第41课时线段的中垂线与角平分线
初中数学三角形(二)三角形的角平分线和中垂线
三角形的角平分线和中垂线姓名时间【教学目标】1.要求学生掌握角平分线和中垂线的性质定理及其逆定理——判定定理,会用这四个定理解决一些简单问题。
2.理解角平分线和中垂线的性质定理和判定定理的证明3.能够作已知角的角平分线,和已知线段的中垂线,并会熟练地写出已知、求作和作法.【教学重点】角平分线和中垂线的性质定理及其逆定理。
【教学难点】掌握角平分线和中垂线的性质定理及其逆定理并进行证明。
【本节知识点】1、垂直平分线性质及判定定理判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2、角平分线性质及判定定理判定定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.性质定理:角平分线上的点到这个角的两边距离相等.定理:三角形的三条内角平分线相交于一点,并且这一点到三条边距离相等.3、用尺规作图画线段垂直平分线,已知角的平分线.【经典练习】三角形的角平分线的性质及定理一、判断题1.角的平分线上的点到角的两边的距离相等2.到角的两边距离相等的点在角的平分线上3.角的平分线是到角两边距离相等的点的集合4.角平分线是角的对称轴二、填空题1.如图(1),AD平分∠BAC,点P在AD上,若PE⊥AB,PF⊥AC,则PE__________PF.2.如图(2),PD⊥AB,PE⊥AC,且PD=PE,连接AP,则∠BAP__________∠CAP.3.如图(3),∠BAC=60°,AP平分∠BAC,PD⊥AB,PE⊥AC,若AD=3,则PE=__________.4.已知,如图(4),∠AOB=60°,CD⊥OA于D,CE⊥OB于E,若CD=CE,则∠COD+∠AOB=___度.5.如图(5),已知MP⊥OP于P,MQ⊥OQ于Q,S△DOM=6 cm2,OP=3 cm,则MQ=__________cm.(4)(5)三、选择题1.下列各语句中,不是真命题的是A.直角都相等B.等角的补角相等C.点P在角的平分线上D.对顶角相等2.下列命题中是真命题的是A.有两角及其中一角的平分线对应相等的两个三角形全等B.相等的角是对顶角C.余角相等的角互余D.两直线被第三条直线所截,截得的同位角相等3.如左下图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3 cm,那么AE+DE等于A.2 cmB.3 cmC.4 cmD.5 cm4.如右上图,已知AB=AC,AE=AF,BE与CF交于点D,则①△ABE≌△ACF ②△BDF≌△CDE ③D在∠BAC的平分线上,以上结论中,正确的是A.只有①B.只有②C.只有①和②D.①,②与③四、解答题1.如右图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC.2.已知,如左下图,△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,AE=6,求四边形AFDE的周长.三角形的中垂线的性质及定理一、判断题1.如图(1),OC=OD直线AB是线段CD的垂直平分线2.如图(1),射成OE为线段CD的垂直平分线3.如图(2),直线AB的垂直平分线是直线CD4.如图(3),PA=PB,P′A=P′B,则直线PP′是线段AB的垂直平分线(1)(2)(3)二、填空题1.如右上图,已知直线MN是线段AB的垂直平分线,垂足为D,点P是MN上一点,若AB=10 cm,则BD=__________cm;若PA=10 cm,则PB=__________cm;此时,PD=__________cm.2.如左下图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12 cm,AC=5cm,则AB+BD+AD=________cm;AB+BD+DC=__________cm;△ABC的周长是__________cm.图6EDCA3.如右上图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC于E,BE=5,则AE=__________,∠AEC=__________,AC=__________ .4.已知线段AB及一点P,PA=PB=3cm,则点P在__________上.5.如果P是线段AB的垂直平分线上一点,且PB=6cm,则PA=__________cm.6.如图(1),P是线段AB垂直平分线上一点,M为线段AB上异于A,B的点,则PA,PB,PM的大小关系是PA__________PB__________PM.7.如图(2),在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交BC于D,则点D在_____上.(1)(2)(3)8.如图(3),BC是等腰△ABC和等腰△DBC的公共底,则直线AD必是_________的垂直平分线.三、选择题1.下列各图形中,是轴对称图形的有多少个①等腰三角形②等边三角形③点④角⑤两个全等三角形A.1个B.2个C.3个D.4个2.如左下图,AC=AD,BC=BD,则A.CD垂直平分ADB.AB垂直平分CDC.CD平分∠ACBD.以上结论均不对3.如右上图,△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么△DBC的周长是A.6 cmB.7 cmC.8 cmD.9 cm四、解答题如右图,P 是∠AOB 的平分线OM 上任意一点,PE ⊥CA 于E ,PF ⊥OB 于F ,连结EF.求证:OP 垂直平分EF. 一题多变例1:如图1,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长.变式1:如图1,在△ABC 中, AB 的垂直平分线交AB 于点D ,交AC 于点E ,若∠BEC=70°,则∠A=?变式2:如图3,在Rt △ABC 中,AB 的垂直平分线交BC 边于点E 。
中垂线和角平分线
2、线段垂直平分线性质定理的逆定理
(1)线段垂直平分线的逆定理:
到一条线段两个端点距离相等的点在这条线段的垂直平分线
上.
定理的数学表示:如图 2,已知直线 m 与线段 AB 垂直相交
于点 D,且 AD=BD,若 AC=BC,则点 C 在直线 m 上.
定理的作用:证明一个点在某线段的垂直平分线上.
A
课堂笔记:
段的中垂线.
A.1 个
B.2 个 C.3 个 D.4 个
4.△ABC 中,AB 的垂直平分线交 AC 于 D,如果 AC=5 cm,BC=4cm,那么△DBC 的周
长是( )
A.6 cm
B.7 cm C.8 cm D.9 cm
5.已知如图,在△ABC 中,AB=AC,O 是△ABC 内一点,且 OB=OC,
j 图3
C
点 O,且 OA=OB=OC.
定理的作用:证明三角形内的线段相等.
(2)三角形三边垂直平分线的交点位置与三角形形状的关系:
若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形
是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角
形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交
求证:AO⊥BC.
