小波分析基础知识PPT课件
合集下载
第六章小波分析基础ppt课件
1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,
《小波分析》课件
小波变换与其他数学方法的结合
小波变换与傅里叶分析的结合
小波变换作为傅里叶分析的扩展,能够提供更灵活的时频分析能力,适用于非平稳信号 的处理。
小波变换与数值分析的结合
小波变换在数值分析中可用于函数逼近、数值积分、微分方程求解等领域,提高计算效 率和精度。
小波变换在大数据分析中的应用
特征提取
小波变换能够提取大数据中隐藏的时间或频 率特征,用于分类、聚类和预测等任务。
正则性
小波基的正则性是指其在时频域的连续性和光滑 性,影响信号重构的精度和稳定性。
01
小波变换在信号处 理中的应用
信号的降噪处理
总结词
通过小波变换,可以将信号中的噪声成 分与有用信号分离,从而实现降噪处理 。
VS
详细描述
小波变换具有多尺度分析的特点,能够将 信号在不同尺度上进行分解,从而将噪声 与有用信号分离。在降噪处理中,可以选 择合适的小波基和阈值处理方法,对噪声 进行抑制,保留有用信号。
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
图像的压缩编码
01
通用性强
02
小波变换的通用性强,可以广泛 应用于各种类型的图像压缩,包 括灰度图像、彩色图像、静态图 像和动态图像等。
图像的边缘检测
精确检测
小波变换具有多尺度分析的特性,能 够检测到图像在不同尺度下的边缘信 息,实现更精确的边缘检测。
图像的边缘检测
抗噪能力强
小波变换能够有效地抑制噪声对边缘 检测的影响,提高边缘检测的准确性 和稳定性。
信号的压缩编码
总结词
小波变换可以将信号进行压缩编码,减小存储和传输所需的带宽和空间。
详细描述
小波分析课件第四章多分辨分析和正交小波变换
其他领域
正交小波变换还广泛应用于金 融、医学、地球物理等领域的 数据分析和处理。
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都是小波分析中的重要概念,共同构成了小波 分析的基础。
多分辨分析为正交小波变换提供了理论框架,正交 小波变换是多分辨分析的具体实现。
正交小波变换可以看作是多分辨分析的一种特例, 其中尺度函数和小波函数都是正交的。
正交小波变换的应用场景
ቤተ መጻሕፍቲ ባይዱ01
02
03
04
信号处理
正交小波变换在信号处理中主 要用于信号去噪、压缩和特征 提取等。
图像处理
正交小波变换在图像处理中主 要用于图像压缩、去噪、增强 和特征提取等。
数据压缩
正交小波变换可用于数据压缩 领域,特别是对于非平稳信号 和图像数据的压缩,具有较好 的压缩效果和重建精度。
多分辨分析与正交小波变换的区别
02
01
03
多分辨分析主要关注的是函数在不同尺度上的表示, 而正交小波变换更注重在不同尺度上的细节信息。
正交小波变换具有更好的灵活性和适应性,可以针对 特定问题设计特定的小波函数和尺度函数。
正交小波变换在信号处理、图像处理等领域的应用更 为广泛,而多分辨分析更多用于理论分析。
正交小波变换的算法与实现
算法
正交小波变换的算法主要包括一维离散正交小波变换和二维离散正交小波变换。一维离散正交小波变换的算法包 括Mallat算法和CWT算法等,而二维离散正交小波变换的算法主要基于图像分块处理。
实现
正交小波变换的实现通常需要使用数字信号处理库或图像处理库,如Python的PyWavelets库或OpenCV库等。
小波分析课件第四章多分辨分析和正交小波变换
小波分析课件第四章 多 分辨分析和正交小波变换
• 多分辨分析概述 • 正交小波变换原理 • 多分辨分析与正交小波变换的关系 • 正交小波变换的实现方法 • 正交小波变换的实例分析
01
多分辨分析概述
定义与特点
定义
多分辨分析是从小尺度到大尺度逼近 研究对象的一种分析方法,它能够同 时揭示研究对象在不同尺度上的特征 。
多分辨分析在信号处理中能够提 供更加准确和全面的信息,有助 于更好地理解和分析信号。
多分辨分析的历史与发展
1 2 3
历史回顾
多分辨分析的思想起源于20世纪80年代,随着 小波理论的不断发展,多分辨分析逐渐成为研究 热点。
当前研究
目前,多分辨分析在理论和应用方面都取得了重 要进展,广泛应用于图像处理、信号处理、数值 计算等领域。
模式识别
正交小波变换可以用于特征提取和 模式分类等任务。
03
02
图像处理
正交小波变换可以用于图像的压缩、 去噪、增强等处理。
