必修5及必修2第一章测试题

合集下载

(压轴题)高中数学必修五第一章《数列》测试题(有答案解析)(2)

(压轴题)高中数学必修五第一章《数列》测试题(有答案解析)(2)

一、选择题1.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .62.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3923.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞ B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,4.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n - 5.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 6.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .27.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏8.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .219.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1210.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭11.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .712.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 14.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.15.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则10S =______. 16.已知等差数列{}n a 中,48a =,84a =,则其通项公式n a =__________17.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.18.若数列{}n a 满足12a =,141n n a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.19.已知数列{}n a 与{}n b 满足11222n n a a a ++++=-,1(1)(1)nn n n a b a a +=--,数列{}n b 的前n 项的和为n S ,若n S M ≤恒成立,则M 的最小值为_________.20.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.三、解答题21.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .22.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A . 23.设数列{}n a 的前n 项和为n S ,已知23S =,()*11n n a S n +=+∈N .(1)求数列{}n a 的通项公式; (2)设()()111n n n n a b a a +=++,记数列{}n b 的前n 项和为n T ,求证:12n T <.24.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}nb 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.已知数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn n b a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n --=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=, ()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥- ⎪⎝⎭的n 的最大值为5.故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.2.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.3.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=, 12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.4.D解析:D 【分析】 根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.5.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S =∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩ ∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n kk n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.6.A【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.7.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.8.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.9.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.10.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936,……可得数列{}n a 为首项为94,公比为13的等比数列, 所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥,所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭, 故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题11.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=, 即116255204a b +=,当且仅当16b aa b =,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.12.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n n a a +=+,则()112221n n n a a a ++=+=+,即1121n n a a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =. 故选:C. 【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项.二、填空题13.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711a b b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.14.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2,∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15.【分析】先利用求出再利用时可知是首项为1公差为1的等差数列即可求出【详解】当时解得当时整理可得是首项为1公差为1的等差数列是正项数列故答案为:【点睛】本题考查等差数列的判断考查和的关系属于中档题【分析】先利用11a S =求出1S ,再利用2n ≥时1n n n a S S -=-可知{}2n S 是首项为1,公差为1的等差数列,即可求出10S . 【详解】 当1n =时,1111112S a a a ,解得11a =,11S = 当2n ≥时,11112nn n n nS S S S S ,整理可得2211n n S S --=,2n S 是首项为1,公差为1的等差数列, 2111n S n n ,{}n a 是正项数列,n S ∴=1010S .【点睛】本题考查等差数列的判断,考查n a 和n S 的关系,属于中档题.16.【解析】∵等差数列{an}中a4=8a8=4∴解得a1=11d=−1∴通项公式an=11+(n−1)×(−1)=12−n 解析:12n -【解析】∵等差数列{a n }中,a 4=8,a 8=4, ∴41813874a a d a a d =+=⎧⎨=+=⎩,解得a 1=11,d =−1,∴通项公式a n =11+(n −1)×(−1)=12−n .17.32【分析】利用数列的递推公式推导出由此能求出数列的前6项和【详解】∵数列中∴解得∴数列的前6项和为:故答案为:32【点睛】本题主要考查数列的前6项和的求法考查递推公式递推思想等基础知识考查运算求解解析:32 【分析】利用数列的递推公式推导出11a =,由此能求出数列{}n a 的前6项和. 【详解】∵数列{}n a 中,22a =,21n n n a a a ++=+,834a =, ∴32112a a a a =+=+,43211224a a a a a =+=++=+,543162a a a a =+=+,6541103a a a a =+=+, 7651165a a a a =+=+,876126834a a a a =+=+=,解得11a =,∴数列{}n a 的前6项和为:()()()()61111112246210324832S a a a a a a =+++++++++=+=,故答案为:32. 【点睛】本题主要考查数列的前6项和的求法,考查递推公式、递推思想等基础知识,考查运算求解能力,属于中档题.18.【分析】根据递推关系式可证得数列为等比数列根据等比数列通项公式求得代入不等式结合可求得结果【详解】数列是以为首项为公比的等比数列由得:即且满足题意的最小正整数故答案为:【点睛】本题考查根据数列递推关 解析:11【分析】根据递推关系式可证得数列}1,代入不等式,结合n *∈N 可求得结果. 【详解】()21411n n a a +=+=,1=,)121=,∴数列}111=为首项,2为公比的等比数列, )1112n -+=⨯,)1121n -=⨯-,由22020n a ≥2020≥,即)1220211837n -≥=⨯≈,92512=,1021024=且n *∈N ,∴满足题意的最小正整数11n =.故答案为:11. 【点睛】本题考查根据数列递推关系式求解数列通项公式并解不等式的问题,关键是能够通过构造的方式,通过递推关系式得到等比数列的形式,进而利用等比数列通项公式来进行求解.19.【分析】由已知式写出为的式子相减求得检验是否相符求得用裂项相消法求得和由表达式得的范围从而得最小值【详解】∵所以时两式相减得又所以有从而显然所以的最小值为1故答案为:1【点睛】方法点睛:本题主要考查 解析:1【分析】由已知式写出n 为1n -的式子,相减求得n a ,检验1a 是否相符,求得n b ,用裂项相消法求得和n S ,由n S 表达式得M 的范围,从而得最小值. 【详解】 ∵11222n n a a a ++++=-,所以2n ≥时,12122n n a a a -+++=-,两式相减得1222n n nn a +=-=,又21222a =-=,所以*n N ∈,有2nn a =,从而11211(21)(21)2121n n n n n n b ++==-----,122231111111212121212121n n n n S b b b +⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--,显然1n S <,所以1M ≥,M 的最小值为1.故答案为:1. 【点睛】方法点睛:本题主要考查求数列的通项公式,考查裂项相消法求和,数列求和的常用方法有:(1)公式法,(2)错位相减法,(3)裂项相消法,(4)分组(并项)求和法,(5)倒序相加法.20.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++,2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.三、解答题21.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅, 12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.22.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d , 若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n n n A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算. 23.(1)12n n a ;(2)证明见解析.【分析】(1)利用1n n n a S S -=-消去n S ,得到{}n a 为等比数列,公式法求通项公式; (2)把12n n a 代入()()111n n n n a b a a +=++,用裂项相消法求出n T ,再证明12n T <.【详解】解:(1)∵11n n a S +=+,∴11(2)n n a S n -=+≥ ∴1n n n a a a +-=,即∴12(2)n n a a n +=≥. 又21111a S a =+=+,2123S a a =+=∴11a =,22a =,∴212a a =也满足12(2)n n a a n +=≥. ∴{}n a 是以1为首项,2为公比的等比数列,∴12n na(2)由(1)知()()()()11112111121212121n n nn n n n n n a b a a ---+===-++++++.∴1201121111111212121212121n n n nT b b b -⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭01111121212212n n =-=-<+++. 【点睛】 (1)证明等差(比)数列的方法:定义法和等差(比)中项法;(2)数列求和的方法:公式法、分组求和法、倒序相加法、裂项相消法、错位相减法.24.(1)3nn a =;(2)13112212n n ⎛⎫-- ⎪++⎝⎭. 【分析】(1)由已知13213,,22a a a 成等差数列求出公比q 后可得通项公式; (2)用裂项相消法求和n S .【详解】(1)解:设等比数列{}n a 的公比为q , 由题意得:31212322a a a ⨯=+, 即211132a q a a q =+,即232q q =+,所以3q =或1q =-(舍),所以1333n nn a -=⋅=.(2)由(1)知233233111log log log 3log 3(2)n n n n n b a a n n ++===⋅⋅+,则11122n b n n ⎛⎫- ⎪+⎝⎭=, 所以1111111112324112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎛⎫=+-- ⎪++⎝⎭13112212n n ⎛⎫=-- ⎪++⎝⎭【点睛】本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(1)()*1(1)2nn a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n n n a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,n n a n ⎧=⎨⎩为奇数为偶数). (2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+,即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.26.(1)2nn a n =⋅;(2)()1122n n T n +=-⋅+;(3)12. 【分析】(1)利用累乘法可求得数列{}n a 的通项公式; (2)利用错位相减法可求得数列{}n a 的前n 项和n T ;(3)令2n n n c S S =-,分析数列{}n c 的单调性,由此可求得2n n S S -的最小值. 【详解】(1)数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈⎪⎝⎭,则2140a a =>,323202a a =⨯>,,以此类推,对任意的n *∈N ,0n a >, 由已知条件可得()121n n n a a n++=, 3211212223222121n n n n a a a n a a n a a a n -⨯⨯=⋅⋅⋅⋅=⨯⨯⨯⨯=⋅-; (2)1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--, 因此,()1122n n T n +=-⋅+;(3)21n n n b a n ==,则111123n S n =++++, 令2n n n c S S =-,则()()()()122122221n n n n n n n n n n c c S S S S S S S S +++++-=---=---()()11111102221121222122n n n n n n n =+-=-=>+++++++,则1n n c c +>, 则数列{}n c 为单调递增数列,所以,数列{}n c 的最小值为12112c S S =-=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。

人教版高中生物必修2遗传与进化第1章综合测试试卷含答-案答案在前

人教版高中生物必修2遗传与进化第1章综合测试试卷含答-案答案在前

第一章综合测试答案解析一、1.【答案】D【解析】独立遗传的两对相对性状,两对相对性状的分离相互不影响,A错误;一对等位基因的杂交实验,如果子代的数量足够多,则F1自交的性状分离比一般较稳定,如果该性状在遗传过程中存在致死现象,则F1自交的性状分离比是不固定的,B错误;两对等位基因的杂交实验中,两对等位基因在染色体上的位置不同,F1自交的性状分离比有所不同,C错误;在雌雄动物的杂交实验中,如果控制性状的基因位于性染色体上,则性状分离有着性别的差异,D正确。

2.【答案】B【解析】纯合子的性状是稳定遗传的,而显性性状的个体不一定是纯合子,隐性性状的个体一定是纯合子,所以一旦出现即可稳定遗传。

3.【答案】C【解析】自花传粉说明自然情况下只能自交,Cc在自交三年后杂合子占1/8,而剩余的7/8中有一半是显性纯合子,一半是隐性纯合子,即各占7/16,故有色花占1/87/169/16,有色花菜豆与无色花菜豆的比例为9:7。

