线被抛物线截得的线段长为4,所以4a=4,即a=1.所以抛物线的焦点坐标为(1,0).[答案](1)D(2)(1,0)[解题技法]1.求抛物线标准方程的方法及注意点(1)方法求抛物线的标准方程的主要方法是定义法和待定系数法.若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可;若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay(a≠0),这样就减少了不必要的讨论.(2)注意点①当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;②要掌握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;③要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.2.抛物线性质的应用技巧(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.(2)要结合图形分析,灵活运用平面图形的性质简化运算.[题组训练]1.(2019·哈尔滨模拟)过点F(40,3)且和直线y+3=0相切的动圆圆心的轨迹方程为() A.y2=12x B.y2=-12xC.x2=-12y D.x2=12y解析:选D由抛物线的定义知,过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹是以点F(0,3)为焦点,直线y=-3为准线的抛物线,故其方程为x2=12y.2.若双曲线C:2x2-y2=m(m>0)与抛物线y2=16x的准线交于A,B两点,且|AB|=43,则m的值是________.解析:y 2=16x 的准线l :x =-4,因为C 与抛物线y 2=16x 的准线l :x =-4交于A ,B 两点,|AB |=43, 设A 在x 轴上方,所以A (-4,23),B (-4,-23),将A 点坐标代入双曲线方程得2×(-4)2-(23)2=m , 所以m =20. 答案:203.已知抛物线x 2=2py (p >0)的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,若△FPM 为边长是4的等边三角形,则此抛物线的方程为________________.解析:由△FPM 为等边三角形,得|PM |=|PF |,由抛物线的定义得PM 垂直于抛物线的准线,设P ⎝⎛⎭⎫m ,m 22p ,则点M ⎝⎛⎭⎫m ,-p 2,因为焦点F ⎝⎛⎭⎫0,p2,△FPM 是等边三角形,所以⎩⎨⎧m 22p +p2=4,⎝⎛⎭⎫p 2+p 22+m 2=4,解得⎩⎪⎨⎪⎧m 2=12,p =2,因此抛物线方程为x 2=4y .答案:x 2=4y考点三 直线与抛物线的综合问题考法(一) 直线与抛物线的交点问题[典例] (2019·武汉部分学校调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线的交点为N .若N 在以AB 为直径的圆上,则p 的值为________.[解析] 设直线AB :y =kx +1,A (x 1,y 1),B (x 2,y 2), 将直线AB 的方程代入抛物线C 的方程得x 2-2pkx -2p =0, 则x 1+x 2=2pk ,x 1x 2=-2p . 由x 2=2py 得y ′=xp,则A ,B 处的切线斜率的乘积为x 1x 2p 2=-2p ,∵点N 在以AB 为直径的圆上,∴AN ⊥BN , ∴-2p =-1,∴p =2.[答案] 2[解题技法] 直线与抛物线交点问题的解题思路(1)求交点问题,通常解直线方程与抛物线方程组成的方程组. (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.考法(二) 抛物线的焦点弦问题[典例] (2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =1或k =-1(舍去).因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3), 即y =-x +5.设所求圆的圆心坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.[解题技法]解决抛物线的弦及弦中点问题的常用方法(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.[提醒] 涉及弦的中点、斜率时一般用“点差法”求解.[题组训练]1.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C交于M ,N 两点,则FM ―→·FN ―→=( )A .5B .6C .7D .8解析:选D 由题意知直线MN 的方程为y =23(x +2),联立⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4. 不妨设M (1,2),N (4,4). 又∵抛物线焦点为F (1,0), ∴FM ―→=(0,2),FN ―→=(3,4). ∴FM ―→·FN ―→=0×3+2×4=8.2.已知抛物线y 2=16x 的焦点为F ,过F 作一条直线交抛物线于A ,B 两点,若|AF |=6,则|BF |=________.解析:不妨设A (x 1,y 1),B (x 2,y 2)(A 在B 上方),根据焦半径公式|AF |=x 1+p2=x 1+4=6,所以x 1=2,y 1=42,所以直线AB 的斜率为k =422-4=-22,所以直线方程为y =-22(x -4),与抛物线方程联立得x 2-10x +16=0,即(x -2)(x -8)=0,所以x 2=8,故|BF |=8+4=12.答案:12[课时跟踪检测]A 级1.(2018·永州三模)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.16解析:选D 由抛物线y =px 2(其中p 为常数)过点A (1,3),可得p =3,则抛物线的标准方程为x 2=13y ,则抛物线的焦点到准线的距离等于16.故选D.2.过点P (-2,3)的抛物线的标准方程是( ) A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y解析:选A 设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y .3.(2019·龙岩质检)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .5解析:选A 由|AB |=42及AB ⊥x 轴,不妨设点A 的纵坐标为22,代入y 2=4x 得点A 的横坐标为2,从而直线AB 的方程为x =2.又y 2=4x 的焦点为(1,0),所以抛物线的焦点到直线AB 的距离为2-1=1,故选A.4.(2018·齐齐哈尔八中三模)已知抛物线C :y =x 28的焦点为F ,A (x 0,y 0)是C 上一点,且|AF |=2y 0,则x 0=( )A .2B .±2C .4D .±4解析:选D 由y =x 28,得抛物线的准线为y =-2,由抛物线的几何意义可知,|AF |=2y 0=2+y 0,得y 0=2,所以x 0=±4,故选D.5.(2019·湖北五校联考)直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12xB .y 2=-8xC .y 2=-6xD .y 2=-4x解析:选B 设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B.6.已知点A (0,2),抛物线C 1:y 2=ax (a >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N .若|FM |∶|MN |=1∶5,则a 的值为( )A.14B.12 C .1D .4解析:选D 依题意,点F 的坐标为⎝⎛⎭⎫a 4,0,设点M 在准线上的射影为K ,由抛物线的定义知|MF |=|MK |,|KM |∶|MN |=1∶5,则|KN |∶|KM |=2∶1.∵k FN =0-2a 4-0=-8a ,k FN =-|KN ||KM |=-2,∴8a =2,解得a =4.7.抛物线x 2=-10y 的焦点在直线2mx +my +1=0上,则m =________. 解析:抛物线的焦点为⎝⎛⎭⎫0,-52,代入直线方程2mx +my +1=0,可得m =25. 答案:258.(2019·沈阳质检)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则△AOB 的边长是________.解析:如图,设△AOB 的边长为a ,则A ⎝⎛⎭⎫32a ,12a ,∵点A 在抛物线y 2=3x 上,∴14a 2=3×32a ,∴a =6 3.答案:6 39.(2018·广州一模)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为________.解析:∵双曲线x 23-y 2=1的右焦点为(2,0),∴抛物线方程为y 2=8x ,∵|AF |=3,∴x A+2=3,得x A =1,代入抛物线方程可得y A =±2 2.∵点A 在第一象限,∴A (1,22),∴直线AF 的斜率为221-2=-2 2.答案:-2 210.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知当|AB |为通径,即|AB |=2p =4时为最小值,所以|AC |+|BD |的最小值为2.答案:211.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px (p >0)的准线为x =-p2,于是4+p2=5,∴p =2.∴抛物线方程为y 2=4x . (2)∵点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又∵F (1,0),∴k F A =43,∵MN ⊥F A ,∴k MN =-34.∴F A 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,∴点N 的坐标为⎝⎛⎭⎫85,45.12.已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积.解:(1)易知直线与抛物线的交点坐标为(8,-8), ∴(-8)2=2p ×8,∴2p =8, ∴抛物线C 的方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍去),∴直线l 2:x =y +8,M (8,0).