概率论基础:定义与原理
概率的公理化
概率的公理化是概率论的基础,它提供了一种严格的数学框架来描述不确定性和随机现象。
概率的公理化由俄国数学家安德雷·科尔莫哥洛夫在20世纪30年代首次提出,并被广泛接受和应用。
概率的公理化基于三条基本原则,它们构成了概率论的基础。
以下是对这三条原则的详细阐述。
1. 非负性:概率是非负的。
这意味着对于任何事件A,它的概率必须大于等于零。
即P(A) ≥0。
这个原则表明概率不能为负数,即任何事件都至少有一定的可能性发生。
2. 规范性:全样本空间的概率为1。
全样本空间是指所有可能结果的集合,通常用Ω表示。
规范性要求全样本空间的概率等于1,即P(Ω) = 1。
这个原则确保所有可能结果的总和为1,表示了一定会发生某个结果的确定性。
3. 可加性:对于互斥(互不相交)事件的概率,可以通过求和计算。
如果事件A和B是互斥事件(即A和B不可能同时发生),则它们的概率之和等于它们分别的概率之和。
即P(A∪B) = P(A) + P(B)。
这个原则允许我们通过计算各个可能事件的概率来得到复合事件的概率。
在这三条基本原则的基础上,可以推导出概率论中的其他重要定理和性质。
例如,可以通过可加性原理推导出条件概率和乘法规则,用于计算事件之间的依赖关系。
条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
乘法规则则用于计算多个事件同时发生的概率。
概率的公理化还涉及到概率空间的定义。
概率空间由样本空间Ω和一个叫做事件域的集合F组成。
事件域是样本空间的子集合的集合,它包含了我们感兴趣的所有事件。
概率被定义为一个函数P,它将事件映射到实数,即P:F→[0,1]。
满足非负性、规范性和可加性的概率函数被称为概率测度。
概率的公理化使得概率论成为一门严密的数学理论,并被广泛应用于统计学、风险管理、金融学、物理学等领域。
它提供了一种计算和分析不确定性的工具,帮助我们做出决策、预测事件的发生概率,并评估风险。
总结起来,概率的公理化是概率论的基础,它建立了一套数学框架来描述不确定性和随机现象。
概率论基础知识
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
概率论基础知识
§4 条件概率与乘法公式
一、条件概率: 事件B发生的条件下事件A发生的概率,定义为
P( AB ) P( B ) P( A | B ) 0, P( A | B )
(当 P( B ) 0 时). (当 P( B ) 0 时).
注: (1) 条件概率 P( A | B ) 实际上是在缩小的样本空间 B 上 求 A 发生的概率 : K P( A | B ) AB ; NB 而无条件概率P( A) 是在原样本空间 内求 A 发生的概率 : K P( A) A N
§5 事件的独立性
若一个事件发生的概率不受另一事件发生的影响,
则称这两个事件是相互独立的。或者说,若 P(B|A)=P(B), 则称 A 与 B 相互独立。 注:事件A与 B 相互独立当且仅当 P(AB)=P(A) P(B).
例9 某厂生产的100个零件中有5个次品,采用有放回抽样,求 抽出的第 1 件为正品且第 2 件是次品的概率,及第二次抽到次 品的概率。 解:设 A为第一次抽到的是正品;B为第二次抽到的是次品。
(6) 互不相容事件(互斥事件): 若A ∩ B= ,则称事件A与事件B 是互不相容的。互不相容事件不可能同时发生。 (7) 事件的差:属于事件A 但不属于事件B 的样本点构成的集 合, 称为事件A与事件B 的差,记为 A-B。事件A-B 发生当且 仅当事件A 发生但事件B不发生。 注:A B AB;
概率论基础知识
§1. 概率论中的基本概念
一、随机试验、样本空间和事件
1.随机试验:具有两个或两个以上可能的结果,但事先无法确定会出 现哪个结果的观察或试验。如投掷一枚硬币可能出现正面或反面;明 天的天气可能是阴、晴或雨;每天到达某一商店的顾客数;某商场的 月销售额;某时段到达一个电话交换机的呼叫次数,等等,观察或统 计这些现象的结果,就是在进行随机试验。 2. 样本与样本空间:随机试验可能产生的各个不同结果都称为样本, 由所有样本组成的集合称为该随机试验的样本空间,通常记为。 3. 随机事件(简称事件):样本空间的任一个子集合都称为这个样本 空间上的一个随机事件。当随机事件中所含的任何一个样本出现时, 便称该事件发生了。 注: (1) 整个样本空间作为一个事件,称为必然事件。
管理统计学概率论基础
管理统计学概率论基础简介概率论是管理统计学中一个重要的基础概念。
管理者需要了解和应用概率论的基本原理,以便在决策过程中能够准确地评估风险和制定相应的战略。
本文将介绍管理统计学中概率论的基础知识,帮助读者理解和应用概率论。
概率的定义概率是描述事件发生可能性的一种数值表示。
它的取值范围在0到1之间,0表示不可能发生,1表示必然发生。
概率可以通过实验结果的频率来估计,也可以通过理论计算来得出。
在管理统计学中,我们经常使用概率来描述不确定性。
通过研究事件发生的概率分布,我们可以评估项目的风险和决策的可能结果。
概率计算方法概率可以用多种方法计算,下面介绍常用的几种方法:经典概型是指在满足两个前提条件的情况下,采用等可能性假设得出的概率。
这两个前提条件是:每个事件都是互斥的,并且每个事件发生的机会均等。
举个例子,一个扑克牌的标准52张牌组成的牌堆,从牌堆中随机抽取一张牌,求抽到红桃的概率。
由于红桃有13张,总共有52张牌,所以红桃的概率为13/52=1/4。
频率概率频率概率是基于某个事件在实验过程中出现的频率来计算概率。
通过多次实验,事件发生的次数与实验次数的比值趋近于概率的值。
例如,抛掷一枚硬币,出现正面的次数除以总抛掷次数,得到正面的概率。
主观概率主观概率是基于个体经验和主观判断得出的概率。
它没有明确的实验过程,依赖于个体对事件发生的主观估计。
例如,一个销售经理根据多年的经验和市场情况判断某产品的销售概率。
条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。
它可以通过求解条件概率公式来得到。
例如,在抽取一张红桃牌已知的情况下,再抽到一张黑桃牌的概率。
概率分布概率分布描述了一个随机变量可能取得每个可能值的概率。
常见的概率分布包括离散分布和连续分布。
离散分布在离散分布中,随机变量取值的集合是有限或可数的。
离散分布的概率可以通过概率质量函数(PMF)来描述。
常见的离散分布包括伯努利分布、二项分布和泊松分布。
概率论基础
