2020版高考数学专用精练:第八章第8讲 立体几何中的向量方法(二)——求空间角
高中数学立体几何与空间向量知识点归纳总结
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算
2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
2019高考数学一轮复习第8章立体几何第8课时空间向量的应用(二)空间的角与距离练习理
第8课时 空间向量的应用(二) 空间的角与距离1.在正方体ABCD -A 1B 1C 1D 1中,M 是AB 的中点,则sin 〈DB 1→,CM →〉的值等于( ) A.12 B.21015 C.23D.1115答案 B解析 分别以DA ,DC ,DD 1为x ,y ,z 轴建系, 令AD =1,∴DB 1→=(1,1,1),CM →=(1,-12,0).∴cos 〈DB 1→,CM →〉=1-123·52=1515. ∴sin 〈DB 1→,CM →〉=21015.2.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010B.15C.31010D.35答案 C解析 如图,以D 为坐标原点建立如图所示空间直角坐标系.设AA 1=2AB =2,则B(1,1,0),E(1,0,1),C(0,1,0),D 1(0,0,2). ∴BE →=(0,-1,1),CD 1→=(0,-1,2). ∴cos 〈BE →,CD 1→〉=1+22·5=31010.3.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .150°答案 C解析 设直线l 与平面α所成的角为θ,则sin θ=|cos120°|=12,又0°≤θ≤90°.∴θ=30°.4.(2018·天津模拟)已知长方体ABCD -A 1B 1C 1D 1中,AB =BC =4,CC 1=2,则直线BC 1与平面DBB 1D 1所成角的正弦值为( )A.32B.52C.105D.1010答案 C解析 由题意,连接A 1C 1,交B 1D 1于点O ,连接BO.∵在长方体ABCD -A 1B 1C 1D 1中,AB =BC =4,∴C 1O ⊥B 1D 1.易得C 1O ⊥平面DBB 1D 1,∴∠C 1BO 即为直线BC 1与平面DBB 1D 1所成的角.在Rt △OBC 1中,OC 1=22,BC 1=25,∴直线BC 1与平面DBB 1D 1所成角的正弦值为105,故选C.5.(2018·辽宁沈阳和平区模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( ) A.13 B.33 C.63D.223答案 A解析 如图所示,建立空间直角坐标系.则A(2,0,0),C(0,2,0),D 1(0,0,4),B(2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4).设平面ACD 1的法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-2x +2y =0,-2x +4z =0,取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量.设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n |·|BB 1→|=49×4=13.故选A.6.若正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为( ) A.35 B.45 C.34 D.55答案 B解析 间接法:由正三棱柱的所有棱长都相等,依据题设条件,可知B 1D ⊥平面ACD ,∴B 1D ⊥DC ,故△B 1DC 为直角三角形. 设棱长为1,则有AD =52,B 1D =32,DC =52,∴S △B 1DC =12×32×52=158. 设A 到平面B 1DC 的距离为h ,则有VA -B 1DC =VB 1-ADC , ∴13×h ×S △B 1DC =13×B 1D ×S △ADC .∴13×h ×158=13×32×12,∴h =25. 设直线AD 与平面B 1DC 所成的角为θ,则sin θ=h AD =45.向量法:如图,取AC 的中点为坐标原点,建立空间直角坐标系. 设各棱长为2,则有A(0,-1,0),D(0,0,2),C(0,1,0),B 1(3,0,2). 设n =(x ,y ,z)为平面B 1CD 的法向量,则有⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0⇒⎩⎨⎧-y +2z =0,3x -y +2z =0⇒n =(0,2,1).∴sin 〈AD →,n 〉=AD →·n |AD →|·|n |=45.7.(2018·山东师大附中模拟,理)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ∥CD ,AD =CD =102,AB =10,PA =6,DA ⊥AB ,点Q 在PB 上,且满足PQ∶QB=1∶3,则直线CQ 与平面PAC 所成角的正弦值为________. 