故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3(y 1+y 2)2-4y 1y 2=24 5.B 级1.设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,M ∈C ,以M 为圆心的圆M 与准线l 相切于点Q ,Q 点的纵坐标为3p ,E (5,0)是圆M 与x 轴不同于F 的另一个交点,则p =( )A .1B .2C .3D .4解析:选B 如图,抛物线C :y 2=2px (p >0)的焦点F⎝⎛⎭⎫p 2,0,由Q 点的纵坐标为3p 知M 点的纵坐标为3p ,则M 点的横坐标x =3p 2,即M ⎝⎛⎭⎫3p 2,3p .由题意知点M 是线段EF 的垂直平分线上的点,3p 2=5-p22+p2,解得p =2.故选B. 2.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析:法一:设点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2), ∴k =y 1-y 2x 1-x 2=4y 1+y 2.设AB 中点M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′,则|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 的中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴, ∴y 1+y 2=2,∴k =2.法二:由题意知,抛物线的焦点坐标为F (1,0), 设直线方程为y =k (x -1), 直线方程与y 2=4x 联立,消去y , 得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=1,x 1+x 2=2k 2+4k2.由M (-1,1),得AM ―→=(-1-x 1,1-y 1),BM ―→=(-1-x 2,1-y 2).由∠AMB =90°,得AM ―→·BM ―→=0, ∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0, ∴x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0.又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1],y 1+y 2=k (x 1+x 2-2), ∴1+2k 2+4k 2+1+k 2⎝⎛⎭⎫1-2k 2+4k 2+1-k⎝⎛⎭⎫2k 2+4k 2-2+1=0, 整理得4k 2-4k +1=0,解得k =2.答案:23.(2019·洛阳模拟)已知抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)若AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切. 解:(1)∵AB ∥l ,∴|FD |=p ,|AB |=2p . ∴S △ABD =p 2,∴p =1, 故抛物线C 的方程为x 2=2y . (2)设直线AB 的方程为y =kx +p 2,由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py 得x 2-2kpx -p 2=0. ∴x 1+x 2=2kp ,x 1x 2=-p 2. 其中A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p . ∴M ⎝⎛⎭⎫kp ,k 2p +p 2,N ⎝⎛⎭⎫kp ,-p 2. ∴k AN =x 212p +p 2x 1-kp =x 212p +p 2x 1-x 1+x 22=x 21+p 22p x 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp.∴抛物线x 2=2py 在点A 处的切线斜率k =x 1p .∴直线AN 与抛物线相切.第九节 曲线与方程一、基础知识1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线❶.2.求动点轨迹方程的一般步骤(1)建立适当的坐标系❷,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}❸; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明化简后的方程的解为坐标的点都在曲线上.(1)如果曲线C 的方程是f (x ,y )=0, 那么点P 0(x 0,y 0)在曲线C 上的充要条件是f (x 0,y 0)=0.(2)“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件.坐标系建立的不同,同一曲线在不同坐标系中的方程也不同,但它们始终表示同一曲线.有时此过程可根据实际情况省略,直接列出曲线方程.考点一 直接法求轨迹方程1.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且Q P ―→·Q F ―→=FP ―→·F Q ―→,则动点P 的轨迹C 的方程为( )A .x 2=4yB .y 2=3xC .x 2=2yD .y 2=4x解析:选A 设点P (x ,y ),则Q (x ,-1). ∵Q P ―→·Q F ―→=FP ―→·F Q ―→,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y , ∴动点P 的轨迹C 的方程为x 2=4y .2.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.则动点P 的轨迹方程为________________.解析:因为点B 与点A (-1,1)关于原点O 对称, 所以点B 的坐标为(1,-1).设点P 的坐标为(x ,y ),由题意得y -1x +1·y +1x -1=-13,化简得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1). 答案:x 2+3y 2=4(x ≠±1)3.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为____________________.解析:设A (x ,y ),由题意可知D ⎝⎛⎭⎫x 2,y 2. ∵|CD |=3,∴⎝⎛⎭⎫x 2-52+⎝⎛⎭⎫y22=9, 即(x -10)2+y 2=36, 由于A ,B ,C 三点不共线, ∴点A 不能落在x 轴上,即y ≠0,∴点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)考点二 定义法求轨迹方程[典例精析]已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.[解] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>|MN |=2.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).[解题技法]定义法求曲线方程的2种策略(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.[题组训练]如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|C Q |+|AP |+|B Q |=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点). 设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝⎛⎭⎫|AB |22=3, 所以曲线M 的方程为x 24+y 23=1(y ≠0).考点三 代入法(相关点)求轨迹方程[典例精析]如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.[解] (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px ,解得p =1. (2)由(1)知抛物线E :y 2=2x ,设C ⎝⎛⎭⎫y 212,y 1,D ⎝⎛⎭⎫y 222,y 2,y 1≠0,y 2≠0.切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 212, 代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0, 由Δ=0,解得k =1y 1,∴l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎨⎧y =1y 1x +y 12,y =1y 2x +y22,解得⎩⎨⎧x =y 1y 22,y =y 1+y22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎨⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x.代入⎩⎨⎧x =y 1y 22,y =y 1+y22,可得M (x ,y )满足⎩⎨⎧x =-8x 0,y =-y0x 0,可得⎩⎨⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1.考虑到x 0∈[2,22],知x ∈[-4,-22],∴动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].[解题技法]“相关点法”求轨迹方程的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y );(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.[题组训练]已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝⎛⎭⎫33,0的直线l 与曲线E 交于点A ,B ,且MB ―→=-2MA ―→.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),∵B (0,2),M ⎝⎛⎭⎫33,0,故MB ―→=⎝⎛⎭⎫-33,2,MA ―→=⎝⎛⎭⎫x 0-33,y 0.由于MB ―→=-2MA ―→,∴⎝⎛⎭⎫-33,2=-2⎝⎛⎭⎫x 0-33,y 0.∴x 0=32,y 0=-1,即A ⎝⎛⎭⎫32,-1. ∵A ,B 都在曲线E 上,∴⎩⎪⎨⎪⎧ a ·02+b ·22=1,a ·⎝⎛⎭⎫322+b ·(-1)2=1,解得⎩⎪⎨⎪⎧a =1,b =14. ∴曲线E 的方程为x 2+y 24=1.