(word完整版)从课本到奥数六年级下册完整版本
六年级下册数学习题课件从课本到奥数 人教版 2
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
`
` ` `
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
`
` ` `
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
` `
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
`
` `
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
(word完整版)从课本到奥数六年级下册完整版本
第一周百分数1.百分数应用题(一)1.某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%。
问这个商店卖出这两件商品是赚钱还是亏本2.一桶油,第一次用了全桶的20%,第二次用了20千克,第三次用了前两次的和,这时桶里还剩8千克,问这桶油还有多少千克3.甲乙两店都经营同样的某种商品,甲先涨价10%后又降价10%,乙先涨价15%后,又降价15%,请问:两位店主谁比较聪明4.某班有学生48名,女生占全班人数的%,后来又转来了若干名女生。
这是女生人数恰好是全班人数的2/5,问共转来了多少名女生5.某工厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间有156人,求这个工厂全厂共有多少人6.小刚看一本书,第一天看了全书的1/6,第二天看了24页,第三天看前两天看的总数的150%,这时还剩下全书的1/4没有看。
全书共有多少页2.百分数应用题(二)【题型概述】商品的打折可以转化成百分数应用题解决,主要的关系式有:定价=成本×(1+利润百分数)利润百分数=(卖价-成本)÷成本×100%【典型例题】把一套西装按50%的利润定价,然后打八八折卖出,可以获得利润480元,这套西装的成本是多少元【举一反三】1.把一件女装按40%的利润定价,然后打九折卖出,可以获得利润130元,这件女装的成本是多少元2. 有一批空调,如果按每台20%的利润定价,然后按八折出售,每台空调反而亏损128元,这种空调的进货价是多少3.一批新书按定价的20%出售时,仍能获得40%的利润,那么定价时所期望的利润率是多少【拓展提高】一种自行车,甲商店比乙商店的进货价便宜5%,甲商店按20%的利润定价,乙商店按15%的利润定价,结果甲店比乙店便宜3元,乙店的进货价是多少元【奥赛训练】4.一种商品,甲商店比乙商店的进货价便宜10%,甲商店按30%的利润定价,乙商店按25%的利润定价,结果甲店比乙店便宜40元,甲店的进货价是多少元5.两家商店购进同一种商品,一店比二店的进货价便宜5%,一店按40%的利润定价,二店按25%的利润定价,结果一店比二店贵16元,二店的进货价是多少元6.有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。
小学数学六年级从课本到奥数举一反三第四周圆柱和圆锥(二)第2节圆柱的表面积和体积
4. 一个圆柱体的高是10厘米,若高减少3厘米,侧表面积比原来 减少94.2平方厘米,求原来圆柱体的体积。
答案
小学数学六年级第二学期
5.一个圆柱形水桶的侧面积是它的一个底面积的3倍,已知水桶的 底面半径是2分米,这个水桶能装多少升水?
答案
小学数学六年级第二学期
解析: 底面积:3.14×2×2 =3.14×4 =12.56(平方分米) 侧面积:12.56×3=37.68(平方分米) 圆柱的高:37.68÷(2×3.14×2) =37.68÷12.56 =3(分米) 容积:12.56×3=37.68(立方分米37.68(升) 答:这个水桶能装37.68升.
思路点拨: 圆柱体若被锯掉8厘米后,表面积减少了 251.2平方厘米,可以知道图中阴影部分的侧 面积为251.2平方厘米,所以,我们可以先求 出圆柱体的底面周长,再求出它的体积, 251.2 ÷8=31.4(厘米)
3.14 ×(31.4 ÷ 3.14 ÷ 2)2 ×20=1570(立方厘米)
小学数学六年级第二学期
小学数学六年级第二学期
小学数学 从课本到奥数
六年级第二学期
小学数学六年级第二学期
第四单元 圆柱和圆锥(二)
小学数学六年级第二学期
2.圆柱的表面积 和体积(二)
【题型概述】
根据圆柱体底面、侧面和表面积的特征,以及它们之间的 关系可以解决一些求体积的趣题,下面,我们就开始学习这方 面的知识。
小学数学六年级第二学期
点评:解答此题的关键是知道圆柱的侧面展开图正方形与圆柱的 关系,由此再灵活利用相应的公式解决问题.
小学数学六年级第二学期
2.一个圆柱体的侧面展开是一个正方形,圆柱的底面半径是10厘米, 这个圆柱体的体积是多少立方厘米?