概率论基础1、概率基础知识1.1 引言先做两个简单的试验:试验1:一个盒子中有十个完全相同的白球,从中任意摸出一个;试验2:盒子中有十个完全相同的球,其中五个白球,五个红球。
对于试验1,在球没有取出之前,我们就能确定取出的必定是白球。
这种试验,根据试验开始的条件应可以确定实验的结果。
而对于试验2,在球没有取出之前,我们从试验开始时的条件不能确定试验的结果(即取出的是白球还是黑球),也就是说一次试验的结果在试验之前是无法确定的。
对于后一种试验,似乎没有什么规律可言,但是,实践告诉我们,若从盒子中反复多次取球(每次取出一球,记录其颜色后放回),那么可以观察到这样的事实:试验次数n相当大时,出现白球的次数n白和出现黑球的次数n红是很接近的,其比值n白/n红会逐渐稳定于?,这个事实是可以理解的,因为盒子里的白球数等于红球数,从中任意摸出一个,取得白球或红球的"机会"应该是平等的。
于是,我们面对着两种类型的试验。
试验1代表的类型在试验之前就能断定它的结果,这种试验所对应的现象叫确定现象。
比如:"早晨,太阳从东方升起""边长为a,b的矩形,其面积为ab"…过去我们所学的各门课程基本上都是用来处理和研究这类确定现象的。
试验2所代表的类型,它有多于一种可能的结果,但在一次试验之前会出现那种结果,应一次试验而言,没有规律可言,但是?quot;大数次"的重复这个试验,试验结果又遵循某些规律(这些规律我们称之为"统计规律"),这类试验叫做随机试验。
其代表的现象叫随机现象。
比如:"某地区的年降雨量""打靶时弹着点离靶心的距离""电话交换台单位时间内收到的用户的呼唤次数"…概率论和数理统计就是研究随机现象的统计规律的数学分科。
1.2 随机事件与样本空间我们在前面已经介绍了随机试验,现在再进一步明确其含义。
概率的原理
概率的原理概率是描述随机现象发生可能性大小的数学工具,它在我们生活中无处不在。
无论是赌博、保险、股票投资,还是天气预报、疾病传播,都离不开概率的计算和运用。
概率的原理是概率论的基础,它包括了概率的定义、性质和计算方法等内容。
首先,概率的定义是描述某一随机事件发生可能性大小的数值。
通常用P(A)来表示事件A发生的概率,它的取值范围是0到1。
当P(A)=0时,表示事件A不可能发生;当P(A)=1时,表示事件A一定会发生;当0<P(A)<1时,表示事件A发生的可能性大小介于0和1之间。
其次,概率有着一些基本性质。
首先是非负性,即事件的概率值始终大于等于0,不可能是负数。
其次是规范性,即所有可能事件的概率之和等于1。
这意味着在所有可能发生的事件中,一定会有一个发生。
最后是可列可加性,即对于互不相容的事件序列,它们的概率之和等于各个事件概率之和。
这些基本性质是概率计算的基础,也是概率理论的重要内容。
概率的计算方法有很多种,常见的包括古典概型、几何概型、条件概率、贝叶斯定理等。
古典概型是指在有限次试验中,每次试验的结果只有有限个可能性,并且每个可能性发生的概率相等。
几何概型是指在连续的空间中,通过几何图形的面积或体积来计算概率。
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
贝叶斯定理是指在已知某一事件发生的条件下,另一事件发生的概率的计算方法。
这些方法在实际问题中有着广泛的应用,能够帮助我们更准确地估计事件发生的可能性。
总的来说,概率的原理是概率论的基础,它对于我们理解和应用概率具有重要意义。
通过对概率的定义、性质和计算方法的学习,我们能够更好地理解和运用概率,在实际问题中做出更准确的判断和预测。
因此,掌握概率的原理是非常重要的,它能够帮助我们更好地理解世界,做出更明智的决策。
概率的基本概念与性质
概率的基本概念与性质概率,是数学中一个重要的概念,用来描述随机事件发生的可能性大小。
它在各个领域都有广泛的应用,如统计学、经济学、物理学等。
本文将介绍概率的基本概念和性质,帮助读者更好地理解概率论的基础知识。
1. 概率的定义和表示方法概率是描述事物发生可能性的一个数值,通常用介于0和1之间的实数表示。
概率可以使用分数、小数或百分比来表示。
以事件A发生的概率为例,可以用P(A)或Pr(A)来表示。
2. 概率的性质(1) 非负性:对于任何事件A,其概率P(A)都大于等于0,即P(A)≥0。
(2) 可加性:对于任意的不相容事件(互斥事件)A和B,它们的概率可以相加,即P(A∪B) = P(A) + P(B)。
(3) 规范性:对于一定发生或一定不发生的事件,其概率分别为1和0,即P(S) = 1和P(∅) = 0,其中S代表样本空间,∅代表不可能事件。
3. 概率的计算方法(1) 古典概型:指的是所有可能的结果都是等可能发生的情况。
在古典概型中,事件A的概率等于事件A包含的有利结果数目与样本空间的大小之比,即P(A) = 有利结果数目 / 样本空间大小。
(2) 几何概型:指的是通过对空间的测量来计算概率。
例如,在计算一个点在一个平均分布的正方形区域中的概率时,可以用该点所在区域的面积与整个区域的面积之比。
(3) 统计概率:是通过观察和统计数据来计算概率。
统计概率常用于实际问题,根据大量数据的分析和推断得出概率值。
4. 概率的性质与公式(1) 加法规则:对于任意两个事件A和B,其概率可以通过加法规则计算,即P(A∪B) = P(A) + P(B) - P(A∩B)。
其中P(A∩B)表示事件A和B同时发生的概率。
(2) 乘法规则:对于相互独立的两个事件A和B,其概率可以通过乘法规则计算,即P(A∩B) = P(A) × P(B)。
注意,乘法规则只适用于独立事件。
(3) 条件概率:指在事件B发生的条件下,事件A发生的概率,表示为P(A|B)。
概率论初步知识介绍
(2,7)
(2,8) (3,6)
(3,7)
(3,8) (4,6)
(4,7)
(4,8)
2.组合计数法则
▪阶乘
n!=n(n-1)(n-1)…3·2·1
▪排列
从n个不同对象中抽取r个(r<n)进行有序放置称为排列。
若n=r叫全排列。
P
r n
=n(n-1)···(n-r+1)
完成结果 投资成功 投资失败 合计
咨询意见 可以投资 不宜投资
154次 38次
2次
156次
6次
44次
合计
192次
8次
7、事件逆
样本空间S与事件A之差,即S-A这一事件称为A的逆事件、
对立事件或互补事件。记作 A。
8、互斥事件
如果两个事件A与B不可能同时发生,则称A与B互不相容 事件,或称为互斥事件,记作AB=Φ。
在我们的生活中会面临许多不确定性的决策问题
❖ 1、如果提高产品价格,则销售下降的“机会”有多少? ❖ 2、某种新的装配方法会有多大的“可能性”提高生产率? ❖ 3、某项工程按期完成的“可能”有多大? ❖ 4、新投资赢利的机率有多大?
工期超过十个月的概率是多少?