[课时跟踪检测]A 级1.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC ―→=λ1OA ―→+λ2OB ―→(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析:选A 设C (x ,y ),因为OC ―→=λ1OA ―→+λ2OB ―→, 所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹是直线,故选A.2.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D 当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 所示,故选D.3.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .y 2=2x B.(x -1)2+y 2=4 C .y 2=-2xD .(x -1)2+y 2=2解析:选D 如图,设P (x ,y ),圆心为M (1,0).连接MA ,PM , 则MA ⊥P A ,且|MA |=1, 又因为|P A |=1,所以|PM |=|MA |2+|P A |2=2, 即|PM |2=2,所以(x -1)2+y 2=2.4.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP ―→=2P A ―→,且O Q ―→·AB ―→=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0.由BP ―→=2P A ―→,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由O Q ―→·AB ―→=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).5.如图所示,已知F1,F 2是椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 是椭圆Γ上任意一点,过F 2作∠F 1PF 2的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为( )A .直线 B.圆 C .椭圆D .双曲线解析:选B 延长F 2Q ,与F 1P 的延长线交于点M ,连接O Q .因为P Q 是∠F 1PF 2的外角的角平分线,且P Q ⊥F 2M ,所以在△PF 2M 中,|PF 2|=|PM |,且Q 为线段F 2M 的中点.又O 为线段F 1F 2的中点,由三角形的中位线定理,得|O Q |=12|F 1M |=12(|PF 1|+|PF 2|).根据椭圆的定义,得|PF 1|+|PF 2|=2a ,所以|O Q |=a ,所以点Q 的轨迹为以原点为圆心,半径为a 的圆,故选B.6.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC ―→=OA ―→+t (OB ―→-OA ―→),其中t ∈R ,则点C 的轨迹方程是____________________.解析:设C (x ,y ),则OC ―→=(x ,y ),OA ―→+t (OB ―→-OA ―→)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t 消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -27.设F 1,F 2为椭圆x 24+y 23=1的左、右焦点,A 为椭圆上任意一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:由题意,延长F1D ,F 2A 并交于点B ,易证Rt △ABD ≌Rt △AF 1D ,则|F 1D |=|BD |,|F 1A |=|AB |,又O 为F 1F 2的中点,连接OD ,则OD ∥F 2B ,从而可知|DO |=12|F 2B |=12(|AF 1|+|AF 2|)=2,设点D 的坐标为(x ,y ),则x 2+y 2=4.答案:x 2+y 2=48.(2019·福州质检)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为________.解析:因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk1-3k 2=12,①y 1+y 2=k (x 1+x 2)+2m =12k +2m =2,② 由①②解得k =2. 答案:29.如图,动圆C 1:x 2+y 2=t 2(1<t <3)与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.解:由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0), 由曲线的对称性,得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②相乘得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).10.(2019·武汉模拟)在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP ―→=λR Q ―→ (λ>1),求证:NF ―→=λF Q ―→.解:(1)依题意知,直线A 1N 1的方程为y =m 6(x +6),① 直线A 2N 2的方程为y =-n 6(x -6),② 设M (x ,y )是直线A 1N 1与A 2N 2的交点,①×②得y 2=-mn 6(x 2-6), 又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1. (2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎪⎨⎪⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3. 由RP ―→=λR Q ―→,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2,由(1)得F (2,0),要证NF ―→=λF Q ―→,即证(2-x 1,y 1)=λ(x 2-2,y 2),只需证2-x 1=λ(x 2-2),只需x 1-3x 2-3=-x 1-2x 2-2, 即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6t t 2+3=0成立,即NF ―→=λF Q ―→成立. B 级1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( )A .两条直线B.两条射线 C .两条线段 D .一条直线和一条射线 解析:选D 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0,或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线.2.动点P 为椭圆x 2a 2+y 2b2=1(a >b >0)上异于椭圆顶点A (a,0),B (-a,0)的一点,F 1,F 2为椭圆的两个焦点,动圆M 与线段F 1P ,F 1F 2的延长线及线段PF 2相切,则圆心M 的轨迹为除去坐标轴上的点的( )A .抛物线B.椭圆 C .双曲线的右支 D .一条直线解析:选D 如图,设切点分别为E ,D ,G ,由切线长相等可得|F 1E |=|F 1G |,|F 2D |=|F 2G |,|PD |=|PE |.由椭圆的定义可得|F 1P |+|PF 2|=|F 1P |+|PD |+|DF 2|=|F 1E |+|DF 2|=2a ,即|F 1E |+|GF 2|=2a ,也即|F 1G |+|GF 2|=2a ,故点G 与点A 重合,所以点M 的横坐标是x =a ,即点M 的轨迹是一条直线(除去A 点),故选D.3.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,所以|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0)4.如图,P 是圆x 2+y 2=4上的动点,P 点在x 轴上的射影是D ,点M 满足DM ―→=12DP ―→. (1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形;(2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.解:(1)设M (x ,y ),则D (x,0),由DM ―→=12DP ―→,知P (x,2y ), ∵点P 在圆x 2+y 2=4上,∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,且轨迹C 是以(-3,0),(3,0)为焦点,长轴长为4的椭圆.(2)设E (x ,y ),由题意知l 的斜率存在,设l :y =k (x -3),代入x 24+y 2=1, 得(1+4k 2)x 2-24k 2x +36k 2-4=0,Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0,得k 2<15,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=24k 21+4k 2, ∴y 1+y 2=k (x 1-3)+k (x 2-3)=k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k 1+4k 2. ∵四边形OAEB 为平行四边形,∴OE ―→=OA ―→+OB ―→=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2, 又OE ―→=(x ,y ),∴⎩⎪⎨⎪⎧ x =24k 21+4k 2,y =-6k 1+4k 2,消去k 得,x 2+4y 2-6x =0,∵k 2<15,∴0<x <83. ∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝⎛⎭⎫0<x <83. 5.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B.抛物线 C .椭圆 D .双曲线的一支解析:选C 母线与中轴线夹角为30°,然后用平面α去截,使直线AB与平面α的夹角为60°,则截口为P 的轨迹图形,由圆锥曲线的定义可知,P的轨迹为椭圆.故选C.6.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B.x 2+y 2=9C.x 225+y 29=1 D .x 2=16y解析:选B ∵M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,∴M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1. A 项,直线x +y =5过点(5,0),故直线与M 的轨迹有交点,满足题意;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),故椭圆x 225+y 29=1与M 的轨迹有交点,满足题意; D 项,把x 2=16y 代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,∴Δ>0,满足题意.7.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为________________. 解析:由sin B +sin A =54sin C 可知b +a =54c =10, 则|AC |+|BC |=10>8=|AB |,∴满足椭圆定义.令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3, 则轨迹方程为x 225+y 29=1(x ≠±5).答案:x 225+y 29=1。