数值分析
正交小波变换可以用于求解偏微分 方程、积分方程等数学问题。
04
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都基于多尺度分析思想
多分辨分析和小波变换都是从不同尺度上分析信号,能够捕捉到 信号在不同尺度上的特征。
优点
连续小波变换能够更好地适应信号的突变和非线性特性, 能够更准确地描述信号的局部特征。
缺点
连续小波变换的计算复杂度较高,需要更多的计算资源和 时间,同时对于非连续信号的处理也存在一定的困难。
基于滤波器的小波变换
01 02
定义
基于滤波器的小波变换是一种通过设计特定的滤波器来实现小波变换的 方法,通过滤波器对信号进行卷积操作,可以得到不同尺度上的小波系 数。
• 多分辨分析概述 • 正交小波变换原理 • 多分辨分析与正交小波变换的关系 • 正交小波变换的实现方法 • 正交小波变换的实例分析
01
多分辨分析概述
定义与特点
定义
多分辨分析是从小尺度到大尺度逼近 研究对象的一种分析方法,它能够同 时揭示研究对象在不同尺度上的特征 。
多分辨分析在信号处理中能够提 供更加准确和全面的信息,有助 于更好地理解和分析信号。
多分辨分析的历史与发展
1 2 3
历史回顾
多分辨分析的思想起源于20世纪80年代,随着 小波理论的不断发展,多分辨分析逐渐成为研究 热点。
当前研究
目前,多分辨分析在理论和应用方面都取得了重 要进展,广泛应用于图像处理、信号处理、数值 计算等领域。
模式识别
正交小波变换可以用于特征提取和 模式分类等任务。
03
02
图像处理
正交小波变换可以用于图像的压缩、 去噪、增强等处理。
数值分析
正交小波变换可以用于求解偏微分 方程、积分方程等数学问题。
04
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都基于多尺度分析思想
多分辨分析和小波变换都是从不同尺度上分析信号,能够捕捉到 信号在不同尺度上的特征。
优点
连续小波变换能够更好地适应信号的突变和非线性特性, 能够更准确地描述信号的局部特征。
缺点
连续小波变换的计算复杂度较高,需要更多的计算资源和 时间,同时对于非连续信号的处理也存在一定的困难。
基于滤波器的小波变换
01 02
定义
基于滤波器的小波变换是一种通过设计特定的滤波器来实现小波变换的 方法,通过滤波器对信号进行卷积操作,可以得到不同尺度上的小波系 数。
小波基础知识 PPT课件
设T : X
军事电子对抗与武器的智能化;计算机分 类与识别;音乐与语言的人工合成;医学 成像与诊断;地震勘探数据处理;大型机 械的故障诊断等方面;例如,在数学方面, 它已用于数值分析、构造快速数值方法、 曲线曲面构造、微分方程求解、控制论等。 在信号分析方面的滤波、去噪声、压缩、 传递等。在图象处理方面的图象压缩、分 类、识别与诊断,去污等。在医学成像方 面的减少B超、CT、核磁共振成像的时间, 提高分辨率等。
2
2
3
V,ej
2
v2
2
j 1
3 2
v1
1 2
v2
3 2
v1
1 2
v2
3 2
[
v1
2
v2
2]
3 2
V
定义、定理及证明
1. (巴拿赫)Banach空间与Hibert(西耳伯特) 空间
由于F(0) = 0,故 =0
2. 线性算子与同构
我们只考虑可分的Hilbert空间。
1986年著名数学家Y.Meyer偶然构造出一个真正的 小波基,并与S.Mallat合作建立了构造小波基的 同样方法及其多尺度分析之后,小波分析才开始 蓬勃发展起来,其中比利时女数学家 I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作 用。它与Fourier变换、窗口Fourier变换(Gabor 变换)相比,这是一个时间和频率的局域变换, 因而能有效的从信号中提取信息,通过伸缩和平 移等运算功能对函数或信号进行多尺度细化分析 (Multiscale Analysis),解决了Fourier变换 不能解决的许多困难问题,从而小波变化被誉为 “数学显微镜”,它是调和分析发展史上里程碑 式的进展。
小波分析简述(第五章)PPT课件
六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点
《小波分析概述》课件
小波变换在信号处理中发挥了重要作用,能够有效地分析信号的局部特征,如突变和奇异点,为信号 处理提供了新的工具。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
