六年级奥数教材

合集下载

六年级奥数培训教材

六年级奥数培训教材

六年级奥数培训教材目录第一章数与代数第一讲比较大小第二章实践与应用(一)第一讲行程问题(一)第二讲行程问题(二)第三讲行程问题(三)第四讲流水行船问题第三章空间与图形第一讲表面积、体积(一)第二讲表面积、体积(二)第四章数论与整除第一讲应用同余解题第五章应用(二)第一讲“牛吃草”问题第二讲不定方程第三讲比例(补充)第六章组合与推理第一讲最大、最小问题第二讲乘法和加法原理第三讲抽屉原理(一)第四讲抽屉原理(二)第五讲逻辑推理(一)第六讲逻辑推理(二)第其讲对策问题第一章 数与代数 第一讲 比较大小【专题导引】我们已经掌握了基本的比较整数、小数、分数大小的方法。

本周将进一步研究如何比较一些较复杂的数或式子的值的大小。

解答这种类型的题目,需要将原题进行各种形式的转化,再利用一些不等式的性质进行推理判断。

如:a>b>0,那么a 2>b 2;如果a>b>0,那么ba b a ;如果11 >1,b>0,那么a>b 等等。

比较大小时,如果要比较的分数都接近1时,可先用1减去原分数,再根据被减数相等(都是1),减数越小,差越大的道理判断原分数的大小。

如果两个数的倒数接近,可以先用1分别除以这两个数。

再根据被除数相等,商越小,除数越大的道理判断原数的大小。

除了将比较大小转化为比差、比商等形式外,还常常要根据算式的特点将它作适当的变形后再进行判断。

【典型例题】【例1】比较888889888884777778777773和的大小。

【试一试】1、比较666663666661777777777775和的大小。

2、将9998988987987798769876698765,,,按从小到大的顺序排列出来。

【例2】比较1111111111111111和哪个分数大?【试一试】 1、比较166331666333==B A 和的大小。

2、比较888888887444444443222222221111111110和的大小。

小学六年级奥数教材(上册)

小学六年级奥数教材(上册)

第一讲工程问题第一讲工程问题工程问题是应用题中的一种类型.在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量).这三个量之间有下述一些关系式:工作效率×工作时间=工作总量,工作总量÷工作时间=工作效率,工作总量÷工作效率=工作时间.为叙述方便,把这三个量简称工量、工时和工效.例1 一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?答:甲、乙、丙三队合作需10天完成.说明:我们通常把工量“一项工程”看成一个单位.这样,工效就用工例2 师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天批零件各需几天?工效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天.答:如果单独做,师傅需10天,徒弟需15天.例3 一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?分析解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题。

