概率论课堂笔记

合集下载

九年级数学上人教版《概率初步》课堂笔记

九年级数学上人教版《概率初步》课堂笔记

《概率初步》课堂笔记
一、概率的定义和意义
1.定义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数
p附近,那么这个常数p就叫做事件A的概率,记为P(A) = p。

2.意义:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表
现。

二、等可能事件和不可能事件
1.等可能事件:当一次试验要分成若干个相等的机会,并且这些机会是可数的,
或是有确定的数量时,出现各不相同的结果并且出现每种结果的可能性都相等的随机事件。

2.不可能事件:在一定条件下不可能发生的事件。

三、简单事件的概率计算
1.公式:P(A) = m/n,其中m是事件A发生的次数,n是试验总次数。

2.注意事项:在计算概率时,需要注意以下几点:
•要注意区分频率与概率的不同。

频率是试验中某个事件出现的次数与试验总次数的比值,而概率是频率的稳定值。

•要注意在等可能事件中,不同的试验结果出现的可能性是相等的。

•要注意任何一个事件的概率都应该是0到1之间的一个实数。

四、实例应用
通过实例分析,理解概率的概念和计算方法。

例如,抛硬币、掷骰子等实例的分析,可以引出概率的定义和计算方法。

同时,通过实例分析,也可以让学生更好地理解概率的意义和应用。

五、课堂小结
本节课学习了概率初步这一节内容,主要包括了概率的定义和意义、等可能事件和不可能事件、简单事件的概率计算等方面的知识。

通过本节课的学习,学生应该能够初步掌握概率的概念和计算方法,并且能够运用这些知识解决实际问题。

同时,学生也应该能够认识到概率在生活和其他领域中的应用,激发学习兴趣。

《概率论与数理统计》讲义笔记【高斯课堂】(页眉页脚已除)

《概率论与数理统计》讲义笔记【高斯课堂】(页眉页脚已除)

5. 某保险公司把被保险人分为 3 类:“谨慎的”、“一般的”、“冒失的”,统计资料表明,这 3 种人在一年内发生事故的概率依次为 0.05, 0.15, 0.30 ;如果“谨慎的”被保险人占 20% , “一般的占 50% ,“冒失的”占 30% ,问: (1) 一个被保险人在一年内出事故的概率是多大? (2) 若已知某被保险人出了事故,求他是“谨慎的”类型的概率。
P(B1
A)
P(B1) P(A P( A)
B1)
0.6 0.01 0.014
3 7
6
题 3.盒中有 4 个红球,6 个黑球,今随机地取出一球,观察颜色后放回,并加上同色球 2 个, 再从盒中第二次抽取一球,求:
⑴第二次取出的是黑球的概率; ⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率。 解:⑴设事件 A 为“第二次取出的是黑球” B1为第一次取出是红球, B2 为第一次取出是黑球
常见题型 大题
1. 条件概率、乘法公式
题 1.投一颗骰子,事件 A 为“点数大于 3 ”,事件 B 为“点数为 5 ”。则 P(B A) _______。
解: P(AB) P(B) 1 6
P(A) 1 2
1
P(B
A)
P( AB) P( A)
6 1
1 3
2
区别:
P(B)
样本空间为点数 1,
2,
A. A 是必然事件
B. P B A 0
C. A B
D. P A P B
4. 仓库中有10 箱同种规格的产品,其中 2 箱、3 箱、5 箱分别由甲、乙、丙三个厂生产,三 个厂的正品率分别为 0.7, 0.8, 0.9 ,现在从这10 箱产品中任取一箱,再从中任取一件

概率论笔记1

概率论笔记1

概率复习重点归纳 一、随机事件与概率 重点难点: 重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式 难点:随机事件的概率,乘法公式、全概率公式、Bayes 公式以及对贝努利概型的事件的概率的计算 常考题型: (1)事件关系与概率的性质 (2)古典概型与几何概型 (3)乘法公式和条件概率公式 (4)全概率公式和Bayes 公式 (5)事件的独立性 (6)贝努利概型 概念辨析1,互不相容(互斥)事件同逆(对立)事件互不相容事件:AB =Φ 逆事件:,A B AB ⋃=Ω=Φ事件互逆指的是非此即彼,即事件之一必定发生;而不相容仅指不能同时发生,但是是可以同时不发生的。

2,独立与互不相容(互斥)对事件A 及B ,若P(A)P(B)>0,且P(AB)=P(A)P(B),则称事件A 及B 互相独立;事件独立同事件互斥是两套不同的概念,不能进行比较;须知独立性针对的是事件概率存在上面的等式关系;而互斥是指事件的不可同时发生,两者之间不存在必然关系。

3、条件概率同乘积概率P(AB)是在样本空间Ω内,事件AB 的概率,而P(A | B)是在试验中增加了新条件B 发生 后的缩减的样本空间B Ω中计算事件A 的概率。

虽然A 、B 都发生,但两者是不同的,一般说来,当A 、B 同时发生时,常用P(AB),而在有包含关系或明确的主从关系时,用P(A | B) .例:袋中有9 个白球1 个红球,作不放回抽样,每次任取一球,取2 次,求:(1)第二次才取到白球的概率;( 2)第一次取到的是白球的条件下,第二次取到白球的概率.问题(1)求的就是一个乘积事件概率的问题,而问题(2)求的就是一个条件概率的问题.4、全概率公式同贝叶斯公式 全概率公式:要求事件A 的概率(通常直接不太好求),将其分成几个比较容易计算的概率之和。

在分析问题的过程中,A 可视为B1∪B2∪B3∪…∪Bn 的子事件,或者把Bi 看成A 发生的原因,A 是结果,而及较易求出,从而可由“因”求出“果”。

概率论知识点总结 (1)

概率论知识点总结 (1)

概率论知识点总结 (1)概率论总结名目一、前五章总结第一章随机事件和概率 (1)第二章随机变量及其分布 (5)第三章多维随机变量及其分布 (10)第四章随机变量的数字特征 (13)第五章极限定理 (18)二、学习概率论这门课的心得体味 (20)一、前五章总结第一章随机事件和概率第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)别确定性的试验或观看称为随机试验,简称为试验,常用E表示。