(完整版)小学六年级下册经典奥数题及答案(最全)汇总.doc
小学六年级下册的奥数题及答案一.工程问题:1. 甲乙两个水管单独开,注满一池水,分别需要20 小时,16 小时 . 丙水管单独开,排一池水要10 小时,若水池没水,同时打开甲乙两水管,5 小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划 16 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4 小时完成,乙、丙合做需5 小时完成。
现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需 17 天完成,甲单独做这项工程要多少天完成?5. 师徒俩人加工同样多的零件。
当师傅完成了1/2 时,徒弟完成了120 个。
当师傅完成了任务时,徒弟完成了 4/5 这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽 6 棵;如果单份给女生栽,平均每人栽 10 棵。
单份给男生栽,平均每人栽几棵?7. 一个池上装有 3 根水管。
甲管为进水管,乙管为出水管,20 分钟可将满池水放完,丙管也是出水管,30 分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙 , 丙两管用了 18 分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要 2 小时,而点完一根细蜡烛要 1 小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的 2 倍,问:停电多少分钟?二.鸡兔同笼问题1. 鸡与兔共 100 只 , 鸡的腿数比兔的腿数少28 条 , 问鸡与兔各有几只 ?三.数字数位问题1.把 1 至 2005 这 2005 个自然数依次写下来得到一个多位数123456789.....2005, 这个多位数除以 9 余数是多少 ?2. A 和 B 是小于 100 的两个非零的不同自然数。
最新小学六年级奥数从课本到奥数
最新小学六年级奥数从课本到奥数一、拓展提优试题1.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.2.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.3.22012的个位数字是.(其中,2n表示n个2相乘)4.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.5.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.6.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.7.若质数a,b满足5a+b=2027,则a+b=.8.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.9.若三个不同的质数的和是53,则这样的三个质数有组.10.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.11.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.12.能被5和6整除,并且数字中至少有一个6的三位数有个.13.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.14.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.2.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.3.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.4.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.5.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.6.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.7.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.8.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.9.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.10.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.11.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.12.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.13.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4014.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.15.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。
小学六年级下册经典奥数题及答案.docx
1. 甲乙两个水管单独开,注满一池水,分别需要 20 小时, 16 小时 . 丙水管单独开,排一池水要10 小时,若水池没水,同时打开甲乙两水管,5 小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4 小时完成,乙、丙合做需5 小时完成。
现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需 17 天完成,甲单独做这项工程要多少天完成?5. 师徒俩人加工同样多的零件。
当师傅完成了1/2 时,徒弟完成了120 个。
当师傅完成了任务时,徒弟完成了4/5 这批零件共有多少个?1.如果现在是上午的 10 点 21 分, 那么在经过 28799...99( 一共有 20 个 9) 分钟之后的时间将是几点几分 ?一.排列组合问题1. 有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768种B 32种C 24种D 2的 10 次方中2.若把英语单词 hello 的字母写错了 , 则可能出现的错误共有 ( ) A119 种 B 36 种 C 59 种 D 48 种二.容斥原理问题1.有 100 种赤贫 . 其中含钙的有 68 种, 含铁的有 43 种, 那么 , 同时含钙和铁的食品种类的最大值和最小值分别是 ( )A 43,25B 32,25C32,15 D 43,112.在多元智能大赛的决赛中只有三道题 . 已知 :(1) 某校 25 名学生参加竞赛 , 每个学生至少解出一道题 ;(2) 在所有没有解出第一题的学生中 , 解出第二题的人数是解出第三题的人数的 2 倍:(3) 只解出第一题的学生比余下的学生中解出第一题的人数多 1 人;(4) 只解出一道题的学生中 , 有一半没有解出第一题 , 那么只解出第二题的学生人数是 ( )A,5B,6C,7D,83.一次考试共有 5 道试题。
(完整word版)小学六年级奥数36讲(下)
第13讲植树问题内容概述几何图形的设计与构造,本讲讲解一些有关的植树问题.典型问题1.今有10盆花要在平地上摆成5行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:2.今有9盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:3.今有10盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行·【分析与解】如下图所示:4.今有20盆花要在平地上摆成18行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:5.今有20盆花要在平地上摆成20行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:第14讲数字谜综合内容概述各种具有相当难度、求解需要综合应用多方面知识的竖式、横式、数字及数阵图等类型的数字谜问题.典型问题1.ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少?【分析与解】因为两个数的和一定时,两个数越紧接,乘积越大;两个数的差越大,乘积越小.A显然只能为1,则BCD+EFG=993,当ABCD与EFG的积最大时,ABCD、EFG最接近,则BCD尽可能小,EFG尽可能大,有BCD最小为234,对应EFG为759,所以有1234×759是满足条件的最大乘积;当ABCD与EFG的积最小时,ABCD、EFG差最大,则BCD尽可能大,EFG尽可能小,有EFG最小为234,对应BCD为759,所以有1759×234是满足条件的最小乘积;它们的差为1234×759—1759×234=(1000+234)×759一(1000+759)×234=1000×(759—234)=525000.2.有9个分数的和为1,它们的分子都是1.其中的5个是13,17,19,111,133另外4个数的分母个位数字都是5.请写出这4个分数.【分析与解】l一(13+17+19+111+133)=210133711⨯⨯⨯⨯=1010335711⨯⨯⨯⨯⨯需要将1010拆成4个数的和,这4个数都不是5的倍数,而且都是3×3×7×1l的约数.因此,它们可能是3,7,9,11,21,33,77,63,99,231,693.经试验得693+231+77+9=1010.所以,其余的4个分数是:15,115,145,1385。
小学数学六年级(从课本到奥数举一反三)下学期第十五周数学思考与综合实践(共5节)枚举法推理趣味构造
号把4个数组成算式,使计算结果等于24.
(1)3,3,7,7
(2)1,8,12,12
答案
小学数学六年级第二学期
3.已知
,其中A≠B,那么A和B分别是多少?
答案
小学数学六年级第二学期
将自然数按从1到100和从1到1000连续排成两个更大的自然数。 12 345 678 910 ……979 899 100
什么是构造呢?就是按照某种要求,经过适当的逻辑推理分 析,设计出合乎要求的模型或具体对象,也可以是设计出具体 对象来肯定或否定已提出的命题。
小学数学六年级第二学期
写出7个连续的自然数,它们都是合数。
小学数学六年级第二学期
1、写出8个连续的自然数,它们都是合数。
答案
小学数学六年级第二学期
2. 有4张卡片,上面分别写着一个自然数,请你用四则运算符号和括
1 234 567 891 011….9 989 991 000 那么,第一个数的位数与第二个数中的0的个数有什么关系?