一、概率的加法定理
2、相容事件的加法定理
如果事件A、B同时出现,则事件A和事件B称为联合事件,记 为AB。两个相容事件A与B之和的概率为: P(A∪B)=P(A)+P(B)—P(AB) [例] 投资房地产赚钱的概率是0.7,投资电脑软件业的成功率 是0.8,同时投资的成功率是0.6,问投资二者中至少一种赚 钱的概率为多少? 解:P(A∪B)=P(A)+P(B)—P(AB)=0.7+0.8-0.6=0.9
概率论知识点总结
概率论知识点总结
概率论是有关概率事件发生及其后果的数学理论,是数理统计学的分支,也是概率统计理论基础。
概率论是一种统计理论,它是以定义、描述随机现象为主要内容的数学理论。
概率论可以用来处理日常生活中的各种问题,比如投骰子、抛硬币、抽奖等。
概率论的知识点总结可以分为以下几个方面:
1、定义和性质:概率是对某种情况发生或事件发生的可能性的衡量,它常用来表示出现某种特定结果的可能性。
概率的值介于0和1之间,当概率为1时,表示确定会发生,而概率为0时表示绝不会发生。
2、概率的组成:概率的三要素有性质空间、计数原理和独立性。
性质空间指的是一个事件发生的空间,它可以包含任意多个事件,称为概率空间。
计数原理指的是,在一个概率空间中,相关事件发生的次数可以被分为不同类别,比如有发生次数和未发生次数。
独立性是指,在一个概率空间中,某个事件发生或不发生,不影响另一个事件的发生或不发生。
3、概率的计算方法:概率的计算要综合考虑概率的三个要素,可以分为定义法,乘积法,加法法和条件概率法等。
定义法是从概率定义准备计算概率。
乘积法是将要计算概率的两个相关事件用乘法运算相乘,即概率乘积。
加法法是把概率的两个相关事件用加法运算相加,即概率和。
条件概率法是从已知条件概率出发,计算某一事件的发生概率。
4、概率的应用:概率论在现实生活中广泛应用,比如保险业、教育领域、决策科学等,它可以帮助人们做出更合理的决策,从而提高生活水平。
总之,概率论是一门基础而重要的理论,它不仅可以帮助我们理解许多自然现象,而且还可以为我们提供一个有力的工具,帮助我们进行正确的决策。
概率论基础知识梳理
概率论基础知识梳理概率论基础知识梳理引言:概率论是一门重要的数学分支,它用于理解和预测随机事件的发生概率。
在日常生活中,我们经常面临各种各样的不确定性,例如天气变化、股市涨跌和彩票中奖等。
了解概率论的基础知识将帮助我们更好地分析和决策,从而在面对不确定性时做出明智的选择。
一、概率的基本概念和性质1.概率的定义:概率是描述一个事件发生的可能性大小的数值。
用P(A)表示事件A 发生的概率,0 ≤ P(A) ≤ 1。
2.概率的性质:- 事件的概率不会小于0,也不会大于1。
- 必然事件的概率为1,即P(S) = 1,其中S表示样本空间。
- 不可能事件的概率为0,即P(∅) = 0,其中∅表示空集。
- 对于任意两个互斥事件A和B,它们的联合概率为P(A ∪ B) = P(A) + P(B)。
二、条件概率和独立性1.条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率。
用P(A|B)表示事件A在给定事件B的条件下发生的概率。
P(A|B) = P(A∩B) / P(B)。
2.乘法定理:乘法定理用于计算两个事件的联合概率,它表达为P(A∩B) = P(A|B) * P(B)。
3.独立事件:如果两个事件A和B满足P(A|B) = P(A),或者等价地,P(B|A) =P(B),则称事件A和事件B相互独立。
三、随机变量和概率分布1.随机变量:随机变量是对随机现象结果的数值化描述。
可以分为离散随机变量和连续随机变量。
离散随机变量只能取有限个或可数个值,例如抛硬币的结果(正面或反面)。
连续随机变量可以取任意实数值,例如测量某物体的长度。
2.概率分布:概率分布用于描述随机变量各个取值的概率。
离散随机变量用概率质量函数(PMF)表示,连续随机变量用概率密度函数(PDF)表示。
常见的离散概率分布有伯努利分布、二项分布和泊松分布;常见的连续概率分布有均匀分布、正态分布和指数分布等。
四、期望和方差1.期望:期望是对随机变量取值的加权平均值,用E(X)表示,其中X为随机变量。
概率的定义和基本性质(二)
概率的定义和基本性质(二)引言概述:概率是概率论研究的基本概念,也是统计学中重要的概念之一。
它用来描述事件发生的可能性大小,并在统计推断和决策制定中起着关键作用。
本文将进一步介绍概率的定义和基本性质,以帮助读者更好地理解和应用概率理论。
正文内容:一、概率的定义1. 频率定义:概率是基于大量实验的观察结果,通过事件发生的频率来估计其发生的可能性。
2. 古典定义:概率是基于等可能性假设,通过事件发生的总数与样本空间的大小之比来估计其发生的可能性。
3. 主观定义:概率是基于个人主观判断和经验,通过主观分配可能性大小来估计事件发生的可能性。
二、概率的基本性质1. 非负性:概率值始终大于等于0,表示事件发生的可能性不会是负数。
2. 零和性:对于必然事件,其概率值为1,表示该事件一定会发生。
3. 互斥性:对于两个互斥事件,其概率值之和为1,表示这两个事件有且只能发生一个。
4. 加法法则:对于两个不互斥事件,其概率值之和为两个事件发生概率之和减去两个事件同时发生的概率。
5. 乘法法则:对于两个独立事件,其概率值之积为两个事件发生概率之积。
三、条件概率和独立性1. 条件概率:给定一个条件下,事件发生的概率。
表示为P(A|B),表示在事件B发生的条件下,事件A发生的概率。
2. 乘法法则的条件形式:根据条件概率定义,可以将乘法法则扩展为条件形式。
3. 独立性:表示两个事件的发生与否相互独立,即一个事件的发生不受另一个事件的影响。
4. 独立性的判定:根据条件概率和乘法法则,可以通过计算条件概率来判断事件之间的独立性。
四、事件的关系与运算1. 事件的包含与不包含关系:一个事件发生必然导致其包含事件的发生,而不包含事件的发生则不一定导致该事件的发生。
2. 事件的并与交运算:事件的并运算表示多个事件中至少有一个事件发生的情况,交运算表示多个事件同时发生的情况。
3. 事件的补运算:事件的补运算表示不发生该事件的情况。
4. 事件的差运算:事件的差运算表示一个事件发生,而另一个事件不发生的情况。
概率论基本定理与中心极限定理
概率论基本定理与中心极限定理概率论是数学的一个重要分支,它涉及到我们日常生活中许多决策和事情发生的概率。
概率论基本定理和中心极限定理是概率论的基础和核心,深刻地揭示了随机事件规律性的本质,并为我们处理实际问题提供了基本方法。
在本文中,我们将探讨概率论基本定理和中心极限定理的定义、性质和应用。
一、概率论基本定理概率论基本定理是概率论的基本定理之一,它涉及到随机事件发生概率的计算,包括条件概率、全概率公式和贝叶斯公式。
1. 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
如果事件A和事件B都是随机事件,且事件B的发生概率不为0,则事件A在事件B发生的条件下的概率P(A|B)定义为:P(A|B) = P(AB)/P(B)其中P(AB)表示A和B同时发生的概率,在这个基础上,我们可以推导出全概率公式和贝叶斯公式。
2. 全概率公式全概率公式(Law of Total Probability)是概率论中一个重要的公式,它用于计算在一组互不相容的事件发生的条件下,某一事件的概率。
设B1, B2, ..., Bn是一组互不相容的事件,且它们组成了一个完全事件组,即它们的并集为样本空间S。