在一次试验中,也许浮现也也许别浮现的情况(结果)称为随机事件,简称为事件。

不会事件:在试验中不会浮现的情况,记为Ф。

必定事件:在试验中必定浮现的情况,记为S或Ω。

2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一具随机事件算是样本空间的一具子集。

基本领件—单点集,复合事件—多点集一具随机事件发生,当且仅当该事件所包含的一具样本点浮现。

事件间的关系及运算,算是集合间的关系和运算。

3、定义:事件的包含与相等若事件A发生必定导致事件B发生,则称B包含A,记为B?A或A?B。

若A?B且A?B则称事件A与事件B相等,记为A=B。

定义:和事件“事件A与事件B至少有一具发生”是一事件,称此事件为事件A与事件B 的和事件。

记为A∪B。

用集合表示为: A∪B={e|e∈A,或e∈B}。

定义:积事件称事件“事件A与事件B都发生”为A与B的积事件,记为A ∩B或AB,用集合表示为AB={e|e∈A且e∈B}。

定义:差事件称“事件A发生而事件B别发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

定义:互别相容事件或互斥事件假如A,B两事件别能并且发生,即AB=Φ,则称事件A与事件B是互别相容事件或互斥事件。

定义6:逆事件/对立事件称事件“A 别发生”为事件A 的逆事件,记为ā 。

A 与ā满脚:A ∪ā= S,且A ā=Φ。

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。

在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。

重点理解事件的概率定义、概率的性质和
概率的运算法则。

2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。

还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。

3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。

4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。

5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。

6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。

总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。

希望以上内容能够帮助你更好地理解概率论与数理统计。

概率论与数理统计笔记

概率论与数理统计笔记

AB = A ∪ B
设 A1, A2, …, An 是样本空间 Ω 的一个划分, B 是任意一 个事件,且 p(B)>0,则 P(Ai|B)=
P ( AB ) . P ( A)
P( Ai ) P( B | Ai) P( Ai ) P( B | Ai) = n , i=1,..,n P(B) P( Ak ) P( B | Ak)
k 1
概率的乘法公式: 当 P(A)>0 时,P(AB)= P(A)P(B|A) 当 P(B)>0 时,P(AB)= P(B)P(A|B) 乘法公式还可以推广到 n 个事件的情况:
n 重贝努利(Bernoulli)试验: Pn(k) =
C
k n
pk(1-p)n-k, k=0, 1, 2, …, n.(q=1-p)


k 1
Ak) =

k 1
P(Ak)
性质: (1) 0 ≤ P(A) ≤ 1, P (Φ) = 0 (2) P(A∪B) = P(A) + P(B)-P(AB) 特别地,当 A 与 B 互不相容时,P(A∪B) = P(A) + P(B) 推广: 对于任意事件 A, B, C 有 P(A∪B∪C) = P(A) + P(B)
当 0 < P(A) < 1 时,A 与 A 就是 Ω 的一个划分,又设 B 为任一事件, 则全概率公式的最简单形式为 P(B)=P(A) P(B|A)+ P( A ) P(B| A ) 运算律: 交换律:A∪B = B∪A, A∩B = B∩A 结合律:A∪(B∪C) = (A∪B)∪C, A∩(B∩C) = (A∩B)∩C 分配律:A∪(B∩C) = (A∪B)∩(A∪C), A∩(B∪C) = (A∩B)∪(A∩C)

概率论必备知识点

概率论必备知识点

概率论必备知识点概率论是一门研究随机现象数量规律的数学分支,它在各个领域都有着广泛的应用,从物理学、生物学、经济学到计算机科学等。

以下是一些概率论中的必备知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

例如,抛一枚硬币,正面朝上就是一个随机事件。

概率则是用来衡量随机事件发生可能性大小的数值。

概率的取值范围在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。

计算概率的方法有多种。

对于等可能事件,概率等于事件所包含的基本结果数除以总的基本结果数。

例如,掷一个骰子,出现点数为 3的概率就是 1/6,因为骰子共有 6 个面,每个面出现的可能性相等,而点数为 3 的只有 1 种情况。

二、古典概型古典概型是一种最简单的概率模型。

在古典概型中,试验的结果是有限的,并且每个结果出现的可能性相等。

例如,从装有 5 个红球和 3 个白球的袋子中随机取出一个球,求取出红球的概率,这就是一个古典概型问题。

计算古典概型的概率,可以使用公式:P(A) = n(A) /n(Ω),其中P(A)表示事件 A 发生的概率,n(A)表示事件 A 包含的基本结果数,n(Ω)表示总的基本结果数。

三、几何概型几何概型是古典概型的推广,当试验的结果是无限的,且每个结果出现的可能性相等时,就可以使用几何概型来计算概率。

例如,在一个时间段内等待公交车,求等待时间不超过 5 分钟的概率。

在几何概型中,概率等于事件对应的区域长度(面积或体积)除以总的区域长度(面积或体积)。

四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

例如,已知今天下雨,明天晴天的概率就是一个条件概率。

条件概率的计算公式为:P(B|A) = P(AB) / P(A),其中 P(B|A)表示在事件 A 发生的条件下事件 B 发生的概率,P(AB)表示事件 A 和事件 B 同时发生的概率,P(A)表示事件 A 发生的概率。

(完整版)概率论知识点总结

(完整版)概率论知识点总结

概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件:在试验中必然出现的事情,记为Ω。

样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。

基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。

相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。

事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。

记为 A ∪B 。

事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。

事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。

用交并补可以表示为B A B A =-。

互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。

互斥时B A ⋃可记为A +B 。

对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。

对立事件的性质:Ω=⋃Φ=⋂B A B A ,。

事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则∑==)|()()|()()()()|(jj i i i i A B P A P A B P A P B P B A P B A P第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。