《小波分析》PPT课件
(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
小波分析基础 PPT课件
(5) 对所有的尺度伸缩重复步骤(1)、(2)、(3)、(4)。
School of Jet Propulsion, BUAA
❖ 尺度与频率的关系
尺度与频率的关系如下: ➢ 小尺度a 压缩的小波快速变换的细节高频部分 ➢ 大尺度a 拉伸的小波缓慢变换的粗部低频部分
School of Jet Propulsion, BUAA
School of Jet Propulsion, BUAA
小波分析基础
2012.03.20
School of Jet Propulsion, BUAA
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
School of Jet Propulsion, BUAA
可以这样理解小波变换的含义:打个比喻,我们 用镜头观察目标信号f (t), ψ(t)代表镜头所起的所用。 b 相当于使镜头相对于目标平行移动,a的所用相当于 镜头向目标推进或远离。由此可见,小波变换有以下 特点: ➢ 多尺度/多分辨的特点,可以由粗及细地处理信号;
部化的。
School of Jet Propulsion, BUAA
一些著名的小波[3]:
1、Daubechies小波
School of Jet Propulsion, BUAA
2、Coiflets小波
3、Symlets小波
School of Jet Propulsion, BUAA
4、Morlet小波
a,b
(t)
a
1
2
School of Jet Propulsion, BUAA
❖ 尺度与频率的关系
尺度与频率的关系如下: ➢ 小尺度a 压缩的小波快速变换的细节高频部分 ➢ 大尺度a 拉伸的小波缓慢变换的粗部低频部分
School of Jet Propulsion, BUAA
School of Jet Propulsion, BUAA
小波分析基础
2012.03.20
School of Jet Propulsion, BUAA
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
School of Jet Propulsion, BUAA
可以这样理解小波变换的含义:打个比喻,我们 用镜头观察目标信号f (t), ψ(t)代表镜头所起的所用。 b 相当于使镜头相对于目标平行移动,a的所用相当于 镜头向目标推进或远离。由此可见,小波变换有以下 特点: ➢ 多尺度/多分辨的特点,可以由粗及细地处理信号;
部化的。
School of Jet Propulsion, BUAA
一些著名的小波[3]:
1、Daubechies小波
School of Jet Propulsion, BUAA
2、Coiflets小波
3、Symlets小波
School of Jet Propulsion, BUAA
4、Morlet小波
a,b
(t)
a
1
2
《小波分析介绍》PPT课件
二、小波变换
定义 设f (t), (t)为平方可积函数,且 (t)为允许小波,则称
Wf (a,b) :
1 a
f (t) (t b)dt,
R
a
a0Leabharlann 是f (t)的连续小波变换 .
2021/8/31
第二章
2
2
定理 设 (t)为允许小波,对 f , g L2 (R), 有
[W f
(a,
b)Wg
第二章 小波变换
§1 小波和小波变换 一、小波 小波首先应用于地球物理学中,用来分析地震勘探的数据。
定义 设函数 L2(R) L1(R),并且ˆ (0) 0,
称函数族
a,b (x)
a
1/ 2
x
b a
a,b R, a 0
为分析小波或连续小波, 称为基本小波或母小波。
注:ˆ (0) 0 R (x)dx 0 a,b (x) 2 R a,b (x) 2 dx (x) 2
性质2(平移性) W f (tt0 ) (a, b) W f (t) (a, b t0 )
性质3(尺度法则)
W f (t) (a, b)
1
W
f
(t
)
(a,
b)
0
性质4(乘法定理)
1
0
a 2 W f (a,b)Wg (a,b)dbda C
f (t)g(t)dt
R
自证
其中 C
称f (t) C j,k j,k (t)中的展开系数Cj,k为小波系数,
j ,kZ
其中,C j,k R f (t) j,k (t)dt.