答案13052解析 方法一:如图,过点Q 作QH∥CB 交PC 于点H. ∵DA ⊥AB ,DC ∥AB ,∴在Rt △ADC 中,AC =AD 2+CD 2= 5. ∵PA ⊥平面ABCD ,∴在Rt △PAC 中,PC =PA 2+AC 2=11. 取AB 的中点M ,连接CM ,∵DC ∥AB ,CM =AD =102, ∴在Rt △CMB 中,CB =CM 2+MB 2=5,又PB 2=PA 2+AB 2=16,∴PC 2+CB 2=PB 2,∴CB ⊥PC. ∵QH ∥BC ,∴QH ⊥PC.① ∵PA ⊥CB ,∴PA ⊥QH.②由①②可得,QH ⊥平面PAC ,∴∠QCH 是直线CQ 与平面PAC 所成的角.∵QH =14BC =54,HC =34PC =3114,∴CQ =QH 2+HC 2=262,∴sin ∠QCH =QH CQ =13052.方法二:以A 为坐标原点,AD ,AB ,AP 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A(0,0,0),P(0,0,6),C(102,102,0),B(0,10,0), ∵PQ =14PB ,∴Q(0,104,364),可知平面PAC 的一个法向量为m =(-1,1,0),又CQ →=(-102,-104,364),∴|cos 〈m ,CQ →〉|=|m ·CQ →||m ||CQ →|=13052,故直线CQ 与平面PAC 所成角的正弦值为13052.8.(2018·上海八校联考)如图所示为一名曰“堑堵”的几何体,已知AE⊥底面BCFE ,DF ∥AE ,DF =AE =1,CE =7,四边形ABCD 是正方形.(1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑,判断四面体EABC 是否为鳖臑,若是,写出其每一个面的直角,并证明;若不是,请说明理由. (2)记AB 与平面AEC 所成的角为θ,求cos2θ的值. 答案 (1)略 (2)17解析 (1)∵AE⊥底面BCFE ,EC ,EB ,BC 都在底面BCFE 上,∴AE ⊥EC ,AE ⊥EB ,AE ⊥BC.∵四边形ABCD 是正方形,∴BC ⊥AB ,∴BC ⊥平面ABE.又∵BE ⊂平面ABE ,∴BC ⊥BE ,∴四面体EABC 是鳖臑,∠AEB ,∠AEC ,∠CBE ,∠ABC 为直角.(2)∵AE =1,CE =7,AE ⊥EC , ∴AC =22,又ABCD 为正方形. ∴BC =2,∴BE = 3.作BO⊥EC 于O ,则BO⊥平面AEC ,连接OA ,则OA 为AB 在面AEC 上的射影.∴θ=∠BAO,由等面积法得BE·BC =EC·OB. ∴OB =3·27,sin θ=OB AB =217,cos2θ=1-2sin 2θ=17.提示 本题也可用向量法求解.9.(2016·课标全国Ⅲ,理)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. 答案 (1)略 (2)8525解析 (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN.由N 为PC 的中点知TN∥BC,TN =12BC =2.又AD∥BC,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN∥AT. 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN∥平面PAB.(2)取BC 的中点E ,连接AE.由AB =AC 得AE⊥BC,从而AE⊥AD,且AE =AB 2-BE 2=AB 2-(BC 2)2= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz.由题意知,P(0,0,4),M(0,2,0),C(5,2,0),N(52,1,2),PM →=(0,2,-4),PN →=(52,1,-2),AN →=(52,1,2).设n =(x ,y ,z)为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525.所以直线AN 与平面PMN 所成角的正弦值为8525.10.如图所示,在四棱台ABCD -A 1B 1C 1D 1中,AA 1⊥底面ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.(1)若M 为CD 中点,求证:AM⊥平面AA 1B 1B ; (2)求直线DD 1与平面A 1BD 所成角的正弦值. 答案 (1)略 (2)15解析 (1)四边形ABCD 为菱形,∠BAD =120°,连接AC ,如图,则△ACD 为等边三角形, 又M 为CD 中点,∴AM ⊥CD ,由CD∥AB,得AM⊥AB, ∵AA 1⊥底面ABCD ,AM ⊂平面ABCD ,∴AM ⊥AA 1, 又AB∩AA 1=A , ∴AM ⊥平面AA 1B 1B.