2
6.如图,在△ABC 中,AB=AC,∠A=120°,AB 的垂直平分线 MN 分别交 BC、AB 于点 M、N. 求证:CM=2BM.
线段的垂直平分线与角平分线(2)
知识要点详解
4、角平分线的性质定理: 角平分线的性质定理:角平分线上的点到这个角
的两边的距离相等. 定理的数学表示:如图 4,已知 OE 是∠AOB 的平
图5 C A
尺规作图:角平分线、垂直平分线、过P作线的垂线
尺规作图:角平分线、垂直平分线、过线外一点作线的垂线◆角平分线:从一个角的顶点出发,把这个角分成两个相等的角的射线 尺规作图步骤:(以作∠ABC 的角平分线为例)①任意选取半径,以角的顶点点B 为圆心画圆弧,与∠ABC 的两边分别交于点M 、N ;②取一半径满足r >21MN ,分别以M 、N 为圆心,画等半径的圆弧,交于点O ;③以B 为端点,过O 作射线BO ,射线BO 就是∠ABC 的角平分线.为何射线BO 是∠ABC 的角平分线?如图,连接MO 、NO ,根据作图步骤①知:BM=BN (同圆内半径相等)根据作图步骤②知:MO=NO (等圆中半径相等)在△BMO 与△BNO 中,有⎪⎩⎪⎨⎧===BO BO NO MO BN BM ,所以△BMO ≌△BNO (SSS从而有∠MBO=∠NBO ,即BO 为∠ABC 的角平分线所以射线BO 是∠ABC 的角平分线相关性质与结论:(1)角平分线是一条射线,而不是一条直线或线段;(2)角平分线上的点到角两边的距离相等.(3)在角的内部,到角两边距离相等的点,一定在这个角的角平分线上◆垂直平分线:经过线段中点并且垂直于这条线段的直线尺规作图步骤:(以作线段AB 的垂直平分线为例)①选一半径满足r >21AB ,分别以A 、B 为圆心,在线段AB 的上方画圆弧交于点P ;②选一半径满足r >21AB (可与①中的半径一致),分别以A 、B 为圆心,在线段AB 的下方画圆弧交于点Q ;③过P、Q 作直线PQ,直线PQ 即为线段AB 的垂直平分线.为何直线PQ 是线段AB 的垂直平分线?如图,根据作图步骤①知:AP=BP (等圆中半径相等)根据作图步骤②知:AQ=BQ (等圆中半径相等)在△APQ 与△BPQ 中,有⎪⎩⎪⎨⎧===PQ PQ BQ AQ BP AP ,所以△APQ ≌△BPQ (SSS )则可说明△APQ 与△BPQ 关于直线PQ 对称而A 、B 为一组对应点,且与对称轴PQ 交于点O ,则AB ⊥PQ 且AO=BO(两个成轴对称的图形,对应点所连成的线段被对称轴垂直平分)所以直线PQ 为线段AB 的垂直平分线相关性质与结论:(1)垂直平分线上的点与线段两个端点的距离相等;(2)与一条线段两个端点距离相等的点,一定在这条线段的垂直平分线上;(3)如果两点到线段的两个端点的距离相等,那么这两点所在的直线就是该线段的垂直平分线.◆过线外一点作直线的垂线尺规作图步骤:(以过P 作l 的垂线为例)①以P 为观察点,分别在直线l 的左、右两侧任取两点M、N;②以M 为圆心,MP 为半径在直线l 的下方画圆弧;以N 为圆心,NP 为半径在直线l 的下方画圆弧,两圆弧交于点Q;③过PQ 作直线PQ,则直线PQ 垂直于直线l ,即为所求.为何直线PQ是直线l的垂线?如图,根据作图步骤②知:NP=NQ,MP=MQ(等圆中半径相等)很显然△MPN≌△MQN(SSS)即△MPN与△MQN关于直线l对称而P、Q作为一组对应点,则PQ⊥l补充说明:这个作图方法也可以用来找垂足O、垂线段PO相关性质与结论:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短;(3)注意:垂线与垂线段都具有垂直已知直线的特征,但垂线是一条直线,不能度量;而垂线段是一条线段,可以度量,它是垂线的一部分。
中垂线和角平分线
线段的垂直平分线与角平分线知识要点详解C1、线段垂直平分线的性质/\(1)垂直平分线性质定理:线段垂直平分线上的点到/ m\这条线段两个端点的距离相等. A |D—X B图i 定理的数学表示:如图1,已知直线m与线段AB垂直相交于点D,且A[> BD若点C在直线m上,贝S AO BC.定理的作用:证明两条线段相等(2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m与线段AB垂直相交于点D,且AD=BD,若AC= BC则点C在直线m上. 定理的作用:证明一个点在某线段的垂直平分线上.课堂笔记:3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一ki点到三个顶点的距离相等.定理的数学表示:如图3,若直线i,j,k分别是△ ABC三边AB BGCA的垂直平分线,则直线i,j,k相交于一点0,且0A= OB= OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在厶ABC中, BC= 8cm AB的垂直平分线交AB于点D,交边AC于点E, △ BCE勺周长等于18cm 则AC的长等于( )A. 6cmB. 8cmC. 10cm D .课堂笔记:例2、在厶ABC中, AB二AC AB的垂直平分线与边AC所在的直线相交所成锐角为50°,^ ABC的底角/ B的大小为__________________ 。
中垂线、中线、角平分线
B
D
C
D
E
作CF⊥AD于F, 作BE⊥AD的延长线于E 连接BE
A
延长MD到 使DN=MD, 连接CD
A M
F B E D C
B
D N
C
到一条线段的两端点的距离相等的点在这条线段的垂直平分线上点在这条线段的垂直平分线上距离相等的点是否一定在两端点的距离相等的这条线段的垂直平分线上呢
求证:线段垂直平分线 定理:线段垂直平分线 上的点 到这条线段 上的点 到这条线段 的两端点的距离相等 的两端点的距离相等
P :
∟ B
P在线段AB的垂直平分线上 PA PB A
E
D E
D
A
C
B
C
B
4已知:如图AB=AC,BD=CD, P是AD上一点, A
求证PB=PC
P B D C
如图:要在河边修建一个水泵站,分别向 张村(A)、李庄(B)送水,修在河边 什么地方,可使所用的水管最短?