4.【答案】D【解析】由“一株高茎红花豌豆与基因型为Aabb的豌豆杂交,子代中3/4开红花,1/2为高茎”可知,该高茎红花豌豆的基因型为AaBb,其自交后代中有9种配子组合方式表现为高茎红花,除AABB为纯合子外,其余8种均为杂合子。

5.【答案】D【解析】由题图可知,有香味“粤丰B”和无香味“320B”杂交,后代均是无香味个体,其自交后代F2出现性状分离,且无香味与有香味的比例约为3:1,因而确定水稻有无香味的性状是由一对基因控制的,且控制有香味的基因呈隐性,控制无香味的基因呈显性,假设相关基因分别用B、b表示。

F2中无香味个体的基因型为BB和Bb,比例为1:2,2/3Bb自交后代中,产生有香味个体bb的比例为2/31/41/6,其余为无香味。

杂合子自交后代出现性状分离,而F2无香味植株所结种子中既有有香味也有无香味的有128株,约占2/3,故可知杂合子有128株。

测交法可以检测被测个体的基因型以及产生配子的种类和比例,但不能得出产生配子的数量,所以D项错误。

高一北师大版数学必修2第一章 立体几何初步单元测试题试卷含答案解析

高一北师大版数学必修2第一章 立体几何初步单元测试题试卷含答案解析

第二章测试时间120分钟 满分150分一、选择题(本大题共10小题,每小题5分,共50分.在下列四个选项中,只有一项是符合题意的)1.已知点P (-3,1),点Q 在y 轴上,且直线PQ 的倾斜角为120° ,则Q 点的坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)解析 设Q (0,y ),由k =y -13=-3,得y =-2.答案 B2.已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于( )A .2B .1C .0D .-1解析 由题意,得a (a +2)=-1,得a =-1. 答案 D3.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则m 的值为( )A .0B .-8C .2D .10解析 由4-mm +2=-2,得m =-8.答案 B4.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )A .5 B.13 C .10D.10解析 A (1,-2,-3),C (-2,-2,-5)代两点间距离公式即可.答案 B5.直线y +4=0与圆x 2+y 2-4x +2y -4=0的位置关系是( ) A .相切B .相交,但直线不经过圆心C .相离D .相交且直线经过圆心 答案 A6.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )A .x 2+y 2=4(x ≠±2)B .x 2+y 2=4C .x 2+y 2=2(x ≠±2)D .x 2+y 2=2解析 由题可知,点P 的轨迹是以MN 为直径的圆(除去M 、N 两点),∴点P 的轨迹方程是x 2+y 2=4(x ≠±2).答案 A7.若直线3x +2y -2m -1=0与直线2x +4y -m =0的交点在第四象限,则实数m 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C.⎝⎛⎭⎪⎫-∞,-23D.⎝⎛⎭⎪⎫-23,+∞解析 由⎩⎪⎨⎪⎧3x +2y -2m -1=0,2x +4y -m =0,得⎩⎨⎧x =3m +24,y =-m -28.由题意,得⎩⎨⎧3m +24>0,-m +28<0,得m >-23.答案 D8.已知圆C 的方程为x 2+y 2-4x =0,若圆C 被直线l :x +y +a =0截得的弦长为23,则a =( )A .2+ 2 B.2 C .2± 2D .-2±2解析 由弦长公式,得3=4-⎝ ⎛⎭⎪⎪⎫2+a 12+122, 得a =-2± 2. 答案 D9.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或11解析 将直线平移后得到y =2(x +1)+λ=2x +2+λ, 由题可知,|-2-2+2+λ|22+(-1)2=5, 得λ=-3,或λ=7,故选A. 答案 A10.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( )A .-2或2 B.12或32 C .2或0D .-2或0解析 圆的圆心(1,2),∴d =|1-2+a |2=22,得a =0,或a =2.答案 C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.当a 为任意实数时,直线ax -y +1-3a =0恒过定点________. 解析 原方程可化为a (x -3)-(y -1)=0,∴直线l 过(3,1). 答案 (3,1)12.直线x -2y +5=0与圆x 2+y 2=8相交于A ,B 两点,则|AB |=________.解析 圆心到该直线的距离d =55=5,∴弦长=2(22)2-(5)2=2 3. 答案 2313.两圆相交于两点(1,3)和(m ,-1),两圆圆心都在直线x -y +c =0上,且m 、c 均为实数,则m +c =________.解析 根据两圆相交的性质可知,两点(1,3)和(m ,-1)的中点⎝ ⎛⎭⎪⎫1+m 2,1在直线x -y +c =0上,并且过两点的直线与x -y +c =0垂直,故有⎩⎨⎧1+m2-1+c =0,3-(-1)1-m ×1=-1,∴m =5,c =-2,∴m +c =3. 答案 314.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线l 的斜率为________;圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为________.解析 ∵k PQ =3-a -b3-b -a =1,又k l ·k PQ =-1∴k l =-1,又(2,3)关于l 的对称点为(0,1), 故所求的圆的方程为x 2+(y -1)2=1. 答案 -1 x 2+(y -1)2=115.过圆x 2+y 2-x +y -2=0与x 2+y 2=5的交点,且圆心在直线3x -4y -1=0上的圆的方程为________.解析 设所求的圆的方程为x 2+y 2-x +y -2+ λ(x 2+y 2-5)=0,即(1+λ)x 2+(1+λ)y 2-x +y -2-5λ=0.∴圆心为⎝ ⎛⎭⎪⎫12(1+λ),-12(1+λ). 由32(1+λ)-42(1+λ)-1=0,得λ=-32 故所求的圆的方程为(x +1)2+(y -1)2=13. 答案 (x +1)2+(y -1)2=13三、解答题(本大题共有6小题,共75分.解答时应写出必要的文字说明,证明过程或演算步骤)16.(12分)已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m ,n 的值,使(1)l 1和l 2相交于点(m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1. 解 (1)∵m 2-8+n =0,且2m -m -1=0, ∴m =1,n =7.(2)由m ·m -8×2=0,得m =±4, 由8×(-1)-n ·m ≠0,得n ≠±2,即m =4,n ≠-2时,或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当m ·2+8·m =0,即m =0时,l 1⊥l 2,又-n8=-1,∴n =8. 即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.17.(12分)△ABC 中,顶点A 的坐标为(1,2),高BE ,CF 所在直线的方程分别为2x -3y +1=0,x +y =0,求这个三角形三条边所在直线的方程.解 由已知,直线AC 的斜率为-32, 直线AB 的斜率为1.∴直线AC 的方程为3x +2y -7=0, 直线AB 的方程为x -y +1=0.再由⎩⎪⎨⎪⎧x +y =0,3x +2y -7=0,可解得C 点坐标为(7,-7).由⎩⎪⎨⎪⎧2x -3y +1=0,x -y +1=0,可解得B 点坐标为(-2,-1) . 于是直线BC 的方程为2x +3y +7=0.18.(12分)已知圆x 2+y 2-12x =0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同两点A ,B ,求实数k 的取值范围.解 x 2+y 2-12x =0可化为(x -6)2+y 2=36,又直线过点P (0,2),斜率为k ,故l 的方程为y =kx +2,即kx -y +2=0,由题意,得|6k +2|k 2+1<6,得k <43.∴k 的取值范围是⎝⎛⎭⎪⎫-∞,43.19.(13分)已知P (1,2)为圆x 2+y 2=9内一定点,过P 点任作直线,与圆相交,求弦的中点的轨迹方程.解 设过P 点的直线与圆相交于A ,B 两点,C 为AB 的中点,设C (x ,y ),由题意,得当P 与C 不重合时,△OPC 为直角三角形,∴C 点在以OP 为直径的圆上,又OP 的中点⎝ ⎛⎭⎪⎫12,1,|OP |=12+22=5,∴点C 的轨迹方程为⎝ ⎛⎭⎪⎫x -122+(y -1)2=54(除去P 点).又当x =1,y =2时上式仍成立,∴点C 的轨迹方程为⎝ ⎛⎭⎪⎫x -122+(y -1)2=54.20.(13分)已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m ;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解 (1)原方程化为(x -1)2+(y -2)2=5-m . ∵此方程表示圆, ∴5-m >0. ∴m <5.(2)设M (x 1,y 1),N (x 2,y 2), 则x 1=4-2y 1,x 2=4-2y 2, 得x 1x 2=16-8(y 1+y 2)+4y 1y 2. ∵OM ⊥ON , ∴x 1x 2+y 1y 2=0.∴16-8(y 1+y 2)+5y 1y 2=0.①由⎩⎪⎨⎪⎧x =4-2y ,x 2+y 2-2x -4y +m =0,得 5y 2-16y +m +8=0. ∴y 1+y 2=165,y 1y 2=8+m 5. 代入①得m =85.(3)以MN 为直径的圆的方程为 (x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0, 即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.∴所求圆的方程为x 2+y 2-85x -165y =0.21.(13分)已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆外,过点P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足|PM |=|PO |的点P 的轨迹方程.解 (1)把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为(-1,2),半径为2.①当l 的斜率不存在时,l 的方程为x =1满足条件.②当l 的斜率存在时,设斜率为k ,则l :y -3=k (x -1),即kx -y +3-k =0.由题意,得|-k -2+3-k |1+k 2=2,得k =-34. ∴l 的方程为3x +4y -15=0.综上得,满足条件的切线l 的方程为x =1,或3x +4y -15=0. (2)设P (x ,y ),∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2. 整理得2x -4y +1=0.即点P 的轨迹方程为2x -4y +1=0.。

高一生物必修一第一章测试题

高一生物必修一第一章测试题

高一生物必修一第一章测试题一、选择题(每题2分,共20分)1. 细胞学说的创立者是:A. 达尔文B. 孟德尔C. 施莱登和施旺D. 牛顿2. 细胞膜的主要功能是:A. 储存遗传物质B. 保护细胞内部结构C. 进行光合作用D. 合成蛋白质3. 细胞核内含有的物质是:A. 核糖体B. 线粒体C. DNAD. 内质网4. 细胞周期中,细胞体积增大的阶段是:A. 分裂间期B. 分裂期C. 间期D. 有丝分裂期5. 细胞分裂过程中,染色体数量加倍发生在:A. 间期B. 前期C. 中期D. 后期二、填空题(每空1分,共10分)6. 细胞膜的主要成分是________和蛋白质。