概率论与数理统计笔记

概率论与数理统计笔记

第一章 概率论的基本概念随机试验:1.可以在相同的条件下重复进行2.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果3.进行一次试验之前不能确定哪个结果会出现样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 随机事件:试验E 的样本空间S 的子集,简称事件基本事件:由一个样本点(E 的每个结果)组成的单点集 频率:事件A 发生次数和试验次数的比值n A /n ,记作f n (A)概率:对事件A 赋予实数,P(A) 非负性,规范性,可列可加性性质i P(∅)=0.性质ii(有限可加性) 若A1,A2,…,An 是两两互不相容的事件,则有P(A 1⋃A 2⋃…⋃A n )=P (A 1)+P (A 2)+⋯+P(A n ).性质iii 设A,B 是两个事件,若A ⊂B,则有P(B-A)=P(B)-P(A);P(B)≥P(A). 性质iv 对于任一事件A,P(A)≤1.性质v(逆事件的概率) 对于任一事件A,有P(A )=1-P(A).性质vi(加法公式) 对于任意两事件 A,B 有P(A ⋃B)=P(A)+P(B)-P(AB). 古典概型:样本空间只包含有限个元素,每个基本事件可能性相同A 的对立事件A̅及其概率:也称逆事件 两个互不相容事件的和事件的概率:两事件不能同时发生,概率的有限可加性 概率的加法定理:P(A ⋃B )=P(A)+P(B)-P(AB)条件概率:在事件A 发生的条件下事件B 发生的P(B|A)=P(AB)P(A).概率的乘法公式:P(ABC)=P(C|AB)P(B|A)P(A) 全概率公式:P (A )=∑P (A |B i )n i=1P(B i ) B i 是试验E 的S 的划分,A 为E 的事件 贝叶斯公式:P (B i |A )=P(A|B i )P(B i )∑P(A|B j )P(B j )nj=1,i=1,2,…,n.事件的独立性:P(AB)=P(A)P(B),互相独立与互不相容不能同时成立设n 个事件,如果对于其中任意2个,任意3个,…,任意n 个事件的积事件的概率都等于各事件概率之积,则称n 个事件相互独立实际推断原理:概率很小的事件在一次实验中实际上几乎是不发生的第二章 随机变量及其分布随机变量:设E 的样本空间S={e},X=X(e)是定义在样本空间S 上的单值函数,称随机变量分布函数:X 是随机变量,x 是任意实数,F (x )=P {X ≤x },−∞<x <∞称为X 的分布函数任意实数x 1,x 2(x 1<x 2),有 P {x 1<X ≤x 2}=P {X ≤x 2}−P {X ≤x 1}=F (x 2)−F(x 1) 基本性质:不减函数,0≤F(x)≤1且F(-∞)=0,F(∞)=1离散型随机变量:全部可能取到的值是有限个或可列无限多个其分布律: P {X =x k }=p k ,k =1,2,… 连续性随机变量:F (x )=∫f(t)dt x−∞ 非负可积函数f (x )概率密度:f(x)性质:f (x )≥0;∫f (x )dx ∞−∞=1伯努利试验:试验E 只有两个可能结果:A 及A(0−1)分布: P {X =k }=p k (1−p)1−k ,k =0,1 (0<p <1) 记为X ~b(1,p) n 重伯努利试验:将伯努利试验E 独立重复地进行n 次,以C i 为A 或A ,i=1,2,…,n.独立:P (C 1C 2…C n )=P (C 1)P (C 2)…P(C n )二项分布:P {X =k }=(n k )p k (1−p)n−k ,k =0,1,2,…,n. 记为X ~b(n,p) 泊松分布:P {X =k }=λk e −λk!,k =0,1,2,…,λ是常数,记为X ~π(λ)指数分布:f (x )={1θe −xθ,x >00,otherwise,记为X ~η(θ)均匀分布:f (x )={1b−a ,a <x <b,0,otherwise.,记为X ~U(a,b)正态分布:f (x )=√2πσ−(x−μ)22σ2,-∞<x<∞,其中μ,σ(σ>0)是常数,记作X ~N (μ,σ2)标准正态分布:X ~N(0,1),概率密度为φ(x),分布函数为Φ(x) 引理:若X ~N(μ,σ2),则Z =X−μσ~N(0,1)随机变量函数的分布:Y=g(X),分布函数法(先求分布函数,再对分布函数求导)第三章 多维随机变量及其分布二维随机变量(X ,Y ):设X=X(e),Y=Y(e)是定义在样本空间S 上的随机变量构成的向量 (X ,Y )的分布函数:联合分布函数:F (x,y )=P {(X ≤x )∩(Y ≤y )}≝P{X ≤x,Y ≤y}边缘分布函数:F X (x )=P {X ≤x }=P {X ≤x,Y <∞}=F(x,∞),F Y (y )=F(∞,y) 离散型随机变量(X ,Y )的分布律:P{X =x i ,Y =y j }=p ij ,i,j =1,2,… 联合分布律 连续型随机变量(X ,Y )的概率密度:f(x,y) 联合概率密度1. f (x,y )≥02. ∫∫f(x,y)dxdy ∞−∞=F (∞,∞)=1∞−∞3. 设G 是xOy 平面上的区域,点(X,Y)落在G 内的概率为∬f(x,y)dxdyG . 4. 若f(x,y)在点(x,y)连续,则有∂2yF(x,y)∂x ∂y=f(x,y)离散型随机变量(X ,Y )的边缘分布律:P {X =x i }=∑p ij ∞i=0,i =1,2,…, Y 一样 连续型随机变量(X ,Y )的边缘概率密度:f X (x )=∫f(x,y)dy ∞−∞,Y 一样 条件分布函数:F X|Y (x |y )=P {X ≤x |Y =y }=∫f(x,y)f X (x)dy y −∞ 在Y=y 条件下X 的条件分布函数条件分布律:P {X =x i |Y =y i }=P{X=x i ,Y=y i }P{Y=y i }=p ij p .j,i =1,2,… 在Y=y j 条件下X 的条件分布律条件概率密度:f X|Y (x |y )=f(x,y)f Y (y)在Y=y 的条件下X 的条件概率密度两个随机变量X ,Y 的独立性:F (x,y )=F X (x)F Y (y)对二维正态随机变量变量(X,Y),X 和Y 相互独立的充要条件是参数ρ=0 Z=X+Y 、Z=Y/X 、Z=XY 的概率密度:Z=X+Y:f X+Y (z )={∫f X (z −y)f Y (y)dy∞−∞∫f X (x)f Y (z −x)dx∞−∞ Z=Y/X:f Y X(z )=∫|x|f(x,xz)dx ∞−∞=∫|x|f X (x)f Y (xz)dx ∞−∞Z=XY:f XY (z )=∫1|x|f(x,z x)dx ∞−∞=∫1|x|f X (x)f Y (zx)dx ∞−∞M=max{X ,Y},N=min{X ,Y}的概率密度:分布函数:F max (z)=P{M≤z}=P{X≤z,Y≤z}=P{X≤z}P{Y≤z}=F X (z)F Y (z).F min (z)=P{N≤z}=1-P(N>z)=1-P{X>z,Y>z}=1-P{X>z}∙P{Y>z}=1-[1-F X (z)][1-F Y (z)].第四章 随机变量的数字特征数学期望:E (X )=∑x k p k ∞k=1E (X )=∫xf(x)∞−∞dx (积分绝对收敛)随机变量函数的数学期望:Y=g(X)(g 是连续函数)E(Y)=E[g(X)]=∑g(x k )∞k=1p k E(Y)=E[g(X)]=∫g(x)f(x)dx ∞−∞E(Z)=E[g(X,Y)]=∑∑g(x i ,y j )p ij ∞i=1∞j=1E(Z)=E[g(X,Y)]=∫∫g(x,y)f(x,y)∞−∞dxdy ∞−∞数学期望的性质:1.设C 是常数,则有E(C)=C.2.设X 是一个随机变量,C 是常数,则有E(CX)=CE(X).3.设X,Y 是两个随机变量,则有E(X+Y)=E(X)+E(Y).(可推广到任意有限个随机变量之和)4.设X,Y 是相互独立的随机变量,则有E(XY)=E(X)+E(Y).(可推广到任意有限个相互独立随机变量之积)方差:D(X)=Var(X)=E{[X-E(X)]2}. 标准差:σ(x)=√D(X)方差的性质:1.设C 是常数,则D(C)=0.2.设X 是随机变量,C 是常数,则有D(CX)=C 2D(X),D(X+C)=D(X).3.设X,Y 是两个随机变量,则有D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(X))}. 若X,Y 相互独立,则有D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是X 以概率1取常数E(X),即P{X=E(X)}=1. 