解:设甲做了x天.那么,两边同乘36,得到:3x+40-4x=36,x=4.答:甲做了4天.例4 一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?分析设一件工作为单位“1”.甲做6小时,乙再做12小时完成或者甲先做8小时,乙再做6小时都可完成,用图表示它们的关系如下:由图不难看出甲2小时工作量=乙6小时工作量,∴甲1小时工作量=乙3小时工作量.可用代换方法求解问题.解:若由乙单独做共需几小时:6×3+12=30(小时).第一讲工程问题若由甲单独做需几小时:8+6÷3=10(小时).甲先做3小时后乙接着做还需几小时:(10-3)× 3=21(小时).答:乙还需21小时完成.例5 筑路队预计30天修一条公路.先由18人修12天只完成全部工程之几(即一人的工效).解:①1人1天完成全部工程的几分之几(即一人的工效):②剩余工作量若要提前6天完成共需多少人:=36(人).③需增加几人:第一讲工程问题36-18=18(人).答:还要增加18人.例6 蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水,进水,排水…的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确到分钟)分析与解答①在解答“水管注水”问题时,会出现一个进水管,一个出水管的情况.若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工效),排空水的时间=1÷(出水管工效-进水管工效).②这道应用题是分析推理与计算相结合的题目.根据已知条件推出水池好排完.一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?分析这道题是工程问题与分数应用题的复合题.解题时先要分别求出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量)的几分之几?第一讲工程问题如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?分析求这批树一共多少棵,必须找出与36棵所对应的甲、乙工效=4∶3,所以甲与乙的工效比是3∶4.这个间接条件一旦揭示出来,问题就得到解决了.甲与乙的时间比是4∶3.工作总量一定,工作效率和工作时间成反比例,所以甲与乙的工效比是时间比的反比,为3∶4.答:这批树一共252棵.例9 加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,第一讲工程问题个零件,求这批零件共多少个?分析欲求这批零件共多少个,由题中条件只需知道甲、乙二人每天共做多少个即可,然后这就转化为求甲、乙两人单独做各需多少天,有了这个结论后,只需算出3个零件相当于总数的几分之几即可.由条件知甲做16甲单独做所用天数可求出,那么乙单独做所用天数也就迎刃而解.解:甲、乙合作12天,完成了总工程的几分之几?甲1天能完成全工程的几分之几?乙1天可完成全工程的几分之几?这批零件共多少个?答:这批零件共360个.第一讲工程问题例10 一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?分析要求共用多少小时?可以设想把这些小时重新分配:甲做1小时,乙做1小时,它们相当于合作1小时,也即是每2小时,相当于合做1小时.这样先大致算一下一共进行了多少个这样的2小时,余下部分问题就好解决了.解:①若甲、乙两人合作共需多少小时?②甲、乙两人各单独做7小时后,还剩多少?④共用了多少小时?习题一习题一1.一项工程,甲单独做12天可以完成.如果甲单独做3天,余下工作由乙去做,乙再用6天可以做完.问若甲单独做6天,余下工作乙要做几天?2.一条水渠,甲乙两队合挖30天完工.现在合挖12天后,剩下的由乙队挖,又用24天挖完.这条水渠由乙单独挖,需要多少天?3.客车与货车同时从甲、乙两站相对开出,经2小时24分钟相遇,相遇时客车比货车多行9.6千米.已知客车从甲站到乙站行4小时30分钟,求客车与货车的速度各是多少?4.水箱上装有甲、乙两个注水管.单开甲管20分钟可以注满全箱.现满水箱?5.一项工程,甲、乙单独做分别需要18天和27天.如果甲做若干天后,乙接着做,共用20天完成.求甲乙完成工作量之比.7.做一批儿童玩具.甲组单独做10天完成,乙组单独做12天完成,丙组每天可生产64 件.如果让甲、乙两组合作4天,则还有256件没完成.现在决定三个组合做这批玩具,需要多少天完成?习题一解答习题一解答②余下工作乙几天完成?答:余下工作乙要4天完成.答:乙队单独挖需40天完成.=32(千米/小时).答:客车与货车的速度分别为每小时32千米和28千米.答:单开乙管需30分钟注满水箱.5.解:设甲先做x天,乙做(20-x)天.20-x=20-14=6.答:甲乙完成工作量之比是7∶2.②甲乙工作时间比:3∶2,工效比为2∶3.答:单独做甲需18天,乙需12天.7.解法1:①要加工儿童玩具多少件?②丙组单独做需要几天?960÷64=15(天).③甲乙丙三组合作,共需几天?答:三组合作做这批儿童玩具要4天完成.解法2:甲、乙两组合作4天后,所剩没有完成的256件,由丙组完成,需:256÷64=4(天).答:甲、乙、丙三组合作这批儿童玩具要4天完成.第二讲比和比例第二讲比和比例在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k).在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k.如成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.下面我们从最基本的判断两种量是否成比例的例题开始.例1 下列各题中的两种量是否成比例?成什么比例?①速度一定,路程与时间.②路程一定,速度与时间.③路程一定,已走的路程与未走的路程.④总时间一定,要制造的零件总数和制造每个零件所用的时间.⑤总产量一定,亩产量和播种面积.⑥整除情况下被除数一定,除数和商.⑦同时同地,竿高和影长.⑧半径一定,圆心角的度数和扇形面积.⑨两个齿轮啮合转动时转速和齿数.⑩圆的半径和面积.(11)长方体体积一定,底面积和高.第二讲比和比例(12)正方形的边长和它的面积.(13)乘公共汽车的站数和票价.(14)房间面积一定,每块地板砖的面积与用砖的块数.(15)汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量.分析以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢?关键是能否把两个两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例.解:成正比例的有:①、⑦、⑧、(15)成反比例的有:②、④、⑤、⑥、⑨、(11)、(14)不成比例的有:③、⑩、(12)、(13).例2 一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?分析要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,必须知道走上坡路的速度(题中每小时行3千米)和上坡路的路程,已知全程60千米,又知道上坡、平路、下坡三段路程比是1∶2∶3,就可以求出上坡路的路程.解:上坡路的路程:走上坡路用的时间:第二讲比和比例上坡路所用时间与全程所用时间比:走完全程所用时间:例3 一块合金内铜和锌的比是2∶3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?分析要求新合金内铜和锌的比,必须分别求出新合金内铜和锌各自的重量.应该注意到铜和锌的比是2∶3时,合金的重量不是36克,而是(36-6)克.铜的重量始终没有变.解:铜和锌的比是2∶3时,合金重量:36-6=30(克).铜的重量:新合金中锌的重量:36-12=24(克).新合金内铜和锌的比:12∶24=1∶2.第二讲比和比例答:新合金内铜和锌的比是1∶2.例4 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?工作量与工作效率成正比例.解法1:设师傅加工x个,徒弟加工(168-x)个.5x=168×9-9x,14x=168×9,x=108.168-x=168-108=60(个).答:师傅加工108个,徒弟加工60个.第二讲比和比例=60(个),(徒弟).考方法可求出两人各用了多少分钟.然后用师、徒每分钟各自的效率,分别乘以540就是各自加工零件的个数.解法4:按比例分配做:第二讲比和比例例5 洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?分析这是一道比例应用题,工效和工时是变量,不变量是计划生产5天后剩下的台数.从工效看,有原来的效率1600÷20=80台/天,又有提高后的效率80×(1+25%)=100台/天.从时间看,有原来计划的天数,要求效率提高后还需要的天数.根据工效和工时成反比例的关系,得:提高后的效率×所需天数=剩下的台数.解法1:设完成计划还需x天.1600÷20×(1+25%)×x=1600-1600÷20×580×1.25×x=1600-400100x=1200x=12.答:完成计划还需12天.解法2:此题还可以转化成正比例.根据实际效率是原来效率的1+25因为工效和工时成反比例,所以实际与原来所需时间的比是4∶5,如果设实际还需要x天,原来计划的天数是20-5=15天,根据实际与原来时间的比等于实际天数与原来天数的比,可以用正比例解答.设完成计划还需x天.第二讲比和比例5x=60,x=12.解法3:(按工程问题解)设完成计划还需x天.例6 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:解法1:BC的长:182÷13=14(厘米),BD的长:14+13=27(厘米),从图中看出AB长就是原长方形的宽,AD与AB的比是14∶5,AB与BD的比是5∶(14-5)=5∶9,第二讲比和比例原长方形面积是42×15=630(平方厘米).答:原长方形面积是630平方厘米.解法2:设原长方形长为14x,宽为5x.由图分析得方程(14x-13)× 13-5x×13=182,9x=27,x=3.则原长方形面积(14×3)×(5×3)=630(平方厘米).例4、例5、例6是综合性较强的题,介绍了几种不同解法.要求大家从不同角度、综合、灵活运用所学知识,多角度去思考解答应用题,从而提高自己思维判断能力.习题二习题二1.一块长方形的地,长和宽的比是3∶2,长比宽多24米,这块地的面积是多少平方米?2.一块长方形的地,长和宽的比是3∶2,长方形的周长是120米,求这块地的面积?3.水果店运来橘子、苹果共96筐,橘子和苹果筐数的比是5∶3,求橘子、苹果各是多少筐?4.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25%,照这样计算,剩下的任务还需多少天完成?5.小强买了一件上衣和两条裤子,小明买了同样价钱的上衣和裤子各一件,他们用去钱数的比是4∶3,已知一件上衣7元,求一条裤子多少元?页,这时已读的页数与剩下页数的比是3∶7,小刚再读多少页就能读完这本书?7.甲、乙两车由A、B两地同时出发相向而行,甲乙两车速度比是2∶8.“长江”号轮船第一次顺流航行21公里又逆流航行4公里,第二次在同一河流中顺流航行12公里,逆流航行7公里,结果两次所用的时间相等.求顺水船速与逆水船速的比.习题二解答习题二解答2.120÷2=60(米),36×24=864(平方米).3.5+3=8,4.设剩下的任务还需x天完成.25%x=75%×5,x=15.习题二解答5.设一件上衣与一条裤子的价钱之比是1∶x,则小强和小明用去钱数的比是:3(1+2x)=4(1+x),3+6x=4+4x,2x=1,7.设乙车行完全程用x小时.8.顺水船速∶逆水船速=(21-12)∶(7-4)=3∶1.第三讲分数、百分数应用题(一)第三讲分数、百分数应用题(一)分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一.一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律.因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难.为了学好分数、百分数应用题的解法必须做好以下几方面工作.①具备整数应用题的解题能力.解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题.②在理解、掌握分数的意义和性质的前提下灵活运用.③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件.它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理.④学会多角度、多侧面思考问题的方法.分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路.例1 (1)本月用水量比上月节约7%,可以联想到哪些关系?①上月用水量与单位“1”的关系.②本月节约用水量与上月用水量的7%的关系.③本月用水量与上月用水量的(1-7%)的关系.(2)蓝墨水比红墨水多20%,可以联想到哪些关系?①红墨水与单位“1”的关系.②蓝墨水比红墨水多出的量与红墨水的20%的关系.③蓝墨水与红墨水的(1+20%)的关系.(3)已看的页数比未看的页数多15%,可以联想哪些关系?第三讲分数、百分数应用题(一)①未看的页数与单位“1”的关系.②已看的与未看的页数的差与未看页数的15%的关系.③已看的页数与未看的页数的(1+15%)的关系.是多少页?分析每天看15页,4天看了15×4=60页.解题的关键是要找出解:①看了多少页?15×4=60(页).②看了全书的几分之几?③这本书有多少页?答:这本故事书是150页.事书分析要想求这本书共有多少页,需要找条件里的多21页,少6页,剩下172页所对应的百分率.也就是说,要从这三个量里找出一个能明确占全书的几分之几的量.画线段图:答:这本故事书共有264页.例4 惠华百货商场运到一批春秋西服,按原(出厂)价加上运费、营知售价是123元,求出厂价多少元?于123元,相当如上图可以得出解答:答:春秋西服每套出厂价是108元.其余部分时,又刚好装满6筐,求共收西红柿多少千克?率”的关系已经直接对应,求每筐的千克数的条件完全具备.解:其余部分是总千克数的几分之几:克,收完与百分西红柿总数共装了多少筐:每筐是多少千克:共收西红柿多少千克:综合算式:答:共收西红柿384千克.解法2:(以下列式由学生自己理解)答:共收西红柿384千克.水泥没运走.这批水泥共是多少吨?分析上图中有3个相对各自讨论范围内的单位“1”(“全部”、“余下”、“又余第三讲分数、百分数应用题(一)下”).依据逆向思路可以得出,最后剩下的15吨对应的是下”的吨数90吨(即“余下”含义中的1个单位是90吨).这90吨恰是“全例7 某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他秒?分析与解答这是一个追及问题,因此求追上所花时间必须求出相距距离及它们速度差.相距距离是因为车上之人与小偷反向走了10秒钟产生的.而速度差是易求的.所以追上所花时间是答:追上小偷要110秒.例8 A有若干本书,B借走一半加一本,剩下的书,C借走一半加两本,再剩下的书,D第三讲分数、百分数应用题(一)借走一半加3本,最后A还有2本书,问A原有多少本书.答:A原有50本书.解法2:用倒推法解.分析A剩下的2本应是C借走后剩下的一半差3本,所以C借走后还综合算式:答:A原有50本书.习题三习题三比苹果少1440千克,运来橘子多少千克?2.有两袋米,甲袋比乙袋少18千克.如果再从甲袋倒入乙袋6千克,3.一本书,已看了130页,剩下的准备8天看完.如果每天看的页数苹果?每天各吃了几个苹果?5.古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一.再过了五年,他幸福地得到了一个儿子.可这孩子光辉灿烂的寿命只有他父亲的一半.儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯”.你能根据这段话推算出丢番图活了多少岁?多少岁结的婚吗?6.一瓶酒精,当用去酒精的一半后,连瓶共重700克;如只用去酒精多少台?习题三解答习题三解答1.①苹果重量占总重量的几分之几?③总重量是多少千克?④运来橘子多少千克?2.①倒米后甲袋比乙袋少多少千克?18+6×2=30(千克).②倒米后甲袋比乙袋少几分之几?③倒米后乙袋有米多少千克?习题三解答④原来乙袋有米多少千克?80-6=74(千克).⑤原来甲袋有米多少千克?74-18=56(千克).4.共买苹果:习题三解答=605(台).第四讲分数、百分数应用题(二)第四讲分数、百分数应用题(二)在解题过程中,除了要利用上一讲中所说的一些技巧和方法(如画线段示意图等)之外,还要注意在解题过程中量的转化.例如,在解题过程的不同阶段,有时需把不同的量看成单位1,即要把单位1进行“转化”;有时,在解题过程中需把相等的量看成完全一样,即其中之一可“转化”为另一.通过这样的转化,往往能使解题思路清晰,计算简便.几?而问题“女工人数比男工人数少几分之几”是把男工人数看作单位“1”.解答这题必须转化单位“1”.说明:“1”倍量的转换引起了“百分率”的转化,其规律是,甲数是第四讲分数、百分数应用题(二)修路程的比是4∶3,还剩50O米没修,这条路全长多少米?分析此题条件中既有百分率又有比,可以把比转化成百分率,按分数应用题解答.第二天与第一天所修路程的比是4∶3.即第二天修的占4份,第一天米相对应的百分率,进而求出全长有多少米.=1200(米).答:全长是1200米.求两个班各分到多少皮球?相等,单位“1”不一致,因此一班与二班分到的皮球之间缺乏统一的倍数关系,率”转化,才能做此题.二班的球数相当于一班的几分之几.总球数120就和两个班的百分率之和相对应,求出一班分到多少皮球.二班分到的球占一班的几分之几:二班分到多少皮球:120-72=48(个).答:一班分到72个皮球,二班分到48个皮球.倍题,就可求出二班分到多少球.一班分到的占二班几分之几:二班分到多少球:一班分到多少球:120-48=72(个).一班与二班分到皮球数的比:问两班第四讲分数、百分数应用题(二)各多少人?画出线段图:由量、百分率的对应就不难求出甲班人数了.乙班人数:84-40=44(人).答:甲班有40人,乙班有44人.例5 加工一批零件,甲乙二人合作需12天完成;现由甲先工作3天,这批零件共有多少个?分析解答此题要用条件转化法,即把“甲工作3天,乙工作2天”,转化为“二人合作第四讲分数、百分数应用题(二)2天,再由甲独干一天”,问题便可以得到解决.件所对应的百分率,求出这批零件有多少个.解:甲每天完成这批零件的几分之几:乙每天完成这批零件的几分之几:这批零件共有多少个:答:这批零件共有240个.第四讲分数、百分数应用题(二)分析题目中除全厂外,还有两个单位“1”:一个是一车间,另一个是二车间.可以通过转化的思路,统一到一车间.找到三车间的156人相当于一车间的几分之几,从而先求出一车间的人数,由于一车间人数占全厂的25%,从而直接求出全厂的人数,这样可无需求出二车间的具体人数.解:二车间人数是一车间的几分之几:三车间的人数是一车间的几分之几:一车间有多少人:答:这个服装厂全厂共有600人.全厂共有多少人:150÷25%=600(人).综合算式:习题四习题四2.修路队修一条1800米的路,前5天完成了全长的25%,照这样计算,把这条水渠还要多少天?3.甲、乙两车分别从A、B两地同时相对开出,经4小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,乙车离A地还有70千米,求A、B两地相距多少千米?4.哥哥和弟弟共有人民币10.8元,哥哥用去自己钱数的75%,弟弟用去自己钱数的80%,两人所剩的钱正好相等,哥哥原来有多少钱?5.一项工程,甲、乙两队合作可30天完成,甲队独做24天后,甲、乙两队又合作了12 天,然后甲调走,乙又做了15天才完成了全部的工程,甲队若单独做这项工程需几天完成?6.甲、乙两台抽水机共同工作10小时,可以把整池水抽完,如果甲台两台抽水机单独抽各需几小时?7.二年级两个班共有学生90人,其中少先队员有71人,又知一班少少人?习题四解答习题四解答甲班:120-24=96(棵)2.解法1:1800×(1-25%)÷(1800×25%÷5)=15(天).解法2:1800÷(1800×25%÷5)-5=15(天).解法3:1÷(25%÷5)-5=15(天).解法4:5×[(1-25%)÷25%]=15(天).4.解法2:1-75%=25%,1-80%=20%,(1÷25%)∶(1÷20%)=4∶5,10.8÷(4+5)×4=4.8(元).习题四解答二班人数:90-48=42(人).第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=6a2,V正方体=a3.例1有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为2a2平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+2a2=240,可知,a2=25,故a=5(厘米).又因为2a2+4ah=190,。