7. 细胞壁主要由________组成,具有保护和支持细胞的作用。

8. 细胞内的能量转换器包括________和线粒体。

9. 细胞核是遗传信息库,因为它含有________。

10. 细胞分裂的两种类型是________和无丝分裂。

三、简答题(每题5分,共20分)11. 简述细胞膜的结构特点。

12. 描述细胞核在细胞中的功能。

13. 解释细胞周期的概念及其重要性。

14. 说明有丝分裂过程中染色体的行为变化。

四、实验题(每题5分,共10分)15. 设计一个实验来观察植物细胞的质壁分离和复原现象。

16. 描述如何使用显微镜观察细胞的有丝分裂过程。

五、论述题(每题15分,共30分)17. 论述细胞学说对生物学发展的贡献。

18. 讨论细胞分化在生物体发育中的作用及其意义。

六、计算题(每题5分,共5分)19. 如果一个细胞的DNA含量为6.4 pg,已知1 pg DNA含有的碱基对数为9.2×10^9,计算这个细胞的DNA含量相当于多少个碱基对?七、案例分析题(每题5分,共5分)20. 某生物实验中,研究人员发现细胞分裂过程中染色体数量异常,分析可能的原因及其对生物体可能造成的影响。

请注意,以上题目仅为示例,实际测试题应根据教学大纲和课程内容进行设计。

(完整版)新课标人教A版高中数学必修五第一章《解三角形》单元测试题

(完整版)新课标人教A版高中数学必修五第一章《解三角形》单元测试题

解三角形一、选择题(共12小题,每小题5分,只有一个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23AC =( ) A .3 B .22 C 332.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形3.在△ABC 中,已知a =11,b =20,A =130°,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定 4. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60ο的视角,从B 岛望C 岛和A 岛成75ο视角,则B 、C 两岛的距离是( )海里 A. 65 B. 35 C. 25 D. 55.边长为3、7、8的三角形中,最大角与最小角之和为 ( )A .90°B .120°C .135°D .150°6.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定的一点C ,测出AC 的距离为2m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 2mD. 200m 7.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则△ABC 的面积为( )A .1B .2 C. 2 D. 38.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3 B .5 3 C .6 3D .7 3 9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C的值为( ) A.85 B.58 C.53 D.3510.某海上缉私小分队驾驶缉私艇以40 km/h 的速度由A 处出发,沿北偏东60°方向航行,进行海面巡逻,当行驶半小时到达B 处时,发现北偏西45°方向有一艘船C ,若C 船位于A 处北偏东30°方向上,则缉私艇B 与船C 的距离是( )A .5(6+2) kmB .5(6-2) kmC .10(6+2) kmD .10(6-2) km11.△ABC 的周长为20,面积为3A =60°,则BC 的长等于( )A .5 B.6 C .7 D .812.在ABC △中,角A B C 、、所对的边分别为,,a b c ,若120,2C c a ∠=︒=,则( ) A .a b > B .a b <C .a b =D .a 与b 的大小关系不能确定二、填空题(共4小题,每小题5分):13.三角形的两边分别是5和3,它们夹角的余弦值是方程06752=--x x 的根,则此三角形的面积是 。

必修5《第一章数列》章末测试卷含解析

必修5《第一章数列》章末测试卷含解析

, [学生用书单独成册])(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数列中,既是无穷数列又是递增数列的是( )A .1,12,13,14,… B .-1,2,-3,4,…C .-1,-12,-14,-18,… D .1,2,3,…,n解析:选C.A 为递减数列,B 为摆动数列,D 为有穷数列.2.有穷数列1,23,26,29,…,23n +6的项数是( )A .3n +7B .3n +6C .n +3D .n +2解析:选C.此数列的次数依次为0,3,6,9,…,3n +6,为等差数列,且首项a 1=0,公差d =3,设3n +6是第x 项,3n +6=0+(x -1)×3,所以x =n +3.故选C.3.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…, 按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个解析:选B.设开始的细胞数和每小时后的细胞数构成的数列为{a n }.则⎩⎪⎨⎪⎧a 1=2,a n +1=2a n -1,即a n +1-1a n -1=2. 所以a n -1=1·2n -1,a n =2n -1+1,a 7=65.4.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )A .90B .100C .145D .190解析:选B.设公差为d ,所以(1+d )2=1×(1+4d ),因为d ≠0,所以d =2,从而S 10=100.5.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N +),则a 20=( ) A .0 B .- 3C. 3D.32解析:选B.由a 1=0,a n +1=a n -33a n +1(n ∈N +), 得a 2=-3,a 3=3,a 4=0,…由此可知数列{a n }是周期变化的,周期为3,所以a 20=a 2=- 3.6.设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)解析:选A.设y =kx +b (k ≠0),因为f (0)=1,所以b =1.又因为f (1),f (4),f (13)成等比数列,所以(4k +1)2=(k +1)·(13k +1),所以k =2,所以y =2x+1.所以f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+…+(2×2n +1)=2(2+4+…+2n )+n =2n 2+2n +n =n (2n +3).故选A.7.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项B .第12项C .第13项D .第6项解析:选C.162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.8.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n }为等差数列的实数λ等于( )A .2B .5C .-12 D.12解析:选C.a 1=5,a 2=23,a 3=95,令b n =a n +λ3n , 则b 1=5+λ3,b 2=23+λ9,b 3=95+λ27, 因为b 1+b 3=2b 2,所以λ=-12. 9.近年来,我国最大的淡水湖鄱阳湖湖区面积逐年减少,江西省政府决定将原3万亩围垦区退垦还湖,计划2013年退垦还湖面积为3 000亩,以后每年退垦还湖面积比上一年增加20%,那么从2013年起到哪一年可以基本完成退垦还湖工作(参考数据:lg 3≈0.477 1,lg 1.2≈0.079 2)( )A .2015年B .2016年C .2017年D .2018年解析:选D.由题意可知每年退垦还湖面积依次构成一个等比数列,记为{a n },则首项a 1=3 000,公比q =1+20%=1.2,前n 项和S n =30 000,由3 000(1-1.2n )1-1.2=30 000,得1.2n =3,所以n =log 1.23=lg 3lg 1.2≈6,即到2018年可以基本完成退垦还湖工作,故选D. 10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10等于( )A .1 033B .1 034C .2 057D .2 058解析:选A.由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1,因此ab 1+ab 2+…+ab 10=(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10=1-2101-2+10=1 033. 二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N +),则a 5=________;前8项的和S 8=________(用数字作答).解析:由a 1=1,a n +1=2a n (n ∈N +)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知a 5=a 1q 4=16,S 8=a 1(1-q 8)1-q =1·(1-28)1-2=255. 答案:16 25512.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项公式a n =________.解析:因为a 1=2,a n +1=a n +n +1,所以a n -a n -1=n ,a n -1-a n -2=n -1,a n -2-a n -3=n -2,…,a 3-a 2=3,a 2-a 1=2,a 1=2.将以上各式的两边分别相加,得a n =[n +(n -1)+(n -2)+(n -3)+…+2+1]+1=n (n +1)2+1.答案:n (n +1)2+1 13.数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:因为a n +1=11-a n, 所以a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1 =1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2, 所以周期T =(n +1)-(n -2)=3.所以a 8=a 3×2+2=a 2=2.而a 2=11-a 1,所以a 1=12. 答案:1214.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,则通项为a n =82an 2+bn的数列{a n }的前n 项和为________.解析:因为a ,b ,a +b 成等差数列,所以2b =a +a +b ,故b =2a .因为a ,b ,ab 成等比数列,所以b 2=a 2b ,又b ≠0,故b =a 2,所以a 2=2a ,又a ≠0,所以a =2,b =4,所以a n =82an 2+bn =84n 2+4n =2n (n +1)=2(1n -1n +1), 所以{a n }的前n 项和S n =2(1-12+12-13+…+1n -1n +1)=2(1-1n +1)=2n n +1. 答案:2n n +115.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题:①此数列的公差d <0;②S 9一定小于S 6;③a 7是各项中最大的一项;④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)解析:因为S 7>S 6,即S 6<S 6+a 7,所以a 7>0.同理可知a 8<0.所以d =a 8-a 7<0.又因为S 9-S 6=a 7+a 8+a 9=3a 8<0,所以S 9<S 6.因为数列{a n }为递减数列,且a 7>0,a 8<0,所以可知S 7为S n 中的最大项.答案:①②④三、解答题(本大题共5小题,共55分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)一个等比数列的前三项依次是a ,2a +2,3a +3,则-1312是否是这个数列中的一项?如果是,是第几项?如果不是,请说明理由.解:因为a ,2a +2,3a +3是等比数列的前三项,所以a (3a +3)=(2a +2)2,解得a =-1或a =-4.当a =-1时,数列的前三项依次为-1,0,0,与等比数列定义矛盾,故a =-1舍去.当a =-4时,数列的前三项依次为-4,-6,-9,则公比为q =32,所以a n =-4(32)n -1,令-4(32)n -1=-1312,即(32)n -1=278=(32)3. 所以n -1=3,即n =4,所以-1312是这个数列中的第4项. 17.(本小题满分10分)已知{a n }是公差不为零的等差数列,{b n }是各项都是正数的等比数列,(1)若a 1=1,且a 1,a 3,a 9成等比数列,求数列{a n }的通项公式;(2)若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式. 解:(1)由题意可设{a n }公差为d ,则d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d 1+2d, 解得d =1或d =0(舍去),故数列{a n }的通项公式为a n =1+(n -1)×1=n .(2)由题意可设{b n }公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1, 所以q 2=2+q ,解得q =2或q =-1(舍去),故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(本小题满分10分)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N +)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N +),所以a n +1b n +1-a n b n=2,即c n +1-c n =2, 所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n ,所以S n =(n -1)3n +1.19.(本小题满分12分)某地现有居民住房的面积为a m 2,其中需要拆除的旧住房面积占了一半,当地有关部门决定在每年拆除一定数量旧住房的情况下,仍以10%的住房增长率建新住房.(1)如果10年后该地的住房总面积正好比目前翻一番,那么每年应拆除的旧住房总面积x 是多少(可取1.110≈2.6)?(2)在(1)的条件下过10年还未拆除的旧住房总面积占当时住房总面积的百分比是多少(保留到小数点后第1位)?解:(1)根据题意,可知1年后住房总面积为1.1a -x ;2年后住房总面积为1.1(1.1a -x )-x =1.12a -1.1x -x ;3年后住房总面积为1.1(1.12a -1.1x -x )-x =1.13a -1.12x -1.1x -x ;…10年后住房总面积为1.110a -1.19x -1.18x -…-1.1x -x=1.110a -1.110-11.1-1x ≈2.6a -16x . 由题意,得2.6a -16x =2a .解得x =380a (m 2). (2)所求百分比为a 2-380a ×102a =116≈6.3%. 即过10年未拆除的旧房总面积占当时住房总面积的百分比是6.3%.20.(本小题满分13分)已知数列{a n }的前n 项和为S n ,点(n ,S n n )在直线y =12x +112上.数列{b n }满足b n +2-2b n +1+b n =0(n ∈N +),b 3=11,且其前9项和为153.(1)求数列{a n },{b n }的通项公式;(2)设c n =3(2a n -11)(2b n -1),数列{c n }的前n 项和为T n ,求使不等式T n >k 57对一切n ∈N +都成立的最大正整数k 的值.解:(1)由已知得S n n =12n +112, 所以S n =12n 2+112n . 当n ≥2时,a n =S n -S n -1=12n 2+112n -12(n -1)2-112(n -1)=n +5; 当n =1时,a 1=S 1=6也符合上式.所以a n =n +5.由b n +2-2b n +1+b n =0(n ∈N +)知{b n }是等差数列,由{b n }的前9项和为153,可得9(b 1+b 9)2=9b 5=153, 得b 5=17,又b 3=11,所以{b n }的公差d =b 5-b 32=3,b 3=b 1+2d , 所以b 1=5,所以b n =3n +2.(2)c n =3(2n -1)(6n +3)=12(12n -1-12n +1), 所以T n =12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1). 因为n 增大,T n 增大,所以{T n }是递增数列.所以T n ≥T 1=13. T n >k 57对一切n ∈N +都成立,只要T 1=13>k 57,所以k <19,则k max =18.。