标准化的随机变量:X ∗=X−μσ.(数学期望为0,方差为1)协方差:Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}. 相关系数:ρXY =√D(X)D(Y)相关系数的性质:1.|ρXY |≤1.2.|ρXY |=1的充要条件是,存在常数a,b 使P{Y=a+bX}=1. X ,Y 不相关:当ρXY =0时.切比雪夫不等式:设随机变量X 具有E(X)=μ,方差D(X)=σ2,则对任意正数ε,不等式 P{|X −μ|≥ε}≤σ2ε2成立几种重要分布的数学期望和方差:(推导)矩:k 阶原点矩:E(X k ),k=1,2,…k 阶中心矩:E([X-E(X)]k ),k=2,3,… k+l 阶混合矩:E(X k Y l ),k,l=1,2,…k+l 阶混合中心矩:E([X-E(X)]k [Y-E(Y)]l ),k,l=1,2,…协方差矩阵:C =(c ij )=(Cov(X i ,Y j ))=E{[X i -E(X i )][X j -E(X j )]},i,j=1,2,…,n.第五章 大数定律及中心极限定理依概率收敛:设Y 1,Y 2,…,Y n ,…是一个随机变量序列,a 是一个常数.若对于任意正数ε,有lim n→∞P {|Y n −a |<ε}=1,则称序列Y 1,Y 2,…,Y n ,…依概率收敛于a,记为Y n P→a.伯努利大数定理:P(A)=P,频率nA n(n 次重复独立试验),对∀ε>0,lim n→∞P {|n A n−P|<ε}=1.辛钦大数定理:已知R.V . X 1,X 2,…,X n ,…相互独立且E(X i )=μ.(i=1,2,…)则∀ε>0,lim n→∞P {|1n ∑X k −μn k=1|<ε}=1.独立同分布的中心极限定理:设R.V .序列:X 1,X 2,…,X n ,…相互独立,并且E(X k )=μ, D(X k )=σ2,k=1,2,…则k n k=1√nσ2̃N(0,1) 标准正态分布(高斯分布)近似计算 李雅普诺夫中心极限定理:棣莫弗-拉普拉斯中心极限定理:设R.V. ηn ~B(n,p),则对任意x 有{η−np √np (1−p )≤x}≈Φ(x) 二项分布(n→∞)→ 正态分布第六章 样本及抽样分布总体:试验的全部可能的观察值.简单随机样本:设X 是具有分布函数F 的随机变量,若X 1,X 2,…,X n 是具有同一分布函数F 的、相互独立的随机变量,则称X 1,X 2,…,X n 为从分布函数F 得到的容量为n 的简单随机样本,简称样本.统计量:不含未知参数的样本的函数g(X 1,X 2,…,X n ).样本平均值:X̅=1n∑X i ni=1 样本方差:S 2=1n −1∑(X i −X ̅)2n i=1=1n −1(∑X i 2ni=1−nX̅2) 样本k 阶原点矩:A k =1n∑X i k ni=1,k =1,2,…样本k 阶中心矩:B k =1n∑(X i −X̅)k ni=1,k =1,2,… χ2分布:χ2=X 12+X 22+⋯+X n 2,服从自由度为n 的χ2分布,记为χ2~χ2(n).χ2(n)分布的概率密度为f (y )={12n 2Γ(n 2)yn 2−1e −y 2,y >0 0, otℎerwiseGamma 函数:Γ(x )=∫e −t t x−1dt +∞0,(x >0)t 分布:设X ~N(0,1),Y ~χ2(n),且X,Y 相互独立随机变量t=√n,服从自由度为n 的t 分布.记为t ~t(n).t(n)分布的概率密度函数为h (t )=Γ(n +12)√πnΓ(n 2)(1+t 2n )−n+12F 分布:设U ~χ2(n 1),V ~χ2(n 2),且U,V 相互独立随机变量F=Un 1V n 2,服从自由度为(n 1,n 2)的F 分布,记为F ~F(n 1,n 2). 密度函数为ψ(y).密度函数图形轮廓:χ2分布,F 分布类似,t 分布对称上α分位点:χα2(n),t α(n),F α(n 1,n 2) F 1-α(n 1,n 2)=1Fα(n 1,n 2):F 分布上分位点的重要性质,用来求表中未列出的常用上α分位点.关于样本均值、样本方差的重要结果1.设X 1,X 2,…,X n 是来自总体X(不管服从什么分布,只要它的均值和方差存在)的样本,且有E(X)=μ,D(X)=σ2n .2.设总体X~N(μ,σ2),X1,X2,…,X n是来自X的样本,则有);1)X̅~N(μ,σ2n~χ2(n−1);2)(n−1)S2σ23)X̅与S2相互独立;~t(n−1);4)X̅−μS√n3.对于两个正态总体X~N(μ1,σ12),Y~N(μ2,σ22),有定理四的重要结果.第七章 参数估计矩估计量:θ̂i =θi(A 1,A 2,…,A k ),i=1,2,…,k 作为θi 的估计量,A i 是样本矩. 最大似然估计量:θ̂(X 1,X 2,…,X n ),使L(x 1,x 2,…x n ;θ̂)=max θ∈ΘL(x 1,x 2,…,x n ;θ) 估计量的评选标准:无偏性:若估计量θ̂=θ̂(X 1,X 2,…,X n )的数学期望E(θ̂)存在,且对于任意θ∈~Θ有E(θ̂)=θ. 有效性:θ̂1=θ̂1(X 1,X 2,…,X n )与 θ̂2=θ̂2(X 1,X 2,…,X n )都是θ的无偏估计量,若对于任意θ∈Θ,有D(θ̂1)≤D(θ̂2)且至少对于某一个θ∈Θ上式中的不等号成立. 相合性:设θ̂(X 1,X 2,…,X n )为参数θ的估计量,若对与任意θ∈Θ,当n →∞时θ̂(X 1,X 2,…,X n )依概率收敛于θ.参数θ的置信水平为1-α的置信区间:θ的两个矩估计量θ=θ(X 1,X 2,…,X n )θ=θ(X 1,X 2,…,X n )给定的值α(0<α<1)有 P{θ<θ<θ}=1-α. 称(θ,θ)为置信水平为(1-α)的置信区间.枢轴量:一个样本和参数的函数W(X 1,X 2,…,X n ;θ),W 的分布不依赖于θ及其它未知参数. 参数θ的单侧置信上限和单侧置信下限P{θ>θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信下限. P{θ<θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信上限. 单个正态总体均值置信区间:若σ2已知,找U=X−μσ√n~N(0,1),得到μ的一个置信水平为1-α的置信区间为(X √nz α2)若σ2未知,E(S 2)=σ2,将σ换成S=√S 2找T=X−μS √n~t(n −1),得到μ的一个置信水平为1-α的置信区间为(X ±√nt α2(n −1))单个正态总体方差置信区间:σ2的无偏估计为S 2,(n −1)S 2σ2~χ2(n −1) P{χ1−α22(n −1)<(n −1)S 2σ2<χα22(n −1)}=1−α P {(n −1)S 2χα22(n −1)<σ2<(n −1)S 2χ1−α22(n −1)}=1−α 得到σ2的一个置信水平为1-α的置信区间为((n −1)S 2χα22(n −1),(n −1)S 2χ1−α22(n −1)) 单侧置信上限与单侧置信下限σ2已知,关于μ的单侧置信区间选U=X−μσ√n~N(0,1)单侧置信上限为μ=X √n α单侧置信下限为μ=X√nασ2未知,选T=X−μS√n~t(n−1)单侧置信上限为μ=X√nα(n−1)单侧置信下限为μ=X√nα(n−1)关于σ2,选(n−1)S 2σ2~χ2(n−1)单侧置信上限为σ2=(n−1)S 2χ1−α2(n−1)单侧置信下限为σ2=(n−1)S 2χα2(n−1)两个正态总体均值差、方差比的置信区间、单侧置信上限与单侧置信下限第八章 假设检验原假设:H 0:μ=μ0备择假设:H 1:μ≠μ0(原假设被拒绝后可供选择的假设) 检验统计量:Z =X−μ0σ√n单边检验:(右边检验)H 0:μ=μ0,H 1:μ>μ0(左边检验)H 0:μ=μ0,H 1:μ<μ0 双边检验:形如H 0:μ=μ0, H 1:μ≠μ0的检验显著性水平:关于x 与μ0有无差异的判断是在显著性水平α之下作出的. 拒绝域:区域C 中取某个值时拒绝原假设,如|z|>z α2.显著性检验:只对犯第I 类错误的概率加以控制,而不考虑犯第II 类错误的概率的检验. 一个正态总体的参数的检验:μ的检验σ2已知:利用统计量Z=X−μ0σ√n~N(0,1)确定拒绝域|Z|≥z α2σ2未知:|t|=|X−μ0S √n|~t(n-1)σ2的检验:χ2分布χ2=(n−1)S 2σ02~χ2(n −1)k 1=χ1−α22(n −1),k 2=χα22(n −1) 拒绝域为(n−1)S 2σ02≤k 1 或(n−1)S 2σ02≥k 2。