六年级奥数教材【67页】-最新精品

六年级奥数教材【67页】-最新精品

目录第一讲百分数及其应用 (2)第二讲圆柱和圆锥 (7)第三讲比例 (12)第四讲正比例和反比例 (16)第五讲解决问题的策略及统计 (22)第六讲期中复习 (27)第七讲升中总复习专题一---数的认识 (32)第八讲升中总复习专题二---数的运算 (36)第九讲升中总复习专题三---式与方程 (40)第十讲升中总复习专题四---应用题(一) (44)第十一讲升中总复习专题五---应用题(二) (48)第十二讲升中总复习专题六---几何初步 (52)第十三讲升中综合训练(一) (56)第十四讲升中综合训练(二) (60)第十五讲升中综合训练(三) (65)第十六讲升中模拟考试………………………………………………………另附第一讲百分数及其应用【复习巩固】【整理与反思】怎样求一个数比另一个数多(或少)百分之几? 5比4多_______%你存过钱吗?什么是利息税?利息=_______×________什么是折扣和成数?原价打五折=原价×_______,原价的8成=原价×_______例1:求未知数xx-65%x=70练习:49+40%x=89例2:小强的妈妈在银行存了5000元,定期两年,年利率是2.70%,到期时,她可得税前利息多少钱?练习:陈老师出版了一本《小学数学解答100问》,获得稿费5000元,按规定,超出800元的部分应缴纳14%的个人所得税。

陈老师应交税多少钱?【基础训练】一、填空:1. 30平方米比24平方米多()% 比8千克多0.4千克是()千克 140千克比( )千克多40% 5千克减少20%后是()千克2. 某厂有男职工285人,女职工215人,男职工占全厂职工总人数的()%,在一次职工技能测试中,成绩优秀的有387人,优秀率()%。