A B
已知:如图,点P是线段AB垂直平分线MN 上的一点,MN交AB于O,OB=4cm, ∠APB+3∠B=210°,求点B到AP的距离
M A P N C ∟ B
8在△ABC中,D为BC 的中 点,DE⊥BC交∠BAC的平分线AE于 A 点,EF⊥AB于F点,EG⊥AC于G点
求证:BF=CGF BDFra bibliotekC G
E
角平分线及中线中
常见的辅助线的做法
△ABC中 AD是BC边中线
A
方式1: 延长AD到E, 使DE=AD, 连接BE 方式2:间接倍长
C E A B
D
2、在△ABC,PM,QN分别垂直平 分AB,AC,则
相似三角形的角平分线和中垂线的关系
相似三角形的角平分线和中垂线的关系相似三角形是几何学中重要的概念之一,它们具有相似的形状但尺寸不同。
在研究相似三角形的性质时,角平分线和中垂线是两个重要的概念。
本文将探讨相似三角形的角平分线和中垂线之间的关系。
一、角平分线和中垂线的定义在开始深入了解两者关系之前,首先需要明确角平分线和中垂线的定义。
1. 角平分线:对于三角形ABC,如果有一条线段AD从角A的顶点出发并且将角A分成两个相等的角,则称线段AD为角A的角平分线。
2. 中垂线:对于三角形ABC,通过三角形的某一边的中点M,和该边的垂直平分线,将与该边垂直的线段MN称为该三角形对边BC的中垂线。
二、相似三角形的性质在继续讨论两者关系之前,需要了解相似三角形的一些基本性质。
1. 边比例:如果两个三角形ABC和DEF相似,那么它们的对应边的长度比例相等,即AB/DE = AC/DF = BC/EF。
2. 角等价:相似三角形的对应角度相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
3. 高比例:如果两个三角形ABC和DEF相似,那么它们的对应高的长度比例相等,即hA/hD = hB/hE = hC/hF。
现在我们来探讨角平分线和中垂线的关系。
三、角平分线和中垂线的关系在已知一个三角形ABC的角平分线和中垂线的情况下,我们可以得到以下的关系:1. 角平分线和中垂线的交点如果角ABC的角平分线AD和角BAC的角平分线BE相交于点O,则点O是三角形ABC的内心。
内心是三角形内部的一个点,到三边的距离相等,并且角平分线经过该点。
2. 角平分线和中垂线的关系在相似三角形ABC和DEF中,当角ABC的角平分线AD与角DEF的角平分线DG相交于点O时,点O也是相似三角形ABC和DEF的内心。
这意味着角平分线和中垂线同时也是相似三角形的内心连线。
3. 角平分线和中垂线的长度比例如果三角形ABC和DEF相似,并且角ABC的角平分线AD与角DEF的角平分线DG交于点O,则线段AD与线段DG的长度比等于线段AB与线段DE的长度比。
角平分线和中垂线
角平分线和中垂线类型1:角平分线【例题1】如图,∠BAC=30°,AP平分∠BAC,GF垂直平分AP,交AC于F,Q为射线AB上一动点,若PQ的最小值为3,则AF的长为__________.【答案】6.(提示:)【例题2】如图,已知点E为矩形ABCD的边CB延长线上一点,且D到直线AE的距离DF=DC,下列结论:①∠AEB=∠EDC;②AE=BC,③AF=AB;④若BC,则点F在线段BC的垂直平分线上,其中正确的结论有()个.A.1 B.2 C.3 D.4【答案】B.(提示:②④正确.∵DF=DC,DF⊥EF,DC⊥BC,∴∠1=∠2,∵AD∥BC,∴∠2=∠3,∴∠1=∠2=∠3,∴AE=AD=BC,∴②正确;设DC=1,BCFD=1,ADRt△F AD中,AF=1,∴AF=FD,∴点F在线段BC的垂直平分线上,∴④正确)【例题3】如图,在△ABC中,∠BAC的平分线AD交BC于点D,∠MDN的两边分别与AB、AC相交于M、N两点,且∠MDN+∠BAC=180°.若AD=6,∠BAC=60°,则四边形AMDN的面积为_________.【答案】(提示:作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,又∵DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,又∵AD=AD,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF;∵∠MDN+∠BAC=180°,∴∠AMD+∠AND=180°,又∵∠DNF+∠AND=180°∴∠EMD=∠FND,又∵∠DEM=∠DFN,DE=DF,∴△DEM≌△DFN,∴S△DEM=S△DFN,∴S四边形AMDN=S四边形AEDF,∵∠BAC=60°,AD平分∠BAC,∴∠DAF=30°,∴Rt△ADF中,DF=3,AF=,∴S△ADF=12AF×DF=12×3,∴S四边形AMDN=S四边形A EDF=2×S△ADF=ABCGFPQQPGABCF MABCDEF32FEDCBA1AB CDNM MNFEDCBA【例题4】如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,AC=√6,若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC的最小值是__________.(提示:过点P作PE⊥AB于点E,当C、P、E三点共线时,PE+PC=CE最小)【例题5】如图,在△ABC中,AC=BC,点D在AB上,AD=AC,且∠BCD=12∠A,若△BCD的面积是20,则CD的长为____________.【答案】.(提示:如图,作AH⊥CD于H,BM⊥CD交CD的延长线于M.∵AC=AD,AH⊥CD,∴∠CAH=∠DAH,CH=DH,∵∠CAH+∠ACH=90°,∠BCD=12∠CAD=∠CAH,∴∠BCD+∠ACH=90°,∴∠ACB=90°,∵∠AHC=∠M=90°,∴∠ACH+∠BCM=90°,∠BCM+∠CBM=90°,∴∠ACH=∠CBM,∵AC=BC,∴△AHC≌△CMB(AAS),∴CH=BM,∴CH=DH=BM,设BM=CH=DH=m,∵S△BCD=12CD·BM,∴12·2m·m=20,∴m=,∴CD=2m=4)【例题6】如图,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,CDACD 沿直线AD折叠,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是_________.