迷人的风采
1,t [0,0.5)
例:Harr基本小波
h
定义 设f (t), (t)为平方可积函数,且 (t)为允许小波,则称
Wf (a,b) :
1 a
f (t) (t b)dt,
R
a
a0Leabharlann 是f (t)的连续小波变换 .
2021/8/31
第二章
2
2
定理 设 (t)为允许小波,对 f , g L2 (R), 有
[W f
(a,
b)Wg
第二章 小波变换
§1 小波和小波变换 一、小波 小波首先应用于地球物理学中,用来分析地震勘探的数据。
定义 设函数 L2(R) L1(R),并且ˆ (0) 0,
称函数族
a,b (x)
a
1/ 2
x
b a
a,b R, a 0
为分析小波或连续小波, 称为基本小波或母小波。
注:ˆ (0) 0 R (x)dx 0 a,b (x) 2 R a,b (x) 2 dx (x) 2
性质2(平移性) W f (tt0 ) (a, b) W f (t) (a, b t0 )
性质3(尺度法则)
W f (t) (a, b)
1
W
f
(t
)
(a,
b)
0
性质4(乘法定理)
1
0
a 2 W f (a,b)Wg (a,b)dbda C
f (t)g(t)dt
R
自证
其中 C
称f (t) C j,k j,k (t)中的展开系数Cj,k为小波系数,
j ,kZ
其中,C j,k R f (t) j,k (t)dt.
迷人的风采
1,t [0,0.5)
例:Harr基本小波
h
《基于MATLAB的小波分析应用》课件第1章
第1章 小波分析基础
因此,如何求解Wn是下一步需要解决的问题。求解的
基本思想是:找到一个函数 (x) ,像函数 (x) 的伸缩和
平移 {2n/2(2n x k) ;k Z} 能够张成空间Vn一样,函数 (x) 的伸缩和平移 {2n / 2 (2n x k ) ;k Z} 也能张成空间Wn。同
第1章 小波分析基础
图1.5 V4中的分量
第1章 小波分析基础
图1.6 W7中的分量
第1章 小波分析基础
1.3 一维连续小波变换
定义2 设 (t) L2 (R) ,其傅里叶变换为,当满足容许
条件(完全重构条件或恒等分辨条件)
ˆ () 2
C
d
R
时,称 (t) 为一个基本小波或母小波。将母函数经伸缩和 平移后得
ˆ *() ˆ (2 j ) 2
j
由上式可以看出,稳定条件实际上是对上式分母的约束 条件,它的作用是保证对偶小波的傅里叶变换存在。
Wf (a, b)
第1章 小波分析基础
1.4 离散小波变换
在实际运用中,尤其是在计算机上实现时,连续小波
变换必须加以离散化。因此,有必要讨论连续小波 a,b (t)
时要求 (x) 和 (x) 能够建立直接的联系。
第1章 小波分析基础
定理1 设Wn是由形如 kZ ak(2n x k)( ak R)的函数所组成
的线性空间,其中ak含有限个非0项,则Wn构成Vn在Vn+1中 的正交补,并且Vn1 Vn Wn 。
定理2 能量有限空间L2(R)可以分解为如下形式之和: L2 (R) V0 W0 W1
V j {0}, V j L2 (R)
jZ
jZ
(4) 平移不变性:f (x)V0 f (x k)V0 ,k Z ;
小波分析PPT课件
4
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际
小波基本理论及应用PPT课件
小波变换通过选取不同的小波基函数, 对信号进行多尺度分解,得到信号在 不同尺度和频率上的系数,这些系数 可以反映信号在不同时间和频率上的 特征。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。
小波分析
Absorbance
0.04 0.03 0.02 0.01 0.00 -0.01
2
滤波
D(5)
C(5)
D(4)
C(4)
D(3)
C(3)
D(2)
C(2)
D(1)
C(1)
4
6
8
10