小学数学六年级第二学期
将自然数按从1到100和从1到1000连续排成两个更大的自然数。 12 345 678 910 ……979 899 100
1 234 567 891 011….9 989 991 000 那么,第一个数的位数与第二个数中的0的个数有什么关系?
答案
小学数学六年级第二学期
3.甲、乙、丙三支足球队举行循环比赛,下表给出了部分比赛情况:
你知道甲乙丙三队之间的比赛结果吗?
答案
小学数学六年级第二学期
一次象棋比赛共有10名选手参加,他们分别 来自甲、乙、丙三个队,每个人都与其余9名选 手各赛一盘,每盘棋的胜者得1分,负者得0分, 平局各得0.5分,那么,甲、乙、丙三队的人数 分别是多少?
20XX【word直接打印】小学六年级奥数从课本到奥数图文百度文库
20XX【word直接打印】小学六年级奥数从课本到奥数图文百度文库一、拓展提优试题1.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是.2.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.3.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.4.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.5.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.6.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.7.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.8.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.9.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.10.已知自然数N的个位数字是0,且有8个约数,则N最小是.11.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.12.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.13.根据图中的信息可知,这本故事书有页页.14.被11除余7,被7除余5,并且不大于200的所有自然数的和是.15.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.【参考答案】一、拓展提优试题1.解:(1)1﹣32%﹣53%,=1﹣85%,=15%;答:蛋壳重量占鸡蛋重量的15%.(2)蛋黄重量:60×32%=19.2(克),蛋白重量:60×53%=31.8(克),蛋壳重量:60×15%=9(克),所以最接近32克的组成部分是蛋白.答:最接近32克的组成部分是蛋白.故答案为:15,蛋白.2.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.3.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.4.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.5.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.6.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.7.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.8.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.9.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.10.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.11.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:912.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.13.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.14.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.15.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.。
20XX小学六年级奥数从课本到奥数图文百度文库
一、拓展提优试题1.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.2.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.3.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.4.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.5.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.6.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.7.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.8.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?9.若质数a,b满足5a+b=2027,则a+b=.10.被11除余7,被7除余5,并且不大于200的所有自然数的和是.11.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.12.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.15.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.16.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.17.若(n是大于0的自然数),则满足题意的n的值最小是.18.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.19.已知两位数与的比是5:6,则=.20.根据图中的信息可知,这本故事书有页页.21.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.22.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).23.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).24.分子与分母的和是2013的最简真分数有个.25.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.26.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.27.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.28.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.29.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点A n,然后从点A n出发继续爬行,若点O 记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.30.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.31.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.32.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.33.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.34.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.35.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.36.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.37.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.38.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.39.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)40.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.【参考答案】一、拓展提优试题1.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.2.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.3.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%4.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.5.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.6.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:97.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.8.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.11.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.12.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.15.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.16.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100017.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:318.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.19.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.20.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.21.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.22.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.23.