【答案】3PNDCBA ABCDEFNPDCBAA BCDMHEDC BAP【例题7】如图,在Rt△ABC中,∠ABC=90°,∠A=30°,点D,E,F分别是线段AC,AB,DC的中点,下列结论:①△EFB为等边三角形;②S四边形DFBE=12S△ACB;③AE;④AC=8DG;其中正确的是_____________.【答案】①②③④.(提示:根据直角三角形中,斜边上的中线等于斜边的一半,结合等边三角形的判定定理,即可判断①;根据三角形的中线等分三角形的面积,即可判断②;先推出BF=AE,结合含30°角的直角三角形的性质,即可判断③;根据30°角所对的直角边等于斜边的一半,即可判断④)【例题8】如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A 作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____________.【答案】+8.(提示:如图,过D作DF⊥AB于F,∵AD平分∠BAC,∠C=90°,∴DF=CD=2.∵Rt△ABC中,∠C=90°,AC=BC,∴∠ABC=45°,∴△BDF是等腰直角三角形,∴BF=DF=2,BD=BC=CD+BD=2+AC=BC=2+AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∴AE=BD=ADBE的面积=BD•AC=2+2)=8)【例题9】如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为____________.【答案】6-(提示:∵AD是△ABC的角平分线,∠ACB=90°,DE⊥AB,∴∠CAD=∠EAD,DE=CD,AE=AC=2,∵AD的垂直平分线交AB于点E,∴AF=DF,∴∠ADF=∠EAD,∴∠ADF =∠CAD,∴AC∥DE,∴∠BDE=∠C=90°,∴△BDF、△BED是等腰直角三角形,设DE=x,则EF =BE=x,BD=DF=2-x,在Rt△BED中,DE2+BE2=BD2,∴x2+x2=(2-x)2,解得x1=-2-2(负值舍去),x2=-2+,∴△DEF的面积为(-2+2+)÷2=6-A BCDEFGABCDEFEDC BAFEDC BA【例题10】如图所示,△ABC 的两条外角平分线AP 、CP 相交于点P ,PH ⊥AC 于H .若∠ABC =60°,则下面的结论:①∠ABP =30°;②∠APC =60°;③PB =2PH ;④∠APH =∠BPC ,其中正确结论的个数是( ).A .1个B .2个C .3个D .4个 【答案】D .(提示:如图,作PM ⊥BC 于M ,PN ⊥BA 于N .∵∠PAH =∠PAN ,PN ⊥AD ,PH ⊥AC ,∴PN =PH ,同理PM =PH ,∴PN =PM ,∴PB 平分∠ABC ,∴∠ABP =12∠ABC =30°,故①正确,∵在Rt △PAH 和Rt △PAN 中,PA =PA ,PN =PH ,∴△PAN ≌△PAH ,同理可证,△PCM ≌△PCH ,∴∠APN =∠APH ,∠CPM =∠CPH ,∵∠MPN =180°-∠ABC =120°,∴∠APC =12∠MPN =60°,故②正确,在Rt △PBN 中,∵∠PBN =30°,∴PB =2PN =2PH ,故③正确,∵∠BPN =∠CPA =60°,∴∠CPB =∠APN =∠APH ,故④正确)【例题11】如图,BH 是△ABC 的角平分线,BA =BC =10,AC =12,P ,D 分别是BH 和AB 上的任意一点,连接PA ,PC ,PD ,CD .给出下列结论:①PA =PC ;②PA +PD ≥CD ;③PA +PD 的最小值是485;④若PA 平分∠BAC ,则△APH 的面积为12.其中正确的是( ).A .①②③B .①②④C .②③④D .①③④ 【答案】A .(提示:∵BA =BC ,BH 是角平分线,∴BH ⊥AC ,AH =CH ,∴PA =PC ,故①正确;∴PA +PD =PD +PC ≥CD ,故②正确;根据垂线段最短可知,当CD ⊥AB 时,C ,P ,D 共线时,PA +PD 的值最小,最小值为CD ,在Rt △ABH 中,AB =10,AH =6,BH =8,由等积法可知CD =4.8,∴PA +PD 的最小值为4.8,故③正确;如图,过点P 作PT ⊥AB 于T .在△PAT 和△PAH 中,∠PTA =∠PHA =90°,∠PAT =∠PAH ,PA =PA ,∴△PAT ≌△PAH (AAS ),∴AT =AH =6,PT =PH ,设PT =PH =x ,在Rt △PTB 中,则有(8-x )2=x 2+42,∴x =3,∴S △APH ==9,故④错误)类型2:垂直平分线【例题12】如图,△ABC 的面积为9cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为__________.PH A BCD EEDCBA H MP NHA BCDPPDCBAHT【答案】4.5cm 2.(提示:延长AP 交BC 于点D ,∵BP 平分∠ABC ,AP ⊥BP ,∴AP =PD ,∴S △ABP =S △DBP ,S △APC =S △DPC ,∴S △BPC =9÷2=4.5cm 2)【例题13】如图,已知在△ABC 中,BC =6,AB 、AC 的垂直平分线分别交BC 于点M 、N ,若MN =2,则△AMN 的周长是__________.【答案】10.