(2)∵四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2,∴DM =1,AM =3,∴∠AMD =∠BAM=90°,又AA 1⊥底面ABCD ,∴以AB ,AM ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A -xyz , 则A 1(0,0,2),B(2,0,0),D(-1,3,0),D 1(-12,32,2),∴DD 1→=(12,-32,2),BD →=(-3,3,0),A 1B →=(2,0,-2),设平面A 1BD 的法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·BD →=0,n ·A 1B →=0,⇒⎩⎨⎧-3x +3y =0,2x -2z =0,⇒y =3x =3z ,令x =1,则n =(1,3,1),∴直线DD 1与平面A 1BD 所成角θ的正弦值为 sin θ=|cos 〈n ,DD 1→〉|=|n ·DD 1→|n |·|DD 1→||=15.11.(2018·山西太原一模)如图,在几何体ABCDEF 中,四边形ABCD 是菱形,BE ⊥平面ABCD ,DF ∥BE ,且DF =2BE =2,EF =3. (1)证明:平面ACF⊥平面BEFD ;(2)若二面角A -EF -C 是直二面角,求直线AE 与平面ABCD 所成角的正切值. 答案 (1)略 (2)12解析 (1)∵四边形ABCD 是菱形,∴AC ⊥BD. ∵BE ⊥平面ABCD ,∴BE ⊥AC , ∵BD ∩BE =B ,∴AC⊥平面BEFD , ∴平面ACF⊥平面BEFD.(2)设AC 与BD 的交点为O ,由(1)得AC⊥BD,分别以OA ,OB 为x 轴和y 轴,过点O 作垂直于平面ABCD 的直线为z ,建立如图所示的空间直角坐标系O -xyz ,∵BE ⊥平面ABCD ,∴BE ⊥BD ,∵DF ∥BE ,∴DF ⊥BD , ∴BD 2=EF 2-(DF -BE)2=8,∴BD =2 2.设OA =a(a>0),则A(a ,0,0),C(-a ,0,0),E(0,2,1),F(0,-2,2),∴EF →=(0,-22,1),AE →=(-a ,2,1),CE →=(a ,2,1).设m =(x 1,y 1,z 1)是平面AEF 的法向量,则⎩⎪⎨⎪⎧m ·EF →=0,m ·AE →=0,即⎩⎨⎧-22y 1+z 1=0,-ax 1+2y 1+z 1=0,令z 1=22,∴m =(32a ,1,22)是平面AEF 的一个法向量,设n =(x 2,y 2,z 2)是平面CEF 的法向量,则⎩⎪⎨⎪⎧n ·EF →=0,n ·CE →=0,即⎩⎨⎧-22y 2+z 2=0,ax 2+2y 2+z 2=0,令z 2=22,∴n =(-32a,1,22)是平面CEF 的一个法向量,∵二面角A -EF -C 是直二面角,∴m ·n =-18a 2+9=0,∴a = 2.∵BE ⊥平面ABCD ,∴∠BAE 是直线AE 与平面ABCD 所成的角, ∵AB =OA 2+OB 2=2,∴tan ∠BAE =BE AB =12.故直线AE 与平面ABCD 所成角的正切值为12.1.(2017·山西临汾一模)如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是( )A .90° .60° C .45° .30°答案 B解析 将其还原成正方体ABCD -PQRS ,显然PB∥SC,△ACS 为正三角形,∴∠ACS =60°.2.(2018·成都一诊)如图,正四棱锥P -ABCD 的体积为2,底面积为6,E 为侧棱PC 的中点,则直线BE 与平面PAC 所成的角为( ) A .60° B .30° C .45° D .90°答案 A解析 如图,正四棱锥P -ABCD 中,根据底面积为6可得,BC = 6.连接BD ,交AC 于点O ,连接PO ,则PO 为正四棱锥P -ABCD 的高,根据体积公式可得,PO =1.因为PO⊥底面ABCD ,所以PO⊥BD,又BD⊥AC,PO ∩AC =O ,所以BD⊥平面PAC ,连接EO ,则∠BEO 为直线BE 与平面PAC 所成的角.在Rt △POA 中,因为PO =1,OA =3,所以PA =2,OE =12PA =1,在Rt △BOE 中,因为BO =3,所以tan ∠BEO =BOOE=3,即∠BEO=60°.3.如图,平面ABCD⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为( )A.23B.33C.63D.13答案 C解析 设GB 与平面AGC 所成的角为θ. 如图,以A 为原点建立空间直角坐标系,则A(0,0,0),B(0,2a ,0),C(0,2a ,2a),G(a ,a ,0),AG →=(a ,a ,0),AC →=(0,2a ,2a),BG →=(a ,-a ,0),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0,AC →·n 1=0⇒⎩⎪⎨⎪⎧ax 1+ay 1=0,2ay 1+2a =0⇒⎩⎪⎨⎪⎧x 1=1,y 1=-1⇒n 1=(1,-1,1).sin θ=|BG →·n 1||BG →||n 1|=2a 2a×3=63.4.