抛物线的概念
抛物线的概念抛物线的概念抛物线是一种二次函数的图像,它是由一个固定点(称为焦点)和一条固定直线(称为准线)上的所有点构成的集合。
在平面直角坐标系中,抛物线可以用以下方程表示:y = ax^2 + bx + c。
1. 抛物线的基本概念1.1 焦点和准线焦点是抛物线上距离准线等于到顶点距离一半的点,通常用字母F表示。
准线是与焦点相对称且与抛物线平行的直线,通常用字母L表示。
1.2 顶点顶点是抛物线上最高或最低的点,它位于焦点和准线之间。
在标准形式下,顶点坐标为(-b/2a, c - b^2/4a)。
1.3 对称轴对称轴是通过顶点且与焦点垂直的直线。
在标准形式下,对称轴方程为x = -b/2a。
2. 抛物线的性质2.1 对称性抛物线具有对称性,即以对称轴为轴进行镜像得到的图像完全重合。
这意味着如果(x, y)在抛物线上,则(-x, y)也在抛物线上。
2.2 单调性当a>0时,抛物线开口向上,且顶点为最小值点;当a<0时,抛物线开口向下,且顶点为最大值点。
2.3 零点和交点抛物线与x轴的交点称为零点,可以通过解方程y=0得到。
抛物线与y轴的交点称为截距,可以通过求解x=0得到。
两条不同的抛物线相交于两个交点。
2.4 切线和法线在任意一点处,抛物线的切线是通过该点且与抛物线相切的直线。
法线是与切线垂直的直线。
3. 抛物线的应用3.1 物理学中的应用在自由落体运动中,一个自由落体被重力作用下沿着一条竖直方向运动。
如果将竖直方向定义为y轴,则自由落体的运动可以表示为y = 1/2gt^2 + v0t + y0,其中g是重力加速度,v0是初速度,y0是初位置。
这个公式描述了一个开口向下的抛物线。
3.2 工程学中的应用在桥梁设计中,工程师需要计算桥梁的曲率和坡度,以确保桥梁能够承受重量并保持结构稳定。
抛物线可以用来描述桥梁的曲线形状,从而帮助工程师进行计算和设计。
3.3 经济学中的应用在经济学中,抛物线可以用来表示成本和收益之间的关系。
抛物线的定义与性质
抛物线的定义与性质抛物线是由平面上一点P到一个定点F的距离与点P到一条直线L的距离相等的轨迹。
在平面直角坐标系中,抛物线的方程可以表示为y = ax² + bx + c,其中a、b、c是常数,a ≠ 0。
抛物线具有许多有趣的性质,下面将逐一介绍。
性质一:焦点和直线L抛物线的焦点是定点F,直线L是平行于y轴的直线,距离焦点F的垂直距离是h。
根据抛物线的定义,对于任意一点P(x, y)在抛物线上,我们可以得到以下关系:PF = PL√[(x - p)² + (y - q)²] = |y - h|其中,(p, q)是抛物线的顶点。
性质二:焦半径焦半径是从焦点F到抛物线上任意一点P的线段。
根据性质一中的等式,我们可以得到焦点与抛物线上的任意一点之间的距离PF与抛物线切线的夹角θ满足以下关系:PF = |PC|cosθ其中,切线的斜率可以通过抛物线的方程求出。
性质三:对称轴抛物线的对称轴是直线x = p,其中p是抛物线的顶点的横坐标。
对称轴将抛物线分成两个对称的部分,具有关于对称轴的对称性。
性质四:焦点的坐标对于抛物线y = ax² + bx + c,焦点的横坐标可以通过以下公式计算:p = -b / (2a)焦点的纵坐标可以通过以下公式计算:q = c - b² / (4a)性质五:切线与法线抛物线上的任意一点P的切线与该点的法线垂直,并且共线。
对于抛物线y = ax² + bx + c,点P(x0, y0)处的切线的斜率可以通过以下公式计算:m = 2ax0 + b点P处的切线的方程可以表示为:y - y0 = m(x - x0)该切线的法线与切线斜率的乘积为-1。
性质六:焦点的几何意义抛物线的焦点F到任意一点P的线段PF的长度与FP的长度相等。
这说明,焦点是抛物线上各点到抛物线的一条对称轴的距离之差的等分点。
性质七:离心率离心率是抛物线焦点到抛物线对称轴的距离与焦点到抛物线上任意一点P的距离之比的绝对值。
抛物线知识点归纳总结
抛物线知识点归纳总结抛物线是解析几何中的一个重要概念,它在物理、数学等领域都有着广泛的应用。
本文将对抛物线的知识点进行归纳总结,帮助读者更好地理解和掌握这一概念。
一、抛物线的定义。
抛物线是平面上到定点的距离与到定直线的距离之差等于常数的动点轨迹。
通俗地讲,抛物线是一种特殊的曲线,其形状呈现出两个对称的平滑弧线。
二、抛物线的标准方程。
1. 抛物线的标准方程通常写作,y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
2. 抛物线开口方向由a的正负决定,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 当抛物线与y轴相交时,x=0,代入方程得到抛物线的顶点坐标。
三、抛物线的性质。
1. 对称性,抛物线关于其顶点对称。
2. 切线性质,抛物线上任意一点处的切线与该点处的切线平行于抛物线的对称轴。
3. 焦点和准线,抛物线的焦点是到定点的距离等于到定直线的距离之差的定点,准线是到定点的距离等于到定直线的距离之差的定直线。
4. 焦距,抛物线焦点到顶点的距离称为抛物线的焦距。
四、抛物线的应用。
1. 物理学中,抛物线运动是一种常见的运动形式,如抛体运动、炮弹发射等都可以用抛物线来描述。
2. 工程学中,抛物线的形状被广泛运用在建筑、桥梁、汽车等设计中,具有良好的结构稳定性。
3. 数学学科中,抛物线是解析几何和微积分中的重要概念,对于理解曲线的性质和方程有着重要意义。
五、抛物线的变形。
1. 抛物线的平移,通过平移变换可以使抛物线的顶点不位于原点,而是位于任意一点,这时抛物线的标准方程需要经过变换。
2. 抛物线的缩放,通过缩放变换可以改变抛物线的大小,使其开口更大或更小。
3. 抛物线的旋转,通过旋转变换可以使抛物线绕着定点旋转一定角度,这时抛物线的标准方程也需要相应的变换。
六、抛物线的求解。
1. 已知顶点坐标和另一点坐标时,可以直接代入抛物线的标准方程求解抛物线的具体方程。
2. 已知焦点和准线时,可以利用焦点和准线的性质来求解抛物线的具体方程。
抛物线知识点归纳总结
积
• 利用抛物线的对称性,简化体积计算过程
抛物线面积与体积问题的实际应用
抛物线面积与体积在几何问题中的应用
• 描述圆锥曲线、圆等几何图形的面积和体积问题
• 描述抛物线与椭圆、双曲线等二次曲线的面积和体积问题
抛物线面积与体积在物理问题中的应用
• 描述物体的抛物线运动轨迹的面积和体积问题
• 描述物体的抛物线形变问题的面积和体积问题
• 标准方程y = ax^2 + bx + c决定了抛物线图像的形状、
• 一般方程为Ax^2 + Bx + Cy + D = 0,其中A、B、C、
开口方向、顶点坐标等
D为常数,A≠0
• 根据抛物线图像的特征,可以反推出标准方程
• 一般方程可以转化为标准方程,进而确定抛物线图像
03
抛物线的方程求解与应用
kx
抛物线的切线绘制方法与技巧
抛物线的切线绘制方法
抛物线的切线绘制技巧
• 确定抛物线上需要绘制切线的点
• 利用抛物线的对称性,简化切线绘制过程
• 利用切线方程,计算切线的斜率和截距
• 结合图像,判断抛物线的形状和开口方向,辅助切线绘
• 绘制切线,使其通过指定点和切线方程
制
抛物线切线问题的实际应用
• 对抛物线方程进行化简,得到标准方程或一般方程
• 变形后的抛物线方程仍保持原有性质,但图像发生改变
• 化简后的抛物线方程便于求解和应用
04
抛物线的极值与最值问题
抛物线的极值点与最值点求解
抛物线的极值点
抛物线的最值点
• 抛物线在顶点处取得极值,即顶点为极值点
• 抛物线在顶点处取得最值,即顶点为最值点
超详细抛物线知识点归纳总结
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
抛物线 定义
抛物线定义
抛物线,又称拋物线,是一种二次曲线,其形状类似于一个“U”字型。
它是由一个定点(称为焦点)和一条直线(称为准线)所确定的一条曲线。
在数学中,抛物线是一种重要的图形,广泛应用于物理学、工程学、建筑学等领域。
抛物线最早由希腊数学家阿波罗尼奥斯研究,他将焦点放在了准线的中心位置,得到了一条完美的抛物线。
此后,抛物线被广泛应用于各个领域,成为了一种非常重要的数学工具。
在物理学中,抛物线是一种非常常见的曲线。
例如,当我们抛出一个物体时,它的运动轨迹就是一条抛物线。
在炮弹发射、汽车行驶、火箭升空等领域,抛物线也被广泛应用。
在工程学中,抛物线的应用也非常广泛。
例如,当我们设计一座桥梁时,需要考虑桥梁的曲线形状,这时就可以使用抛物线。
又如,在设计一条水管时,我们也需要使用抛物线来计算水管的弯曲程度,以确保水流畅通无阻。
除此之外,抛物线还被广泛应用于建筑学、天文学、航空航天学等领域。
例如,在建筑设计中,我们可以使用抛物线来设计一条楼梯的曲线,以使楼梯更加美观和实用。
在天文学中,抛物线也被用来描述行星的运动轨迹。
在航空航天学中,抛物线则被广泛应用于卫星轨道的计算与设计。
抛物线是一种非常重要的数学工具,它不仅可以帮助我们理解物理规律,还可以应用于各个领域,发挥巨大的作用。
因此,学好抛物线这一数学知识,对我们的未来发展将会有很大的帮助。
抛物线的简单几何性质
y
1 y2
k
(x 4x
2)
Y
可得ky2 4 y 4(2k 1) 0 (1)当k 0时,由方程得 y 1.
P·
把y 1代入y2 4x,得x 1 .
O
X
4
这时,直线l与抛物线只有一个公共点(1 ,1) 4
例1 已知抛物线的方程为y²=4x,直线l过定点P(-2,1),斜率为k,k 为何值时,直线l与抛物线y²=4x:只有一个公共点;有两个公共 点;没有公共点?