高一数学必修1,2,3,4,5试题及答案

高一数学必修1,2,3,4,5试题及答案

高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。

A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。

17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。

21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。

高中数学必修五第一章《解三角形》单元测试卷及答案

高中数学必修五第一章《解三角形》单元测试卷及答案

高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。

(必考题)高中数学必修五第一章《数列》测试卷(有答案解析)(1)

(必考题)高中数学必修五第一章《数列》测试卷(有答案解析)(1)

一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .543.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .64.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( )A .2018B .2019C .2020D .20216.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( )A .11n + B .1n n + C .1n n- D .11n n -+ 9.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202211.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan 9θ=,则点A 的坐标为________.15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+ ⎪⎝⎭,则2018S =______. 16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______. 19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________. 三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列; (2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .26.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.4.D解析:D【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2. 142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列. 所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.D解析:D 【分析】根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-=又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N *∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下:(1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,① ()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23nnn c =+代入上式,整理得1(2)(3)2306n n k k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N , 将23nnn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅, 事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n n a an n+=+,得到{}n b 为等比数列,(2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅,12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)条件性选择见解析,2n n a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122n n S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =, 所以1222n n n a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列. 故1222n n n a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n nn n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =. (2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n n n T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n n n n T ++⎛⎫=++++- ⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+---- 13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 26.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】(1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】解:(1)当1n =时,111113a S ==++=;当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++, 123n n T b b b b =+++ 11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立.【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.。

人教A版数学必修二第一章测试卷附解析

人教A版数学必修二第一章测试卷附解析

第一章测试卷附解析(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形2.如图,Rt△O′A′B′是一平面图的直观图,斜边O′B′=2,则这个平面图形的面积是()A.22B.1C. 2 D.2 23.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5C.90 D.814.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.316B.916C .38D .9325.如图所示的正方体中,M ,N 分别是AA 1,CC 1的中点,作四边形D 1MBN ,则四边形D 1MBN 在正方体各个面上的正投影图形中,不可能出现的是( )6.如图,圆锥形容器的高为h ,圆锥内水面的高为h 1,且h 1=13h ,若将圆锥形容器倒置,水面高为h 2,则h 2等于( )A .23hB .1927hC .363hD .3193h7.若在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面去截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23B .16C .56D .138.某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A.①③B.②C.①③④D.②③④9.一个几何体的三视图如图所示,则该几何体的表面积为()A.3π B.4πC.2π+4 D.3π+410.如图所示是某几何体的三视图,则这个几何体的体积等于()A.4 B.6C.8 D.1211.若三棱锥的三条侧棱两两垂直,且其长度分别为1,2,3,则此三棱锥的外接球的表面积为()A.3π B.6πC.18π D.24π12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛二、填空题(本题共4小题,第小题5分,共20分.把答案填在题中横线上) 13.一块正方形薄铁皮的边长为4,以它的一个顶点为圆心,剪下一个最大的扇形,用这块扇形铁皮围成一个圆锥,则这个圆锥的容积为________.(铁皮厚度忽略不计)14.若一个几何体的三视图如图所示,则该几何体的体积为________.15.一个体积为123的正三棱柱(底面为正三角形,且侧棱垂直于底面)的三视图如图所示,则侧视图的面积为________.16.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知某几何体的三视图如图所示,其中俯视图的内外均为正方形,边长分别为2和4,几何体的高为3,求此几何体的表面积和体积.18.(12分)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.19.(12分)如图所示,在正三棱柱ABC-A 1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由P沿棱柱侧面经过棱CC1到M的最短路线为29.设这条最短路线与CC1的交点为N,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC和NC的长.20.(12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.21.(12分)如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥A′-BC′D,求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.22.(12分)如图所示,四边形ABCD是直角梯形(单位:cm),求图中阴影部分绕AB所在直线旋转一周所成几何体的表面积和体积.第一章测试卷附解析(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:选A三棱锥的侧面和底面均为三角形.2.如图,Rt△O′A′B′是一平面图的直观图,斜边O′B′=2,则这个平面图形的面积是()A.22B.1C. 2 D.2 2解析:选D∵Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,∴直角三角形的直角边长是2,∴直角三角形的面积是12×2×2=1,∴原平面图形的面积是1×22=22.故选D.3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5C.90 D.81解析:选B由已知中的三视图可得:该几何体是一个以边长为3的正方形为底面的斜四棱柱,其底面面积为:3×3×2=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:3×32+62×2=185,故棱柱的表面积为:18+36+185=54+185.故选B.4.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.316B.916C.38D.932解析:选A设球的半径为R,所得的截面为圆M,圆M的半径为r.画图可知(图略),R2=14R2+r2,∴34R2=r2.∴S球=4πR2,截面圆M的面积为πr2=34πR2,则所得截面的面积与球的表面积的比为34πR24πR2=316.故选A.5.如图所示的正方体中,M,N分别是AA1,CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是()解析:选D 四边形D 1MBN 在上下底面的正投影为选项A ;在前后面上的正投影为选项B ;在左右面上的正投影为选项C .故选D .6.如图,圆锥形容器的高为h ,圆锥内水面的高为h 1,且h 1=13h ,若将圆锥形容器倒置,水面高为h 2,则h 2等于( )A .23hB .1927hC .363hD .3193h解析:选D 设圆锥形容器的底面积为S , 则未倒置前液面的面积为49S ,∴水的体积V =13Sh -13×49S (h -h 1)=1981Sh , 设倒置后液面面积为S ′,则S ′S =⎝ ⎛⎭⎪⎫h 2h 2,∴S ′=Sh 22h 2,∴水的体积V =13S ′h 2=Sh 323h 2,∴1981Sh =Sh 323h 2,解得h 2=319h3,故选D .7.若在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面去截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23B .16C .56D .13解析:选C 易知V =1-8×13×12×12×12×12=56.8.某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A .①③B .②C .①③④D .②③④解析:选A 若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求;①③都是能符合要求的几何体,故选A .9.一个几何体的三视图如图所示,则该几何体的表面积为( )A.3π B.4πC.2π+4 D.3π+4解析:选D由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为S=2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.10.如图所示是某几何体的三视图,则这个几何体的体积等于()A.4 B.6C.8 D.12解析:选A由三视图得该几何体为四棱锥S-ABCD,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且ABCD为直角梯形,∠DAB=90°.∴V=13SA×12(AB+CD)·AD=13×2×12×(2+4)×2=4,故选A.11.若三棱锥的三条侧棱两两垂直,且其长度分别为1,2,3,则此三棱锥的外接球的表面积为()A.3π B.6πC.18π D.24π解析:选B将三棱锥补成棱长分别为1,2,3的长方体,则长方体的体对角线是外接球的直径,所以2R=6,解得R=62,故S=4πR2=6π.12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解析:选B米堆的体积即为四分之一的圆锥的体积,设圆锥底面半径为r,则14×2πr=8,得r=16π,所以米堆的体积为13×14πr2×5≈3209(立方尺),3209÷1.62≈22(斛).二、填空题(本题共4小题,第小题5分,共20分.把答案填在题中横线上)13.一块正方形薄铁皮的边长为4,以它的一个顶点为圆心,剪下一个最大的扇形,用这块扇形铁皮围成一个圆锥,则这个圆锥的容积为________.(铁皮厚度忽略不计)解析:如图所示,剪下最大的扇形的半径即圆锥的母线长l等于正方形的边长4,扇形的弧长=14×(2π×4)=2π,即为圆锥的底面周长,设圆锥的底面半径为r,高为h,则2πr=2π,所以r=1,所以h=l2-r2=15,所以圆锥的容积为13πr 2h=15π3.答案:15π314.若一个几何体的三视图如图所示,则该几何体的体积为________.解析:该组合体为在一个圆柱内去掉一个半球,其体积V=π×12×1-4 3π×13×12=π3.答案:π315.一个体积为123的正三棱柱(底面为正三角形,且侧棱垂直于底面)的三视图如图所示,则侧视图的面积为________.解析:由三视图可知底面正三角形的高为23,则底面边长为4,所以底面面积为43,因此该三棱柱的高为123÷43=3,故侧视图的面积为23×3=63.答案:6 316.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________.解析:设球的半径为r,则43πr3=323π,得r=2,柱体的高为2r=4.又正三棱柱的底面三角形的内切圆半径与球的半径相等,所以底面正三角形的边长为43,所以正三棱柱的体积V =34×(43)2×4=483. 答案:48 3三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知某几何体的三视图如图所示,其中俯视图的内外均为正方形,边长分别为2和4,几何体的高为3,求此几何体的表面积和体积.解:由已知得,该几何体为一个棱台,其侧面的高 h ′=⎝ ⎛⎭⎪⎫4-222+32=10. 故S =S 上底+S 下底+S 侧面=22+42+4×12×(2+4)×10=20+1210, 所以该几何体的表面积为20+1210, 体积V =13(42+22+2×4)×3=28.18.(12分)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V=V圆锥-V球=13π·(3r)2·3r-43πr3=53πr3,而将球取出后,设容器内水的深度为h,则水面圆的半径为33h,从而容器内水的体积是V′=13π·⎝⎛⎭⎪⎫33h2·h=19πh3,由V=V′,得h=315r.即容器中水的深度为315r.19.(12分)如图所示,在正三棱柱ABC-A 1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由P沿棱柱侧面经过棱CC1到M的最短路线为29.设这条最短路线与CC1的交点为N,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC和NC的长.解:(1)该三棱柱的侧面展开图是宽为4,长为9的矩形,所以对角线的长为42+92=97.(2)将该三棱柱的侧面沿棱BB1展开,如图所示.设PC的长为x,则MP2=MA2+(AC+x)2.因为MP=29,MA=2,AC=3,所以x=2(负值舍去),即PC的长为2.又因为NC∥AM,所以PCP A=NCAM,即25=NC2,所以NC=45.20.(12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.解:由题图可知半球的半径为4 cm,所以V半球=12×43πR3=12×43π×43=1283π(cm3),V圆锥=13πr2h=13π×42×12=64π(cm3).因为V 半球<V 圆锥,所以如果冰淇淋融化了,不会溢出杯子.21.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥A ′-BC ′D ,求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解:(1)∵ABCD -A ′B ′C ′D ′是正方体,∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2. 而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33.(2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2·a =a 33.22.(12分)如图所示,四边形ABCD 是直角梯形(单位:cm),求图中阴影部分绕AB 所在直线旋转一周所成几何体的表面积和体积.解:由题意知,所成几何体的表面积等于圆台下底面面积+圆台的侧面积+半球面面积.因为S 半球面=12×4π×22=8π(cm 2), S 圆台侧=π(2+5)(5-2)2+42=35π(cm 2), S 圆台下底=π×52=25π(cm 2),所以表面积为8π+35π+25π=68π(cm 2). 又因为V 圆台=π3×(22+2×5+52)×4=52π(cm 3),V半球=12×4π3×23=16π3(cm3),所以该几何体的体积为V圆台-V半球=140π3(cm3).。