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.24.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.25.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.26.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.27.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.28.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.29.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).30.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.31.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.32.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.33.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.34.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.35.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.36.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.37.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.38.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.39.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.40.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.。
成才教育-六年级从课本到奥数下册
第一讲逻辑推理(二)例11 一次数学考试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“×”.记分的方法是:答对一题给2分;不答的给1分;答错的不给分.已知A、B、C、D、E、F、G七人的答案及前六个人的得分记录在表中,请在表中填出G的得分,并简单说明你的思路。
例12 李英、赵林、王红三人参加全国小学生数学竞赛,他们是来自金城、沙市、水乡的选手,并分别获得一、二、三等奖.现在知道:例13 李云和他哥哥参加一次集会,同时出席的还有其他两对兄弟.见面后有的人握手问候,没有人和自己的兄弟问候,也没有人和同一个人握两次手.事后李云发现除自己外每个人握手次数互不相同,问李云握了几次手?李云的哥哥握了几次手?例14 红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。
例15 有A、B、C三个足球队,每两队都比赛一场,比赛结果是:A有一场踢平,共进球2个,失球8个;B两战两胜,共失球2个;C共进球4个,失球5个,请你写出每队比赛的比分。
例16 北京至福州列车里坐着6位旅客:A、B、C、D、E、F.分别来自北京、天津、上海、扬州、南京和杭州,已知①A和北京人是医生;E和天津人是教师;C和上海人是工程师。
②A、B、F和扬州人参过军,而上海人从未参军。
③南京人比A岁数大;杭州人比B岁数大;F最年轻。
④B和北京人一起去扬州;C和南京人一起去广州。
例17 甲、乙、丙三人分别在北京、天津、上海的中学教数学、物理、化学.已知①甲不在北京;②乙不在天津;③在北京的人不教化学;④在天津的人教数学;⑤乙不教物理。
根据以上情况判断,甲、乙、丙三人分别在何处教何课程?第二讲旋转体的计算例1 甲、乙两个圆柱形水桶,容积一样大,甲桶底圆半径是乙桶的1.5倍,乙桶比甲桶高25厘米,求甲、乙两桶的高度.例2 一块正方形薄铁板的边长是22厘米,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁板围成一个圆锥筒,求它的容积(结果取整数部分).2米,圆锥的高为1米,这堆谷重约多少公斤(谷的比重是每立方米重720公斤,结果取整数部分)?例4 有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,再把石子全部拿出来,求此时容器内水面的高度.例5 有一草垛,如下图,上部是圆锥形,下部是圆台形,圆锥的高为0.7米,底面圆周长为6.28米,圆台的高为1.5米,下底面周长为4.71米.如果每立方米草约重150公斤,求这垛草的重量(结果取整数部分).例6 如下右图,在长为35厘米的圆筒形管子的横截面上,最长直线段为20厘米,求这个管子的体积.例7 一个长方形的长为16厘米,宽为12厘米.以它的一条对角线为轴旋转此长方体,得到一个旋转体.求这个旋转体的体积.(结果中保留π,即不用近似值代替π.)第三讲列方程解应用题例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数.例2电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高25%,完成计划还要多少天?例3有一项工程,由甲单独做,需12天完成,丙单独做需20天完成.甲、乙、丙合作,需5天完成.如果这项工程由乙单独做,需几天完成?例4中关村中学数学邀请赛中,中关村一、二、三小六年级大约有380~450人参赛.比赛结果全体学生的平均分为76分,男、女生平均分数分别为79分、71分.求男、女生至少各有多少人参赛?例5瓶子里装有浓度为15%的酒精1000克.现在又分别倒入100克和400克的A、B两种酒精,瓶子里的酒精浓度变为14%.已知A种酒精的浓度是B种酒精的2倍,求A种酒精的浓度.例6有人用车把米从甲地运到乙地,装米的重车日行50里,空车日行70里,5日往返三次.问两地相距多少里?(选自《九章算术》)例8兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍.问,3年后兄弟二人各几岁?第四讲最大与最小问题例1把14拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大?例2已知p·q-1=x,其中p、q为质数且均小于1000,x是奇数,那么x的最大值是____.例4求同时满足a+b+c=6,2a-b+c=3,且b≥c≥0的a的最大值及最小值.的根为自然数,则最小自然数a=____.例5 5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟.如果只有一个水龙头,试问怎样适当安排他们的打水顺序,使所有人排队和打水时间的总和最小?并求出最小值.例6一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开多少个进水管?例7在一条公路上,每隔100千米有一个仓库,共5个.一号仓库存货10吨,二号仓库存货20吨,五号仓库存货40吨,三、四号仓库空着.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.8元运费,那么最少要花多少运费?例8若干箱货物总重19.5吨,每箱重量不超过353千克,今有载重量为1.5吨的汽车,至少需要几辆,才能把这些箱货物一次全部运走?三、最短的路线(几何中的最大最小问题)例9 下图,直线l表示一条公路,A、B表示公路同一侧的两个村子,现在要在公路l上修建一个汽车站,问这个汽车站建在哪一点时,A村与B村到汽车站的距离之和最短?例10 设牧马营地在M,每天牧马人要赶着马群先到河边饮水,再到草地吃草,然后回营地.问:怎样的放牧路程最短?第五讲综合题选讲(一)例1 王师傅一月份生产450个零件.合格率为80%.二月份产品合格率90%,又知二月份比一月份少出废品18个,王师傅一、二月份共生产合格零件多少个?千克?油桶重多少?例3 甲、乙、丙三个工人合做一件工作,16天完成,共得工资120元.这件工作如由甲单独做40天可完成;由乙单独做48天可完成.现在工资是按所完成的工作量分配,三人各应得多少元?例4甲、乙、丙、丁四人共同生产一批零件,甲生产的占其他三人生例5今年爷爷的年龄是小明年龄的6倍,几年后爷爷的年龄是小明年龄的5倍.又过几年以后,爷爷年龄将是小明年龄的4倍,爷爷今年是多少岁?例6 一辆车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达;如果以原速行驶120千米后,再将速度提高25%,可以提前40分钟到达乙地.那么,甲乙两地相距多少千米?例7小玲沿某公路以每小时4千米速度步行上学,沿途发现每隔9分钟有一辆公共汽车从后面超过她,每隔7分钟遇到一辆迎面而来的公共汽车.若汽车发车的间隔时间相同,而且汽车的速度相同,求公共汽车发车的间隔是多少分钟?例8某水池有甲、乙、丙三个放水管.每小时甲能放水100升,乙能放水125升.现在先使用甲管放水,2小时后,又开始使用乙管,让甲、乙两管同时放水,再过一段时间后,又加入丙管放水.直到把池中水全部放完.计算甲、乙、丙三管的放水量,发现它们恰好相同.问池中原有水多少升?例9两个小孩在圆形跑道上从同一点A出发按相反方向运动,他们的速度分别是5米/秒,9米/秒.如果他们同时出发并当他们在A点第一次相遇时候结束,那么他们从出发到结束之间相遇的次数是多少?(不包括出发和结束的两次)第六讲速算与巧算综合练习1.计算:2.计算:(123456+234561+345612+456123+561234+612345)÷63.计算:1994×19931993-1992×199419944.计算:5.计算:1+2-3-4+5+6-7-8+9+10-…+19946.计算:4726342+4726352-472633×472635- 472634×4726367.计算:8.计算:9.计算10.计算:11.计算:12.计算:13.已知等式其中□内是一个最简分数,试求□内的分数.14.计算:12345678910111213÷31211101987654321,商的小数点后前三位数字各是什么?15.计算:16.D是1至1999的所有奇数之和,N是2至1998所有偶数之和.求D-N的值.18.若已知12+22+32+42+…+252=5525,试求22+42+62+82+…+502之值.19.现规定符号“○”表示选择两数中较大数的运算,“★”表示选择两数中较小数的运算.例如5○3=3○5=5,5★3=3★5=3.试计算:21.(外国趣题)巴黎有居民2754842人,若依次给每个人编一个号码(从1至2754842号),请你算一算,为了编这些号码,需要使用多少个阿拉伯数字?所有号码相加的和是多少?(精确到百万)习题一1.A、B、C、D四位同学参加60米赛跑的决赛.赛前,四位同学对比赛结果各说了如下的一句话:A说:“我会得第一名.”B说:“A、C都不会取得第一名.”C说:“A或B会得第一名.”D说:“B会得第一名.”结果有两位同学说对了.试问:谁会获得这次决赛的第一名?2.A、B、C、D四人同住一间寝室,其中一人在修指甲,一人在洗头,一人在画画,另一人在看书,已知:①A不在修指甲,也不在看书;②B不在画画,也不在修指甲;③若A不在画画,则D不在修指甲;④C既不在看书,也不在修指甲;⑤D不在看书,也不在画画。
小学六年级奥数课件:从课本到奥数
每个盒子先放一个球,还剩3个球 把三个球放入三个不同盒子里有4种方法; 把他们都放入一个盒子有4种方法; 把两个放入一个盒子,一个放入另一个盒子有4X3=12种方法, 加起来共4+4+12=20种方法.