(提示:依题意AN =CN ,AM =BM ,∴AM +AN =BC +MN =6+2=8,△AMN 的周长=8+2=10)【例题14】如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AB 于点E ,交AC 于点G ,交BC 的延长线于点F ,连接AF 、DE ,下列结论:①△AEF ≌△DEF ;②CF =AF -CD ;③DE ∥AC ;④△AEG 为等边三角形,其中正确的结论有( )个.A .1B .2C .3D .4 【答案】C .(提示:①②③正确.∵EF 垂直平分AD ,∴△AEF ≌△DEF (SSS ),∴①正确;∵△AEF ≌△DEF ,∴∠1=∠3,又∵∠1=∠2,∴∠2=∠3,∴DE ∥AC ,∴③正确;∵EF 垂直平分AD ,∴AF =DF ,∴CF =AF -CD ,∴②正确)类型3:解答题【例题15】如图,△ABC 中,点D 在边BC 的延长线上,∠ACB =100°,∠ABC 的平分线交AD 于点E ,过点E 作EH ⊥BD ,且∠CEH =50°. (1)求∠ACE 的度数;(2)求证:AE 平分∠CAE ;(3)若AC +CD =14,AB =8.5,且S △ACD =21,求△ABE 的面积.【答案】(1)∠ACE =40°;(2)略;(3)S △ABE =514. (提示:(3)S △ACD =S △ACE +S △CED )A BCD EMN ABCDEFG321A BCDEFGHFED C BAABC DE FH。
垂直平分线与角平分线讲义
海伊教育学科教师辅导讲义学员编号:年级:八年级课时数:学员姓名:辅导科目:数学学科教师:高老师课题垂直平分线与角平分线授课时间:2013 年10月25日备课时间:2013 年10月23日教学目标1.经历线段垂直平分线性质的发现过程,初步掌握线段垂直平分线的性质定理及其逆定理,体会辨证思想;2.能运用线段垂直平分线性质定理及其逆定理解决简单的几何问题;3.通过从操作实验到演绎推理的数学活动,认识实验归纳和演绎推理的作用4、掌握角平分线的性质定理和判定定理,并能灵活应用它们进行计算和证明。
5、能够证明角平分线的性质定理和判定定理。
6、能够利用尺规作图作已知角的角平分线。
重点、难点重点:1.线段垂直平分线性质定理及其逆定理;2.2角平分线性质定理和判定定理的应用1世纪教育网难点:1.线段垂直平分线性质定理及其逆定理的应用2. 角平分线性质定理和判定定理的证明及应用。
授课方法联想质疑——交流研讨——归纳总结——实践提高教学过程一、情景设置(知识导入)二、探索研究【知识点总结与归纳】(一)探究新知1.线段的垂直平分线的性质定理操作:以直线MN为折痕将这个图形翻折,观察点P的位置动不动?点A与点B是否重合?你得到哪些线段相等?21世纪教育网归纳:如果一个点在一条直线的垂直平分线上,那么分别联结这点与线段两个端点所得的两BACDDABCPED ABC ACDB条线段相等.验证:证明这个命题,写出已知和求证.已知:如图,直线MN 是线段AB 的垂直平分线,垂足为点C ,点P 在直线MN 上. 求证: P A =PB . [来源:21世纪教育网]分析:如图,当点P 不在线段AB 上时,要证明P A =PB ,只需要证△PCA ≌△PCB .由直线MN 是线段AB 的垂直平分线,可知CA =CB ,∠PCA =∠PCB ,再加上PC 为公共边,三角形全等即可得到.21世纪特别地,当点P 在线段AB 上时,P 点与C 点重合,此时PA=PB 当然也成立。
中垂线与角平分线
中垂线与角平分线中垂线和角平分线是几何学中常见且重要的概念。
它们在解决几何问题、证明几何定理以及构造几何图形等方面具有广泛的应用。
本文将介绍中垂线和角平分线的基本概念、性质以及相关定理,并通过实例来说明它们在实践中的应用。
一、中垂线1.中垂线的定义与性质中垂线是一个线段,它有一个端点位于直线上,且与直线上的另外两点距离相等。
中垂线由直线上的一点以垂直于直线的方式引出,并延伸至直线的另外一侧。
一个三角形有三条中垂线,它们的交点称为三角形的垂心。
2.中垂线的应用中垂线可以用来构造、证明和解决各类几何问题。
例如,可以利用中垂线来构造一个等边三角形,即通过连接三角形的各个顶点与垂心,得到的三条边均相等的三角形。
此外,中垂线还可以用来证明一些几何定理,如证明垂直线段的中点连线垂直于直线段等。
二、角平分线1.角平分线的定义与性质角平分线是指从一个角的顶点出发,将该角平分为两个相等的角的线段。
角平分线可以是一个直线段,也可以是为了平分角而引出的射线。
对于三角形,若一边的中点和与之相对的顶点通过一条直线相连,则这条直线即为该边所在的角的角平分线。
2.角平分线的应用角平分线在几何推理中应用广泛。
例如,可以利用角平分线的性质来证明两个角相等,或者证明两个三角形相似。
此外,角平分线还可以用来构造、解决和证明各类几何问题,如构造等角三角形、解决角平分线的相交问题等。
三、中垂线与角平分线的关系1.性质中垂线和角平分线在一些情况下有特殊的关系。
例如,在等边三角形中,中垂线和角平分线重合,即三角形的垂心、内心和外心重合于同一点。
此外,在直角三角形中,直角边上的中垂线即为该边的角平分线。
2.实例分析为了更好地理解中垂线和角平分线的关系,我们举一个实例。
假设有一个等边三角形ABC,我们要证明其三条中垂线和三条角平分线重合于同一点。
解:首先,连接三角形的顶点与中点所形成的线段是三条中垂线。
同时,根据角平分线的定义,我们可以找到三条角平分线。
线段的中垂线和角平分线PPT优选课件
A
2020/10/18
E
F
B
D
C
12
2、如图 ,在△ABC中,AD平分∠BAC,
DE∥AC,交AB于E,EF⊥AD,交BC的
延长线于F。
求证:∠FAC=∠B
A
E
2020/10/18
G
B
DC
F 13
4.如图△ABC中,∠B=60°,△ABC的 角平分线AD、CE相交于O, 求证:AE+CD=AC。
A
∆BCE,BD与AE相交于M
,求证:AE=BD。
D
这是在全等三角形中一道常见 的习题,你知道吗,在这个 结论的基础上还能证明MC 平分∠DME,请你试一试.