高中数学必修二第一章《空间几何体》单元测试卷及答案

高中数学必修二第一章《空间几何体》单元测试卷及答案

高中数学必修二第一章《空间几何体》单元测试卷及答案(2套)测试卷一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知某空间几何体的三视图如图所示,则此几何体为( )A .圆台B .四棱锥C .四棱柱D .四棱台2.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积为( )A .6B .32C .62D .123.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .3034B .6034C .3034135+D .1354.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A .3324R π B .338R π C .3525R π D .358R π 5.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A .1:3B .1:1C .2:1D .3:16.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为( )A .163π B .193π C .1912π D .43π7.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8πB .6πC .4πD .π8.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )A .1B .12 C .13D .169.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )A .14斛B .22斛C .36斛D .66斛103cm 的内切球,则此棱柱的体积是( ) A .393B .354cmC .327cmD .318311.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727 B .59C .1027 D .1312.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A .3500cm 3πB .3cm 3866πC .3cm 31372πD .3cm 32048π 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.14.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x 轴和正三角形的一边平行,则这个正三角形的直观图的面积是__________________.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为__________________.16.如图是一个组合几何体的三视图,则该几何体的体积是__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长为10cm.求圆锥的母线长.18.(12分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.19.(12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.20.(12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.21.(12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?22.(12分)如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】D【解析】由几何体的三视图可得,该几何体为四棱台.故选D.【解析】△OAB 是直角三角形,OA =6,OB =4,∠AOB =90°,∴164122OAB S =⨯⨯=△.故选D .3.【答案】A【解析】由菱形的对角线长分别是9和15,得菱形的边长为22915334222⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则这个菱柱的侧面积为3434530342⨯⨯=.故选A . 4.【答案】A【解析】依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为2R,高为32R ,所以圆锥的体积2313332224R R R ⎛⎫⨯π⨯⨯=π ⎪⎝⎭.故选A . 5.【答案】D【解析】()121::3:13V V Sh Sh ⎛⎫== ⎪⎝⎭.故选D .6.【答案】B【解析】设球半径是R ,依题意知,该三棱柱是一个底面边长为2,侧棱长为1的正三棱柱,记上,下底面的中心分别是O 1,O ,易知球心是线段O 1O 的中点,于是222123192312R ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,因此所求球的表面积是2191944123R ππ=π⨯=, 故选B . 7.【答案】C【解析】设正方体的棱长为a ,则a 3=8,所以a =2,而此正方体内的球直径为2,所以S 表=4πr 2=4π.故选C . 8.【答案】C【解析】该几何体的直观图为如图所示的四棱锥P -ABCD ,且P A =AB =AD =1,P A ⊥AB ,P A ⊥AD ,四边形ABCD 为正方形,则2111133V =⨯⨯=,故选C .【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,∴163r =,所以米堆的体积为21116320354339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭,故堆放的米约为320 1.62229÷≈,故选B . 10.【答案】B【解析】由题意知棱柱的高为23cm ,底面正三角形的内切圆的半径为3cm , ∴底面正三角形的边长为6cm ,正三棱柱的底面面积为293cm ,∴此三棱柱的体积()3932354cm V =⨯=.故选B .11.【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3).故所求比值为1220105427V V π==π.故选C . 12.【答案】A【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4, 球心到截面圆的距离为R -2,则R 2=(R -2)2+42,解得R =5.∴球的体积为3345500cm 33π⨯π=.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】①②③⑤【解析】三棱锥的三视图中含有三角形,∴正视图有可能是三角形,满足条件. 四棱锥的三视图中含有三角形,满足条件. 三棱柱的三视图中含有三角形,满足条件. 四棱柱的三视图中都为四边形,不满足条件. 圆锥的三视图中含有三角形,满足条件. 圆柱的三视图中不含有三角形,不满足条件. 故答案为①②③⑤.14.【答案】6415.【答案】11【解析】设棱台的高为x ,则有2165016512x -⎛⎫= ⎪⎝⎭,解之,得x =11. 16.【答案】36+128π【解析】由三视图可知该组合几何体下面是一个圆柱,上面是一个三棱柱,故所求体积为1346168361282V =⨯⨯⨯+π⨯=+π.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】403cm . 【解析】如图,设圆锥母线长为l ,则1014l l -=,所以cm 403l =.18.【答案】(1)正六棱锥;(2)见解析,232a ;(3)332a .【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的侧视图如图.其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边的距离,即3BC a =,AD 是正六棱锥的高,即3AD a =,所以该平面图形的面积为2133322a a a =.(3)设这个正六棱锥的底面积是S ,体积为V ,则223336S =,所以2313333322V a a a =⨯⨯=.19.【答案】不会,见解析.【解析】因为()33314144134cm 2323V R =⨯π=⨯⨯π⨯≈半球,()22311412201cm 33V r h =π=π⨯⨯≈圆锥,134<201,所以V 半球<V 圆锥,所以,冰淇淋融化了,不会溢出杯子. 20.【答案】74V π=. 【解析】由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和32的同心圆,故该几何体的体积为23741124V π⎛⎫=π⨯-π⨯= ⎪⎝⎭.21.【答案】282m .【解析】如图所示,连接AC 和BD 交于O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,)7m SO =,()11m 2OP BC ==,所以)22m SP =, 则△SAB 的面积是)2122222m 2⨯⨯=.所以四棱锥的侧面积是)242282m ⨯,即制造这个塔顶需要282m 铁板.22.【答案】(13;(2)33a .【解析】(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴2A B A C A D BC BD C D a ''''''======,∴三棱锥A ′-BC ′D 的表面积为213422232a a a ⨯=.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为2233a . (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V三棱锥A′-BC′D=V正方体-4V三棱锥A′-ABD=3 32114323a a a a-⨯⨯⨯=测试卷二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下图中的图形经过折叠不能围成棱柱的是()2.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.123.下列命题中,正确的命题是()A.存在两条异面直线同时平行于同一个平面B.若一个平面内两条直线与另一个平面平行,则这两个平面平行C.底面是矩形的四棱柱是长方体D.棱台的侧面都是等腰梯形4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图所示,是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0 B.9 C.快D.乐5.如图,O A B'''△是水平放置的OAB△的直观图,则AOB△的面积是()。

高中数学-----各章节测试题全套含答案

高中数学-----各章节测试题全套含答案

高中数学(必修1)-----各章节测试题全套含答案(总57页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--目录:数学1(必修)数学1(必修)第一章:(上)集合 [训练A 、B 、C] 数学1(必修)第一章:(中) 函数及其表 [训练A 、B 、C] 数学1(必修)第一章:(下)函数的基本性质[训练A 、B 、C] 数学1(必修)第二章:基本初等函数(I ) [基础训练A 组] 数学1(必修)第二章:基本初等函数(I ) [综合训练B 组] 数学1(必修)第二章:基本初等函数(I ) [提高训练C 组] 数学1(必修)第三章:函数的应用 [基础训练A 组] 数学1(必修)第三章:函数的应用 [综合训练B 组] 数学1(必修)第三章:函数的应用 [提高训练C 组] 函数是描述客观世界变化规律的重要数学模型。

高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。

(数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .},01|{2R x x x x ∈=+-3.下列表示图形中的阴影部分的是( )A .()()A CB CB .()()A B A CC .()()A B B CD .()A B CA B C4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个5.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个二、填空题1.用符号“∈”或“∉”填空(1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数)(3{}|,,x x a a Q b Q =+∈∈2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =,则C 的非空子集的个数为 。