14 4 32
蓝色一圈可以旋转 一周,有6种方法。
3 2 43
34 4 23 2314
蓝色一圈可以旋转 一周,有6种方法, 2可以在左下角也
-0.4
+4500米 顺
-1
180
5 +2
西
+3
西
6
-3
先向西爬行4厘米,接着向东爬行7厘米
-1500
支取2000元 +3000
存入3552元
(600+2650+3900)-(220+150+580+8+1200)=+4732(元)
-7<-二又五分之一<-1.8<-1/4<0.35<8/5<5.1
8角的2本.
第四位,42角=5X2+8X4,
8角的4本.
第五位,43角=5X7+8,
8角的1本.
第六位,只比第一位多买一本5角的,8角的相同,依次类推.
总共(3+0+2+4+1)X(100÷5)=200(本)
甲第1秒钟6.6米,第2秒钟13.2米,第3秒钟26.4米,第4秒钟52.8米, 乙第1秒钟2.9米,第2秒钟8.7米,第3秒钟26.1米,第4秒钟78.3米, 前3秒钟甲比乙多 (6.6-2.9)+(13.2-8.7)+(26.4-26.1)=8.5米 8.5÷(78.3-52.8)=1/3分 出发后经过3又1/3分乙追上甲.也就是200秒
最新小学六年级奥数从课本到奥数word百度文库
最新小学六年级奥数从课本到奥数word百度文库一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.4.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.5.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.6.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.7.已知自然数N的个位数字是0,且有8个约数,则N最小是.8.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.9.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.10.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?11.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.12.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.13.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.14.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.15.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.4.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.5.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.6.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.7.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.8.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.9.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.10.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.11.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.12.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.13.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.14.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.15.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.。
完整word版本小学六年级的奥数培训教材.doc
完整word版本⼩学六年级的奥数培训教材.doc六年级拔尖数学⽬录第1 讲定义新运算第2 讲简单的⼆元⼀次不定⽅程第3 讲分数乘除法计算第4 讲分数四则混合运算第 5 讲估算第6 讲分数乘除法的计算技巧第7 讲简单的分数应⽤题( 1)第8 讲较复杂的分数应⽤题( 2)第9 讲阶段复习与测试(略)第10 讲简单的⼯程问题第11 讲圆和扇形第12 讲简单的百分数应⽤题第13 讲分数应⽤题复习第14 讲综合复习(略)第15 讲测试(略)第16 讲复杂的利润问题( 2)第⼀讲定义新运算在加 .减 .乘 .除四则运算之外,还有其它许多种法则的运算。
在这⼀讲⾥,我们学习的新运算就是⽤“ #”“ *”“Δ”等多种符号按照⼀定的关系“临时”规定的⼀种运算法则进⾏的运算。
例1:如果 A*B=3A+2B ,那么 7*5 的值是多少?例 2:如果 A#B 表⽰A B照这样的规定,6#( 8#5)的结果是多少?3例 3:规定X YXY10 10 的值。