对于任意事件A,有:P(A) = ∑P(A|Bi)P(Bi), i=1,2,...,n其中,P(Bi)表示事件Bi的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
全概率公式在实际问题中有着广泛的应用,例如在数据分析、生物学、金融等领域中,通常需要估计某个事件的概率,这时候全概率公式就非常有用。
3. 贝叶斯公式贝叶斯公式(Bayes' theorem)是概率论中的另一个重要公式,它用于计算在已知某些先验条件的情况下,某个事件的后验概率。
假设事件B1, B2, ..., Bn是一组互不相容的事件,并且它们的并集为样本空间S。
对于事件A,有:P(Bi|A) = P(A|Bi)P(Bi)/ ∑P(A|Bj)P(Bj), i=1,2,...,n其中,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率,P(Bi|A)表示在事件A已经发生的条件下,事件Bi发生的概率。
概率论与数理统计知识点总结
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
概率论基础知识
则 A 与 B 便是互不相容的。
7、对立:称事件 A 不发生的事件为 A 的对立事件,记为 显然
,A∩ =φ
例如,从有 3 个次品,7 个正品的 10 个产品中任取 3 个,若令 A={取得的 3 个产品中至少有一个次品},则 ={取得的 3 个产品均为正品}。
第 4 页 共 73 页
而 P(B)=3P(A)=
概率论基础知识
定义 1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为 NΩ而事件 A 所 含的样本数,即有利于事件 A 发生的基本事件数为 NA,则事件 A 的概率便定义为:
例 1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。 解:用 H 表示正面,T 表示反面,则该试验的样本空间
若 A B,则 A∪ B=B, A∩ B=A A-B=A-AB= A
等等。
第 3 页 共 73 页
概率论基础知识
例 3,从一批产品中每次取一件进行检验,令 Ai={第 i 次取得合格品},i=1,2,3,试用事件的运算符号表示 下列事件。A={三次都取得合格品}B={三次中至少有一次取得合格品}C={三次中恰有两次取得合 格品}D={三次中最多有一次取得合格品}
2048 4040 12000 24000 30000
概率论基础知识
1061 2148 6019 12012 14994
0.5180 0.5069 0.5016 0.5005 0.4998
定义 2:在相同条件下,将试验重复 n 次,如果随着重复试验次数 n 的增大,事件 A 的频率 fn(A)越来越 稳定地在某一常数 p 附近摆动,则称常数 p 为事件 A 的概率,即 P(A)=p 不难证明频率有以下基本性质:
2024年余丙森概率论辅导讲义
2024年余丙森概率论辅导讲义第一节:概率论基础1.1 概率论的起源和发展概率论是研究随机现象的数学分支,起源于古代赌博和游戏。
随着时间的推移,概率论逐渐发展成为一门独立的学科,并在各个领域中得到广泛应用。
1.2 概率的定义和性质概率是描述某个事件发生可能性的数值,通常用0到1之间的一个实数表示。
概率具有可加性、非负性、规范性等基本性质。
1.3 随机变量与概率分布随机变量是概率论中的重要概念,它是对随机现象的数学建模。
概率分布描述了随机变量的取值及其对应的概率。
1.4 条件概率与独立性条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
独立性是指两个事件的发生与否互不影响。
1.5 期望与方差期望是随机变量取值的加权平均值,反映了随机变量的平均水平。
方差是随机变量偏离其期望值的程度的度量。
第二节:概率分布2.1 离散型随机变量与概率分布离散型随机变量只能取有限或可数个数值,其概率分布由概率质量函数表示,例如伯努利分布、二项分布、泊松分布等。
2.2 连续型随机变量与概率密度函数连续型随机变量可以取任意实数值,其概率分布由概率密度函数表示,例如均匀分布、正态分布、指数分布等。
2.3 两个重要的分布:正态分布和泊松分布正态分布是概率论中最重要的分布之一,具有对称性和稳定性,广泛应用于自然科学和社会科学领域。
泊松分布用于描述单位时间或单位面积内随机事件发生的次数。
第三节:随机变量的特征函数和大数定律3.1 随机变量的特征函数特征函数是随机变量的一个重要特征,通过特征函数可以唯一确定随机变量的分布。
3.2 大数定律大数定律是概率论中的重要定理,描述了随机事件重复进行时,频率逐渐趋近于概率的现象。
第四节:中心极限定理与统计推断4.1 中心极限定理中心极限定理是概率论中的核心定理之一,描述了大量独立随机变量的和的分布近似于正态分布的现象。
4.2 统计推断统计推断是利用样本信息对总体进行推断和决策的方法,包括参数估计和假设检验两个方面。
第一讲概率论基本知识
第一章 概率论基础知识概率论是随机过程的基础,在传统的概率论中,限于各种原因,往往借助于直观理解来说明一些基本概念,这对于简单随机现象似乎无懈可击,但对于一些复杂随机现象就难以令人信服了.随着随机数学理论的不断完善,随机过程越来越成为现代概率论的一个重要分支和发展方向. 为了更好地学习随机过程,我们必须对基础概率论的理论有一个比较深入和全面的了解.本章就是在此基础上系统介绍概率论基础知识,包括概率空间、随机变量及其分布、数学期望的若干性质、特征函数和母函数、随机变量列的收敛性及其相互关系、条件数学期望等.1.1 概率空间概率论是研究随机现象统计规律的一门数学分科,由于随机现象的普遍性,使得概率论具有极其广泛的应用.随机试验是概率论的基本概念之一,随机试验所有可能结果组成的集合称为这个试验的样本空间,记为Ω.Ω中的元素ω称为样本点,Ω中的子集A 称为随机事件,样本空间Ω也称为必然事件,空集Φ称为不可能事件.定义 1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合簇(collection )(或称集类),如果 (1)Ω∈F ;(2)若A ∈F ,则\A A =Ω∈F ;(取余集封闭) (3)若n A ∈F ,1,2,n = ,则1n n A ∞=∈ F ;(可列并封闭)则称F 为σ-代数(sigma algebra -)(B orel 域或事件域(field of events )),(,ΩF )称为可测空间(m easurable space ).由定义可以得到 (4)Φ∈F ;(5)若,A B ∈F ,则\A B ∈F ;(取差集封闭)(6)n A ∈F ,1,2,n = ,则1ni i A = ,1ni i A = ,1i i A ∞= ∈F (有限交,有限并,可列交封闭)定义1.2 设(,ΩF )为可测空间,()P ⋅是定义在F 上的实值函数,如果 (1)任意A ∈F ,0()1P A ≤≤;(非负性) (2)()1P Ω=;(正规性)(3)对两两互不相容事件12,,A A (当i j ≠时,i j A A =Φ ),有11()i ii i P A P A ∞∞==⎛⎫=⎪⎝⎭∑ (可列可加性). 则称P 是(,Ω F)上的概率(p r o b a b i l i ),(,ΩF ,P )称为概率空间(probability space ),()P A 为事件A 的概率. 由定义知(4),A B ∈F ,A B ⊂,则(\)()()P B A P B P A =- (可减性)一事件列{,1}n A n ≥称为单调增列,若1,1n n A A n +⊂≥;称为单调减列,若1,n n A A +⊃1n ≥. 