高一数学必修第一二章测试题及答案

高一数学必修第一二章测试题及答案

第一.二章三角函数单元检测试卷一、选择题:本答题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.在平行四边形ABCD 中,BD CD AB +-等于A .DBB .ADC .ABD .AC2.若|a |=2,|b |=5,|a +b |=4,则|a -b |的值A .13B .3C .42D .73.函数sin(2)3y x π=+图像的对称轴方程可能是A .6x π=-B .12x π=-C .6x π=D .12x π=5.点Ax,y 是300°角终边上异于原点的一点,则xy值为 333333函数)32sin(π-=x y 的单调递增区间是A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈ C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin -310π的值等于 A .21B .-21C .23D .-238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 12.比较大小,正确的是 A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D .5sin )5sin(3sin >->二、填空题每小题5分,共20分13.终边在坐标轴上的角的集合为_________.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________. 15.已知角α的终边经过点P-5,12,则sin α+2cos α的值为______.16.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________. 三、解答题:本大题共6小题,共70分;解答应写出文字说明及演算步骤.; 17.8分已知tan 3α=-,且α是第二象限的角,求αsin 和αcos ; 18.10分已知3tan =α,计算ααααsin 3cos 5cos 2sin 4+-的值;19.12分求函数)32tan(π+=x y 的定义域和单调区间. 第一章三角函数单元检测试卷参考答案一、选择题每小题5分,共60分1----6、BBDCBA7----12、CCDCAB 二、填空题每小题5分,共20分13.{α|}Z n n ∈=,2πα14.rad )2(-π 132三、解答题共70分17.1sin ,cos αα==2tan 2α=18.解、∵3tan =α∴0cos ≠α∴原式=ααααααcos 1)sin 3cos 5(cos 1)cos 2sin 4(⨯+⨯- =ααtan 352tan 4+- =335234⨯+-⨯ =7519.解:函数自变量x 应满足πππk x +≠+232,z k ∈,即ππk x 23+≠,z k ∈所以函数的定义域是⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,23ππ; 由ππk +-2<32π+x <ππk +2,z k ∈,解得ππk 235+-<x <ππk 23+,z k ∈所以,函数的单调递增区间是)23,235(ππππk k ++-,z k ∈;20.解:令t=cosx,则]1,1[t -∈所以函数解析式可化为:453y 2++-=t t =2)23(2+--t 因为]1,1[-∈t ,所以由二次函数的图像可知:当23=t 时,函数有最大值为2,此时Z k k x ∈++=k 611262,或ππππ 当t=-1时,函数有最小值为341-,此时Z k ∈+=k 2x ,ππ 21解:32π函数的最小正周期为 ,3322===∴ωπωπ即T又2-函数的最小值为 ,2=∴A 所以函数解析式可写为)3sin(2y ϕ+=x又因为函数图像过点95π,0, 所以有:0)953(sin 2=+⨯ϕπ解得35ππϕ-=k 323,ππϕπϕ-=∴≤或 所以,函数解析式为:)323sin(2y )33sin(2y ππ-=+=x x 或 22.解:Ⅰ8x π=是函数)(x f y =的图象的对称轴Ⅱ由Ⅰ知34πϕ=-,因此3sin(2)4y xπ=-由题意得3222,242k x k k Z πππππ-≤-≤+∈所以函数3sin(2)4y xπ=-的单调递增区间为Ⅲ由3sin(2)4y xπ=-可知故函数)(xfy=在区间[]0,π上的图象是。

高中物理必修一第一章测试题

高中物理必修一第一章测试题

高中物理必修一第一章测试题一、选择题(每题2分,共20分)1. 物体在平衡状态下,其合力为:A. 正数B. 零C. 负数D. 无法确定2. 牛顿第一定律描述的是:A. 物体在任何情况下都有惯性B. 物体在受力时保持静止或匀速直线运动C. 物体在不受力时保持静止或匀速直线运动D. 物体的运动状态变化需要外力作用3. 以下哪项不是力的三要素之一:A. 大小B. 方向C. 作用点D. 速度4. 根据牛顿第二定律,力与加速度的关系是:A. 力与加速度成正比B. 力与加速度成反比C. 力与加速度无关D. 力是加速度的函数5. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度为:A. 5 m/s²B. 20 m/s²C. 10 m/s²D. 0 m/s²6. 以下哪种情况不满足牛顿第三定律:A. 人推墙,墙对人也有反作用力B. 地球吸引月球,月球也吸引地球C. 两个磁铁相互吸引D. 一个物体在地面上静止,地面对它的支持力7. 以下哪种运动属于匀速直线运动:A. 速度大小和方向都不变的运动B. 速度大小不变,方向变化的运动C. 速度大小变化,方向不变的运动D. 速度大小和方向都在变化的运动8. 一个物体从静止开始,以恒定加速度加速,其速度与时间的关系是:A. 正比关系B. 反比关系C. 线性关系D. 非线性关系9. 以下哪个公式描述的是匀加速直线运动的位移与时间的关系:A. \( s = ut \)B. \( s = \frac{1}{2}at^2 \)C. \( s = ut + \frac{1}{2}at^2 \)D. \( s = at \)10. 一个物体在水平面上以一定初速度滑行,忽略摩擦力,其运动状态是:A. 匀速直线运动B. 匀加速直线运动C. 匀减速直线运动D. 非匀速直线运动二、填空题(每空1分,共10分)11. 牛顿第一定律也被称为______定律。

数学必修一第一章测试题

数学必修一第一章测试题

数学必修一第一章测试题一、选择题(每题5分,共30分)1. 已知集合A = {x|x^2 - 3x + 2 = 0},B={1,2},则A与B的关系是()- A. A⊂neqq B- B. A = B- C. B⊂neqq A- D. A∩ B=varnothing- 解析:对于集合A,解方程x^2 - 3x + 2 = 0,即(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。

而B = {1,2},所以A = B,答案为B。

2. 设全集U={1,2,3,4,5},集合M={1,2,3},N={3,4,5},则∁_U(M∩ N)等于()- A. {1,2,3,4,5}- B. {1,2,4,5}- C. {1,2,3}- D. {4,5}- 解析:首先求M∩ N={3},然后∁_U(M∩ N)就是在全集U中去掉3这个元素,所以∁_U(M∩ N)={1,2,4,5},答案为B。

3. 下列函数是奇函数的是()- A. y = x^2+1- B. y = x^3 - x- C. y=(1)/(x^2)- D. y=√(x)- 解析:对于函数y = f(x),如果f(-x)=-f(x),则函数为奇函数。

- 对于选项A,f(x)=x^2 + 1,f(-x)=(-x)^2+1=x^2 + 1=f(x),是偶函数。

- 对于选项B,f(x)=x^3 - x,f(-x)=(-x)^3-(-x)=-x^3 + x=-(x^3 - x)=-f(x),是奇函数。

- 对于选项C,f(x)=(1)/(x^2),f(-x)=(1)/((-x)^2)=(1)/(x^2)=f(x),是偶函数。

- 对于选项D,y = √(x)的定义域为[0,+∞),不关于原点对称,既不是奇函数也不是偶函数。

所以答案为B。

4. 函数y=(1)/(√(x - 1))的定义域为()- A. (1,+∞)- B. [1,+∞)- C. (-∞,1)- D. (-∞,1]- 解析:要使函数y=(1)/(√(x - 1))有意义,则x-1>0,即x > 1,所以定义域为(1,+∞),答案为A。

成都石室中学(北湖校区)必修五第一章《数列》测试题(有答案解析)