(0,0)
e=1
x2 2 py ( p 0)
y 0, xR
关于y 轴 对称,无 对称中心
(0,0)
e=1
x2 2 py y 0,
关于y 轴 对称,无
(0,0) e=1
( p 0) x R 对称中心
例3 已知抛物线关于x轴对称,它的顶点在坐标原点, 并且经过点(2,2 2),求它的标准方程。
(5)一次项系数的绝对值越大,开口越大
课堂小结
(1)抛物线的简单几何性质 (2)抛物线与椭圆、双曲线几何性质的不同点 (3)应用性质求标准方程的方法和步骤
小结:
1、抛物线的定义,标准方程类型与图象的对应 关系以及判断方法
2、抛物线的定义、标准方程和它 的焦点、准线、方程
3、注重数形结合的思想。
例5 过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的 直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴。
证明:以抛物线的对称轴为x轴,它的顶点为原点,
建立直角坐标系。设抛物线的方程为y2 2 px,
点A的坐标为(
y02 2p
,
y0
),则直线OA的方程为y
抛物线的准线是x p
关于抛物线的知识点总结
抛物线的知识总结概述抛物线是一种二次曲线,具有很多有趣的性质和应用。
它可以从焦点和直线外一点定义或从二次方程表示。
在数学、物理和工程学中,抛物线经常出现在各种问题中。
本篇文章将介绍抛物线的重要观点、关键发现和进一步思考。
1. 抛物线的定义和性质1.1 定义抛物线可以通过以下两种方式定义:1.从焦点和直线外一点定义:抛物线是到焦点和直线的距离相等的点的轨迹。
2.从二次方程表示:二次方程y=ax2+bx+c(其中a≠0)描述了抛物线。
1.2 顶点抛物线的顶点是最高或最低点,其横坐标为−b2a ,纵坐标为−Δ4a,其中Δ表示二次方程的判别式。
1.3 对称轴抛物线的对称轴是通过顶点和焦点的中垂线,其方程为x=−b2a。
1.4 焦点和直线焦点是指到抛物线上所有点的距离与到直线的距离相等的点。
直线是焦点到抛物线与对称轴垂直的直线。
1.5 切线抛物线上每一点的切线是通过该点且与抛物线仅有一个交点的直线。
切线的斜率为该点的导数。
对于方程y=ax2+bx+c,点(x,y)处的切线方程为y=2ax+b。
切线与抛物线的交点是切点。
1.6 点和距离的关系对于抛物线上一点P(x,y),离焦点的距离等于离直线的距离,即PF=PL。
其中F表示焦点,L表示直线。
1.7 平移和缩放对于标准抛物线y=x2,平移、缩放和反转等操作可以改变抛物线的位置和形状。
例如,抛物线方程为y=a(x−ℎ)2+k,表示平移(ℎ,k)个单位的抛物线,并在x轴方向进行水平缩放。
2. 重要观点和关键发现2.1 焦点和直线的距离对于抛物线y=ax2+bx+c和过焦点的直线y=k,抛物线上任意一点的坐标为(x,ax2+bx+c),直线上任意一点的坐标为(x,k)。
根据点到直线的距离公式,有:d=|ax2+bx+c−k|√a2+b2焦点到抛物线的距离和焦点到直线的距离相等,所以:|ax2+bx+c−k|=√a2+b2d0其中,d0表示焦点到抛物线及焦点到直线的距离。
抛物线知识点归纳总结
抛物线知识点归纳总结1. 定义- 抛物线是二次函数的图像,具有一个顶点和一个对称轴。
- 它是平面上所有与一个固定点(焦点)和一条固定直线(准线)距离相等的点的集合。
2. 标准方程- 顶点形式:y = a(x - h)^2 + k其中 (h, k) 是顶点的坐标,a 是抛物线的开口系数。
- 一般形式:y = ax^2 + bx + c其中 a, b, c 是常数,且a ≠ 0。
3. 图像特征- 开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,开口向下。
- 对称性:抛物线关于其对称轴(垂直于 x 轴的直线)对称。
- 焦点和准线:焦点是抛物线上所有点到准线距离的最小值点,准线是与抛物线焦点等距的一条直线。
4. 焦点和准线的性质- 焦点:对于标准方程 y = a(x - h)^2 + k,焦点坐标为 (h, k+ 1/(4a))。
- 准线:对于标准方程 y = a(x - h)^2 + k,准线的方程为 y =k - 1/(4a)。
5. 顶点- 顶点是抛物线的最高点(开口向下时)或最低点(开口向上时)。
- 顶点坐标可以通过方程的顶点形式直接获得。
6. 对称轴- 对称轴是一条垂直线,其方程为 x = h。
7. 抛物线的变换- 水平变换:抛物线可以通过在 x 或 y 方向上平移来改变位置。
- 垂直变换:抛物线可以通过在 x 或 y 方向上缩放来改变大小。
8. 应用- 物理:抛物线运动(如物体在重力作用下的抛射运动)。
- 工程:建筑设计中的拱形结构。
- 经济学:成本和收益分析中的收益最大化问题。
9. 求导与极值- 对于一般形式 y = ax^2 + bx + c,求导得到 y' = 2ax + b。
- 顶点处的导数为零,即 y'(h) = 0,这是找到顶点的方法。
10. 抛物线与直线的交点- 通过解方程组 {y = ax^2 + bx + c, y = mx + n} 可以找到抛物线与直线的交点。
八年级抛物线知识点
八年级抛物线知识点抛物线是中学数学中一个非常重要的概念,涉及到许多物理、经济和工程学科中的实际问题。
在八年级数学学科中,抛物线也是一个很重要的知识点。
接下来,我们将具体介绍八年级学生需要了解的抛物线知识点。
一、什么是抛物线?抛物线是一个平面上的曲线,它具有与 x 轴对称的形状,并且可由 y = ax² + bx + c 的方程表示,其中 a 是一个非零常数,b 和 c 是任意实数常数。
抛物线通常由简单机械的运动产生。
例如,当一个人将一个球从地面上抛起时,球的运动轨迹就是一个抛物线。
二、抛物线的性质1. 顶点:抛物线的最高点或最低点称为顶点,它的坐标可以用公式 (-b/2a, f(-b/2a)) 计算出来。
2. 对称轴:抛物线与 x 轴对称,因此它的对称轴是一条与 x 轴平行的直线。
3. 焦点与准线:抛物线的焦点和准线是重要的属性,它们用来描述抛物线与平面上的直线的交点。
4. 分离因式:抛物线方程也可以通过分离因式的方式表示为 y = a(x - p)(x - q) 的形式,这个公式也可以用来确定抛物线的顶点、焦点和准线。
三、抛物线的用途抛物线为许多实际应用提供了模型,例如:1. 弹射物:抛物线模型可以用来计算发射物体的轨迹,从而确定最佳发射角度。
2. 桥梁和拱门设计:在设计桥梁和拱门时,抛物线的形状可以使这些结构所承受的重量分布均匀。
3. 项目管理:抛物线模型可以用来预测项目进展速度,从而制定更有效的项目计划。
4. 经济学:抛物线的用途还可以应用于经济学中子弹效应的分析。
总之,抛物线在多个学科领域中都是一个非常有用的概念。
在学习这个概念时,学生需要掌握抛物线的基本性质,理解其在实际世界中的应用,以及利用数学技巧来解决实际问题。
抛物线的简单几何性质(综合)
外切
总结词
当抛物线的焦点在圆外,且圆心在抛物线上 时,抛物线与圆相切于两点,即外切。
详细描述
外切的情况发生在抛物线的焦点位于圆心所 在直线的另一侧时。此时,圆心到抛物线准 线的距离等于圆的半径,因此抛物线与圆相 切于两点。
相交
总结词
当抛物线的焦点在圆内或圆在抛物线上时, 抛物线与圆有两个交点,即相交。
抛物线的简单几何性质(综合)
目 录
• 抛物线的定义与基本性质 • 抛物线的对称性 • 抛物线的几何变换 • 抛物线与直线的交点 • 抛物线与圆的位置关系 • 抛物线的实际应用
01 抛物线的定义与Байду номын сангаас本性质
定义
01
抛物线是一种二次曲线,其方程为 $y = ax^2 + bx + c$,其中 $a, b, c$ 是常数,且 $a neq 0$。
关于原点的对称性
总结词
抛物线关于原点的对称性表现为,将抛物线绕原点旋转180度,其形状和位置 保持不变。
详细描述
当抛物线绕原点旋转180度时,抛物线的开口方向发生改变,顶点的位置也发生 改变,但抛物线的形状和位置保持不变,即关于原点对称。
03 抛物线的几何变换
平移
总结词
平移不改变抛物线的形状和开口方向,只是沿垂直或水平方向移动抛物线。
联立方程法
将抛物线的方程与直线的 方程联立,解出交点的坐 标。
判别式法
利用二次方程的判别式来 判断直线与抛物线是否有 交点,以及交点的个数。
参数方程法
利用抛物线的参数方程, 将参数表示为交点的坐标。
交点与弦长
弦长公式
根据抛物线与直线的交点坐标,利用弦长公式计算弦长。
抛物线的概念
抛物线的概念抛物线的概念及其应用1. 引言抛物线是数学中一个重要的曲线,其形状独特而美妙。
在几何学和物理学中,抛物线广泛应用于各种领域,包括力学、光学、天文学等。
本文将深入探讨抛物线的概念、性质和应用,以便更深入地理解这一曲线。