显然,如果{,1}n A n ≥为单调增列,则1lim n in i A A∞→∞==;如果{,1}n A n ≥为单调减列,则1lim n in i A A∞→∞==.(5)(概率的连续性)若{,1}n A n ≥是递增或递减的事件列,则lim ()(lim )n n n n P A P A →∞→∞=定义1.3 设(,ΩF ,P )为概率空间,B ∈F ,且()0P B >,如果对任意A ∈F ,记()(|)()P AB P A B P B =则称(|)P A B 为事件B 发生条件下事件A 发生的条件概率(conditional probability ). 由条件概率的定义可得到: (1)乘法公式 设,A B ∈F ,则()()(|)P AB P B P A B =一般地,若i A ∈F ,1,2,,i n = ,且121()0n P A A A -> ,则121121312121()()(|)(|)(|)n n n P A A A P A P A A P A A A P A A A A --=(2) 全概率公式 设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,ni i i B P B ==Ω> ,则1()()(|)niii P A P B P A B ==∑(3) (Bayes 公式)设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,()0ni i i B P B P A ==Ω>> ,则1()(|)(|)()(|)i i i niii P B P A B P B A P B P A B ==∑一般地,若12,,,n A A A ∈ F ,有11()()nni ii i P A P A ===∏ , 则称F 为独立事件簇.1.2 随机变量及其分布随机变量是概率论的主要研究对象之一,随机变量的统计规律用分布函数来描述. 定义 1.4 设(,ΩF ,P )为概率空间,()X X ω=是定义在Ω上的实值函数,如果对于任意实数x ,有()1(,]Xx --∞={}:()X x ωω≤∈F ,则称()X ω为F上的随机变量(random variable ),简记为..r v X .随机变量实质上是(,ΩF )到(,R B ()R )上的可测映射(函数),记1(){()|X XB B σ-=∈B ()R }⊂F ,称()X σ为随机变量X 所生成的σ域.称{}()1()():()((,])(,]F x P X x P X xP X x P Xx ωω-=≤=≤=∈-∞=-∞为随机变量X 的分布函数(distribution function )(简记.d f ).由定义,分布函数有如下性质:(1)()F x 为不降函数:即当12x x <时,有12()()F x F x ≤; (2)()lim ()0,x F F x →-∞-∞==()lim ()1x F F x →+∞+∞==;(3)()F x 是右连续的,即()()F x F x ο+=可以证明,定义在R 上的实值函数()F x ,若满足上述三个性质,必能作为某个概率空间(,ΩF ,P )上某个随机变量的分布函数.推广到多维情形,类似可得到定义 1.5 设(,ΩF ,P )为概率空间,()12()(),(),,()n X X X X X ωωωω== 是定义在Ω上的n 维空间n R 中取值的向量实值函数.对于任意12(,,,)n n x x x x R =∈ ,有{}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤∈F ,则称()X X ω=为n 维随机变量,称12()(,,,)n F x F x x x P =⋅⋅⋅={}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤为()12()(),(),,()n X X X X X ωωωω==⋅⋅⋅的联合分布函数.随机变量有两种类型:离散型随机变量和连续型随机变量,离散型随机变量的概率分布用概率分布列来描述:(),1,2,k k p P X x k === ,其分布函数为()k k x xF x p ≤=∑;连续型随机变量的概率分布用概率密度函数()f x 来描述,其分布函数为()()x F x f t dt -∞=⎰.类似地可定义n 维随机变量12(,,,)n X X X X = 的联合分布列和联合分布函数如下: 对于离散型随机变量12(,,,)n X X X X = ,联合分布列为()121122,,,n x x x n n p P X x X x X x ====其中,i i i x I I ∈为离散集,1,2,,i = n ,X 的联合分布函数为: 1,12,,121,2,,(,,,)(,,,)n i i nn x x n x y i n F y y y p y y y R ≤==⋅⋅⋅∈∑对于连续型随机变量12(,,,)n X X X X = ,如果存在n R 上的非负函数12(,,,)n f x x x ,对于任意12(,,,)nn y y y R ∈ ,有12(,,,)n X X X X = 的联合分布函数12121212(,,,)...(,,,)n y y y n n n F y y y f x x x dx dx dx -∞-∞-∞⋅⋅⋅=⋅⋅⋅⋅⋅⋅⎰⎰⎰12(,,,)n f x x x 为X 的联合密度函数.1.3 数学期望及其性质设()X X =⋅是定义在概率空间(,ΩF ,P )上的.r v ,如果||X dP Ω<∞⎰,就称.r v .X的数学期望(expectation )或均值存在(或称.r v .X 是可积的),记为E X ,有下列定义:EX XdP Ω=⎰利用积分变换,也可写成()EX xdF x +∞-∞=⎰.设()g x 是1R 上的B orel 可测函数,如果.r v .()g X 的数学期望存在,即|()|E g X <∞,由积分变换可知()()()()Eg X g X dP g x dF x +∞Ω-∞==⎰⎰设k 是正整数,若.r v .k X 的数学期望存在,就称它的k 阶原点矩(k th -moment aboutthe origin ),记为k α,即()kkk EXx dF x α+∞-∞==⎰设k 是正整数,若.r v .||k X 的数学期望存在,就称它的k 阶绝对原点矩(k th - absolute m o m e n tabout the origin ),记为k β,即 ||||()kkk E X x dF x β+∞-∞==⎰类似地,X 的k 阶中心矩(k th - central moment )k μ和k 阶绝对中心矩(k th -absolutely central moment )k υ分别定义为1()()()kkk E X EX x dF x μα+∞-∞=-=-⎰1||||()kkk E X EX x dF x να+∞-∞=-=-⎰我们称二阶中心矩为方差(variance ),记为V a r X 或D X ,显然有22221VarX μναα===-关于数学期望,容易验证下列的性质:(1)若.r v .X ,Y 的期望E X 和E Y 存在,则对任意实数,αβ,()E X Y αβ+也存在,且()E X Y EX EY αβαβ+=+(2)设A ∈F ,用A I 表示集A 的示性函数,若E X 存在,则()A E XI 也存在,且()A AE XI XdP =⎰(3)若{}k A 是Ω的一个划分,即()i j A A i j =Φ≠ ,且i iA Ω= ,则iA i EX XdP XdP Ω==∑⎰⎰关于矩的存在性,有如下的必要条件和充分条件定理1.1 设对.r v X 存在0p >,使||pE X <∞,则有lim (||)0px x P X x →∞≥=定理1.2 设对.r v X 0(.)a s ≥,它的.d f 为()F x ,那么E X <∞的充要条件是(1())F x dx ∞-<∞⎰此时EX =(1())F x dx ∞-⎰推论1.1 ||E X <∞的充要条件是0()F x dx -∞⎰与0(1())F x dx +∞-⎰均有限,这时有EX =(1())F x dx ∞-⎰()F x dx -∞-⎰推论 1.2 对于0,||pp E X <<∞<∞的充要条件是11(||)p n P X n ∞=≥<∞∑,也等价于11(||)p n nP X n ∞-=≥<∞∑1.4 特征函数和母函数特征函数是研究随机变量分布又一个很重要的工具,用特征函数求分布律比直接求分布律容易得多,而且特征函数有良好的分析性质.