3.王叔叔看中一套运动装,标价200元,经过还价,打八五折买到,王叔叔实际付了()元买了这套运动装。

4.动物园里有斑马x只,猴子的数量是斑马的6倍,动物园有猴子()只,猴子比斑马多()只。

三至六年级奥数目录

三至六年级奥数目录

三年级奥数01讲我会算一算:加法与减法02讲我会算一算:乘法与除法03讲归一归总问题04讲数字迷之加减法竖式05讲周期问题(一)06讲等量代换之常用解题方法07讲枚举法(二)08讲和差问题(二)09讲多笔画问题10讲图形数列找规律11讲平均数问题(秋季课程)12讲巧求周长(二)第13讲和差倍问题(一)第14讲图形面积第15讲逻辑推理之对应型、真假型问题第16讲多位数除法第17讲乘除法巧算第18讲巧填算符(二)第19讲年龄问题第20讲周期问题(二)第21讲奇偶性分析第22讲最短路线第23讲操作类智巧趣题第24讲:认识分数小数第25讲:方阵问题(寒假课程敬请期待)第26讲:巧填幻方第27讲:速算与巧算第28讲:图形分割(二)第29讲:角度问题第30讲:植树问题第31讲:和差倍问题(二)第32讲:数字谜之乘除法竖式第33讲:三角形面积第34讲:图表类统计问题第35讲:鸡兔同笼第36讲:等差数列初步(一)第37讲:等差数列初步(二)第38讲:图形计数之有序枚举第39讲:数阵图第40讲:还原问题之图表法第41讲:认识方程第42讲:盈亏问题(一)第43讲:盈亏问题(二)第44讲:整数的分拆第45讲:平行四边形与梯形第46讲:页码问题第47讲:简单行程第48讲:基本应用题第49讲:点线排布四年级奥数第01讲:定义新运算(一)(暑期课程)第02讲:等差数列进阶第03讲:列方程解应用题第04讲:加法原理和乘法原理第05讲:相遇和追及(一)第06讲:相遇和追及(二)第07讲:逻辑推理之列表法,假设法第08讲:火车过桥(一)第09讲:火车过桥(二)第10讲:体育比赛中的数学问题第11讲:四边形中的基本图形(一)第12讲:四边形中的基本图形(二)第13讲:位值原理第14讲:整数与数列(一)(秋季课程)第15讲:整数与数列(二)第16讲:游戏与对策(一)第17讲:三角形的边角关系第18讲:巧求面积(一)第19讲:巧求面积(二)第20讲:图形的分割与剪拼第21讲:简单抽屉原理与最不利原则(一)第22讲:简单抽屉原理与最不利原则(二)第23讲:环形跑道(一)第24讲:环形跑道(二)第25讲:加乘原理与归纳递推第26讲:操作问题第27讲:流水行船初步第28讲:构造与论证之奇偶分析(一)第29讲:构造与论证之奇偶分析(二)第30讲:多位数计算(寒假课程)第31讲:容斥原理初步(一)第32讲:容斥原理初步(二)第33讲:应用题综合第34讲:数列与数表(一)第35讲:排列(一)第36讲:排列(二)第37讲:组合(一)第38讲:组合(二)第39讲:统筹与最优化第40讲:小数计算(春季课程)第41讲:几何计数第42讲:格点与割补第43讲:等积变形(一)第44讲:等积变形(二)第45讲:最值问题第46讲:电梯与发车间隔问题第47讲:排列组合综合应用(一)第48讲:排列组合综合应用(二)第49讲:列二元一次方程组解应用题第50讲:破解横式与竖式数字谜第51讲:数的整除特征(一)第52讲:数的整除特征(二)第53讲:勾股定理与弦图第54讲:长度与角度综合五年级奥数第01讲分数加减(暑期课程)第02讲分数乘除第03讲比例初步第04讲循环小数第05讲共边模型第06讲共角模型第07讲牛吃草问题第08讲数的整除的综合运用(一)第09讲数的整除的综合运用(二)第10讲多次相遇与追及(一)第11讲多次相遇与追及(二)第12讲复杂抽屉原理第13讲质数与合数第14讲蝴蝶模型第15讲分数应用题第16讲燕尾模型(一)第17讲燕尾模型(二)第18讲分数小数混合运算(秋季课程)第19讲圆和扇形(一)第20讲圆和扇形(二)第21讲工程问题(一)第22讲工程问题(二)第23讲因数与倍数(一)第24讲列分数系数方程解应用题第25讲流水行船第26讲游戏与对策之数论类游戏第27讲比例应用题第28讲完全平方数(一)第29讲完全平方数(二)第30讲立体几何(一)第31讲立体几何(二)第32讲分数裂项初步(寒假课程)第33讲分数计算之换元、通项归纳第34讲数列与数表(二)第35讲时钟问题(一)第36讲时钟问题(二)第37讲带余除法第38讲余数定理第39讲因数与倍数(二)第40讲容斥原理(一)第41讲容斥原理(二)第42讲:(等待官网更新)综合型逻辑推理第43讲多人相遇与追及(一)第44讲多人相遇与追及(二)第45讲特殊图形第46讲:【等待更新】棋盘中的数第47讲进制问题第48讲比例法解行程问题第49讲方程法解行程问题第50讲复合图形的分拆(一)第51讲复合图形的分拆(二)第52讲多元一次方程组(一)第53讲多元一次方程组(二)第54讲同余问题(一)第55讲同余问题(二)第56讲比较与估算(一)第57讲比较与估算(二)第58讲定义新运算(二)第59讲不定方程第60讲电梯、发车间隔与接送问题六年级奥数第1讲分数裂项综合(暑期课程)第2讲分数计算题型综合第3讲常用计算公式第4讲计数原理之加乘原理第5讲计数原理之容斥原理第6讲计数方法之标数法、递推法第7讲概率与统计第8讲经济利润问题第9讲浓度问题第10讲曲线型面积问题第11讲立体几何——表面积与体积第12讲因数与倍数综合第13讲质数与合数(二)第14讲公式类行程问题之流水行船、扶梯问题、环形跑道第15讲比例类行程问题之比例法与设数法第16讲分数四则混合运算(秋季课程敬请期待敬请期待)第17讲初中基本功之解方程第18讲计数方法之枚举法第19讲计数方法之捆绑法、插空法、插板法第20讲分数、比例应用题精讲第21讲工程问题精讲第22讲牛吃草问题精讲第23讲五大模型——共边模型、鸟头模型第24讲五大模型——蝴蝶模型、燕尾模型第25讲平面几何常用技巧第26讲立体几何常用技巧第27讲整除综合之整除判别方法第28讲余数综合之余数问题解题技巧第29讲数论综合之代数思想与枚举验证第30讲比例类行程问题之柳卡图第1讲小升初热点应用题盘点————复杂工程、比例应用题(寒假课程)第2讲小升初热点应用题盘点————经济问题、浓度问题第3讲数论之质合、因倍、余数综合第4讲数论之最值、计数、行程综合(一)第5讲数论之最值、计数、行程综合(二)第6讲曲线型面积解题思路第7讲行程问题常用思想之图解法、综合分析第8讲行程问题常用思想之比例思想、代数思想第01讲小升初计算高频考点汇总与方法总结(春季课程)第02讲小升初计数高频考点汇总与方法总结第03讲小升初数论高频考点汇总与方法总结(一)第04讲小升初数论高频考点汇总与方法总结(二)第05讲小升初行程高频考点汇总与方法总结(一)第06讲小升初行程高频考点汇总与方法总结(二)第07讲小升初应用题高频考点汇总与方法总结(一)第08讲小升初应用题高频考点汇总与方法总结(二)第09讲小升初几何高频考点汇总与方法总结(一)第10讲小升初几何高频考点汇总与方法总结(二)第11讲小升初重点中学模拟试卷名师点评(一)第12讲小升初重点中学模拟试卷名师点评(二)(注:可编辑下载,若有不当之处,请指正,谢谢!)。

推荐10本小学奥数参考书

推荐10本小学奥数参考书

推荐10本小学奥数参考书推荐一些同步的参考书教材,大家根据自己的年级买对应的书即可1、《华数奥赛教材》出版社:吉林出版集团主编:毛文凤,单墫等华数奥赛教材.png简介:一本有着较长历史的书,可以作为同步学习的资料。

作者毛文凤、单墫等都是我国著名的数学竞赛教练,同时编书很严谨。

书正如其标题所示,是一本针对华杯赛的教材。

华杯赛作为目前全国范围内比较正规、权威的赛事,其知识点覆盖面很全,同时对初中学习也有很强的指导作用。

书中例题多采用华杯赛中的真题、改编题,可以帮助构建整个小学数学竞赛的知识框架。

优点:同时解决知识框架和华赛备考缺点:书中欠缺知识点总结适合学员:五年级、六年级有较好基础的同学可以使用难度:2、《小学奥数举一反三》出版社:陕西人民教育出版社主编:蒋顺,李济元小学奥数举一反三.png简介:也是分年级的一本书,难度相对来说较为简单,无论是大人还是小孩子都能看明白。

孩子如果未接触过数学竞赛,可以用来作为初步自学的书籍。

本书氛围A版和B版,A版是教材,有知识点讲解和例题;B版是同步练习册,用于课后巩固。

优点:入门必备,编排板式不错,有单独练习册缺点:难度、深度均不足适合学员:1-3年级推荐使用此书进行初步学习,4-6年级如果刚刚接触数学竞赛可以用此书作为初步学习的教材。

难度:3、《明心数学资优教程》出版社:湖北教育出版社主编:刘嘉明星数学资优教程.png简介:这是武汉的刘嘉老师编写的一本教材,内容非常详细,每个知识点的介绍都有很多的背景介绍,不仅传授方法和知识,也会培养孩子对于数学历史的了解。