求 2X Y例4:设 M*N 表⽰ M 的 3 倍减去 N 的 2 倍,即 M*N=3M-2N (1)计算( 14 *10 )*6(2)计算(8*3)5 4 2例5:如果任何数 A 和 B 有 A ¤ B=A ×B- ( A+B )求( 1) 10¤ 7(2)( 5¤ 3)¤ 4(3)假设 2¤ X=1 求 X例 6:设 P∞ Q=5P+4Q,当 X∞9=91 时, 1/5 ∞( X∞ 1/4 )的值是多少?例 7:规定 X*Y= AX Y,且5*6=6*5则(3*2)*(1*10)的值是多少?XY例 8:▽表⽰⼀种运算符号,它的意义是1 1X YA)( Y A)XY ( X已知 2 1 11 22 (2 1)(1 A) 3那么 20088▽ 2009=?巩固练习1、已知 2▽ 3=2+22+222=246;3▽4=3+33+333+3333=3702;按此规则类推( 1)3▽ 2(2)5▽3( 3)1▽ X=123,求 X 的值2、已知 1△ 4=1× 2× 3× 4;5△ 3=5×6× 7计算( 1)( 4△ 2) +( 5△3)( 2)( 3△ 5)÷( 4△ 4)3、如果 A*B=3A+2B ,那么( 1) 7*5 的是多少?( 2)( 4*5 ) *6 ( 3)( 1*5 ) *( 2*4 )4、如果 A>B ,那么{ A , B} =A ;如果 A求( 1){ 8,0.8}(2){{1.9,1.901}1.19}5、 N ⾃然数,定F( N) =3N-2例如F(4)=3×4-2=10求: F(1) +F( 2) +F( 3)+F ( 4)+F ( 5)+?? +F( 100)的6、如果 1=1!1× 2=2 !1× 2× 3=3!1× 2× 3× 4×??× 100=100!7、若“ +、-、×、÷、 =、()”的意是通常情况,⽽式⼦中的“5”却相当于“ 4”。
从课本到奥数(整理稿)
1.百分数应用题(一)1.某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%。
问这个商店卖出这两件商品是赚钱还是亏本?2.一桶油,第一次用了全桶的20%,第二次用了20千克,第三次用了前两次的和,这时桶里还剩8千克,问这桶油还有多少千克?3.甲乙两店都经营同样的某种商品,甲先涨价10%后又降价10%,乙先涨价15%后,又降价15%,请问:两位店主谁比较聪明?4.某班有学生48名,女生占全班人数的37.5%,后来又转来了若干名女生。
这是女生人数恰好是全班人数的2/5,问共转来了多少名女生?5.某工厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间有156人,求这个工厂全厂共有多少人?6.小刚看一本书,第一天看了全书的1/6,第二天看了24页,第三天看前两天看的总数的150%,这时还剩下全书的1/4没有看。
全书共有多少页?【题型概述】商品的打折可以转化成百分数应用题解决,主要的关系式有:定价=成本×(1+利润百分数)利润百分数=(卖价-成本)÷成本×100%【典型例题】把一套西装按50%的利润定价,然后打八八折卖出,可以获得利润480元,这套西装的成本是多少元?【举一反三】1.把一件女装按40%的利润定价,然后打九折卖出,可以获得利润130元,这件女装的成本是多少元?2. 有一批空调,如果按每台20%的利润定价,然后按八折出售,每台空调反而亏损128元,这种空调的进货价是多少?3.一批新书按定价的20%出售时,仍能获得40%的利润,那么定价时所期望的利润率是多少?【拓展提高】一种自行车,甲商店比乙商店的进货价便宜5%,甲商店按20%的利润定价,乙商店按15%的利润定价,结果甲店比乙店便宜3元,乙店的进货价是多少元?【奥赛训练】4.一种商品,甲商店比乙商店的进货价便宜10%,甲商店按30%的利润定价,乙商店按25%的利润定价,结果甲店比乙店便宜40元,甲店的进货价是多少元?5.两家商店购进同一种商品,一店比二店的进货价便宜5%,一店按40%的利润定价,二店按25%的利润定价,结果一店比二店贵16元,二店的进货价是多少元?6.有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。
(完整版)小学六年级下册最新经典奥数题及答案(最全)汇总
小学六年级下册的奥数题及答案一.工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
成才教育~六年级从课本到奥数下册
例5有一草垛,如下图,上部是圆锥形,下部是圆台形,圆锥的高为0.7米,底面圆周长为6.28米,圆台的高为1.5米,下底面周长为4.71米.如果每立方米草约重150公斤,求这垛草的重量(结果取整数部分).
例13李云和他哥哥参加一次集会,同时出席的还有其他两对兄弟.见面后有的人握手问候,没有人和自己的兄弟问候,也没有人和同一个人握两次手.事后李云发现除自己外每个人握手次数互不相同,问李云握了几次手?李云的哥哥握了几次手?
例14红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。
例7在一条公路上,每隔100千米有一个仓库,共5个.一号仓库存货10吨,二号仓库存货20吨,五号仓库存货40吨,三、四号仓库空着.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.8元运费,那么最少要花多少运费?
例8若干箱货物总重19.5吨,每箱重量不超过353千克,今有载重量为1.5吨的汽车,至少需要几辆,才能把这些箱货物一次全部运走?
第二讲旋转体的计算
例1甲、乙两个圆柱形水桶,容积一样大,甲桶底圆半径是乙桶的1.5倍,乙桶比甲桶高25厘米,求甲、乙两桶的高度.
例2一块正方形薄铁板的边长是22厘米,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁板围成一个圆锥筒,求它的容积(结果取整数部分).
2米,圆锥的高为1米,这堆谷重约多少公斤(谷的比重是每立方米重720公斤,结果取整数部分)?