定义 1.6 设X 是n 维随机变量(随机向量),分布函数为()F x ,称()F x 的Fourier Stieltjes -变换()()(),itXitxg t E ee dF x t ∞-∞==-∞<<∞⎰为X 的特征函数(characteristic function ).简记.c f从本质上看,特征函数是实变量t 的复值函数,随机变量的特征函数一定是存在的. 当X 是离散型随机变量,分布列(),1,2,k k p P X x k === ,则1()kitx k k g t ep ∞==∑当X 是连续型随机变量,概率密度函数为()f x ,则()(),itxg t ef x dx t ∞-∞=-∞<<∞⎰从定义,我们能够看出特征函数有如下性质: (1)(0)1;g =(2)(有界性)|()|1;g t ≤ (3)(共轭对称性)()();g t g t -=(4)(非负定性)对于任意正整数n 及任意实数12,,,n t t t 和复数12,,,n z z z ,有,1()0nk l k l k l g t t z z =-≥∑(5)(连续性)()g t 为n R 上一致连续函数;(6)有限多个独立随机变量和的特征函数等于各自特征函数的乘积,即随机变量12,,,n X X X 相互独立,12n X X X X =+++ 的特征函数为:12()()()()n g t g t g t g t =其中()i g t 为随机变量i X 的特征函数;(7)(特征函数与矩的关系)若随机变量X 的n 阶矩n EX 存在,则X 的特征函数()g t 可微分n 次,且当k n ≤时,有()(0)k k k g i EX =;(8)随机变量的分布函数由其特征函数唯一确定.定理1.3 (B ocher 定理) n R 上函数()g t 是某个随机变量特征函数当且仅当()g t 连续非负定且(0)1g =.定理1.4 (逆转公式) 设()F x 是随机变量X 的分布函数,相应的特征函数为()g t 若12,x x 为()F x 的连续点,则12211()()lim()2itx itx TT Tee F x F x g t dt itπ--→∞---=-⎰很显然,具有相同特征函数的两个分布函数是恒等的.由此还可推出一个事实:一个随机变量是对称的,当且仅当它的特征函数是实的. 事实上,由X 的对称性知X 和X -有相同的分布函数,根据定义()()()itX itXg t E e E eg t g t -===-=,也就是说()g t 是实的;反之,从()()()itX itXg t Ee g t g t Ee -===-=知X 和X -有相同的特征函数,因此,它们的分布函数相等,这说明X 是对称的.例1.1 设X 服从(,)B n p ,求X 的特征函数()g t 及2,,EX EX D X解 X 的分布列为{},1,0,1,2,,k k n kn P X k C p q q p k n -===-=()()()n nitxk k n kk it k n kit nnnk k g t eC p qCpe qpe q --=====+∑∑因此 0(0)()|itt d E X ig ipe qnp dt='=-=-+=22222202()(0)()()|it t d EXi g i pe q npq n p dt=''=-=-+=+故 22()D X EX EX npq =-= 例1.2 设~(0,1)X N ,求X 的特征函数()g t解 22()itx xg t edx ∞--∞=由于2222||||itx xxixe xe--=221||xx edx ∞--∞<∞⎰,可对上式两边求导,得2222()()itx xitx xg t ixedx e de∞∞---∞-∞'==-⎰2222()x x itx itx edx tg t ∞∞---∞-∞=--=-于是得到微分方程 ()()g t t g t '+=. 这是变量可分离型方程,有()()dg t tdt g t =-两边积分得 2l n ()2g t tc=-+,得方程的通解为 22()tcg t e -+=.由于(0)1g =,因此,0c =.于是X 的特征函数为22()tg t e -=例1.3 设,X Y 相互独立,~(,),~(,)X B n p Y m p ,证明:~(,)X Y n m p ++ 证明 ,X Y 的特征函数分别为()(),()(),1itnitmX Y g t q pe g t q pe q p =+=+=-X Y +的特征函数为()()()(),1it n mX Y X Y g t g t g t q pe q p ++==+=-即X Y +的特征函数是服从参数为,n m p +二项分布的特征函数,由唯一性定理~(,)X Y n m p ++附表一给出了常用分布的均值、方差和特征函数.在研究只取非负整数值的随机变量时,以母函数代替特征函数比较方便.定义1.7 设随机变量X 的分布列为(),0,1,2,k p P X k k === 其中01k k p ∞==∑,称()()kk k k P s E s p s ∞===∑为X 的母函数(或称概率生成函数)(p r o b a b i l i t y generating function ).母函数具有下列性质:(1)非负整数值随机变量的分布列由其母函数唯一确定; (2)(1)1P =,()P s 在||1s ≤绝对且一致收敛;(3)若随机变量X 的l 阶矩存在,则可以用母函数在1s =的导数值来表示,特别地, 有2(1),(1)(1)EX P EXP P ''''==+;(4)独立随机变量之和的母函数等于母函数的积.证明 (1)01(),0,1,2,nkkkk k k k k k n P s p s p s p s n ∞∞===+==+=∑∑∑两边对s 求n 阶导数,得到()1()!(1)(1)n k nn k k n Ps n p k k k n p s∞-=+=+--+∑令0s =,则()(0)!n n p n p =,因此()(0),0,1,!n n pp n n ==(3)由0()kk k P s p s ∞==∑,得到11()k kk P s kps∞-='=∑,令1s ↑,得到1(1)kk EX kpP ∞='==∑,类似可得到 2(1)(1)E X PP '''=+ 例1.4 从装有号码为1,2,3,4,5,6的小球的袋中,有放回地抽取5个球,求所得号码总和为15的概率.