整本书的结构非常不错,对于所涵盖的专题的讲解非常细致。

优点:对于单个知识点挖掘得很深,同时有很多背景知识介绍,丰富孩子的见闻缺点:可能这套丛书只是部分完成,很多重要专题没有涉及,另外部分题目的解题方法已经较为落后适合学员:对数学有较强兴趣,同时有一定数学竞赛基础的同学,此书只有4—6年级难度:以上的教材题量都相对较少,所以接下来,给大家推荐一些同步的练习册1、《高思学校竞赛数学导引》出版社:华东师范大学出版社主编:徐鸣皋高思学校竞赛数学导引.png简介:个人认为这是市面上最为全面的练习册,难度覆盖面广,并且有较为明确的分层,且题目设计比较接近现在的出题思路。

小学数学奥数基础教程(六年级)目30讲全 - 副本

小学数学奥数基础教程(六年级)目30讲全 - 副本

小学奥数基础教程(六年级) 第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

(六年级)小学数学奥数基础教程30讲全

(六年级)小学数学奥数基础教程30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小……………………………………2-3 第2讲巧求分数……………………………………4-7第3讲分数运算的技巧……………………………………第4讲循环小数与分数……………………………………第5讲工程问题(一)……………………………………第6讲工程问题(二)……………………………………第7讲巧用单位“1”……………………………………第8讲比和比例……………………………………第9讲百分数……………………………………第10讲商业中的数学……………………………………第11讲圆与扇形……………………………………第12讲圆柱与圆锥……………………………………第13讲立体图形(一)……………………………………第14讲立体图形(二)……………………………………第15讲棋盘的覆盖……………………………………第16讲找规律……………………………………第17讲操作问题……………………………………第18讲取整计算……………………………………第19讲近似值与估算……………………………………第20讲数值代入法……………………………………第21讲枚举法……………………………………第22讲列表法……………………………………第23讲图解法……………………………………第24讲时钟问题……………………………………第25讲时间问题……………………………………第26讲牛吃草问题……………………………………第27讲运筹学初步(一)……………………………………第28讲运筹学初步(二)……………………………………第29讲运筹学初步(三)……………………………………第30讲趣题巧解……………………………………第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

北师版六年级奥数教程

北师版六年级奥数教程

北师版六年级奥数教程第一章数字谜一、找规律二、横式谜三、竖式谜四、数阵五、凑数谜六、其他数字谜第二章整数问题一、四则运算运算及运算规律速算与巧算等差数列与高斯求和位值原理二、奇数与偶数奇偶数与加减运算奇偶数与乘除运算区分颜色法三、整数、倍数与余数质数、合数及质因数分解乘积的个位数整除性约数与最大公约数倍数与最小公倍数余数与同余四、杂题定义新运算最大与最小平均数页码、数串与周期操作问题其它第三章小数与分数小数、分数的运算小数和分数分数的最大公约数和最小公倍数循环小数与分数分数的拆项第四章图形问题一、图形的计数二、图形的计量正方形与长方形三角形与多边形与圆有关的问题其它三、图形的变换分割分割与拼接变换的不同方法其它四、立体图形体积与表面积展开图相对位置与空间想象其它第五章应用题一、行程问题路程、时间、速度的关系相遇问题追及问题综合题与工程问题类似的问题二、工程问题三、典型应用题鸡兔同笼问题盈亏问题年龄问题植树问题时钟问题还原问题牛吃草问题经济问题四、分数应用题分数问题比例问题溶液配比问题五、智巧问题六、杂题第六章几个专题一、几种解题方法枚举法数值代入法方程法二、排列组合乘法原理加法原理排列组合三、不定方程四、包含与排除五、最优化问题最佳方案最佳对策六、逻辑问题条件分析去伪存真分析计算七、抽屉原理最不利原理简单抽屉问题划分图形整数分组状态分类。

(精品小学三年级到六年级奥数教程目录

(精品小学三年级到六年级奥数教程目录

目录一、三年级奥数教程1.1奇偶数的判断和运算1.2十进制数的认识1.3两位数的加减法1.4三位数的加减法1.5数字排列和组合1.6数字的整数运算1.7图形的认识和判断1.8时钟和日历的应用二、四年级奥数教程2.1分数的认识和运算2.2小数的认识和运算2.3平方数和立方数的计算2.4杂项算法的运用2.5透视法的应用2.6单位换算和比例关系2.7三角形的认识和运算2.8二次方程的解法三、五年级奥数教程3.1小数的计算和商的余数3.2百分数的认识和运算3.3平行线和垂直线的判定3.4多边形的性质和计算3.5单位分数的运算3.6三角形的面积和周长3.7数据统计和概率3.8长方体和正方体的计算四、六年级奥数教程4.1整数的运算和性质4.2飞翔的数列和递推4.3相似和全等的判断4.4不等式和平均数的计算4.5长方体和棱柱的计算4.6近似计算和误差分析4.7牛顿提取法和二次方程4.8随机事件的概率计算五、小结5.1奥数学习的重要性5.2奥数学习的方法和技巧5.3奥数竞赛的策略和准备5.4奥数学习的应用和意义六、附录6.1奥数竞赛的相关网站和资源6.2奥数教材和参考书目的推荐6.3奥数竞赛的常见题型解析6.4奥数竞赛的历年真题演练以上目录为精品小学三年级到六年级奥数教程的主要内容安排,每个年级的教程都包含多个主题和相关知识点的讲解和练习。

通过系统的学习和练习,帮助学生巩固和提高数学基础,培养逻辑思维和分析解决问题的能力,为参加奥数竞赛做好准备。

同时,也为学生提供了一种锻炼思维和观察力的方法,培养了他们对于数学的兴趣和热爱。

奥数学习不仅有利于学业发展,还可以培养学生的创造力和竞争意识,为他们未来的发展打下坚实的基础。

六年级奥数教材(博识教育)

六年级奥数教材(博识教育)

目录第一讲百分数及其应用 (2)第二讲圆柱和圆锥 (7)第三讲比例 (12)第四讲正比例和反比例 (16)第五讲解决问题的策略及统计 (22)第六讲期中复习 (27)第七讲升中总复习专题一---数的认识 (32)第八讲升中总复习专题二---数的运算 (36)第九讲升中总复习专题三---式与方程 (40)第十讲升中总复习专题四---应用题(一) (44)第十一讲升中总复习专题五---应用题(二) (48)第十二讲升中总复习专题六---几何初步 (52)第十三讲升中综合训练(一) (56)第十四讲升中综合训练(二) (60)第十五讲升中综合训练(三) (65)第十六讲升中模拟考试………………………………………………………另附第一讲百分数及其应用【复习巩固】【整理与反思】怎样求一个数比另一个数多(或少)百分之几? 5比4多_______%你存过钱吗?什么是利息税?利息=_______×________什么是折扣和成数?原价打五折=原价×_______,原价的8成=原价×_______例1:求未知数xx-65%x=70练习:49+40%x=89例2:小强的妈妈在银行存了5000元,定期两年,年利率是2.70%,到期时,她可得税前利息多少钱?练习:陈老师出版了一本《小学数学解答100问》,获得稿费5000元,按规定,超出800元的部分应缴纳14%的个人所得税。

陈老师应交税多少钱?【基础训练】一、填空:1. 30平方米比24平方米多()% 比8千克多0.4千克是()千克 140千克比( )千克多40% 5千克减少20%后是()千克2. 某厂有男职工285人,女职工215人,男职工占全厂职工总人数的()%,在一次职工技能测试中,成绩优秀的有387人,优秀率()%。

3.王叔叔看中一套运动装,标价200元,经过还价,打八五折买到,王叔叔实际付了()元买了这套运动装。

4.动物园里有斑马x只,猴子的数量是斑马的6倍,动物园有猴子()只,猴子比斑马多()只。

小学数学奥数基础教程(六年级)目30讲全[1]

小学数学奥数基础教程(六年级)目30讲全[1]