例6如下右图,在长为35厘米的圆筒形管子的横截面上,最长直线段为20厘米,求这个管子的体积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一周百分数1. 百分数应用题(一)1. 某商店同时卖出两件商品,每件各得60 元,但其中一件赚20%,另一件亏本20%。
问这个商店卖出这两件商品是赚钱还是亏本2. 一桶油,第一次用了全桶的20%,第二次用了20 千克,第三次用了前两次的和,这时桶里还剩8 千克,问这桶油还有多少千克3. 甲乙两店都经营同样的某种商品,甲先涨价10%后又降价10%,乙先涨价15% 后,又降价15%,请问:两位店主谁比较聪明4. 某班有学生48 名,女生占全班人数的%,后来又转来了若干名女生。
这是女生人数恰好是全班人数的2/5,问共转来了多少名女生5. 某工厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间有156 人,求这个工厂全厂共有多少人6. 小刚看一本书,第一天看了全书的1/6,第二天看了24 页,第三天看前两天看的总数的150%,这时还剩下全书的1/4 没有看。
全书共有多少页2. 百分数应用题(二)【题型概述】商品的打折可以转化成百分数应用题解决,主要的关系式有:定价=成本X (1 +利润百分数)利润百分数=(卖价—成本)十成本X 100%【典型例题】把一套西装按50%的利润定价,然后打八八折卖出,可以获得利润480元,这套西装的成本是多少元举一反三】1. 把一件女装按40%的利润定价,然后打九折卖出,可以获得利润130元,这件女装的成本是多少元2. 有一批空调,如果按每台20%的利润定价,然后按八折出售,每台空调反而亏损128元,这种空调的进货价是多少3. 一批新书按定价的20%出售时,仍能获得40%的利润,那么定价时所期望的利润率是多少【拓展提高】一种自行车,甲商店比乙商店的进货价便宜5%,甲商店按20%的利润定价,乙商店按15%的利润定价,结果甲店比乙店便宜3元,乙店的进货价是多少元【奥赛训练】4. 一种商品,甲商店比乙商店的进货价便宜10%,甲商店按30%的利润定价,乙商店按25%的利润定价,结果甲店比乙店便宜40 元,甲店的进货价是多少元5. 两家商店购进同一种商品,一店比二店的进货价便宜5%,一店按40%的利润定价,二店按25%的利润定价,结果一店比二店贵16 元,二店的进货价是多少元6. 有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18% 时,这两家商场的利润相同。
那么,原来第一家商场是第二家商场利润的多少倍(2005 年全国小学数学奥林匹克决赛)3. 银行里的数学【题型概述】在银行存款的方式有很多,如活期,整存整取,零存整取等,运用“利润= 本金X利率X时间”就可以轻松的解决这些问题。
【典型例题】王华在中国建设银行办理了10000元的定活两便储蓄,利率按一年定期利率的60%打折,两年后支取,已知一年定期的利率是%,扣除5%的利息税,王华可拿到多少元利息【举一反三】1 . 小虎在中国银行办理30000元的定活两便储蓄,利率按一年定期利率的60%打折,三年后支取,已知一年定期存款的年利率是%,扣除5%的利息税,小虎可拿到多少元利息2. 施阿姨在2007年8月1日将积蓄的20000元存入工商银行,办理了定活两便储蓄,利率按一年定期利率的60%打折计算,她于2009年8月1日到银行支取,已知一年定期的年利率是%,扣除5%的利息税,施阿姨一共可以拿到多少元3. 大宝在银行办理了5000元的定活两便储蓄,年利率按一年定期利率的60%打折,两年后支取;同时小宝也办理了5000元的两年定期储蓄,已知一年定期存款的年利率是%,扣除5%的利息税,大宝和小宝拿到的利息相差多少元拓展提高】小红的爸爸在两年前把一笔钱存入银行,年利润是%,定期两年,到期后,扣除5%的利息税,共取得利息元,小红爸爸存入的本金是多少元【奥赛训练】4. 4. 小霞把一笔钱存入了银行,年利率是%,定期一年,到期后,扣除5%的利息税,共取得利息元,小霞存入的本金是多少元5. 丹丹的爸爸为了支援国家建设,购买了一批国债,为期五年,利率是%,已知到期拿到3375 元利息,求丹丹爸爸花了多少钱买国债6. 王先生因急用钱,将现有的两种股票售出,甲种股票卖价1200 元,盈利20%;乙种股票恰好也卖了1200 元,但亏损20%;王先生此次交易盈利还是亏本多少元第二周百分数的应用1. 浓度问题(一)【题型概述】溶液的溶度也是百分数的一种应用,求溶液的浓度,一般用公式:溶液的浓度=溶质质量X 100%【典型例题】把20 克糖放入80 克水中进行溶解,溶解后的糖水浓度是多少【举一反三】1、把50克糖放入200克水中进行溶解,溶解后的糖水浓度是多少2、把30克盐放入270克水中进行溶解,溶解后的盐水浓度时多少3、小林将50克糖放在250克水中进行溶解,后来又加入了1 00克水,这时糖水的浓度是多少【拓展提高】将浓度是20%的酒精溶液100克与浓度30%的酒精溶液300克混合,混合后的酒精溶液浓度是多少奥赛训练】4、将浓度是15%的酒精溶液100 克与浓度是24%的酒精溶液200克混合,混合后的酒精溶液浓度是多少5、浓度10%的酒精溶液50克,浓度15%的酒精溶液50 克与浓度12%的酒精溶液100克混合,混合后的酒精溶液浓度是多少6、瓶内装满水,倒出全部水的1/2,然后灌入同样多的酒精,又倒出全部溶液的1/3,又用酒精灌满,然后再倒出全部溶液的1/4,再用酒精灌满,这时的酒精占全部溶液的百分之几(天津市小学六年级数学学科决赛)2. 浓度问题(二)【题型概述】有些时候需要把一种浓度的溶液变成另一种浓度的溶液,如果是变“稀” ,那么就只有加水,如果是变“浓” ,则需要加溶质或者蒸发水,今天我们就学习这种类型的浓度问题。