2. 抛物线的定义抛物线是所有离一个定点(称为焦点)距离与其到一条直线(称为准线)的距离成正比的点构成的曲线。
准线和焦点之间的距离称为焦距,并用字母p表示。
3. 抛物线的性质3.1 对称性抛物线具有关于准线对称的性质。
如果抛物线上的点P到准线的距离为d,则点P'到准线的距离也为d并且两点在准线的同一侧。
3.2 焦点与准线的距离关系对于抛物线上的任意一点P,其距离焦点的距离与其到准线的距离之间存在以下关系:d = |PF| = |PL| = p,其中PF表示点P到焦点的距离,PL表示点P到准线的距离。
3.3 焦点的确定方法通过对称性和焦点与准线的距离关系,可以确定焦点的位置。
以焦点为圆心、焦距为半径作圆与准线相交于点O,连接PO即可确定焦点的位置。
4. 抛物线的方程抛物线的方程可以通过焦点、准线和直角坐标系来求得。
一般来说,抛物线的顶点位于坐标轴上,其坐标表示为(h,k)。
根据抛物线的定义,可以得到一般式方程:y = ax^2 + bx + c。
5. 抛物线的重要应用5.1 物体的抛射运动在力学中,抛物线被广泛应用于描述物体的抛射运动。
当物体在水平面上以一定初速度和发射角度被抛出时,其运动轨迹正是一个抛物线。
通过抛物线方程,可以计算物体的运动轨迹、最大高度和最远距离等参数。
5.2 反射聚焦在光学中,抛物线被用于反射聚焦。
抛物面反射器是一种利用抛物线形状的曲面来聚焦光线的光学器件。
这种曲面具有将接近光轴的入射平行光束反射到焦点上的特点,因此被广泛应用于望远镜、卫星接收器等光学设备中。
5.3 天体运动轨迹在天文学中,抛物线也用于描述天体的运动轨迹。
彗星经常沿着抛物线轨道绕太阳运行,其中太阳位于焦点上。
抛物线
1. 抛物线定义:平面内与一个定点F 和一条定直线L (L 不过F 点)的距离相等的点的集合叫抛物线.定点F 叫做抛物线的焦点,定直线L 叫做抛物线的准线.2. 抛物线的标准方程形式:px y 22= (p>0) px y 22-=(p>0) py x 22=(p>0) py x 22-= (p>0) P :称为焦准距(焦点到准线的距离)3. 抛物线的几何性质:对称性,范围,顶点,离心率,(以px y 22=为例) 4. 抛物线的通径:过抛物线焦点F 且垂直于对称轴的直线,与抛物线相交于P 1、P 2两点,则两交点)P P (21之间的距离就是抛物线的通径,长度是2p .5. 有关的重要结论:设过抛物线px y 22=的焦点的直线的倾斜角是θ,与抛物线交于A (),(),,2211y x B y x .则有下列结论:(1)|AB|=p x x ++21,|AB|=θ2sin p 2,(显然当︒=θ90时,|AB|最小.最小值是2p ,此时|AB|是抛物线的通径.)(2)=21x x 2212,4p y y p-=. (3)θsin 22p S AOB =∆.(4)pBF AF 2||1||1=+(定值).(5)以|AB|为直径的圆与准线相切.【典型例题】考点一:考查求抛物线的标准方程例1. 已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点F 的距离是5,求抛物线的方程、m 的值、准线方程.【思路分析】因顶点在原点,对称轴是y 轴,点M (m ,-3)位于第三、四象限.故可设抛物线方程是)0(,22>-=p py x设所求的抛物线方程为)0(,22>-=p py x ,则焦点F )2,0(p -)3,(-m M 在抛物线上,且|MF|=5,⎩⎨⎧±==⇒⎪⎩⎪⎨⎧=+-+=∴6245)23(6222m p p m pm , 故抛物线的方程为62,82±=-=m y x ,准线方程为y=2.【说明】此解法用待定系数法求p 的值确定抛物线的方程.例2. 设过P (-2,4),倾斜角为π43的直线L 与抛物线C 交于A ,B 两点,抛物线C 的顶点在原点,以x 轴为对称轴,若|PA|,|AB|,|PB|成等比数列,求抛物线C 的标准方程. 【思路分析】由已知得:抛物线的开口方向不定,故可设抛物线方程为)0a (,ax 2y 2≠= 直线L 的方程为y=-x+2.利用|PA|,|AB|,|PB|成等比数列转化为P ,A ,B 三点纵坐标之间的关系.由此关系求a 的值.解:设A ),(),,(2211y x B y x 由已知得L :y=-x+20422222=-+⎩⎨⎧+-==∴a ay y x x y ax y 整理得:消去 01642>+=∆a a ……………………(#)a y y a y y 4,22121-=-=+∴,由|PA|,|AB|,|PB|共线且成等比数列得: |4||,||,4|2211---y y y y 成等比数列即有:|4y ||4y ||y y |21221-⋅-=-212212121y y 4)y y (|16)y y (4y y |-+=++-⇒………………(*)把得:代入(*)4,22121a y y a y y -=-=+a a a 4|4|2+=+且满足(#) 故:a=1,即所求的抛物线C 的标准方程是x y 22=考点二:考查抛物线定义的应用例3. 已知抛物线)0(,22>=p px y 的焦点是F ,过焦点F 的直线与抛物线交于A ,B 两点,|FA|=m ,|FB|=n ,求证:pn m 211=+ 【思路分析】设),(),,(2211y x B y x A ,由抛物线定义得:2||,2||21p x FB p x FA +=+=4)(2)2)(2(2212121p x x p x x p x p x mn +++=++=⇒,p x x n m ++=+21由AB 的直线方程与抛物线方程组成方程组利用根与系数关系可证.证明:(1)当AB 垂直于x 轴时,此时m=n=p ,结论成立.(2)当AB 不垂直于x 轴时,设直线AB 的斜率是k ,则AB :)2(px k y -= 4)2(2)2(222222p k x p p k x k pxy p x k y ++-⎪⎩⎪⎨⎧=-=整理得:=0 故4,22212221p x x k p p k x x =+=+由抛物线定义得:2||,2||21px FB p x FA +=+=4)(2)2)(2(2212121p x x p x x p x p x mn +++=++=⇒,p x x n m ++=+21)n m (2pmn k p 2p k 2n m ,k p 2p k 22p k p 2p k 2p 2p mn 2222222+=⇒+=++⋅=+⋅+=∴故pn m 211=+. 【说明】在本题证明的过程中不要忽视AB 的倾斜角为90°(即斜率不存在的情形)例4. 长度为2的线段AB 的两端点在抛物线2x y =上移动,求AB 中点到x 轴距离的最小值.【思路分析】解法一:要求AB 中点到x 轴距离的最小值,只要求AB 中点纵坐标的最小值,设A (),211x x ,B (),222x x故AB 中点纵坐标222210x x y +=,利用|AB|=2及不等式有关性质建立关于0y 的不等式.小值减去41,利用平面几何定理(梯形中位线性质)及2||||||=≥+AB BF AF 可求. 解法一:设A (),211x x ,B (),222x x则AB 中点纵坐标022212221022y x x x x y =+⇒+=由|AB|=24)(22221221=-+-⇒x x x x ()4])(1[)(221221=++-⇒x x x x即4)21)(2(212221222121=++++-x x x x x x x x4)]x x 2x x 1()x x x 2x [()x x 2x x 1)(x x x 2x (2212221222121212221222121+++++-≤++++- =4)](21[22221x x ++=4)41(20y +43(4544)41(0020≥-≤⇒≥+∴y y y 舍去),或当且仅当轴距离中点到时,x AB 41x x x x 2x x 1x x 2x x 21212221212221=⇔+++=-+的43最小值是.解法二:分别过A ,B ,M (AB 中点)作准线L :y=41-的垂线,垂足分别是111,,B M A ,则||1MM 是梯形B B AA 11的中位线,即|)||(|21||111BB AA MM +=由抛物线定义知:|||||,|||11BF BB AF AA ==故:1||21|)||(|21||1=≥+=AB BF AF MM 即M 点到x 轴距离的最小值是43411=-【说明】比较两种不同的解法知:巧用抛物线的定义解决问题更加简洁明了,在解决抛物线的有关问题时,要时时关注其定义的应用.考点三:抛物线在实际问题中的应用例5. 某大桥在涨水时有最大跨度的中央桥孔如图所示,已知上部呈抛物线形,跨度为20米,拱顶距水面6米,桥墩高出水面4米,有一货船欲过此桥孔,该货船水下宽度不超过18米,目前吃水线上部分中央船体高5米,宽16米,且该货船在现在的状态下还能多装1000吨货物,但每装150吨货物,吃水线就要上升0.04米.