Retention Time / min
12 2 4 6 8 10 12 2 4 6 8 10 12
将信号中的不同频率成分按照频率高低进行分离! 噪声属于高频部分,背景、基线属于低频部分 17
(translation parameter) ,也称为时间平移因子
t 叫作小波基,或小波母函数。 9
2. 小波变换
❖ 连续小波变换 a,b R, a 0
Wf a,b
f t, a,b t f *~a b
1 a
f
t
a,b tdt
❖ 实际应用中,一般实现时,连续小波必须加以离散化 ,所以常使用离散化小波变换。
小波分析
➢ 小波分析概况 ➢ 小波及小波变换 ➢ 一维小波分析 ➢ 多分辨率分析 ➢ 二维小波分析
❖ 一、小波分析概况
❖ “小波分析”是利用多种 “小波基函数” 对 “ 原始信号” 进行分解,分析原始信号各种变化的 特性,进一步用于趋势分析,数据压缩、噪声去除 、特征选择等。
❖ 地理学的许多现象均可视为数据信号,进行小波分 析,如气候和水文数据的时间序列,人文地理方面 的经济数值波动,遥感方面的光谱分析、遥感数据 的图像压缩,GIS方面的数据多尺度分析。
k 1
k 1
N
N
或: C j1 n h jn k *C jk g jn k * D jk
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
线性空间
线性空间的判定方法 (1)一个集合,如果定义的加法和乘数运 算是通常的实数间的加乘运算,则只需检验对运 算的封闭性.
例1 实数域上的全体 m n矩阵,对矩阵的加法
和数乘运算构成实数域上的线性空间,记作 Rmn.
A m n B m n C m n , A m nD m n,
16
线性空间
下面一一验证八条线性运算规律:
( 1 ) a b a b b b a a ; ( 2 ) a b ( ) c ( a ) c ( b a ) c a b ( b c ) (3)R中存在 1,对 零任 a元 R 何 ,素 有
a 1 a 1 a ; (4) a R ,有负 a1 元 R ,使 素
18
线性空间
例7 n个有序实数组成的数组的全体
S n x ( x 1 , x 2 , , x n ) T x 1 , x 2 , , x n R
对于通常的有序数组的加法及如下定义的乘法
(x 1 , ,x n ) T 0 , ,0
不构成线性空间. Sn对运算封.闭
但 1xo, 不满足第五条运算规律.
a a 1aa 11 ;
17
线性空间
(5)1aa1a;
( 6 ) a a a a a ;
(7 )aa a a a a a a ;
( 8 ) ( a b ) ( a ) a b a b b
a b a b .
所以 R 对所定义的运算构成线性空间.
14
线性空间
s 1 A 1 s x B i 1 n A 1 s x B i 1 n S[x]
Sx是一个线性空间.
一般地
例5 在区间 [a,b]上全体实连续函数,对函数的 加法与数和函数的数量乘法,构成实数域上的线性 空间.
15
线性空间
(2)一个集合,如果定义的加法和乘数运 算不是通常的实数间的加乘运算,则必需检验是 否满足八条线性运算规律.
基本知识
泛函初步:研究抽象空间与空间之间相互关系。 空间:数学结构集合 空间的延伸:引入线性运算构成线性空间;引 入范数构成线性赋范空间;引入内积,构成内 积空间关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
由于所定义线 的性 运,运 所 算算 以 S不 n不是 是 线性.空间
0;
(5)1;
(6 ) ;
( 7 ) ; ( 8 ) .
9
线性空间
说明
1. 凡满足以上八条规律的加法及乘数运算, 称为线性运算.
2 .向量空间中的向量不一定是有序数组.
3 .判别线性空间的方法:一个集合,对于定 义的加法和数乘运算不封闭,或者运算不满足八条 性质的任一条,则此集合就不能构成线性空间.