【典型例题】一种盐水的浓度是20%,加入800 克水后,它的浓度变为12%,这种盐水溶液原来有多少克举一反三】1、一种盐水的浓度是25%,加入800 克水后,它的浓度变为20%,这种盐水溶液原来有多少克2、一种糖水的浓度是10%,加入30 克糖后,它的浓度变为15%,这种糖水溶液原来有多少克3、要配置%的氨水1000 千克,需要向多少千克浓度为10%的氨水中加进多少千克的水才能配成拓展提高】有一种浓度为8%的酒精溶液400 克,要使酒精溶液的浓度变为12%,该怎么办【奥赛训练】4. 有含盐10%的盐水45 千克,要变成含盐15%的盐水需加盐多少千克5. 有含盐10%的盐水45 千克,要变成含盐15%的盐水需要蒸发掉多少千克水6. 有甲乙两个同样的杯子,甲杯子中有半杯清水,乙杯子中盛满了含50%酒精的溶液,先将乙杯子中酒精溶液的一半倒入甲杯,搅匀后,再将甲杯中酒精溶液的一半倒入乙杯,求这时乙杯中的酒精是溶液的几分之几(1991 年全国“华罗庚杯”少年数学邀请赛)第三周61.历年潍坊市名校奥数题在3时与4时之间,时针与分针有( )次夹角是90° 半径为r 的圆与边长为r 的正方形的面积,( 10 12 15 30 20 60 在17、19、 1 (1—2 )X 7 _ -8 )X (8—9 )X 5、计算:错误! 1、 2、 3、 4、 23、43、37、89中,最大的是(2 (2 —3 8 )的面积大3 4 _ _ X (3 — 4 )X (4 — 5 )X (5—云)X ( 6—* )X ( 7 9 (9— )的值是( 6、 455 1326 2223 1311 7X 11X 13 +11X 13X 17 +13X 17X 19 +17X 19X 235 15 4 40 103 , 7、 比较7179^ 309中哪个最大 8、 比较每组中几个分数的大小 “15 10 12 ① 125、弔、吨 ② 工、2、工 71 、 91 、 111③ 1997 1998 ③19981999 1 9、若 A=20072-2007+1 B=20072-2007 X 2008+ 20072 比较 A 与 B 的大小 10、 十亠工 … 2003 2002 一 2003 2002 ”亠] 不求和,比较 20052004 +20042005 与 20062004 +20032005 的大小 11、 已知A=错误! X B=错误! X8.75 A 与B 较大的是 _____________12、 1998 1997 1996 1995 1999 1998 1997 1996 中,最小的一个数疋 13、 小路买2支铅笔和3块橡皮共用了 18元,小思买同样的1支铅笔和2块 橡皮共用去11元,买1支铅笔是( )元 14、 潍坊创建文明城市,现有小明、小亮、小华到南胡居委会打扫卫生,小明与小亮合作需6小时完成,小亮与小华合作需9小时完成,小明与小华合 作需15小时完成,为了节约时间,三人决定一块干,你认为他们多少小时能够完成任务15、建立有主见的、独立的,敢于创新的方法对今后的学习和工作都有帮助,拓展视野,增长知识。
在小学,同学们已经学习了各种运算,现在给一个新符号“。
”,发挥你的聪明智慧,定义新运算“。
”,对于任何数a和b都有: a° b=axb-(a+b)⑴求: 3o 5⑵如果2o x=1,求x16、实验初中将组织初一、初二,1180名学生到北岩远古火山口去参加地理实践活动。
共24个班级,每个班级都有2名教师带队,请你根据以下租车的单价表设计一种17、幸福小学举行一次数学竞赛,在参赛学生中平均每15人里面有3人获-等奖,平均每8人里有人获二等奖,平均每12人里有4人获三等奖,合计共有188人获奖。
参加这次数学竞赛的学生一共有多少人18、学校到中百超市购买了4只足球和6只排球,共花去660元。
后来中百超市的足球单价涨了10%,排球单价便宜了15%,这样共需要636元。
求原来足球和排球的单价各是多少元19、一段路程分为上坡、平路、下坡三段,各段路程的比是1:2:3,某人走这三段路所用时间的比是4:5:6.已知上坡的速度是每小时3千米,路程全长是50千米。
求此人走完全程用了多少小时第四周复习题1计算.1 1 1 1 =〔、计算:1*2 +2*3 +3*4 +. ............... +44*45 = ---------------------1 1 12、若8 =9巾则N= ------------------------3、把10克盐放入100克水中,盐占盐水_______________4、六年级一班有56名学生,男生29人,女生27人,参加奥数小组的有32 人,参加科技小组的有28人,两个小组都没有参加的有20人,两个小组都参加的有人。
15、7 = ........... 小数点后第100位是_____________&在3时至4时之间,时针和分针有_________________ 次夹角是90°7、菜地里葡萄获得丰收,收入全部的3/8时,装满了4筐还多36千克,取完其余部分时,又刚好装满了8筐,共收_____________ 千克葡萄8、把12拆分成两个自然数的和,在求出这两个自然数的积,要使这个积最大,应该拆分成_____________9、马家四个儿子决定共同出钱为父母买一台家用电脑,老大出的钱是其他三人总数的1/2,老二出的钱是另外三人出的钱的总数的1/3,老三出的钱是另外三个出的钱的总数的1/4老四比老三多出80元,父母喜欢一台4600元的电脑,问儿子出的钱能满足父母的愿望么10、学校组织了“关爱社会,勇于实践”为主题的卖书活动,科技类按20%的利润卖出,卖出价是24元,文学类按10%的亏损卖出,卖出价是27元,你认为科技类和文学类两类书的成本谁多多多少11、一个长方形,长和宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182厘米,那么原来长方形的面积是多少平方厘米12、把一根竹签直插水底,竹竿湿了40厘米,然后将竹竿倒过来直插水底,这是竹竿湿的部分比它的1/2少13厘米,求竹竿全长第五周圆柱与圆锥(一)1、圆柱的表面积(一)【题型概述】今天,我们将学习圆柱体表面积的一些运用,解决这些问题,有时需要结合实际,明确所求圆柱体的表面积有几个面,有时需要灵活的利用条件间接得出所需要的数据进行计算。