小学奥数基础教程(六年级)109页第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

六年级奥数培训教材

六年级奥数培训教材

---六年级拔尖数学目录第1讲定义新运算第2讲简单的二元一次不定方程第3讲分数乘除法计算第4讲分数四那么混合运算第5讲估算第6讲分数乘除法的计算技巧第7讲简单的分数应用题〔1〕第8讲较复杂的分数应用题〔2〕第9讲阶段复习与测试〔略〕第10讲简单的工程问题第11讲圆和扇形第12讲简单的百分数应用题第13讲分数应用题复习第14讲综合复习〔略〕第15讲测试〔略〕第16讲复杂的利润问题〔2〕第一讲 定义新运算在加.减.乘.除四那么运算之外,还有其它许多种法那么的运算。

在这一讲里,我们学习的新运算就是用“ #〞“*〞“Δ〞等多种符号按照一定的关系“临时〞规定的一种运算法那么进展的运算。

例1:如果A*B=3A+2B ,那么7*5的值是多少?例2:如果A#B 表示3BA + 照这样的规定,6#〔8#5〕的结果是多少?例3:规定Y X XYY X +=∆ 求2Δ10Δ10的值。

例4:设M*N 表示M 的3倍减去N 的2倍,即M*N=3M-2N(1) 计算〔14 *10〕*6(2) 计算 〔58*43〕 *〔1 *21〕例5:如果任何数A 和B 有A ¤B=A ×B-〔A+B 〕求〔1〕10¤7〔2〕〔5¤3〕¤4〔3〕假设2¤X=1求X例6:设P ∞Q=5P+4Q ,当X ∞9=91时,1/5∞〔X ∞ 1/4〕的值是多少?例7:规定X*Y=XY YAX +,且5*6=6*5那么〔3*2〕*〔1*10〕的值是多少?例8:▽表示一种运算符号,它的意义是))((A Y A X XY Y X +++=∇113211212112=+++=∇))((A 那么20088▽2009=?稳固练习1、2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规那么类推(1) 3▽2 〔2〕5▽3〔3〕1▽X=123,求X 的值2、1△4=1×2×3×4;5△3=5×6×7计算〔1〕〔4△2〕+〔5△3〕〔2〕〔3△5〕÷〔4△4〕3、如果A*B=3A+2B,那么〔1〕7*5的值是多少?〔2〕〔4*5〕*6 〔3〕〔1*5〕*〔2*4〕4、如果A>B,那么{A,B}=A;如果A<B,那么{A,B}=B;试求〔1〕{8,0.8}〔2〕{{1.9,1.901}1.19}5、N为自然数,规定F〔N〕=3N-2 例如F〔4〕=3×4-2=10试求:F〔1〕+F〔2〕+F〔3〕+F〔4〕+F〔5〕+……+F〔100〕的值6、如果1=1!1×2=2!1×2×3=3!……1×2×3×4×……×100=100!那么1!+2!+3!+……+100!的个位数字是几?〔第四届小学生“迎春杯〞数学决赛试题〕7、假设“+、-、×、÷、=、〔〕〞的意义是通常情况,而式子中的“5”却相当于“4”。

小学六年级奥数教材及配套练习题

小学六年级奥数教材及配套练习题

第一讲新运算第二讲简便运算(一)第三讲简便运算(二)第四讲简便运算(三)第五讲简便运算(四)第6讲转化单位“1”(一)第7讲转化单位“1”(二)第8讲转化单位“1”(三)第9讲设数法解题第10讲假设法解题(一)第11讲假设法解题(二)第12讲倒推法解题第13讲代数法解题第14讲比的应用(一)第15讲比的应用(二)第16讲用“组合法”解工程问题第17讲浓度问题第18讲面积计算(一)第19讲面积计算(二)第20讲面积计算(三)第一讲新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2.设a*b=a2+2b,那么求10*6和5*(2*8)。

3.设a*b=3a-b×1/2,求(25*12)*(10*5)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2.设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

(完整版)小学数学奥数基础教程(六年级)目30讲全

(完整版)小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

华罗庚学校六年级奥数课本(上下册)

华罗庚学校六年级奥数课本(上下册)