A
2020/10/18
E C
M
B
C
N M
P
E
B
9
例3、角平分线上的点到角的两边
B
距离相等,到角的两边的距离相
等的点在角的平分线上”。如图
D
所示:①若∠BAD=∠CAD,且
得解;(2)有线
E
''
段的和差关系时, 常用截长补短法作
辅助线化和差关系
2020/10/18
为相等关系。 15
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXX 日期:20XX年XX月XX日
线段的中垂线和 角平分线
2020/10/18
1
角平分线性质
角的平分线上的点到这 个角的两边的距离相等。
2020/10/18
中垂线和角平分线
线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 课堂笔记:3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. 经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCm图2DABCjik图3OBCA课堂笔记:例2、 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
角平分线和线段的垂直平分线
角平分线和线段的垂直平分线一、知识点讲解:1. 定理1:在角的平分线上的点到这个角的两边的距离相等;定理2:在一个角的内部,到这个角的两边距离相等的点,在这个角的平分线上。
2.角平分线另一种定义:角的平分线是到角的两边距离相等的所有点的集合。
3.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设。
那么这两个命题叫做互逆命题,其中一个叫做另一个的逆命题。
4.如果一个定理的逆命题是经过证明的真命题,那么它也是一个定理,这两个定理叫互逆定理。
其中一个叫另一个的逆定理,虽然一个命题都有逆命题,但一个定理并不都有逆定理。
5.定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.线段的垂直平分线另一种定义:线段的垂直平分线可以看作和线段两个端点距离相等的所有点的集合。
二、例题精讲例1.已知如图,在ΔABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。
分析:欲证AD⊥EF,就要证∠AOE=∠AOF=∠EOF=90°。
所以要考虑证ΔAEO≌ΔAFO。
由题中条件可知ΔAEO,ΔAFO已有一边(公共边)一角对应相等,只要证出AE=AF问题就解决了,所以需先证明ΔAED≌ΔAFD。
证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC(已知)∴DE=DF(角平分线上的点到这个角的两边距离相等)在RtΔAED和RtΔAFD中∴RtΔAED≌RtΔAFD(HL), ∴AE=AF(全等三角形的对应边相等)在ΔAEO和ΔAFO中∴ΔAEO≌ΔAFO,∴∠AOE=∠AOF (全等三角形对应角相等)∴∠AOE=∠EOF=90°,∴AD⊥EF(垂直定义)。
例2.写出下列定理的逆命题,并判断真假。
(1)同位角相等,两直线平行。
(2)如果x=3,那么x2=9.(3)如果ΔABC是直角三角形,那么当每个内角取一个对应外角时,ΔABC的三个外角中只有两个钝角。
线段的垂直平分线和角平分线讲义
线段的垂直平分线和角平分线讲义如何作角的平分线?1.动手用尺规画出一个角的平分线;2.说明为什么是角平分线的理由。
用尺规作角的平分线.已知:∠AOB,如图.求作:射线OC,使∠AOC=∠BOC.1.在OA和OB上分别截取OD,OE,使OD=2.分别以点D和E为圆心,以大于长为半径作弧,两弧在∠AOB内交于点C.3.作射线OC.则射线OC就是∠AOB的平分线.请你说明OC为什么是∠AOB的平分线,并与同伴进行交流.【知识梳理】1、线段的垂直平分线我们把垂直并且平分一条线段的直线称为这条线段的垂直平分线,又叫中垂线.例如:如图所示,点O是线段AB的中点,且AB⊥CD,垂足为点O,则CD是线段AB的垂直平分线.2、线段的垂直平分线的定理线段垂直平分线上的点与线段两端点的距离相等.如图,若MN为线段AB的垂直平分线,P点在MN上,则PA=PB.3、线段的垂直平分线定理的逆定理与线段两端点距离相等的点在这条线段的垂直平分线上.如上图,若PA=PB,则P在AB的垂直平分线上.4、线段的垂直平分线说明了垂直平分线与线段的两种关系:①是位置关系——垂直;②是数量关系——平分.5、三角形三边的垂直平分线交于一点.从图中可以看出,要证明三条垂直平分线交于一点,只需证明其中的两条垂直平分线的交点一定在第三条垂直平分线上就可以了6、角的平分线的作法(1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,以大于DE长为半径画弧,两弧交于∠AOB内一点C.(3)作射线OC,则OC为∠AOB的平分线(如图)指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”.(2)角的平分线是一条射线,不能简单地叙述为连接.7、角平分线的性质在角的平分线上的点到角的两边的距离相等.指出:(1)这里的距离是指点到角两边垂线段的长.(2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.(3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”.8、角平分线的判定到角的两边的距离相等的点在角的平分线上.指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的.(2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么过角的顶点和该点的射线必平分这个角.9、三角形的角平分线的性质三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等.指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上.(2)该结论多应用于几何作图,特别是涉及到实际问题的作图题.【典型例题】知识点一:线段的垂直平分线考点一:利用线段垂直平分线求角的度数例1、在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,求底角B的大小.分析:AB的中垂线与AC所在直线的交点可能在AC上,也可能在CA的延长线上,故应分类讨论.解:若∠A为锐角,如图∵∠AED=50°,∴∠A=40°,∵AB=AC,∴∠B=∠C=70°.若∠A为钝角,如图:∵∠AED=50°,∴∠EAD=40°,∵AB=AC,∴∠B=∠C=20°.例2、如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E两点,AE平分∠BAC,若∠B=30°,求∠C的度数.解:此题考查“线段垂直平分线的性质”.因为DE垂直平分AB,所以BE=AE.