概率论课堂笔记

概率论课堂笔记

自考高数经管类概率论与数理统计课堂笔记前言概率论与数理统计是经管类各专业的基础课,概率论研究随机现象的统计规律性,它是本课程的理论基础,数理统计则从应用角度研究如何处理随机数据,建立有效的统计方法,进行统计推断。

概率论包括随机事件及其概率、随机变量及其概率分布、多维随机变量及其概率分布、随机变量的数字特征及大数定律和中心极限定理。

共五章,重点第一、二章,数理统计包括样本与统计量,参数估计和假设检验、回归分析。

重点是参数估计。

预备知识(一)加法原则引例一,从北京到上海的方法有两类:第一类坐火车,若北京到上海有早、中、晚三班火车分别记作火1、火2、火3,则坐火车的方法有3种;第二类坐飞机,若北京到上海的飞机有早、晚二班飞机,分别记作飞1、飞2。

问北京到上海的交通方法共有多少种。

解:从北京到上海的交通方法共有火1、火2、火3、飞1、飞2共5种。

它是由第一类的3种方法与第二类的2种方法相加而成。

一般地有下面的加法原则:办一件事,有m类办法,其中:第一类办法中有n1种方法;第二类办法中有n2种方法;……第m类办法中有n m种方法;则办这件事共有种方法。

(二)乘法原则引例二,从北京经天津到上海,需分两步到达。

第一步从北京到天津的汽车有早、中、晚三班,记作汽1、汽2、汽3第二步从天津到上海的飞机有早、晚二班,记作飞1、飞2问从北京经天津到上海的交通方法有多少种?解:从北京经天津到上海的交通方法共有:①汽1飞1,②汽1飞2,③汽2飞1,④汽2飞2,⑤汽3飞1,⑥汽3飞2。

共6种,它是由第一步由北京到天津的3种方法与第二步由天津到上海的2种方法相乘3×2=6生成。

一般地有下面的乘法原则:办一件事,需分m个步骤进行,其中:第一步骤的方法有n1种;第二步骤的方法有n2种;……第m步骤的方法有n m种;则办这件事共有种方法。

(三)排列(数):从n个不同的元素中,任取其中m个排成与顺序有关的一排的方法数叫排列数,记作或。

考研数学概率论与数理统计笔记知识点(全)

考研数学概率论与数理统计笔记知识点(全)
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围

概率论知识点总结

概率论知识点总结

概率论知识点总结概率论知识点总结 概率论需要学⽣们对于概率概念的熟悉,⽽知识点⼀般不算⼗分的难。

下⾯概率论知识点总结是⼩编想跟⼤家分享的,欢迎⼤家浏览。

概率论知识点总结 第⼀章概率论的基本概念 1. 随机试验 确定性现象:在⾃然界中⼀定发⽣的现象称为确定性现象。

随机现象:在个别实验中呈现不确定性,在⼤量实验中呈现统计规律性,这种现象称 为随机现象。

随机试验:为了研究随机现象的统计规律⽽做的的实验就是随机试验。

随机试验的特点:1)可以在相同条件下重复进⾏; 2)每次试验的可能结果不⽌⼀个,并且能事先明确试验的所有可能 结果; 3)进⾏⼀次试验之前不能确定哪⼀个结果会先出现; 2. 样本空间、随机事件 样本空间:我们将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S。

样本点:构成样本空间的元素,即E 中的每个结果,称为样本点。

事件之间的基本关系:包含、相等、和事件(并)、积事件(交)、差事件(A-B:包含A 不包含B)、互斥事件(交集是空集,并集不⼀定是全集)、对⽴ 事件(交集是空集,并集是全集,称为对⽴事件)。

事件之间的运算律:交换律、结合律、分配率、摩根定理(通过韦恩图理解这些定理) 3. 频率与概率 频数:事件A发⽣的次数 频率:频数/总数 概率:当重复试验的次数n逐渐增⼤,频率值就会趋于某⼀稳定值,这个值就是概率。