成都石室中学(北湖校区)必修五第一章《数列》测试题(有答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .101010112.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘...积.分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .24.若数列{}n a 满足*111(n nd n N a a +-=∈,d 为常数),则称数列{}n a 为调和数列,已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320184036x x x x +++⋯+=,则92010x x +的最大值为( )AB .2C.D .45.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .126.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--7.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或8.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-9.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-10.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+11.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27612.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .7二、填空题13.设数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,则n a =______. 14.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.15.已知数列{}n a 的前n 项和为n S ,点()()*,,2n n S a n N n ∈≥在2441xy x =-的图像上,11a =,数列{}n a 通项为__________.16.定义max{,}a b 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >=122max{,2}()n n na a n N a *++=∈,若20154a a =,记数列{}n a 的前n项和为n S ,则2015S 的值为___________.17.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.18.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________. 19.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.20.著名的斐波那契数列:1,1,2,3,5,…,的特点是从三个数起,每一个数等于它前面两个数的和,则222212320482048a a a a a ++++是数列中的第______项.三、解答题21.已知等差数列{}n a 的前n 项和为n S ,35a =,636S =. (1)求数列{}n a 的通项公式;(2)记m b 为2log k 在区间(]()*0,m a m N ∈中正整数k 的个数,求数列{}m b 的前m 项和.22.已知n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数且n *∈N 若.130n n a a ++⋅>恒成立,求:(1)数列{}n a 的通项公式; (2)数列{}n a 的前n 项和n S .23.若数列{}n a 的前n 项和()2*n S n n N =∈.(1)求{}n a 的通项公式; (2)若数列{}n b 满足3nn na b =,求数列{}n b 的前n 项和n S . 24.从条件①()21nn S n a =+,(2)n a n =≥,③0n a >,22n n n a a S +=,中任选一个,补充到下面问题中,并给出解答.(注:如果选择多个条件分别作答,按照第一个解答计分.)已知数列{}n a 的前n 项和为n S ,11a =,___________. (1)求数列{}n a 的通项公式;(2)若1a ,k a ,2k S +成等比数列,求正整数k 的值.25.在①246a a +=,945S =②222n n n S =+③()121n n a n n a n -=≥-,11a =这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,________,数列{}n b 为等比数列,112b a =,222a b =,求数列{}n n a b 的前n 项和n T .26.在如图三角形数阵中第n 行有n 个数,ij a 表示第i 行第j 个数,例如,43a 表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m 为公差的等差数列,从第三行起每一行的数从左到右构成以m 为公比的等比数列(其中0m >).已知221141322112,2,2aa a a m a ==+=.313233414241344515253545121322512 n n n a a a a a a a a a a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅nna ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅(1)求m 及53a ; (2)记112233n nn T a a a a =++++,求n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 4.C解析:C 【分析】 先由题设21n x ⎧⎫⎨⎬⎩⎭为调和数列{}2n x ⇒是等差数列,进而利用等差数列的前n 项和公式及性质求得2292010x x +的值,再利用基本不等式求得92010x x +的最大值即可. 【详解】解:由题设知:2212211111n n n n x x d x x ++-=-=*(n N ∈,d 为常数), {}2n x ∴是等差数列,2222221201812320182018()40362x x x x x x++++⋯+==, 222212018920104x x x x ∴+==+,2292010920102x xx x +(当且仅当92010x x =时取“等号“), 2229201092010()2()8x x x x ∴++=,9201022x x ∴+(当且仅当92010x x ==“等号“),92010x x ∴+的最大值为故选:C. 【点睛】本题主要考查等差数列的定义、性质、前n 项和公式及基本不等式在处理最值中的应用,属于中档题.5.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.6.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列, 所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确, ()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.7.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.8.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.9.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.10.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n ++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列, 故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-. 故选:A. 【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.11.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果. 【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=, 故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.12.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=, 即116255204a b+=,当且仅当16b a a b=,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.二、填空题13.【分析】构造求出由题意可得利用等差数列的通项公式可得利用累加法即可求得【详解】构造则由题意可得故数列是以4为首项2为公差的等差数列故所以以上n-1个式子相加可得解得故答案为:【点睛】本题考查等差数列 解析:()()*1n n n N+∈【分析】构造1n n n b a a +=-,求出1b ,由题意可得()()21112n n n n n n a a a a b b ++++---=-=,利用等差数列的通项公式可得n b ,利用累加法即可求得n a . 【详解】构造1n n n b a a +=-,则1214b a a =-=,由题意可得()()21112n n n n n n a a a a b b ++++---=-=, 故数列{}n b 是以4为首项2为公差的等差数列,故()*142(1)22n n n b a a n n n N +=-=+-=+∈,所以21324314,6,8,2n n a a a a a a a a n --=-=-=-=,以上n -1个式子相加可得1(1)(42)2n n n a a -+-=,解得()*(1)n a n n n N =+∈,故答案为:()()*1n n n N +∈【点睛】本题考查等差数列,累加法求数列通项公式,属于基础题.14.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576. 【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.15.【分析】把数列递推式中换为整理得到是等差数列公差然后由等差数列的通项公式得答案【详解】由题意可得:∴∴两边除以并移向得出是等差数列公差故当时当时不符合上式故答案为:【点睛】本题考查了数列递推式考查了解析:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩【分析】把数列递推式中n a 换为1n n s s --,整理得到1{}nS 是等差数列,公差2d =,然后由等差数列的通项公式得答案.【详解】由题意可得:()24,241nn n S a n S =≥- ∴()214,241nn n n S S S n S --=≥-, ∴1140n n n n s s s s ---+=.两边除以1n n s s -,并移向得出1114,(2)n n n S S --=, 1{}nS ∴是等差数列,公差4d =, 11111S a ==. ∴114(1)43nn n S =+-=-, 故143n S n =-. ∴当2n 时,()()111443474347n n n a S S n n n n --=-=-=----. 当1n =时,11a =不符合上式.()()()()*1,14,,24347n n a n N n n n ⎧=⎪∴=-⎨∈≥⎪--⎩. 故答案为:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩. 【点睛】本题考查了数列递推式,考查了等差关系的确定,考查了运算求解能力,属于中档题.16.7254【分析】参数进行分类讨论由已知求出数列的前几项从中发现是以5为周期的再根据求得的值可得答案【详解】由题意当时因此是周期数列周期为所以不合题意当时同理是周期数列周期为所以故答案为:【点睛】本题解析:7254 【分析】参数a 进行分类讨论,由已知求出数列的前几项,从中发现是以5为周期的,再根据20154a a =求得a 的值可得答案.【详解】 由题意34a a=,当2a ≥时,44a =,52a a =,6a a =,71a =,因此{}n a 是周期数列,周期为5,所以2015524a a a a ==≠,不合题意,当02a <<时,48a a=,54a =,6a a =,71a =,同理{}n a 是周期数列,周期为5,所以2015544a a a ===,1a =,1234518a a a a a ++++=,2015403187254S =⨯=.故答案为:7254. 【点睛】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题.17.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键解析:()11332n n +--【分析】根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列, 所以11333n n n a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--. 故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.18.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】 令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8. 【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.19.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c=⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+,当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠, 故①错误;②:数列{}n a 的前n 项和21n n S =-,当1n =时,111211a S ==-=, 当2n ≥时,111(21)(21)2nn n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列, 所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.20.【分析】由题意可得进而可得然后再利用累加法即可求出结果【详解】由题意可知所以即所以……所以又所以∴所以是数列中的第项故答案为:【点睛】本题考查了数列的递推公式和累加法的应用考查学生的计算能力属于中档题 解析:2049【分析】由题意可得21n n n a a a ++=+,进而可得21211n n n n n a a a a a ++++⋅=+⋅,然后再利用累加法,即可求出结果. 【详解】由题意可知21n n n a a a ++=+,所以()1211n n n n n a a a a a ++++⋅=⋅+,即21211n n n n n a a a a a ++++⋅=+⋅所以220482049204820482047a a a a a ⋅=+⋅,220472048204720472046a a a a a ⋅=+⋅,……223221·a a a a a ⋅=+,所以2222048204920482047221·a a a a a a a ⋅=++⋯++, 又21a a =所以2222204820492048204721a a a a a a ⋅=++⋯++∴2222123204820492048a a a a a a ++++=.所以222212320482048a a a a a ++++是数列中的第2049项.故答案为:2049 . 【点睛】本题考查了数列的递推公式和累加法的应用,考查学生的计算能力,属于中档题.三、解答题21.(1)21n a n =-;(2)212233m m +--【分析】(1)根据等差数列的通项公式和前n 项和公式列出式子求出首项和公差即可求出通项公式;(2)由20log 21m k a m ≤=-<解得2112m k -<≤,即可得出1241m m b -=⨯-,再分组求和即可得出. 【详解】(1)设等差数列{}n a 的公差为d ,则3161+25656+362a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()11221n a n n ∴=+-⨯=-;(2)由20log 21m k a m ≤=-<,解得2112m k -<≤,m b 为2log k 在区间(]()*0,m a m N ∈中正整数k 的个数,21121241m m m b --∴=-=⨯-,设数列{}m b 的前m 项和为m T , 则()21214221433m m mT m m +-=-=---.【点睛】本题考查等差数列基本量的计算,解题的关键是求出首项和公差,考查等比数列的求和公式,解题的关键是求出1241m m b -=⨯-.22.(1)*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩;(2)2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【分析】 (1)先令12n nx t =,根据所给方程,得到()()2312log 23n n n t n t n n ++=+,构造函数()()214log 2n g x x n x +=+,确定122n n n t +<<,再讨论n 为奇数和n 为偶数两种情况,结合题中条件,即可求出数列的通项;(2)根据(1)的结果,讨论n 为奇数和n 为偶数两种情况,利用分组求和的方法,结合等差数列的求和公式,即可求出结果. 【详解】(1)因为n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,令12n n x t =,则12n nx t =, 所以()()2312log 23n n n t n t n n ++=+,记()()214log 2n g x x n x +=+,显然()g x 单调递增,且2221log 32n n g n n n n n n n +⎛⎫=+<+<+ ⎪⎝⎭,()()222111log 13132n n g n n n n n n n ++⎛⎫=+++=++>+ ⎪⎝⎭, 所以122n n n t +<<, 当*21()n k k N =-∈时,2112n k k t k --<<<,则[]11122n nn n a t k x ⎡⎤-===-=⎢⎥⎣⎦; 当*2()n k k N =∈时,21122n k k t k +<<=+,则[]122n n n n a t k x ⎡⎤====⎢⎥⎣⎦; 综上,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩; (2)由(1)可得,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩,当*21()n k k N =-∈时,()()1352461......n n n S a a a a a a a a -=+++++++++211121002412461122222 (222)22222224n n n n n n n +---⎛⎫⎛⎫++ ⎪ ⎪---⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;当*2()n k k N =∈时,()()1351246......n n n S a a a a a a a a -=+++++++++2220024224622222 (222)22222224n n n n n n n -⎛⎫⎛⎫++ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;综上,2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【点睛】 关键点点睛:求解本题的关键在于由n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,求出12n x 的范围,利用12n n a x ⎡⎤=⎢⎥⎣⎦,通过讨论n 的奇偶,得出数列通项,即可求解. 23.(1)21n a n =-;(2)113n nn S +=-. 【分析】(1)利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求通项公式;(2)由(1)知利用错位相减法求和.【详解】解:(1)当1n =时,111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,当1n =时,也符合上式,所以对任意正整数n ,21n a n =-. (2)由(1)得213n nn b -=, 所以1312135232133333n n n n n S ---=+++++…,① 234111352321333333…n n n n n S +--=+++++,②-①②,得32121111212333333n n n n S +-⎛⎫=++++- ⎪⎝⎭…, 21113311132[1()]12122231333n n n n n -++⨯--+=+-=--, 所以113n nn S +=-. 【点睛】方法点睛:本题考查已知数列n S 与n a 的关系式,求通项公式,和错位相减法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.24.(1)答案见详解;(2)答案见详解. 【分析】选①时,先写()1122n n S n a ++=+,作差得到n a n ⎧⎫⎨⎬⎩⎭是等差数列,即求得n a n =,再按要求列方程解得正整数k 的值即可;选②时,代入1n n n a S S -=-,化简得到是等差数列,求得2n S n =,再计算n a 即可,再按要求列方程解得正整数k 的值即可;选③时,先写21112n n n a a S ++++=,作差得到数列{}n a 是等差数列,即求得na n =,再按要求列方程解得正整数k 的值即可. 【详解】解:若选①,()21n n S n a =+,则()1122n n S n a ++=+, 两式作差得()()11221n n n a n a n a ++-=++,即101n na a n n,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭是等差数列,首项是111a =,公差是0,故1n a n =,所以n a n =;由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =, 结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =,因为k 是正整数,所以6k=.若选②(2)n a n =≥,11a =,故0n S >1n n n a S S -=-=,=1=,2n ≥,故1=,公差是1n =,故2n S n =.2n ≥时,()221121n n n a S S n n n -=-=--=-,且11a =也适合该式,故数列{}n a 的通项公式21n a n =-;11a =,21k a k =-,()222k S k +=+,结合题意知,()()222112k k -=⋅+,即23830k k --=,解得3k =或13k =-, 因为k 是正整数,所以3k =.若选③,0n a >,22n n n a a S +=,则21112n n n a a S ++++=,两式作差得()211n n a a +++()212n n n a a a +-+=,化简得()()1110n n n n a a a a +++--=,由0n a >知,10n n a a ++>,得110n n a a +--=,即11n n a a +-=, 数列{}n a 是等差数列,首项是1,公差为1,故n a n =; 由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =,结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =,因为k 是正整数,所以6k =. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,若已知式是关于na 和n S 关系式时,也通常利用两式作差得到1n n n S S a --=消去n S ,或者代入1n n n a S S -=-消去n a ,进行化简计算.25.选①或②或③,()1122n n T n +=-⨯+.【分析】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据已知条件建立有关1a 、d 的方程组,求出这两个量,并求出q 的值,可得出数列{}n a 、{}n b 的通项公式,进而利用错位相减法可求得n T ;选②,设等比数列{}n b 的公比为q ,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T ;选③,设等比数列{}n b 的公比为q ,利用累乘法可求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T . 【详解】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 由已知条件可得2419124693645a a a d S a d +=+=⎧⎨=+=⎩,解得11a d ==,()11n a a n d n ∴=+-=, 22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅, 1231222322n n T n =⨯+⨯+⨯++⨯, ()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--, 因此,()1122n n T n +=-⨯+;选②,当1n =时,111a S ==; 当2n ≥时,()()2211122n n n n n n n a S S n --+-+=-=-=. 11a =也满足n a n =,所以,对任意的n *∈N ,n a n =.22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅, 1231222322n n T n =⨯+⨯+⨯++⨯, ()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--, 因此,()1122n n T n +=-⨯+; 选③,()121n n a n n a n -=≥-,且11a =, 由累乘法可得321121231121n n n a a a n a a n a a a n -=⋅⋅⋅⋅=⨯⨯⨯⨯=-. 22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅, 1231222322n n T n =⨯+⨯+⨯++⨯, ()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--, 因此,()1122n n T n +=-⨯+.【点睛】 方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和; (2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)2m =,5340a =;(2)1(1)22n n +-⨯+【分析】(1)根据题意以m 表示出313241,,a a a ,由4132122a a =+即可求出m ,进而求出53a ; (2)根据等差数列和等比数列的通项公式求出2n nn a n =⨯,再利用错位相减法即可求出n T .【详解】(1)由已知得3111(31)22a a m m =+-⨯=+, 23231(22)22a a m m m m m =⨯=+⨯=+, 4111(41)32a a m m =+-⨯=+,4132122a a =+, ()21322222m m m ∴+=++,即220m m -=, 又0m >,2m ∴=,51114210a a ∴=+⨯=,25351240a a ∴=⨯=;(2)由(1)得111(1)22n a a n n =+-⨯=, 当3n ≥时,1122n n nn n a a n -=⨯=⨯, 又211124a a =+=,2221248a ma ==⨯=, 11222,8a a ∴==满足2n nn a n =⨯,1234122232422n n T n ∴=⨯+⨯+⨯+⨯++⨯,23412122232(1)22n n n T n n +=⨯+⨯+⨯++-⨯+⨯, 两式相减得12341222222n n n T n +-=+++++-⨯()11112122222(1)2212n n n n n n n n ++++-=-⨯=--⨯=-⨯--, 1(1)22n n T n +∴=-⨯+.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解; (2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.。