2
常用数学符号
∀:”for all” or “for everyone”, 对于每个 ∃: “there is a” or “there exists”, 存在 Z :整数集 R:实数集 C:复数集 Z+:正整数集
3
常用数学符号
4
常用数学符号
5
线性空间
一、线性空间的定义
线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念的推广.
例6 正实数的全体,记作 R ,在其中定义加法
及乘数运算为 a b a , a b a , R , a , b R .
验证 R 对上述加法与乘数运算构成线性空间.
证明 a ,b R , a b a R b ;
R , a R , a a R .
所以对定义的加法与乘数运算封闭.
线性空间是为了解决实际问题而引入的,它是 某一类事物从量的方面的一个抽象,即把实际问题 看作向量空间,进而通过研究向量空间来解决实际 问题.
6
线性空间
定义1 设 V是一个非空集合,R为实数域.如果
对于任意两个元素 ,V,总有唯一的一个元
素 V与之对应,称为 与 的和,记作
若对于任一数 R与任一元素V,总有唯
Rmn是一个线性.空间
11
线性空间
例2 次数不超n的 过多项式的,全 记体 作P[x]n,即 P[x]n{panxna1xa0 an,,a1,a0R}, 对于通常的多项,式 数加 乘法 多项式的乘向 法构
量空间 . 通常的多项式加法、数乘多项式的乘法两种运
算满足线性运算规律. ( a n x n a 1 x a 0 ) ( b n x n b 1 x b 0 ) ( a n b n ) x n ( a 1 b 1 ) x ( a 0 b 0 ) P[x]n
(a n x n a 1 x a 0 )
(a n ) x n (a 1 ) x (a 0 ) P[x]n
P[x]n对运算封. 闭
12
线性空间
例3 n次多项式的全体 Q[x]n {pan xna1 xa0 an,,a1, a0R,且an 0}
对于通常的多项式和加乘法数运算不构成空向量 间.
0 p 0 x n 0 x 0 Q[x]n
Q[x]n对运算不封. 闭
13
线性空间
例4 正弦函数的集合
S x s A s x i B A n , B R .
对于通常的函数加法及数乘函数的乘法构成线性空 间.
s 1 s 2 A 1 s x B i 1 A n 2 s x B i 2 n a 1 c x b 1 o s x i s a 2 c n x b 2 o s x i a 1 a 2 c x o b 1 b 2 s sx in A six n B S[x].
一的一个元素V与之对应,称为 与 的积,
记作
7
线性空间
如果上述的两种运算满足以下八条运算规律,那 么 V就称为数域 R上的向量空间(或线性空间).
设 ,, V ;, R (1 ) ;
( 2 ) ;
(3)在 V 中存在 0,对 零 任 元 V 何 ,都 素有 0;
8
线性空间 (4)对任 V何 ,都的 有负 元 V,使 素
线性空间
线性空间的判定方法 (1)一个集合,如果定义的加法和乘数运 算是通常的实数间的加乘运算,则只需检验对运 算的封闭性.
例1 实数域上的全体 m n矩阵,对矩阵的加法
和数乘运算构成实数域上的线性空间,记作 Rmn.
A m n B m n C m n , A m nD m n,
16
线性空间
下面一一验证八条线性运算规律:
( 1 ) a b a b b b a a ; ( 2 ) a b ( ) c ( a ) c ( b a ) c a b ( b c ) (3)R中存在 1,对 零任 a元 R 何 ,素 有
a 1 a 1 a ; (4) a R ,有负 a1 元 R ,使 素
18
线性空间
例7 n个有序实数组成的数组的全体
S n x ( x 1 , x 2 , , x n ) T x 1 , x 2 , , x n R
对于通常的有序数组的加法及如下定义的乘法
(x 1 , ,x n ) T 0 , ,0
不构成线性空间. Sn对运算封.闭
但 1xo, 不满足第五条运算规律.
a a 1aa 11 ;
17
线性空间
(5)1aa1a;
( 6 ) a a a a a ;
(7 )aa a a a a a a ;
( 8 ) ( a b ) ( a ) a b a b b
a b a b .