所以∠1=∠B=30°.又因为∠1=∠2,所以∠1=∠2=30°.所以∠C=180°-∠BAC-∠B=90°.考点二:利用线段垂直平分线求长度例3、如图,AB=AC,DE垂直平分AB交AB于D,交AC于E.若△ABC的周长为28,BC=8,求△BCE的周长.解:∵等腰△ABC的周长为28,BC=8,∴2AC+BC=28.∴AC=10.∵DE垂直平分AB,∴BE=AE(线段垂直平分线上的点到线段两端点的距离相等).∴△BCE周长=BE+EC+BC=AE+EC+BC=AC+BC=10+8=18.点拨:这里是将△BCE的周长转化为等腰△ABC的腰和底,再由已知条件求得.例4、如图所示,在△ABC中,AC的垂直平分线交AC于E,交BC于D,且△BAD的周长为16cm,AE=7cm,求△ABC的周长.因为DE是AC的垂直平分线,所以EA=EC,DA=DC.又因为AE=7cm,所以AC=2AE=2×7=14(cm).因为△BAD的周长为16cm,即AB+BD+AD=AB+BC=16cm,所以△ABC的周长为AB+BC+AC=16+14=30(cm).例5、直角ΔABC中,∠ACB=90°,∠A=15°,将顶点A翻折使它与顶点B重合,折痕为MH,已知AH=2,求BC的长.分析:折叠问题可以看成轴对称问题.由外角定理得到直角三角形中有30°角,利用30°角所对的直角边等于斜边的一半可得.解:由于轴对称,得∠MA′H=∠A=15°,所以∠BHC=30°,BH=AH,又△BHC为直角三角形,因为直角三角形中30°角所对的直角边等于斜边的一半,所以 BC=BH=×2=1.变式训练1.如图,AB=AC,AC的垂直平分线MN交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.2.在Rt△ABC中,∠A=90°,AB=3,AC=4,∠ABC,∠ACB的平分线交于P点,PE⊥BC于E 点,求PE的长.答案:1.(1)30°(2)27 2.1考点三:线段垂直平分线与证明题例6、如图,点D、E在△ABC的边BC上,BD=CE,AB=AC,求证:AD=AE.证明:过点A作AF⊥BC于F.∵AB=AC,AF⊥BC,∴BF=CF.∵BD=CE,∴BF-BD=CF-CE.∴DF=EF.∴AF是DE的垂直平分线.AD=AE.例7、如图所示,在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证BF=2CF.分析:由线段的垂直平分线性质知联结AF,证线段二倍关系,通常考虑是否有直角三角形,且直角三角形中是否有30°角.证明:如图所示,联结AF,∵AB=AC,∠BAC=120°(已知),∴∠B=∠C==30°(等腰三角形性质).又∵EF是AC的垂直平分线(已知),∴FA=FC(线段垂直平分线性质).∴∠C=∠FAC=30°(等边对等角),∴∠BAF=∠BAC-∠FAC=120°-30°=90°(等式性质).在Rt△BAF中,∠BAF=90°,∠B=30°(已证),∴AF=BF(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).∴CF=BF(等量代换).∴BF=2CF(等式性质).例8、如图,△ABC中,∠B=22.5°,AB的垂直平分线交AB于Q点,交BC于P点,PE ⊥AC于E点,AD⊥BC于D点,AD交PE于F点.求证:DF=DC.连接PA,则PA=PB,可求∠APD=45°,从而可得出AD=PD,再证△PDF ≌△ADC(ASA),即可得证.考点四:线段垂直平分线的实际应用例9、如图所示,牧童在A处放牛,他的家在B处,晚上回家时要到河边让牛饮一次水,则饮水的地点选在何处,牧童所走的路最短?分析:本题A,B两点在河的同侧,直接确定牛饮水的位置并不容易,但若A,B在河的两侧就容易了.将A点转化到河流的另一侧,设为A′,直线是AA′的垂直平分线,不论饮水处在什么位置,A点与它的对称点到饮水处的距离都相等.当A′B最小时,饮水处到A,B的距离和最小.解:如图所示,点C即为所求.例10、在沪宁高速公路L的同侧,有两个化工厂A、B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?院址应同时满足两个条件:(1)在公路L上;(2)到A、B两厂的距离相等。
线段的中垂线和角平分线课件
中垂线与线段垂直,且中垂线 上的角为直角。
中垂线上的任意一点到线段两 端点的连线与中垂线垂直。
中垂线的应用
01
在几何作图中,中垂线 用于确定对称图形和等
分线段。
02
在实际生活中,中垂线 可用于建筑、工程和设 计等领域,例如桥梁、 道路和管道的铺设等。
03
在数学问题中,中垂线 是解决等腰三角形、菱 形和正方形等问题的关
在几何证明中,经常使用角平分线的性质来证明某些结论。
在实际生活中,角平分线可以用于设计、建筑、工程等领域 ,例如道路、桥梁、建筑物的布局和设计。
04
线段的中垂线和角平分线的 比较
定义的比较
总结词
线段的中垂线和角平分线的定义不同 ,中垂线是垂直平分线段的直线,而 角平分线是将一个角平分的射线。
详细描述
键工具。
03 角平分线
角平分线的定义
01
角平分线是从一个角的顶点出发 ,将该角平分的射线。
02
角平分线将相对边分为两等份, 相对边上的两个点与角的顶点构 成三个相等的角。
角平分线的性质
角平分线上的点到角的两边距离相等 。
角平分线将相对边上的任意一点与角 的顶点的连线分为两等份。
角平分线的应用
线段的中垂线和角平分线p• 引言 • 线段的中垂线 • 角平分线 • 线段的中垂线和角平分线的比较 • 练习与问题解答
01 引言
主题介绍
线段的中垂线
线段的中垂线是垂直平分线段的 直线,它将线段分为两个相等的 部分。
角平分线
角平分线是将一个角分为两个相 等的角的射线,它与相对边相交 于一点。
06
解答
中垂线上的任意一点到线段两端点的距离相等 ;角平分线上的任意一点到角的两边的距离相 等。
中线与角平分线的关系
中线与角平分线的关系
中线是一边中点和对应顶点的连线。
角平分线是将一角平分并与对边相交的线段。
只有为等腰三角形时或者等边三角形时,两者顶角平分线才与对边中线重合。
三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线。
任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。
由定义可知,三角形的中线是一条线段。
三条中线交于一点。
这点称为三角形的重心。
每条三角形中线分得的两个三角形面积相等。
“中心”与“重心”很容易弄混淆,“中心”只存在于正三角形,也就是等边三角形当中。
在等边三角形中,其内心,外心,重心,垂心都在一个点上,于是称之为中心。
内心:三角形的内心是三角形三条内角平分线的交点。
外心:三角形三条边的中垂线的交点叫作三角形的外心,即外接圆圆心。
重心:三角形三条中线的交点叫作三角形的重心。
垂心:三角形三条垂线的交点叫作三角形的垂心。
三角形的中线、角平分线、垂线PPT课件
A E
你有什么发现?与同学交流。
D
C
长边上的高在三角形内,
B
短边上的高在三角形外
钝角三角形的三条高不相交于一点.