概率的特点:1)⾮负性。

2)规范性。

3)可列可加性。

概率性质:1)P(空集)=0,2)有限可加性,3)加法公式:P(A+B)=P(A)+P(B) -P(AB) 4. 古典概型 学会利⽤排列组合的知识求解⼀些简单问题的概率(彩票问题,超⼏何分布,分配问题, 插空问题,捆绑问题等等) 5. 条件概率 定义:A事件发⽣条件下B发⽣的概率P(B|A)=P(AB)/P(A) 乘法公式:P(AB)=P(B|A)P(A) 全概率公式与贝叶斯公式 6. 独⽴性检验 设 A、B是两事件,如果满⾜等式 P(AB)=P(A)P(B) 则称事件A、B相互独⽴,简称A、B独⽴。

概率论笔记整理

概率论笔记整理

概率论笔记整理
概率论是研究随机现象的数学学科,它为各种随机事件、随机变量和随机过程提供了数学模型和理论框架。

以下是概率论的一些重要概念和笔记整理:
1. 概率空间:概率空间是一个三元组(Ω, F, P),其中Ω是样本空间,F是事件域,P是概率函数。

2. 随机事件:随机事件是样本空间Ω的一个子集,它包含样本点。

3. 概率:概率是一个实数,表示随机事件发生的可能性。

概率函数P定义在事件域F上,满足P(A) ≥ 0且P(Ω) = 1。

4. 条件概率:条件概率是在给定某个事件B发生的情况下,另一个事件A发生的概率。

条件概率记作P(A|B),它满足P(A|B) ≥ 0,P(Ω|B) = 1,且P(A|B) = P(A∩B)/P(B)。

5. 独立性:如果两个事件A和B相互独立,则P(A∩B) = P(A)P(B)。

6. 随机变量:随机变量是从样本空间到实数的映射。

常见的随
机变量包括离散型和连续型。

7. 期望值:期望值是随机变量所有可能取值的概率加权和。

期望值的计算公式为E(X) = Σ xP(X=x)。

8. 方差:方差是随机变量与其期望值的差的平方的期望值,即D(X) = E[(X-E(X))^2]。

9. 协方差:协方差是两个随机变量的线性相关程度的度量。

协方差的计算公式为Cov(X,Y) = E[(X-E(X))(Y-E(Y))]。

10. 随机过程:随机过程是一个时间序列或空间序列的随机变量的集合。

常见的随机过程包括马尔科夫链和泊松过程。

以上是概率论的一些基本概念和笔记整理,当然还有很多深入的内容和细节需要进一步学习和掌握。

概率论笔记

概率论笔记

概率论笔记这个时候考虑写概率论笔记的一个重要原因是9月初有一个概率论的考试。

另外,我上学期刚学完概率论,最近粗略的浏览了一下,不妨再梳理一下,记录下一些想法。

需要提到的是,概率论从主流的角度可以分为组合(初等)部分、分析部分和测度部分。

这一系列笔记主要讨论分析部分的内容,会快速覆盖初等组合部分。

总的来说,这一系列笔记只需要读者具备高中数学知识,以及分析中的积分和级数的知识。

当然我会重点讲概念的讲解和应用以及一些传统概率统计课程不太重视的地方。

这一系列笔记不会包含习题(其实习题后面会单独整理),取而代之的是文中更多的例题(与初等数论笔记的风格相反)。

然后,开始介绍正文的第一部分。

如前言中所提到的,在概率论的组合部分,我将比较快速地阐释一些定义,而不会花较多篇幅举例(相信大家高中基础都很扎实233)一、基本概念定义:随机试验中出现的可能结果称为样本点,记作 \omega所有样本点组成的集合称为样本空间,记作 \omega=\left \{ \omega|\omega为样本点 \right \} 。

当样本空间 \omega仅有有限个元素时,称其子集为一个事件,用大写字母表示,如 a 。

若样本点 \omega\in a ,称事件 a发生,否则称事件不发生。

\overline{a}=\omega-a 称为事件 a 的对立事件。

容易知道\omega\in a\leftrightarrow \omega\not\in\overline{a} ,反之亦然。

特别地, a=\varnothing 时,事件称为不可能事件。

a=\omega 时,事件称为必然事件。

例:进行随机实验,扔一次均匀的骰子。

由上述定义,样本点为试验的可能结果,为 1,2,3,4,5,6 。

则样本空间为 \omega=\left \{ 1,2,3,4,5,6 \right \}a=\left \{ 1,2,3 \right \} 为一个事件,且既不是不可能事件又不是必然事件。

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计复习笔记

概率论与数理统计复习笔记

概率论与数理统计复习 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A∪B (和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立? P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~?(?)参数为?的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (?>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为?的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (?>0).(3)X~N (?,?2)参数为?,?的正态分布 222)(21)(σμσπ--=x e x f -?<x<?, ?>0.特别, ?=0, ?2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, ?(-x)=1-Φ(x) .若X ~N ((?,?2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z ?}= P{Z<-z ?}= P{|Z|>z ?/2}= ?,则点z ?,-z ?, ?z ?/ 2分别称为标准正态分布的上,下,双侧?分位点. 注意:?(z ?)=1-? , z 1- ?= -z ?. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , ?= min (g (-?),g (?)) ?= max (g (-?),g (?)) .如果 f (x)在有限区间[a,b]以外等于零,则 ?= min (g (a),g (b)) ?= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ?)=0, F(-?,y)=0, F(-?,-?)=0, F(?,?)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<?}= F (x , ?) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<?, Y ≤y}= F (?,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jj i j j i p p y Y P y Y x X P •=====P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差?(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n p n p (1- p) 3.X~ ?(?) ? ?,}{},{•=====i ji i j i p p x X P y Y x X P4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为?的指数分布 ? ?26.X~ N (?,?2) ? ?2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (?,?2 ) ,则 X ~ N (?, ?2 /n) .2.?2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ ?2(n)自由度为n 的?2分布.(2)性质 ①若Y~ ?2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ ?2(n 1) Y 2~ ?2(n 2) ,则Y 1+Y 2~ ?2(n 1 + n 2). ③若X~ N (?,?2 ), 则22)1(σS n -~ ?2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ ?2(n),0< ? <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为?2分布的上、下、双侧?分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ ?2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (?,?2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (?1,?12 ) 且?12=?22=?2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (?2,?22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < ?<1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧?分位点. 注意: t 1- ? (n) = - t ? (n).4.F 分布 (1)定义 若U~?2(n 1), V~ ?2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< ? <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧?分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数?1, ?2,…, ?k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩? l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, ?1, ?2,…, ?k ),称样本X 1 ,X 2 ,…,X n的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数?1, ?2,…,?k 的最大似然估计值,代入样本得到最大似然估计量.若L(?1, ?2,…, ?k )关于?1, ?2,…, ?k 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=?,则估计量∧θ称为参数?的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=?k =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩?k 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= ?, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP→∧,则称估计量∧θ是参数?的相合估计量. 二.区间估计1.求参数?的置信水平为1-?的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,?),其中只有一个待估参数?未知,且其分布完全确定.(2)利用双侧?分位点找出W 的区间(a,b),使P{a<W <b}=1-?.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间? ?2已知 n X σμ-~N (0,1) (2/ασz n X ±) ? ?2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α ?2 ?未知22)1(σS n -~ ?2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差? 1-? 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±- 未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) ? 1,? 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比?12/?22的置信区间为 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标?/2改为?,另外的下(上)限取为-? (?)即可.。