解 令i X 为第i 次取得的小球的号码,且i X 相互独立,125X X X X =+++ 为所取的球的号码的总和.i X 的母函数为261()()6i P s s s s =+++X 的母函数为 5265655551()()(1)(1)66s P s s s s s s -=+++=--所求概率为()P s 展开式的15s 的系数,因此,5651{15}6P X ==1.5 随机变量列的收敛性定义 1.8设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果存在集A ∈F ,()0P A =,当cA ω∈时,有lim ()()n n X X ωω→∞=,则称n X 几乎处处收敛(convergencealm ost everywhere )到X ,简称n X ..a s 收敛到X ,记为n X X → ..a s下面我们给出..a s 收敛的一个判别准则.定理1.5 n X X → ..a s 的充分必要条件是任一ε>0,有lim (||)0m n m n P X X ε∞→∞=⎧⎫-≥=⎨⎬⎩⎭下面给出定理1.3的一个应用.例1.5 设{}n X 是..r v 列,且11()()2n n n P X n P X n +===-=,1111122n n n P X P X n n ⎧⎫⎧⎫⎛⎫===-=-⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭对于给定的ε>0,考虑1n ε>,有 1(||)0,2m mm nm n P X n ε∞∞==⎧⎫≥≤→→∞⎨⎬⎩⎭∑,因此 0n X →,..a s定义1.9 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果对任一0ε>,{}lim ||0n n P X X ε→∞-≥=则称n X 依概率收敛(convergence in probability )到X ,简记Pn X X −−→. 由定义,n X 依概率收敛到X ,那么极限随机变量X ..a s 是唯一的.定义 1.10 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,若||rn E X (0r >)存在,且lim ||0rn n E X X →∞-=,则称 n X r 阶平均收敛(convergence in mean oforder r )到X ,特别地,当2r =时,称为均方收敛.定义1.11 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,其分布函数序列()n F x 满足lim ()()n n F x F x →∞=在每个()F x 连续点处成立,则称n X 依分布收敛(convergence indistribution )到X .简记dn X X −−→.这里()F x 为X 的分布函数.下面我们不加证明地给出几种收敛之间的关系.a sPn n X X X X −−→⇒−−→dn X X ⇒−−→⇓..k a s n X X −−→且11(||)2kn kk P X X ∞=-≥<∞∑⇑,r rn n X X X X '−−→⇒−−→ 0r r '<< 1.6 条件数学期望设,X Y 是离散型随机变量,对一切使{}0P Y y =>的y ,定义给定Y y =时,X 的条件概率为 {,}{|}{}P X x Y y P X x Y y P Y y ======;给定Y y =时,X 的条件分布函数为(|){|}F x y P X x Y y =≤=; 给定Y y =时,X 的条件期望为(|)(|){|}xE X Y y xdF x y xP Xx Y y =====∑⎰设,X Y 是连续型随机变量,其联合密度函数为(,)f x y ,对一切使()0Y f y ≥,给定Y y =时,X 的条件密度函数为(,)(|)()Y f x y f x y f y =;给定Y y =时,X 的条件分布函数(|){|}F x y P X x Y y =≤==(|)xf x y dx ⎰; 给定Y y =时,X 的条件期望定义为 (|)(|)(|)E X Y y x d F x y x f x y d x===⎰⎰由定义可以看出,条件概率具有无条件概率的所有性质.(|)E X Y y =是y 的函数,y 是Y 的一个可能值,若在Y 已知的条件下,全面考察X 的均值,需要用Y 替代y ,(|)E X Y y =是Y 的函数,显然,它也是随机变量,称为X 在Y 条件下的条件期望(conditional expectation ).条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们列举以下性质:设,,X Y Z 为随机变量,()g x 在R 上连续,且,,,[()]EX EY EZ E g Y Z ⋅都存在. (1) 当X 和Y 相互独立时,(|)E X Y EX =; (2) [(|)]EX E E X Y =;(3) [()|]()(|)E g Y X Y g Y E X Y ⋅=; (4) (|)E c Y c =,c 为常数;(5) (线性可加性)[()|](|)(|)E aX bY Z aE X Z bE Y Z +=+ (,a b 为常数); (6) 若0,X ≥则(|)0,..E X Y a s ≥ 下面只对(2)和(3)证明:证明 (2)离散型情况.设(,)X Y 的联合分布列为{,},,1,2,i j ij P X x Y y p i j ====则 [(|)](|){}jj j y E E X Y E XY y P Y y ===∑{|}{}ji i i j j y x x P X x Y y P Y y ⎡⎤====⎢⎥⎣⎦∑∑ {,}{}ji ii i j i y x x x P X x Y y P Xx EX ⎡⎤======⎢⎥⎣⎦∑∑∑由此可见,E X 是给定j Y y =时X 条件期望的一个加权平均值,每一项(|)j E X Y y =所加的权数是作为条件事件的概率,称(|){}jj j y EX E XY y P Y y ===∑为全期望公式.连续型情形:设(,)X Y 的联合密度函数为(,)f x y ,则[](|)(|)()(|)()Y Y E E X Y E X Y y f y dy xf x y dx f y dy ∞∞∞-∞-∞-∞⎡⎤===⎢⎥⎣⎦⎰⎰⎰(,)(,)x f x y d x d yx f x y dy d x∞∞∞∞-∞-∞-∞-∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰()X xf x dx EX ∞-∞==⎰(|)()Y EX E X Y y f y dy ∞-∞==⎰也称为全期望公式.全期望公式表明:条件期望的期望是无条件期望. (3)只需证明对任意使[]()|E g Y X Y y ⋅=存在的y 都有[]()|()(|)E g y X Y y g y E X Y y ⋅===因为[|](|)E X Y y xdF x y ∞-∞==⎰,因此,当y 固定时,[]()|()(|)()(|)E g y X Y y g y xdF x y g y xdF x y ∞∞-∞-∞⋅===⎰⎰()[|]g y E X Y y ==例1.6 设在某一天走进商店的人数是期望为1000的随机变量,又设这些顾客在该商店所花钱数都为期望为100元的相互独立的随机变量,并设一个顾客花钱数和进入该商店的总人数独立,问在给定的一天内,顾客们在该商店所花钱数的期望是多少?解 设N 表示这天进入该商店的总人数,i X 表示第i 个顾客所花的钱数,则N 个顾客所花的总数为1Ni i X =∑.由于 11|N N i i i i E X E E X N ==⎡⎤⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎣⎦∑∑而 1111||N n n i i i i i i E X N n E X N n E X nEX ===⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑因此 11|,N i i E X N N E X =⎡⎤=⎢⎥⎣⎦∑[]111N i i E X E N E X E N E X =⎡⎤=⋅=⎢⎥⎣⎦∑由题设 11000,100EN EX == 于是11000100100000Ni i X ==⨯=∑即该天顾客花费在该商店的钱数的期望为100000元.。