F
这三条高所在的直线是否相交于 一点呢?请大家画一画。
钝角三角形的三条高 所在直线交于一点.
ppt课件完整
14
如图,七年级一、二班的同学在植树节前要绿化 一块三角形的空地,你能帮助他们把这块地划分成面 积相等、都是三角形形状的两块地吗? A
相关知识回顾
1.角平分线的定义:
从一个角的顶点引一条射线,这条射
线把这个角分成两个相等的角,则这条射
线就叫做这个角的平分线。
A
如图所示:
BE是∠ABC的平分线, 那么 ∠1=∠2= 21∠_A__B_C__
E
1
2
C
ppt课件完整
B
1
相关知识回顾
2.线段中点的定义:
线段上的一点把这条线段分成相等的两部分,这个点
B
C
ppt课件完整
15
同学们,通过这节课的学习,你有哪些收获呢? 请大家畅谈。
ppt课件完整
17
作业
有一块三角形的三明治, 你能运用几种方法把这块三 明治分成大小相等的6份。
18
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
0 1 2 3 4 5 6 7 8 9 10
C
ppt课件完整
10
三、三角形的高
A
从三角形的一个顶点
向它的对边所在的直线画
垂线,顶点和垂足间的线
段,叫做这个三角形的高。B
D
C
如上图所示,线段AD是BC边上的高.
初中数学三角形中的角平分线中线高线和中垂线
一. 教学内容:三角形中的角平分线、中线、高线和中垂线二. 教学内容1. 三角形的角平分线和中线2. 三角形的高线和中垂线3. 角平分线性质定理、中垂线性质定理三. 教学目标和要求1. 理解三角形角平分线、中线、高线和中垂线的概念,并能画出相应的线。
2. 掌握三角形角平分线、中线、高线及中垂线的一些特征,并能在解题中灵活应用。
四. 教学重点、难点1. 重点:角平分线性质定理及中垂线性质定理的运用2. 难点:三角形中线在面积方面的应用,角平分线性质定理、中垂线性质定理的运用是本周难点。
五. 知识要点1. 角平分线性质定理2. 中垂线性质定理3. 三角形中的三条角平分线4. 三角形中的三条中线5. 三角形中的三条高线6. 三角形中三边上的中垂线【典型例题】例1. 如图,△ABC的两条角平分线AD,CE相交于P,PM⊥BC于M,PN ⊥AB于N,则PN=PM,请说明理由。
解:过P作PF⊥AC,垂足为F∵AD平分∠BAC,PN⊥AB,PF⊥AC∴PN=PF (为什么)∵CE平分∠ACB,PM⊥BC,PF⊥AC∴PM=PF∴PM=PN (为什么)例2. 如图,BP、CP分别为△ABC的两个外角的平分线,则点P到△ABC三边的距离相等吗?若相等,请说明理由。
解析:略例3. 已知△ABC ,要把它分成面积相等的6块,且只能画三条线,应怎样分?并说明分法的正确性。
解:分法:分别画△ABC 的三条中线AD 、BE 、CF ,交于P 点,所分得的6块面积相等。
理由:∵AD 为中线∴BD =CD ∴S △PBD =S △PCD 设S △PBD =S △PCD =a同理:可设S △PCE =S △PEA =b ;S △PAF =S △PBF =c ∵AD 为△ABC 的中线 ∴S △ABD =S △ACD 即a+2c =a+2b ∴c =b同理可得a =b ∴a =b =c∴△ABC 三条中线分得的6块三角形面积相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第41课时 线段的中垂线与角平分线
【复习要点】
1、线段的垂直平分线及其性质:
(1)__________一条线段的直线,叫做这条线段的垂直平分线。
(2)线段垂直平分线上的_________,到这条线段两端的_________相等,到线段两端距离相等的_________,在这条线段的垂直平分线___________。
2、角平分线及其性质:
(1)把一个角分成两个_____的角的射线,叫做这个角的平分线。
(2)角平分线的点,到角两边的_____相等,到角两边距离相等的_____,在这个角的_________上。
【实弹射击】 一、选择题
1. 如图,ABC △中,AB AC =,30A ∠=,DE 垂直平分AC , 则BCD ∠的度数为( ) A.
80
B.
75
C.
65
D.45
2.△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm , △ADC•的周长为9cm ,则△ABC 的周长是( )
A .10cm
B .12cm
C .15cm
D .17cm
3.已知:在△ABC 中,AB=AC ,O 为不同于A 的一点,且OB=OC , 则直线AO 与底边BC 的关系为( )
A .平行 B.AO 垂直且平分BC C.斜交 D.AO 垂直但不平分BC
二、填空题
4. 如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .
5.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,若BD=10,则CD=
6.如图,△ABC 中,AB=AC ,DE 是AB 的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC= ,△BDC 的周长C △BDC = .
第8题
O
C
B
A
D
P 7.如图,∠1=50°,∠2=80°,DB=AB ,CE=CA ,则∠D= ,∠DAE= .
8.如图,ΔABC 的三边AB 、BC 、CA 的长分别是20、30、40、其中三条角平分线将ΔABD 分为三个三角形,则S ABO ∆:S BCO ∆:S CAO ∆等于______. 三、解答题
9.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,求PD 的长.
10.已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.
11.如图,已知在△ABC 中,AB=AC ,∠BAC=120o
,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F . 求证:BF=2CF .
12.如图所示,∠BAC =105°,若MP 和NQ 分别垂直平分AB 和AC .求∠PAQ 的度数.
13、如图所示,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F , 求证:(1)AE=AF ,(2)DA 平分∠EDF
D
E
C
B
A
O
M B A N
C
Q P
_
N _ M _ O _
B _ A
14、(2010甘肃陇南市)如图,在△ABC 中,AB=AC ,D 是BC 边上的一点,DE ⊥
AB ,DF ⊥AC ,垂足
分别为E 、F ,添加一个条件,使DE= DF , 并说明理由.
15、探究:要在燃气管道L 上修建一个泵站,分别向A ,B 两镇供气,泵站修在管道的什么地方,
可使所用的输气管线最短?
16.如图:某地有两所大学和两条相交叉的公路,(点M ,N 表示大学,AO ,BO 表示公路)现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。
你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;
17.如图所示,∠ABC 内有一点P ,在BA 、BC 边上各取一点P 1、
P 2,使△PP 1P 2的周长最小.
A · C。