考研数学备考:概率论各章节知识点梳理

考研数学备考:概率论各章节知识点梳理

考研数学备考:概率论各章节知识点梳理考研数学备考:概率论各章节知识点梳理第一局部:随机事件和概率(1)样本空间与随机事件(2)概率的定义与性质(含古典概型、几何概型、加法公式)(3)条件概率与概率的乘法公式(4)事件之间的关系与运算(含事件的独立性)(5)全概公式与贝叶斯公式(6)伯努利概型其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,请各位研友务必重视起来。

第二局部:随机变量及其概率分布(1)随机变量的概念及分类(2)离散型随机变量概率分布及其性质(3)连续型随机变量概率密度及其性质(4)随机变量分布函数及其性质(5)常见分布(6)随机变量函数的分布其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且纯熟。

第三局部:二维随机变量及其概率分布(1)多维随机变量的概念及分类(2)二维离散型随机变量结合概率分布及其性质(3)二维连续型随机变量结合概率密度及其性质(4)二维随机变量结合分布函数及其性质(5)二维随机变量的边缘分布和条件分布(6)随机变量的独立性(7)两个随机变量的简单函数的分布其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视!第四局部:随机变量的数字特征(1)随机变量的数字期望的概念与性质(2)随机变量的方差的概念与性质(3)常见分布的数字期望与方差(4)随机变量矩、协方差和相关系数其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算。

第五局部:大数定律和中心极限定理(1)切比雪夫不等式(2)大数定律(3)中心极限定理其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。

第六局部:数理统计的根本概念(1)总体与样本(2)样本函数与统计量(3)样本分布函数和样本矩其中:本章还是以概念为主,清楚概念后灵敏运用解决此类问题不在话下第七局部:参数估计(1)点估计(2)估计量的优良性(3)区间估计。

概率论与数理统计总结笔记

概率论与数理统计总结笔记

概率论与数理统计总结笔记
以下是概率论与数理统计的总结笔记:
1 .概率论与数理统计是研究随机现象及其规律的一门数学学科。

2 .随机现象是指在相同条件下进行多次试验或观察,结果不确定的
现象。

3 .概率论与数理统计的主要内容包括概率空间、随机变量、分布函数、
概率密度函数、边缘分布、条件概率、独立性、随机变量的函数等。

4 .概率论与数理统计的应用范围包括金融、统计、物理、化学、工程
等领域。

5 .概率论与数理统计常用的方法包括数学期望、方差、协方差、相关
系数、回归分析、假设检验等。

6 .概率论与数理统计的基本原则是公理化原则,即要满足一定的数
学条件,如非负性、规范性、可列可加性等。

7 .概率论与数理统计的主要特点是研究随机现象的不确定性和复杂
性,以及在不确定性和复杂性下的决策和推断问题。

8 .概率论与数理统计的发展历史可以追溯到17世纪,这个学科的发
展不仅推动了数学的发展,也对其他学科的发展产生了重要的影响。

9 .概率论与数理统计的学习方法包括掌握基本概念和公式,多做练
习题,结合实际例子进行理解和应用,以及进行综合性和设计性实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自考高数经管类概率论与数理统计课堂笔记前言概率论与数理统计是经管类各专业的基础课,概率论研究随机现象的统计规律性,它是本课程的理论基础,数理统计则从应用角度研究如何处理随机数据,建立有效的统计方法,进行统计推断。

概率论包括随机事件及其概率、随机变量及其概率分布、多维随机变量及其概率分布、随机变量的数字特征及大数定律和中心极限定理。

共五章,重点第一、二章,数理统计包括样本与统计量,参数估计和假设检验、回归分析。

重点是参数估计。

预备知识(一)加法原则引例一,从北京到上海的方法有两类:第一类坐火车,若北京到上海有早、中、晚三班火车分别记作火1、火2、火3,则坐火车的方法有3种;第二类坐飞机,若北京到上海的飞机有早、晚二班飞机,分别记作飞1、飞2。

问北京到上海的交通方法共有多少种。

解:从北京到上海的交通方法共有火1、火2、火3、飞1、飞2共5种。

它是由第一类的3种方法与第二类的2种方法相加而成。

一般地有下面的加法原则:办一件事,有m类办法,其中:第一类办法中有n1种方法;第二类办法中有n2种方法;……第m类办法中有n m种方法;则办这件事共有种方法。

(二)乘法原则引例二,从北京经天津到上海,需分两步到达。

第一步从北京到天津的汽车有早、中、晚三班,记作汽1、汽2、汽3第二步从天津到上海的飞机有早、晚二班,记作飞1、飞2问从北京经天津到上海的交通方法有多少种?解:从北京经天津到上海的交通方法共有:①汽1飞1,②汽1飞2,③汽2飞1,④汽2飞2,⑤汽3飞1,⑥汽3飞2。

共6种,它是由第一步由北京到天津的3种方法与第二步由天津到上海的2种方法相乘3×2=6生成。

一般地有下面的乘法原则:办一件事,需分m个步骤进行,其中:第一步骤的方法有n1种;第二步骤的方法有n2种;……第m步骤的方法有n m种;则办这件事共有种方法。

(三)排列(数):从n个不同的元素中,任取其中m个排成与顺序有关的一排的方法数叫排列数,记作或。

排列数的计算公式为:例如:(四)组合(数):从n个不同的元素中任取m个组成与顺序无关的一组的方法数叫组合数,记作或。

组合数的计算公式为例如:=45组合数有性质(1),(2),(3)例如:例一,袋中有8个球,从中任取3个球,求取法有多少种?解:任取出三个球与所取3个球顺序无关,故方法数为组合数(种)例二,袋中五件不同正品,三件不同次品(√√√√√×××)从中任取3件,求所取3件中有2件正品1件次品的取法有多少种?解:第一步在5件正品中取2件,取法有(种)第二步在3件次品中取1件,取法有(种)由乘法原则,取法共有10×3=30(种)第一章随机事件与随机事件的概率§1.1随机事件引例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。