概率论与统计高等数学教材
概率论与统计高等数学教材概述:概率论与统计是一门研究随机现象及其统计规律的学科,也是高等数学的重要分支之一。
本教材旨在系统介绍概率论与统计的基本概念、理论和方法,并通过大量的例题和习题,培养学生分析和解决实际问题的能力。
第一章:概率论基础1.1 概率的定义与性质概率的基本概念、概率公理、事件的概率、基本性质等。
1.2 随机事件与随机变量随机事件的关系、随机变量的定义、离散型和连续型随机变量的概念与性质。
1.3 概率分布函数与密度函数概率分布函数的定义、性质与图像、概率密度函数的定义、性质与图像。
第二章:随机变量的数字特征2.1 数学期望随机变量及其分布的数学期望、性质与计算方法。
2.2 方差与协方差方差的定义、性质、计算方法,协方差的定义、性质、计算方法。
2.3 常用概率分布离散型分布(贝努利分布、二项分布、泊松分布)、连续型分布(均匀分布、正态分布、指数分布)的定义、性质与应用。
第三章:多维随机变量及其分布3.1 多维随机变量及其联合分布二维随机变量的定义、联合分布函数、边缘分布函数与密度函数。
3.2 边缘分布与条件分布边缘分布的定义、条件分布的定义与性质。
3.3 随机变量的独立性独立性的定义、多维随机变量的独立性。
第四章:大数定律与中心极限定理4.1 大数定律大数定律的定义、切比雪夫不等式、弱大数定律与强大数定律。
4.2 中心极限定理中心极限定理的定义、林德伯格-列维定理、切比雪夫定理。
第五章:参数估计与假设检验5.1 点估计参数估计的基本概念、最大似然估计与矩估计。
5.2 区间估计置信区间的定义、均值与比例的置信区间、样本量的选择。
5.3 假设检验假设检验的基本原理、拒绝域与接受域、单侧检验与双侧检验。
第六章:样本调查与质量控制6.1 样本调查与抽样方法样本调查的基本原理、简单随机抽样、分层抽样、整群抽样等抽样方法。
6.2 统计质量控制质量控制的基本概念、X-R 控制图、P 控制图、样本量的确定。
概率论基础与随机变量的概念与性质
概率论基础与随机变量的概念与性质概率论是数学中一个重要的分支,研究的是随机现象和概率的理论。
随机变量是概率论中的一个核心概念,它描述了一个随机现象可能产生的各种结果及其对应的概率。
本文将介绍概率论的基础知识,并探讨随机变量的概念和性质。
概率论基础概率论研究的对象是随机现象,即具有不确定性的现象。
随机现象的结果不是确定的,但它们的结果属于一定的范围。
为了描述和分析这种不确定性,概率论引入了概率的概念。
概率是描述随机现象结果发生可能性大小的数值,用P(A)表示事件A发生的概率,它的取值范围为0到1,其中0表示不可能发生,1表示必然发生。
概率可以通过频率或古典概型等方式进行计算。
频率是指在重复试验中,事件A发生的次数与试验总次数之比的极限,即P(A) = lim(n->∞)N/N,其中N表示事件A发生的次数。
古典概型是指试验中所有可能结果的集合具有等概率分布的情况下,计算事件A的概率。
假设事件A包含m个等概率发生的基本结果,而试验总共有n个等可能结果,则根据古典概率的定义,P(A) = m/n。
随机变量的概念随机变量是概率论中一个重要的概念,它用来描述随机现象的结果和概率之间的关系。
随机变量可以是离散的,也可以是连续的。
离散随机变量是指随机变量的取值只能是一系列可数的值。
例如,抛一枚硬币正面向上或反面向上的结果可以用0或1表示,其中0和1就是离散随机变量。
连续随机变量是指随机变量的取值可以是一个范围内的任意值。
例如,测量一个人身高的结果可以是任意实数,这就是连续随机变量。
随机变量的性质随机变量具有一些重要的性质,包括概率分布函数、期望、方差和矩等。
概率分布函数描述了随机变量的取值和概率之间的关系。
对于离散随机变量,概率分布函数可以用概率质量函数(Probability Mass Function,简称PMF)表示;对于连续随机变量,概率分布函数可以用概率密度函数(Probability Density Function,简称PDF)表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论基础:定义与原理
概率论是数学中的一个重要分支,研究随机现象的规律性和统计规律性。
在现代科学和工程技术中有着广泛的应用。
概率论的基础是概率的定义和概率的基本原理。
本文将介绍概率论的基础知识,包括概率的定义、概率的性质、概率的基本原理等内容。
一、概率的定义
概率是描述随机事件发生可能性大小的数值。
在数学上,概率可以用数值来表示,通常用P(A)表示事件A发生的概率。
概率的定义有两种常见的方式:古典概率和统计概率。
1. 古典概率
古典概率是指在一定条件下,根据事件的可能性来确定概率。
例如,掷骰子时,每个点数出现的可能性相同,因此每个点数出现的概率为1/6。
古典概率的计算方法简单直观,适用于有限个元素的样本空间。
2. 统计概率
统计概率是指通过大量实验数据来确定事件发生的概率。
例如,抛硬币时正面朝上的概率为0.5,是通过多次实验统计得出的结果。
统计概率是基于频率的概率,当实验次数足够多时,频率会逼近概率。
二、概率的性质
概率具有一些基本性质,包括:
1. 非负性:对任意事件A,有0 ≤ P(A) ≤ 1。
2. 必然事件:对于必然事件Ω,有P(Ω) = 1。
3. 不可能事件:对于不可能事件∅,有P(∅) = 0。
4. 互斥事件:对于互斥事件A和B,有P(A∪B) = P(A) + P(B)。
5. 对立事件:对于对立事件A和A',有P(A) + P(A') = 1。
三、概率的基本原理
概率的基本原理包括加法法则和乘法法则。
1. 加法法则
加法法则适用于互斥事件,即事件A和事件B不可能同时发生。
对于互斥事件A和B,有P(A∪B) = P(A) + P(B)。
2. 乘法法则
乘法法则适用于独立事件,即事件A的发生不影响事件B的发生。
对于独立事件A和B,有P(A∩B) = P(A) * P(B)。
四、概率的计算方法
在实际问题中,可以通过古典概率和统计概率来计算概率。
对于
古典概率,可以根据事件的可能性来确定概率;对于统计概率,可以
通过大量实验数据来估计概率。
另外,还可以通过条件概率和贝叶斯定理来计算概率。
条件概率
是指在已知事件B发生的条件下,事件A发生的概率,表示为P(A|B);
贝叶斯定理是根据条件概率来计算逆概率,即已知事件B发生的条件下,事件A发生的概率。
综上所述,概率论是研究随机现象的规律性和统计规律性的数学分支,具有重要的理论和应用价值。
概率的定义和基本原理是概率论的基础,对于理解和应用概率论具有重要意义。
希望本文对读者对概率论的基础知识有所帮助。