第一讲列方程解应用题这一讲学习列方程解应用题.例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数.分析被除数、除数、商和余数的关系:被除数=除数×商+余数.如果设乙数为x,则根据甲数除以乙数商2余17,得甲数=2x+17.又根据乙数的10倍除以甲数商3余45得10x=3(2x+17)+45,列出方程.解:设乙数为x,则甲数为2x+17.10x=3(2x+17)+4510x=6x+51+454x=96x=242x+17=2×24+17=65.答:甲数是65,乙数是24.例2电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高25%,完成计划还要多少天?思路1:分析依题意,看到工效(每天生产的台数)和时间(完成任务需要的天数)是变量,而生产5天后剩下的台数是不变量(剩余工作量).原有的工效:1600÷20=80(台),提高后的工效:80×(1+25%)=100(台).时间有原计划的天数,又有提高效率后的天数,因此列出方程的等量关系是:提高后的工效x所需的天数=剩下台数.解:设完成计划还需x天.1600÷20×(1+25%)×x=1600-1600÷20×580×1.25x=1600-400100x=1200x=12.答:完成计划还需12天.思路2:分析“思路1”是从具体数量入手列出方程的.还可以从“率”入手列方程.已知“效率提高25%”是指比原效率提高25%.把原来效率看成解:设完成计划还要x天.答:完成计划还需12天.例3有一项工程,由甲单独做,需12天完成,丙单独做需20天完成.甲、乙、丙合作,需5天完成.如果这项工程由乙单独做,需几天完成?工作总量.解:设乙单独做,需x天完成这项工程.答:乙单独做这项工程需15天完成.例4中关村中学数学邀请赛中,中关村一、二、三小六年级大约有380~450人参赛.比赛结果全体学生的平均分为76分,男、女生平均分数分别为79分、71分.求男、女生至少各有多少人参赛?分析若把男、女生人数分别设为x人和y人.依题意全体学生的平均分为76分,男、女生平均分数分别为79分、71分,可以确定等量关系:男生平均分数×男生人数+女生平均分数×女生人数=(男生人数+女生人数)×总平均分数.解方程后可以确定男、女生人数的比,再根据总人数的取值范围确定参加比赛的最少人数,从而使问题得解.解:设参加数学邀请赛的男生有x人,女生有y人.79x+71y=(x+y)×7679x+71y=76x+76y3x=5y∴ x:y=5:3总份数:5+3=8.在380~450之间能被8整除的最小三位数是384,所以参加邀请赛学生至少有384人.答:男生至少有240人参加,女生至少有144人参加.例5瓶子里装有浓度为15%的酒精1000克.现在又分别倒入100克和400克的A、B两种酒精,瓶子里的酒精浓度变为14%.已知A种酒精的浓度是B种酒精的2倍,求A种酒精的浓度.分析依题意,A种酒精浓度是B种酒精的2倍.设B种酒精浓度为x%,则A种酒精浓度为2x%.A种酒精溶液10O克,因此100×2x%为100克酒精溶液中含纯酒精的克数.B种酒精溶液40O克,因此400×x%为400克酒精溶液中含纯酒精的克数.解:设B种酒精浓度为x%,则A种酒精的浓度为2x%.150+6x=14×156x=602x%=2×10%=20%.答:A种酒精的浓度为20%.例6有人用车把米从甲地运到乙地,装米的重车日行50里,空车日行70里,5日往返三次.问两地相距多少里?(选自《九章算术》)分析当你用算术法解这道题时会感到比较困难.但用方程解这一算术“难题”就容易多了.列方程解应用题的关键在于确定等量关系,确立等量关系还有一种常用的方法叫译式法,即把日常用语译成代数语言,通过列表可以看出列方程的过程.解:设两地相距x里.依题意列方程:3×(100000+x)=10x+1300000+3x=10x+17x=299999x=42857例8兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍.问,3年后兄弟二人各几岁?分析设3年后哥哥年龄为x岁,弟弟年龄为(26-x)岁.则今年哥哥年龄为(x-3)岁,弟弟年龄为(26-x-3)岁,兄弟二人的年龄差是(x-3)-(26-x-3)岁.列方程的等量关系是:弟弟今年的年龄=兄弟二人年龄差的2倍.解:设3年后哥哥x岁,则弟弟3年后的年龄是(26-x)岁.[(x-3)-(26-x-3)]×2=26-x-3[2x-26]×2=23-x4x-52=23-x5x=75x=1526-x=26-15=11答:3年后哥哥年龄是15岁,弟弟11岁.习题一1.某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人.三个车间各有多少人?克?3.25支铅笔分给甲、乙、丙三人.乙分到的比甲的一半多3支,丙分到的比乙的一半多3支.问:甲、乙、丙三人各分到几支铅笔?4.甲、乙共有图书63册,乙、丙共有图书77册.三人中图书最多的人的书数是图书最少的人的书数的2倍.问:甲、乙、丙三人各有图书多少册?5.体育用品商店购进50个足球、40个篮球,共3000元.零售时足球加价9%,篮球加价11%,全部卖出后获利润298元.问:每个足球、篮球进价各多少元?6.王虎用1元钱买了油菜籽、西红柿籽和萝卜籽共100包.油菜籽3分钱一包,西红柿籽4分钱一包,萝卜籽1分钱7包.问王虎买进油菜籽、西红柿籽和萝卜籽各多少包?DAAN习题一解答1.解:设第一车间有x人,则第二车间有(3x+1)人,第三车间有答:第一车间有40人,第二车间有121人,第三车间有19人.2.解:设甲容器原有溶液x克,乙容器原有溶液(2600-x)克.答:甲容器原有溶液1600克,乙容器原有溶液1000克.3.提示:设甲有x支,乙分到的比甲的一半多3支,则乙有+3]支.答:甲、乙、丙各分得铅笔10支、8支、7支.4.提示:这道题要先推理后列方程.关键是分析出甲、乙、丙三人中谁最多、谁最少.依题意:甲+乙=63,乙+丙=77,两式相减得丙-甲=14.题目中还给出图书最多的人的书数是图书最少的人的书数的2倍,也即它们的于甲,知丙不是最少.若丙最多,甲最少.设丙有图书x册,则由条件有:求出乙为49本,这样显然丙不是最多,也不是最少.因此,乙最大,甲最小.解:设甲有图书x册,则乙有图书2x册x+2x=63x=212x=4277-42=35.答:甲有图书21册,乙有图书42册,丙有图书35册.5.解:设每个足球进价x元,每个篮球进价y元.由(1)得 5x+4y=300 (3)由(2)得 45x+44y=2980 (4)用(4)-(3)×9得8y=280∴ y=35.把y=35代入(3)得5x+4×35=300∴ x=32.答:每个足球进价32元,每个篮球进价35元.6.解:设买回油菜籽x包,西红柿籽y包,则萝卜籽为(100-x-y)包.20的倍数.当y=20时,x=3,100-x-y=77.当y≥40时,x是负数,不合题意.所以只能有一组解.答:王虎买油菜籽3包,西红柿籽20包,萝卜籽77包.第二讲关于取整计算在数学计算中,有时会略去某些量的小数部分,而只需求它的整数部分.比如,用5米长的花布做上衣,已知每件上衣需用布2米,求这块布料们收水费时,为方便经常是忽略掉用水量的小数吨数,而是先按用水量的整数吨数收费把余量推至下一个月一起收.所以数学上引进了符号〔〕,使我们的表述简明.[a] 表示不超过a的最大整数,称为a的整数部分.[a] 显然有以下性质:①[a] 是整数;②[x]≤x;③x<[x]+1;④若b≥1,则[a+b]>〔a〕;若b≤1,则〔a+b〕≤[a]+1.请你自己举些例子验证前三条性质.性质④举例:a取2.7,则〔a〕=2.若b=1.1,那么〔a+b〕=〔2.7+1.1〕=3>2=〔a〕.若b=0.5,那么[a+b]=[2.7+0.5]=〔3.2〕=3=〔a〕+1;若b=0.1,那么[a+b]=〔2.8〕=2<〔a〕+1.〔a〕还有许多性质.例:若n是整数,则有:〔a+n〕=〔a〕+n.与〔a〕相关的是数a的小数部分,我们用符号{a}表示.显然,a=〔a〕+{a},而且0≤{a}<1.下面我们应用取整符号〔〕解题.例1判断正误:若2x+3〔x〕=1.则{x}=0.解:不正确.假设 {x}=0,则:[x]=x.原式为:2〔x〕+3〔x〕=1,5[x]=1,例2求1~1993中可被2或3或5整除的整数的个数.多了,因为有些数被重复计算了.例如6及其倍数,既是2的倍数,又是3的倍数,被计算了两次.同理,重复计算两次的数还有10及它的倍数和15步还要考虑30及它的倍数,它们既是2、3与5的公倍数,也是6、10与15的公倍数.开始计算了三次,后来又减去了三次,所以要补上.解:合题意的数有:分析加法运算中常用高斯求和法简算.求[x]的基本方法是根据定义x=[x]+{x}.要善于观察特殊值.在0至2之间的整数只有1.例4求满足方程〔x〕+[2x〕=19的x的值.分析解这道题的关键是由x=〔x〕+{x}求2x的整数部分和小数部分.解:因为x=[x]+{x},则 2x=2[x]+2{x}.〔2x〕=[2[x]+2{x}]=2[x]+[2{x}].因0≤{x}<1,∴0≤2{x}<2.现在对{x}分段来讨论:0≤2{x}<1,这时〔2x〕=2[X],此时无解.这时〔2x〕=2〔x〕+1,原方程化为:3[x]+1=19,∴ 3[x]=18,∴ [x]=6.说明:此题运用了适当分类讨论的数学思想.例5问下面一列数中共出现了多少个互不相同的数?分析首先要考虑由已知条件我们能推出什么?②可推知这一列数不等于同一个数,但也不是互不相同.④考虑利用公式(a+b)2=a2+2ab+b2分析项的变化.数。

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数教材目录第一讲抽屉放苹果 (3)第二讲列举法解题 (8)第三讲谈容斥原理 (13)第四讲判断与推理 (17)第五讲数的奇偶性 (24)第六讲立体图形的计算 (28)第七讲旋转体的计算 (36)第八讲长方体和正方体 (49)第九讲简便与巧算 (59)第十讲分数、百分数应用题 (63)第十一讲工程问题 (69)第十二讲包含与排除 (74)第十三讲比和比例应用题 (77)第十四讲简易一次不定方程 (82)第十五讲平面图形的面积 (84)第十六讲牛吃草问题 (90)第十七讲方阵问题 (95)第十八讲立体图形的接、割 (98)第十九讲倒推法解题 (105)第二十讲对应法解题 (111)第二十一讲综合练习一 (117)第二十二讲综合练习二 (122)第二十三讲综合练习三 (127)第二十四讲综合练习四 (132)第二十五讲综合练习五 (137)第二十六讲综合练习六 (143)第二十七讲综合练习七 (148)第二十八讲综合练习八 (152)第一讲抽屉放苹果抽屉放苹果,问题很简单,然而,简单的问题却能变化出很多复杂的数学问题。

例如,给你3个苹果,让你把它们放到2个抽屉里,那么可以肯定有一个抽屉至少有2个苹果。

这个问题看似简单,但要完全清楚地说明白,就需给出证明。

反证法:如果命题的结论不成立,这就是说,每个抽屉里至少多放1只苹果。

于是,2只抽屉里至少共有2只苹果。

而已知有3个苹果放在2个抽屉里,这样与假设相矛盾。

以上所证明的数学原理叫“抽屉原理”。

基本的抽屉原理认为:1、如果把x+1个物体放到x个抽屉里,那么至少有一个抽屉里有不止一个这种物体;2、把xm+1个物体放到m个抽屉里,那么肯定有一个抽屉里至少有x+1个物体。

通俗地可以这样说:“东西多,抽屉少,那么至少有两个东西放在同一个抽屉里。

”例1:任意3个自然数,总有2个自然数的和是2的倍数。

例2:某学校有32名学生是在1月份出生的,那么其中至少有两个学生的生日是在同一天。

为什么?例3:班上有49个人,老师至少拿几本书,随意分给大家,才能保证至少有一个同学能得到两本书?例4:幼儿园买来不少猪、狗、马塑料玩具,每个小朋友任意选择两件,那么至少几个小朋友才能保证有两人选的玩具相同。

例5:把135块饼干分给16个小朋友,若每个小朋友至少要分到一块饼干,那么不管怎样分,一定会有两个小朋友得到的饼干数目相同。

为什么?例6:有一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相同的袜子。

例7:一个幼儿班有40名小朋友,现有各种玩具125种。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?例8:从1000、1001、1002……1992、1993中,任取498个数,其中定有两个数是互质数。