引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。

从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。

(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。

由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。

虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。

必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。

例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。

不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。

例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。

(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。

例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。

全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。

(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A,记作。

例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。

∴A={1,2},B={1,2,3}。

所以A发生则必然导致B发生。

显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。

(四)事件的运算(1)和事件:事件A与事件B中至少有一个发生的事件叫事件A与事件B的和事件,记作:或A+B例如,掷一次骰子,A={1,3,5};B={1,2,3}则和事件A+B={1,2,3,5}显然有性质①②若,则有A+B=B③A+A=A(2)积事件:事件A与事件B都发生的事件叫事件A与事件B的积事件,记作:AB或A∩B例如,掷一次骰子,A={1,3,5};B={1,2,3},则AB={1,3}显然有性质:①②若,则有AB=A③AA=A(3)差事件:事件A发生而且事件B不发生的事件叫事件A与事件B的差事件,记作(A-B)例如,掷一次骰子,A={1,3,5};B={1,2,3},则A-B={5}显然有性质:①②若,则有A-B=Φ③A-B=A-AB(4)互不相容事件:若事件A与事件B不能都发生,就说事件A与事件B互不相容(或互斥)即AB=Φ例如,掷一次骰子,A={1,3,5};B={2,4}∴AB=Φ(5)对立事件:事件A不发生的事件叫事件A的对立事件。

记作例如,掷一次骰子,A={1,3,5},则显然,对立事件有性质:①②③注意:A与B对立,则A与B互不相容,反之不一定成立。

例如在考试中A表示考试成绩为优,B表示考试不及格。

A与B互不相容,但不对立。

下面图1.1至图1.6用图形直观的表示事件的关系和运算,其中正方形表示必然事件或样本空间Ω。

图1.1表示事件事件A图1.2阴影部分表示A+B图1.3阴影部分表示AB图1.4阴影部分表示A-B图1.5表示A与B互不相容图1.6阴影部分表示事件的运算有下面的规律:(1)A+B=B+A ,AB=BA 叫交换律 (2)(A+B )+C=A+(B+C )叫结合律 (AB )C=A (BC ) (3)A (B+C )=AB+AC(A+B )(A+C )=A+BC 叫分配律(4)叫对偶律例1,A ,B ,C 表示三事件,用A ,B ,C 的运算表示以下事件。

(1)A ,B ,C 三事件中,仅事件A 发生 (2)A ,B ,C 三事件都发生 (3)A ,B ,C 三事件都不发生 (4)A ,B ,C 三事件不全发生 (5)A ,B ,C 三事件只有一个发生 (6)A ,B ,C 三事件中至少有一个发生 解:(1)(2)ABC (3)(4)(5)(6)A+B+C例2.某射手射击目标三次:A 1表示第1次射中,A 2表示第2次射中,A 3表示第3次射中。

B 0表示三次中射中0次,B 1表示三次中射中1次,B 2表示三次中射中2次,B 3表示三次中射中3次,请用A 1、A 2、A 3的运算来表示B 0、B 1、B 2、B 3解:(1) (2)(3)(4)例3 ,A ,B ,C 表示三事件,用A ,B ,C 的运算表示下列事件。

(1)A ,B 都发生且C 不发生 (2)A 与B 至少有一个发生而且C 不发生(3)A ,B ,C 都发生或A ,B ,C 都不发生 (4)A ,B ,C 中最多有一个发生(5)A ,B ,C 中恰有两个发生 (6)A ,B ,C 中至少有两个发生 (7)A ,B ,C 中最多有两个发生 解:(1) (2)(3)(4) (5) (6)简记AB+AC+BC(7)简记例4,若Ω={1,2,3,4,5,6};A={1,3,5};B={1,2,3} 求(1)A+B ;(2)AB ;(3);(4);(5);(6);(7),(8)。

解:(1)A+B={1,2,3,5}; (2)AB={1,3}; (3)={2,4,6}; (4)={4,5,6}; (5)={4,6}; (6)={2,4,5,6}; (7)={2,4,5,6}; (8)={4,6}由本例可验算对偶律,=,=正确例5,(1)化简; (2)说明AB 与是否互斥解:(1)(2)例6.A,B,C为三事件,说明下列表示式的意义。

(1)ABC;(2);(3)AB;(4)解:(1)ABC表示事件A,B,C都发生的事件(2)表示A,B都发生且C不发生的事件(3)AB表示事件A与B都发生的事件,对C没有规定,说明C可发生,也可不发生。

∴AB表示至少A与B都发生的事件(4)所以也可以记AB表示,ABC与中至少有一个发生的事件。

例7.A,B,C为三事件,说明(AB+BC+AC)与是否相同。

解:(1)表示至少A,B发生它表示A,B,C三事件中至少发生二个的事件。

(2)表示A,B,C三事件中,仅仅事件A与事件B发生的事件表示A,B,C三事件中仅有二个事件发生的事件。

因而它们不相同。

§1.2随机事件的概率(一)频率:(1)在相同条件下,进行了n次试验,在这n次试验中,事件A发生了n A次,则事件A发生的次数n A叫事件A发生的频数。

(2)比值n A/n称为事件A发生的频率,记作f n(A),即历史上有不少人做过抛硬币试验,其结果见下表,用A表示出现正面的事件:从上表可见,当试验次数n大量增加时,事件A发生的频率f n(A)会稳定某一常数,我们称这一常数为频率的稳定值。

例如从上表可见抛硬币试验,正面出现的事件A的频率f n(A)的稳定值大约是0.5。

(二)概率:事件A出现的频率的稳定值叫事件A发生的概率,记作P(A)实际上,用上述定义去求事件A发生的概率是很困难的,因为求A发生的频率f n(A)的稳定值要做大量试验,它的优点是经过多次的试验后,给人们提供猜想事件A发生的概率的近似值。

粗略地说,我们可以认为事件A发生的概率P(A)就是事件A发生的可能性的大小,这种说法不准确,但人们容易理解和接受,便于应用。

下面我们不加证明地介绍事件A的概率P(A)有下列性质:(1)0≤P(A)≤1(2)P(Ω)=1,P(Φ)=0(3)若A与B互斥,即AB=Φ,则有P(A+B)=P(A)+P(B)若A1,A2,……,A n互斥,则有(三)古典概型:若我们所进行的随机试验有下面两个特点:(1)试验只有有限个不同的结果;(2)每一个结果出现的可能性相等,则这种试验模型叫古典概型。

例如,掷一次骰子,它的可能结果只有6个,假设骰子是均匀的,则每一种结果出现的可能性都是1/6,所以相等,这种试验是古典概型。

相关文档
最新文档