人教a版必修5测试题答案及解析

人教a版必修5测试题答案及解析

人教a版必修5测试题答案及解析一、选择题1. 下列关于细胞呼吸的描述,正确的是()A. 有氧呼吸的第一阶段和第二阶段都产生ATPB. 无氧呼吸的产物是乳酸和酒精C. 有氧呼吸的第三阶段在线粒体内膜上进行D. 无氧呼吸的场所是细胞质基质答案:C解析:有氧呼吸的第一阶段和第二阶段产生少量ATP,第三阶段在内膜上进行,产生大量ATP。

无氧呼吸的产物是乳酸或酒精,场所是细胞质基质。

2. 细胞分化的实质是()A. 细胞数量的增多B. 细胞体积的增大C. 基因选择性表达的结果D. 细胞形态的改变答案:C解析:细胞分化是指在个体发育过程中,细胞逐渐形成不同类型和功能的过程,其本质是基因的选择性表达。

二、填空题1. 细胞凋亡是由______控制的程序性死亡。

答案:基因2. 细胞癌变的原因是______的突变。

答案:原癌基因和抑癌基因三、简答题1. 简述细胞周期的概念。

答案:细胞周期是指连续分裂的细胞从一次分裂完成时开始,到下一次分裂完成时为止所经历的全过程。

2. 描述有丝分裂过程中染色体的变化。

答案:在有丝分裂过程中,染色体会经历复制、凝聚、分离和解凝四个阶段。

四、计算题1. 某细胞在有丝分裂过程中,DNA含量从2n增加到4n,求该细胞分裂后产生的子细胞中DNA含量。

答案:2n解析:有丝分裂过程中,DNA含量在间期复制后加倍,但在分裂末期,细胞质分裂成两个子细胞,每个子细胞的DNA含量恢复为2n。

五、实验题1. 请设计一个实验来验证DNA复制的半保留性。

答案:实验设计如下:a. 将DNA分子标记为放射性同位素;b. 让标记的DNA分子进行复制;c. 将复制后的DNA分子分离;d. 检测每个DNA分子的放射性,验证是否每个子代DNA分子都含有标记的放射性同位素。

解析:该实验通过标记DNA分子,观察复制后的DNA分子是否都含有标记的放射性同位素,从而验证DNA复制的半保留性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷(必修5及必修2部分)
一、选择题:(5分×12=60分)
1.设b a >,d c >,则下列不等式成立的是 ( ) A.d b c a ->- B.bd ac > C. c a d b +<+ D.
b
d c a >
2.已知{a n }是等差数列,且a 2+ a 5+ a 8+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24
3.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为 ( ) A . 81 B .120 C .168 D .192
4. 有一个几何体的三视图如下图所示,这个几何体应是一个 ( )
A 棱台
B 棱锥
C 棱柱
D 都不对
主视图 左视图 俯视图
5.ΔABC 中,a =1,b =3, A =30°,则B 等于 ( ) A . 60°或120° B .60° C .30°或150° D .120°
6.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列, 则2a = ( )
(A) 4- (B) 6- (C) 8- (D) 10-
7.在△ABC 中,已知三边a 、b 、c 满足(a+b+c)·(a+b -c)=3ab, 则∠C= ( )
A 15°
B 30°
C 45°
D 60° 8.设n S 是等差数列{}n a 的前n 项和,若
593
5
5,9a S a S ==

( )
(A)1 (B)1- (C)2 (D)12
9.已知实数x,y 满足约束条件226x y x y ≥⎧⎪
≥⎨⎪+≤⎩
,则z=2x+4y 的最大值为 ( )
A24 B20 C16 D12
10.设⊿ABC 的内角A,B,C 所对的边分别为a,b,c,若acosA=bcosB,则⊿ABC 一定是( ) A 等腰直角三角形 B直角三角形 C 等腰三角形 D等腰三角形或直角三角形11.下列结论正确的是 ( )
A 当x>0且x ≠1时,
x
lg 1+lg 2x ≥ B x ≥2时,x+
1x
的最小值为2
C当x>0时,1
≥2 D当0<x ≤2时,x-
1x
无最大值
12.已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>
的解集为 ( ) (A)11{|}32x x -
<<
(B) {|32}x x -<< (C) 1
1
{|}3
2
x x x <->或 (D){|32}x x x <->或
二、填空题(5分×4=20分)
13.不等式x (2-x )>0的解集为________.
14.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .当∠B=120°,a =1,b =3时,符合条件的三角形有 个。

15.数列{a n }的前n 项和记为n s ,且满足a 1=1,a n +1=2n s +1(n ∈N +)。

数列{a n }的通项公式a n= .
16.一个球的外切正方体的全面积等于6 cm 2
,则此球的体积为 .
三、解答题;(共70分)
17、(10分)一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积。

18.(12分)已知集合A ={x |2
20x a -≤,其中0a >},B ={x |2340x x -->},且A B = R ,
求实数a 的取值范围。

19.(12分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知c=2,C=
3
π
⑴若△ABC 的面积等于3,求a,b; ⑵若sinB=2sinA,求△ABC 面积
20.(12分).设函数()f x =mx 2-mx-1,若对一切实数x ,f(x)<0恒成立,求x 的取值范围。

21、(12分)已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.
(1)求数列{a n }的通项公式; (2)令n n n a b 2⋅=,求数列{b n }前n 项和的公式.
22.(12分)已知数列}{n a 满足:n
n n a a a 2
1,2
111=
-=
-且.
(1)求432,a a a ,(2)求数列}{n a 的通项n a (3) 求其前n 项和为S n
答案
一、选择题:
CDBAA BDABD CC 二、填空题:
13、(0,2) 14、1 15、13-=n n a 16、361
cm π
三、解答题:
17、解:由三视图知正三棱柱的高为2 cm,由侧视图知正三棱柱的底面三边形的高为
cm.
设底面边长为a ,则, ∴a=4.
∴正三棱柱的表面积S=S 侧+2S 底=3×4×2+2××4×=8(3+)
答案:8(3+
)(2cm ).
18、解:∵A ={x |a x a -≤≤},B ={x |1x <-或4x >},且A B = R ,
∴14
4
a a a -≤-⎧⇒≥⎨
≥⎩。

19. 解:⑴由余弦定理得:42
2
=-+ab b a
又因为△ABC 的面积等于3
所以
3sin 2
1=
C ab 得4=ab 联立方程组⎩
⎨⎧==-+44
22ab ab b a 解得2=a 2=b
⑵由正弦定理,已知条件化为a b 2= 联立方程组⎩⎨⎧==-+a
b ab b a 24
22
解得3
34,3
32=
=
b a 所以△ABC 的面积3
32sin 2
1=
=
C ab S .
20. 解:若m=0,显然成立。

若m ≠0,则

⎪⎨⎪⎧m<0,m 2
+4m<0. 解得-4<m<0 综合m 的取值为-4<m ≤0…………………………
21.解:(1)由数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.
得a 2 =4,公差d=2, a n =2+(n-1)×2=2n
(2) n n n a b 2⋅==n ×12+n , 由错位相减得数列{b n }前n 项和n T =(n-1)×12+n +2 22.(1). 16
1587,43432=
=
=
a a a ,(2) 因为n
n n a a a 2
1,2
111=
-=
-且
所以n a =+-+-+)()(23121a a a a a ……+(1--n n a a )=n
n
2
1121 (8)
14
12
1-
=+
++
+

a =n
2
11-
(3)由分组求和得数列{a n }前n 项和为n n n S 2
11+
-=
中2011-2012学年度第二学期高一年级第二次月考
数学答题纸
二、填空题(每题5分,共20分。


13、 14、
15、 16、
三、解答题(共70分) 17(10分)
18(12分)
19(12分)
20(12分)
21(12分)
22(12分)。

相关文档
最新文档