自己练1、奥林匹克俱乐部四年级有三个班,一天四年级有5个同学在公园里相遇,这五个同学至少有几人是在同一班级?为什么?2、有红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的?3、某校四(1)班学生56人都是同年生的,能否说明至少有2人在同一星期过生日?4、抽屉里有4支红铅笔和3支蓝铅笔,如果闭着眼睛摸,一次必须拿几支,才能保证至少有1支蓝铅笔?5、某校有370位1982年出生的同学,那么其中至少有几个同学的生日是同一天的?6、在一只箱子里有4种形状相同、颜色不同的小木块若干个,一次最少要取多少块才能保证其中至少有10个木块的颜色相同?7、学校组织去浏览狼山、江边、南郊公园,规定每人最少去一处,最多去两处游览,那么至少应有多少个同学才能保证有两个同学游览的地方一样?8、有红、黄、蓝、黑四种颜色的小球若干个,每个人可以从中任意选择两个,那么需要多少人才能保证至少有4人选的小球颜色相同?为什么?9、四(2)班共有学生42人开展第二课堂活动,他们从学校大队部借来图书212本,是否有人至少能借到6本或6本以上的图书?10、把152本书分给17个同学,如果每个同学至少要拿一本书,那么不管怎样分,一定会有两个同学得到的本数相同,为什么?11、有黑色、白色、黄色的筷子各8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少要取多少根才能保证达到要求?12、在一只箱子里放着红、白、黑三种颜色的手套各6副,如想闭着眼睛从中取出两副颜色不同的手套,问至少要取多少只才能达到要求?第二讲列举法解题例1:甲乙两人打乒乓球,谁先连胜头两局谁赢,如果没有人连胜头两局,谁先胜三局谁赢,问共有多少种可能?例2:有黄、红、绿、蓝、黑五种颜色的铅笔,每两种颜色的铅笔为一组,最多可以配成不重复的几组?例3:从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人从甲地经乙地到丙地可有几种走法?例4:某月底,甲、乙、丙三人领取了数额不同的奖金,如果甲把自己的一部分资金分给乙、丙两人,使乙、丙两人的奖金数额各增加一倍,然后乙又拿出一部分奖金分给甲、丙两人,使甲、丙两人的奖金数额各增加一倍,接着丙再拿出一部分奖金分给甲、乙两人,使甲、乙两人奖金数额各增加一倍,这时三人的奖金数额都是24元。

问甲、乙、丙三人原来各领奖金多少元?例5:有一张伍元币,4张贰元币,8张壹元币,要拿出8元钱,可以有几种拿法?例6:某校六年级有甲、乙、丙、丁四个班级开展“纪律”、“卫生”评比竞赛。

学校制作了“纪律优胜”和“卫生优胜”两面锦旗,奖给卫生、纪律最好的班级。

想一想,可能出现多少种不同的得奖情况,并叙述你的推理方法。

例7:新学期开学了,10个同学见了面,如果每两个同学都握一次手,那么共握手多少次?自己练1、有一个五分币,四个二分币,八个一分币,要取9分钱,有几种取法?2、一个工人将弹子装进两种盒子中,每个大盒子装12颗,小盒子装5颗,恰好装完。

如果弹子一共99颗,盒子数大于10,这两种盒子各有多少个?3、从甲村到乙村有三条路可走,从乙村到丙村有两条路可走。

问从甲村经乙村到再到丙村有几条不同的路可走?4、两个人的年龄和是36岁,而各自的年龄数都是质数,他们各自的年龄可能分别是多少岁?5、从“0、7、5、3”四张数字卡片中,选三张排成三位数,能排成多少个不同的三位数?其中能同时被动2、5整除的三位数有多少个?能同时被2、3、5整除的三位数是多少个?6、用2张一角币,4张五角币可配成多少种不同的钱数?7、两人同打一靶,各打五枪都命中。

成绩都是三十一,红心每人中一枪。

其余中环不重复,各枪成绩是多少。

我请你来排仔细。

8、某铁路上有11个车站,有一个收集火车票的爱好者,决定收集这条线路上每个车站发售的通往其他各车站的火车票,他一共收集了多少张?9、有2分、5分和1角的人民币各若干枚,要从中取出0.2元,有多少种取法?10、甲、乙、丙三人照相,如果乙一定要站在中间,可以照多少张不同的相片?如果没有规定,可照几张不同的照片?11、有糖块144颗,平均分成若干份,每份不得少于是10颗,也不能多于40颗,共有几种分法?12、从1~100的自然数中,每次取出两个不同的自然数相加,使其和大于100,共有几种不同的取法?13、今有长度为2厘米、3厘米、4厘米、5厘米、6厘米的线路各一条,如果以其中的三条作为三边作三角形:(1)三边中一边为3厘米的三角形有几个?(2)三边中两边分别是3厘米、4厘米的有几个?(3)一共可以作几个不同的三角形?第三讲容斥原理在数的计算中,有这样一类问题。

如:六(1)班同学在《少年报》和《儿童世界》两种报刊中,至少要订一份。

其中,订阅《少年报》的有25人,订《儿童世界》的有31人,订阅两种报刊的有4人,求六(1)班学生数。

要求六(1)班学生数,不能简单地用25+31直接求得,这是因为重复包含的4人加了两次,所以,六(1)班人数应为25+31-4=52(人)。

以上例题告诉我们,这种有重复包含的问题,解题时应考虑排除由于相互包含而多计算的部分。

这一原理,我们称为包含排除原理。

即容斥原理。

正确运用这一原理,可以帮助我们解答抽象的数学问题。

例1:求50以内5的倍数和7的倍数的数的个数。

例2:在1到500这500个数中,不能被7和9整除的数共有多少个?例3:某班50个学生,每人至少参加一个兴趣小组,其中有37人参加科技组,25人参加作文组,求同时参加两个兴趣小组的人数相当于全班人数的百分之几?例4:50名同学参加兴趣小组,参加生物组的40人,参加数学组28人,两个兴趣小组均参加的有几人?只参加生物组跟只参加数学组人数的比是多少?例5:一家电维修站,有80%的人精通彩电修理业务,有70%的人精通冰箱修理业务,10%的人两项业务都不熟悉,求两项业务都精通的人占总数的百分之几?例6:全班同学对作文、数学、自然三科中至少有一门感兴趣,其中30人喜欢作文,32人喜欢数学,21人喜欢自然,既喜欢作文又喜欢数学的15人,既喜欢数学又喜欢自然的12人,既喜欢作文又喜欢自然的14人,三门都喜欢的有8人,求全班总人数?例7:某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这个班三项都会的至少有几人?自己练1、六(1)班54名学生都订了报纸,其中订阅《儿童报》的有34人,订阅《少年报》的有30人,有多少人订阅了两种报纸?2、1~200中,能被3和5整除的数共有几个?3、1~1000中不能被5和7整除的数共有几个?4、六(1)班有58人参加三项课外活动小组,其中32人参加文学组,24人参加美术组,30人参加音乐组,既参加文学组又参加美术组的有13人,既参加美术组又参加音乐组的有12人,既参加文学组又参加音乐组的有11人,三项活动小组都参加的有几人?5、两辆汽车从A、B两地同时出发相向而行,客车每小时行32千米,货车每小时行30千米,两车相遇后又离去。

已知出发5小时后两车相距93千米,求AB两地相距多少千米?6、100个学生中,每人至少懂一种外语,其中75人懂法语,83人懂英语,65人懂日语,懂三种语言的有50人,懂得两种外语的有几人?7、100个青年中,会骑自行车的83人,会游泳的75人,两样都不会的有10人,两样都会的有几人?8、通师二附第14届秋季运动会中,参加100米短跑的共156人,比参加200米短跑的少40人,比参加50米短跑的多26人,同时参加50米和100米短跑的有74人,同时参加200米和100米的有80人,是同时参加50米和200米人数的2倍,同时参加50米、100米和200米的有30人,求这界运动会中参加50米、100米和200米的共有多少人?9、五(6)有54人参加秋游活动,其中35人喜欢玩“捉特务”,45人喜欢玩“老鹰捉小鸡”,40人喜欢踢足球,50人喜欢跳牛皮筋,你是否可以肯定这班至少有多少学生对这四项都喜欢。

相关文档
最新文档