若不考虑水下深度,问该货船在现在的状态下能否直接或设法通过该桥孔?为什么? 【思路分析】根据已知条件建立如图所示的坐标系.由A (10,-2)确定抛物线的方程.由装1000吨货物计算吃水线上升的距离,从而计算此时船体的高=5-吃水线上升的距离,然后与C 点到水面的距离比较.解:建立如图所示的坐标系.设抛物线的方程是py x 22-=,A (10,-2) 故有:100=4p ,即p=25,抛物线方程是y x 502-=.让船沿正中央航行,船边缘在抛物线上的射影是C (8,y ),代入抛物线方程得y=-1.28. 此时C 点距水面的距离是6-1.28=4.72米 因船体高出水面5米,现有状态下无法通过. 当再装1000吨货物时,吃水线上升米)(15404.01501000=⨯ 由于:5-72.41571154>=,所以再多装1000吨货物也无法通过.【本讲涉及的数学思想、方法】本讲主要讲述抛物线的标准方程及其几何性质的有关知识,在运用这些知识解决问题时,充分体现了方程的数学思想、等价转化的数学思想、数与形结合的数学思想及定义法 、待定系数法等数学思想方法的应用.【模拟试题】(答题时间:100分钟)一、选择题(共5小题,每题6分,计30分)1. 经过点P (-2,-4)的抛物线的标准方程是( )A . y x -=2B . x y 82-=C . x y y x 822-=-=或D . x y x y 822-=-=或2. 抛物线)0(,2<=a ax y 的焦点坐标是( ) A . )0,41(aB . ()0,4aC . ()0,4a-D .(0,)4a3. 到直线x=2的距离与定点P (0,2)距离相等的点的轨迹是( ) A . 抛物线 B . 双曲线 C . 椭圆 D . 直线*4. 设F 是抛物线x y 42=的焦点,A ,B ,C 是抛物线上三个点,若0=++FC FB FA ,则(||||||=++ )A . 9B . 6C . 4D . 3*5. 若A (3,2), F 为抛物线x y 22=的焦点,P 点在抛物线上移动,当|PA|+|PF|取得最小值时P 点坐标是( )A . (3,3)B .(2,2)C .()1,21D .(0,0) **6. 若抛物线231x y =上的两点A ,B 的横坐标恰是方程02=++q px x 两根,(p ,q 为实常数),则AB 的直线方程是( )A . qx+3y+p=0B . qx -3y+p=0C . px+3y+q=0D . px -3y+q=0二、填空题(每小题5分,计30分)**7. 过抛物线py x 22=(p>0)的焦点F 作倾斜角为θ的弦,则弦长是 . 8. 抛物线2x y =的准线方程是 .*9. 抛物线y x 22=上离点A (0,a )最近的点恰好是顶点,则a 的取值范围是 . 10. 在平面直角坐标系中,有一定点A (4,2),若线段OA 的垂直平分线过抛物线)0p (px 2y 2>=的焦点,则该抛物线的准线方程是 .*11. 已知P (x ,y )满足:|1243|)2()1(522++=-+-y x y x ,则点P 的轨迹是 .三、计算题(40分)12. (12分)抛物线的顶点在原点,它的准线过椭圆)0(,12222>>=+b a by a x 的一个焦点,且垂直于椭圆两个焦点所在的直线,又椭圆与抛物线的一个交点M ()362,32,求抛物线和椭圆的方程.*13. (13分)若抛物线的焦点在x 轴上,开口向右,且抛物线上的点到直线L :4x+3y+46=0的距离的最小值是2.求:抛物线方程**14. (15分)A ,B 是抛物线)0(,22>=p px y 上的两点,且OA OB ⊥,(O 为坐标原点),求:(1)A ,B 两点的横坐标之积与纵坐标之积都是定值,(2)直线AB 过一定点.(3)O 在线段AB 上的射影M 点的轨迹方程.【试题答案】一、选择题1. C2. B3. A4. B5. B6. C二、填空题 7.θ2cos 2p 8. 4y+1=0 9. a 1≤ 10. 25-=x 11. 抛物线三、计算题13. 解:由椭圆方程可知:椭圆的焦点在x 轴上,故抛物线的焦点在x 轴上,又抛物线过点M ()362,32,可设抛物线方程为:px y 22=,(p>0) x y p p 42322)362(22==⇒⨯=∴,故抛物线方程是 从而椭圆的焦点是),(,),(010121F F -,由椭圆的定义知: 2a=|MF 1|+|MF 2|43537=+=,即a=2,c=132=⇒b故所求的椭圆方程是13422=+y x .14. 解:由题意知:抛物线的焦点在x 轴正半轴上,可设抛物线方程为px y 22=设M (x ,y ) 是抛物线上任意一点.由M 点在抛物线上得:M (),22y py . M 点到直线L 的距离d=5|46y 3x 4|++=5|p 46py 3y 2|2++,又2≥d ,故046322>++p py y 恒成立.)8946(51]8946)43(2[51222p p p p p p y p d -≥-++=∴,由d 的最小值是2 得:,322)8946(512=⇒=-p p p p 即所求抛物线方程是x y 642=15.(1)证明:.2,2),(,(2221212,211px y px y y x B y x A ==则:),设OB OA ⊥ ,02121=+∴y y x x)y y (p 4x x p 4px 2px 2y y 212212212221-==⋅=∴定值)(定值),(4y 422121221p y x x p y y =-=-=∴(2)证明:22121211221212122p 4x x p 2x x x x ),x x (p 2)y y )(y y (y y ====-=+-=-且时,当,此时直线AB 的方程为x=2p ,直线AB 过定点(2p ,0),当211212AB 21y y p2x x y y k x x +=--=≠时,, )2(2)(221211211py x y y px x y y p y y AB -+=-+=-∴的方程是:直线,)2(2y 42p 2221212212121*********p x y y p y p x y y p y y y y x y y y y y y x y y p y -+=+-+=+++=++-+=∴故直线AB 过定点(2p ,0).(3)解:设AB 过定点(2p ,0)由OM MP ⊥︒=∠⇒90OMP ,知M 点的轨迹是以OP 为直径的圆,故M 点的轨迹方程是:)0(,)(222≠=+-x p y p x .。
抛物线的基本知识点
抛物线的基本知识点抛物线作为一种常见的数学曲线,被广泛应用于物理、工程等领域。
通过研究抛物线的基本知识点,我们能够更好地理解和应用这一曲线。
一、什么是抛物线?抛物线是一种平滑的曲线,其形状类似于一个U字形。
它是由平面上的一点(焦点)和一条直线(准线)固定的距离相等的点的轨迹组成。
抛物线有对称轴和焦点两个重要特点。
二、抛物线的方程抛物线的方程可以用一般式或标准式来表示。
一般式为y = ax^2 +bx + c,其中a、b、c为常数,x和y分别为抛物线上的点的坐标。
标准式为(y-k) = a(x-h)^2,其中(h, k)为抛物线的顶点坐标,a为抛物线的参数。
三、抛物线的顶点和焦点抛物线的顶点是抛物线的最高点或最低点,是抛物线的对称轴上的一个点。
顶点的坐标可以通过解方程组求得。
焦点则是与抛物线上任意一点的距离相等于准线与焦点之间的距离。
焦点的坐标可以通过求解准线与对称轴的交点得到。
四、抛物线的焦距和离心率焦距是指焦点到抛物线上的一点的距离,它等于抛物线的准线长度的两倍。
焦距越大,抛物线的形状越扁平。
离心率是焦距与准线长度的比值,用e表示。
离心率为0时,抛物线为圆;离心率为1时,抛物线为实对称轴的抛物线;离心率大于1时,抛物线为虚对称轴的抛物线。
五、抛物线的性质抛物线有许多重要的性质。
例如,抛物线的对称轴与焦点的连线垂直;抛物线的顶点位于对称轴上;抛物线关于对称轴对称等等。
这些性质使得抛物线在实际应用中具有重要的意义。
六、抛物线的应用抛物线的应用广泛存在于自然和人造物体中。
例如,在物理学中,抛物线可以用来描述弹道运动的轨迹;在工程学中,抛物线可以用来设计天桥或拱形建筑的结构;在航天学中,抛物线可以用来计算火箭的发射轨迹等等。
抛物线的基本知识点能够帮助我们理解这些应用,并更好地应用它们于实际问题中。
总结:通过了解抛物线的基本知识点,我们可以更好地理解和应用这一数学曲线。