所以 R 对所定义的运算构成线性空间.
14
线性空间
s 1 A 1 s x B i 1 n A 1 s x B i 1 n S[x]
Sx是一个线性空间.
一般地
例5 在区间 [a,b]上全体实连续函数,对函数的 加法与数和函数的数量乘法,构成实数域上的线性 空间.
15
线性空间
(2)一个集合,如果定义的加法和乘数运 算不是通常的实数间的加乘运算,则必需检验是 否满足八条线性运算规律.
基本知识
泛函初步:研究抽象空间与空间之间相互关系。 空间:数学结构集合 空间的延伸:引入线性运算构成线性空间;引 入范数构成线性赋范空间;引入内积,构成内 积空间关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
由于所定义线 的性 运,运 所 算算 以 S不 n不是 是 线性.空间
0;
(5)1;
(6 ) ;
( 7 ) ; ( 8 ) .
9
线性空间
说明
1. 凡满足以上八条规律的加法及乘数运算, 称为线性运算.
2 .向量空间中的向量不一定是有序数组.
3 .判别线性空间的方法:一个集合,对于定 义的加法和数乘运算不封闭,或者运算不满足八条 性质的任一条,则此集合就不能构成线性空间.
2
常用数学符号
∀:”for all” or “for everyone”, 对于每个 ∃: “there is a” or “there exists”, 存在 Z :整数集 R:实数集 C:复数集 Z+:正整数集
3
常用数学符号
4
常用数学符号
5
线性空间
一、线性空间的定义
线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念的推广.
例6 正实数的全体,记作 R ,在其中定义加法
及乘数运算为 a b a , a b a , R , a , b R .
验证 R 对上述加法与乘数运算构成线性空间.
证明 a ,b R , a b a R b ;
R , a R , a a R .
所以对定义的加法与乘数运算封闭.
线性空间是为了解决实际问题而引入的,它是 某一类事物从量的方面的一个抽象,即把实际问题 看作向量空间,进而通过研究向量空间来解决实际 问题.
6
线性空间
定义1 设 V是一个非空集合,R为实数域.如果
对于任意两个元素 ,V,总有唯一的一个元
素 V与之对应,称为 与 的和,记作
若对于任一数 R与任一元素V,总有唯
Rmn是一个线性.空间
11
线性空间
例2 次数不超n的 过多项式的,全 记体 作P[x]n,即 P[x]n{panxna1xa0 an,,a1,a0R}, 对于通常的多项,式 数加 乘法 多项式的乘向 法构
量空间 . 通常的多项式加法、数乘多项式的乘法两种运
算满足线性运算规律. ( a n x n a 1 x a 0 ) ( b n x n b 1 x b 0 ) ( a n b n ) x n ( a 1 b 1 ) x ( a 0 b 0 ) P[x]n
(a n x n a 1 x a 0 )
(a n ) x n (a 1 ) x (a 0 ) P[x]n
P[x]n对运算封. 闭
12
线性空间
例3 n次多项式的全体 Q[x]n {pan xna1 xa0 an,,a1, a0R,且an 0}
对于通常的多项式和加乘法数运算不构成空向量 间.
0 p 0 x n 0 x 0 Q[x]n
Q[x]n对运算不封. 闭
13
线性空间
例4 正弦函数的集合
S x s A s x i B A n , B R .
对于通常的函数加法及数乘函数的乘法构成线性空 间.
s 1 s 2 A 1 s x B i 1 A n 2 s x B i 2 n a 1 c x b 1 o s x i s a 2 c n x b 2 o s x i a 1 a 2 c x o b 1 b 2 s sx in A six n B S[x].
一的一个元素V与之对应,称为 与 的积,
记作
7
线性空间
如果上述的两种运算满足以下八条运算规律,那 么 V就称为数域 R上的向量空间(或线性空间).
设 ,, V ;, R (1 ) ;
( 2 ) ;
(3)在 V 中存在 0,对 零 任 元 V 何 ,都 素有 0;
8
线性空间 (4)对任 V何 ,都的 有负 元 V,使 素