抛物线的方程、顶点和焦点、焦距和离心率以及性质等方面的了解,为我们在物理、工程等领域的实际应用提供了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲 抛物线基础巩固题组 (建议用时:40分钟)一、选择题1.(2013·四川卷)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12B.32 C .1D. 3解析 抛物线y 2=4x 的焦点F (1,0),双曲线x 2-y 23=1的渐近线方程是y =±3x ,即3x ±y =0,故所求距离为|3±0|(3)2+(±1)2=32.选B. 答案 B2.(2014·广安月考)已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p 的值为 ( ).A .1B .2 C.12D .4解析 圆的标准方程为(x -3)2+y 2=16,圆心为(3,0),半径为 4.圆心到准线的距离为3-⎝ ⎛⎭⎪⎫-p 2=4,解得p =2.答案 B3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ).A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x 2解析 分两类a >0,a <0可得y =112x 2,y =-136x 2.答案 D4.(2014·潍坊一模)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为 ( ).A .2 2B .3C .2 3D .4解析 抛物线的焦点为⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p 2.双曲线的右焦点为(3,0),所以p 2=3,即p =6,即y 2=12x .过A 做准线的垂线,垂足为M ,则|AK |=2|AF |=2|AM |,即|KM |=|AM |,设A (x ,y ),则y =x +3,代入y 2=12x ,解得x =3.答案 B5.(2013·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p = ( ).A .1 B.32 C .2D .3解析 由已知得双曲线离心率e =ca =2,得c 2=4a 2,∴b 2=c 2-a 2=3a 2,即b =3a .又双曲线的渐近线方程为y =±ba x =±3x ,抛物线的准线方程为x =-p 2,所以不妨令A⎝ ⎛⎭⎪⎫-p 2,32p ,B ⎝ ⎛⎭⎪⎫-p 2,-3p 2,于是|AB |=3p .由△AOB 的面积为3可得12·3p ·p 2=3,所以p 2=4,解得p =2或p =-2(舍去).答案 C二、填空题6.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是________.解析 由题意可知点P 到直线y =-3的距离等于它到点(0,3)的距离,故点P 的轨迹是以点(0,3)为焦点,以y =-3为准线的抛物线,且p =6,所以其标准方程为x 2=12y .答案 x 2=12y7.已知抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF |=4,则点M 的横坐标x 0=________. 解析 抛物线y 2=4x 的焦点为F (1,0),准线为x =-1.根据抛物线的定义,点M 到准线的距离为4,则M 的横坐标为3.答案 38.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析 如图,在等边三角形ABF 中,DF =p ,BD =33p ,∴B 点坐标为⎝⎛⎭⎪⎫33p ,-p 2.又点B 在双曲线上,故13p 23-p 243=1.解得p =6.答案 6 三、解答题9.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离为5,求抛物线的方程和m 的值.解 法一 根据已知条件,抛物线方程可设为 y 2=-2px (p >0),则焦点F ⎝ ⎛⎭⎪⎫-p 2,0.∵点M (-3,m )在抛物线上,且|MF |=5,故⎩⎪⎨⎪⎧m 2=6p , ⎝ ⎛⎭⎪⎫-3+p 22+m 2=5,解得⎩⎨⎧ p =4,m =26 或⎩⎨⎧p =4,m =-2 6.∴抛物线方程为y 2=-8x ,m =±2 6.法二 设抛物线方程为y 2=-2px (p >0),则准线方程为x =p2,由抛物线定义,M 点到焦点的距离等于M 点到准线的距离,所以有p2-(-3)=5,∴p =4.∴所求抛物线方程为y 2=-8x , 又∵点M (-3,m )在抛物线上, 故m 2=(-8)×(-3), ∴m =±2 6.10.设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线l 与C 相交于A ,B 两点. (1)设l 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.(1)解 ∵由题意可知抛物线的焦点F 为(1,0),准线方程为x =-1,∴直线l 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =x -1,y 2=4x得x 2-6x +1=0,∴x 1+x 2=6,由直线l 过焦点,则|AB |=|AF |+|BF |=x 1+x 2+2=8. (2)证明 设直线l 的方程为x =ky +1, 由⎩⎨⎧x =ky +1,y 2=4x得y 2-4ky -4=0. ∴y 1+y 2=4k ,y 1y 2=-4,OA →=(x 1,y 1),OB →=(x 2,y 2). ∵OA →·OB →=x 1x 2+y 1y 2=(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2=-4k 2+4k 2+1-4=-3. ∴OA →·OB →是一个定值.能力提升题组 (建议用时:25分钟)一、选择题1.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为 ( ). A .x 2=833y B .x 2=1633yC .x 2=8yD .x 2=16y解析 ∵x 2a 2-y 2b 2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py 的焦点坐标为⎝⎛⎭⎪⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意,得p 21+(3)2=2,∴p =8.故C 2:x 2=16y ,选D.答案 D2.(2014·洛阳统考)已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( ).A. 3B. 5 C .2D.5-1解析 由题意知,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为|2+3|22+(-1)2=5,所以d +|PF |-1的最小值为5-1.答案 D二、填空题3.(2014·成都检测)已知椭圆C :x 24+y 23=1的右焦点为F ,抛物线y 2=4x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的倾斜角为120°,那么|PF |=________.解析 抛物线的焦点坐标为F (1,0),准线方程为x =-1.因为直线AF 的倾斜角为120°,所以tan 120°=y A-1-1,所以y A =2 3.因为P A ⊥l ,所以y P =y A=23,代入y 2=4x ,得x A =3,所以|PF |=|P A |=3-(-1)=4. 答案 4 三、解答题4.(2013·辽宁卷)如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以A 点坐标为⎝ ⎛⎭⎪⎫-1,14, 故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是y 0=-12(2-2)+14=-3-224,① y 0=-(1-2)22p =-3-222p .② 由①②得p =2.(2)设N (x ,y ),A ⎝ ⎛⎭⎪⎫x 1,x 214,B ⎝ ⎛⎭⎪⎫x 2,x 224,x 1≠x 2,由N 为线段AB 中点知x =x 1+x 22.③y =x 21+x 228.④切线MA ,MB 的方程为 y =x 12(x -x 1)+x 214,⑤ y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为 x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足x 2=43y . 因此AB 中点N 的轨迹方程为x 2=43y .。