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ) A.23 B.33C.23D.13答案 A解析 如图,连接AC 交BD 于点O ,连接C 1O ,过C 作CH⊥C 1O 于点H. ∵⎩⎪⎨⎪⎧BD⊥AC BD⊥AA 1AC ∩AA 1=A ⇒⎩⎪⎨⎪⎧BD⊥平面ACC 1A 1CH ⊂平面ACC 1A 1⇒⎩⎪⎨⎪⎧CH⊥BD CH⊥C 1O BD ∩C 1O =O ⇒CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角.5.(2018·黑龙江大庆实验中学期末)在正三棱柱ABC -A 1B 1C 1中,AB =4,点D 在棱BB 1上,若BD =3,则AD 与平面AA 1C 1C 所成角的正切值为( ) A.235B.23913C.54D.43答案 B解析 取AC 的中点E ,连接BE ,如图所示,可得AD →·EB →=(AB →+BD →)·EB →=AB →·EB →,即5×23×cos θ=4×23×32(θ为AD →与EB →的夹角),∴cos θ=235,sin θ=135,tan θ=396,又BE⊥平面AA 1C 1C ,∴所求角的正切值为23913.6.(2016·北京东城质量调研)在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.则A 1B 与平面ABD 所成角的余弦值是( ) A.23 B.73 C.32D.37答案 B解析 以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立直角坐标系,设CA =CB =a ,则A(a ,0,0),B(0,a ,0),A 1(a ,0,2),D(0,0,1),∴E(a 2,a 2,1),G(a 3,a 3,13),GE →=(a6,a 6,23),BD →=(0,-a,1),∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE →⊥平面ABD ,∴GE →·BD →=0,解得a =2.∴GE →=(13,13,23),BA 1→=(2,-2,2),∵GE →⊥平面ABD ,∴GE →为平面ABD 的一个法向量.∵cos<GE →,BA 1→>=GE →·BA 1→|GE →|·|BA 1→|=4363×23=23,∴A 1B 与平面ABD 所成的角的余弦值为73.7.(2018·太原模拟)在三棱锥A -BCD 中,底面BCD 为边长是2的正三角形,顶点A 在底面BCD 上的射影为△BCD 的中心,若E 为BC 的中点,且直线AE 与底面BCD 所成角的正切值为22,则三棱锥A -BCD 外接球的表面积为( ) A .3π B .4π C .5π D .6π答案 D解析 ∵顶点A 在底面BCD 上的射影为△BCD 的中心,而且△BCD 是正三角形,∴三棱锥A -BCD 是正三棱锥,∴AB =AC =AD.令底面△BCD 的重心(即中心)为P ,∵△BCD 是边长为2的正三角形,DE 是BC 边上的高,∴DE =3,PE =33,DP =233.∵直线AE 与底面BCD 所成角的正切值为22,即tan ∠AEP =22,∴AP =263,∵AE 2=AP 2+EP 2,∴AD =2,于是AB =AC =AD =BC =CD =DB =2,∴三棱锥A -BCD 为正四面体.构造正方体,由面上的对角线构成正四面体,故正方体的棱长为2,∴正方体的体对角线长为6,∴外接球的半径为62,∴外接球的表面积为4π(62)2=6π.8.(2018·江西临海上一中一模)已知在正方体ABCD -A 1B 1C 1D 1中,棱长为1.点E 是棱A 1B 1的中点,则直线AE 与平面BDD 1B 1所成角的正弦值是________. 答案1010解析 取AB 的中点为F ,连接B 1F ,过点F 作FG⊥BD,垂足为G ,连接B 1G ,由正方体性质知BB 1⊥FG ,BD ∩BB 1=B ,BD ⊂平面BDD 1B 1,BB 1⊂平面BDD 1B 1,所以FG⊥平面BDD 1B 1,故∠FB 1G为FB 1与平面BDD 1B 1所成的角,所以FG =24,B 1F =52,所以sin ∠FB 1G =2452=1010.又因为AE∥B 1F ,所以直线AE 与平面BDD 1B 1所成角的正弦值是1010. 9.(2014·福建,理)在平面四边形ABCD 中.AB =BD =CD =1,AB ⊥BD ,CD ⊥BD.将△ABD 沿BD 折起,使得平面ABD⊥平面BCD ,如图所示. (1)求证:AB⊥CD;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值. 答案 (1)略 (2)63解析 (1)∵平面ABD⊥平面BCD ,平面ABD∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD , ∴AB ⊥平面BCD.又CD ⊂平面BCD ,∴AB ⊥CD.(2)过点B 在平面BCD 内作BE⊥BD,如图所示. 由(1)知AB⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD , ∴AB ⊥BE ,AB ⊥BD.以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M ⎝ ⎛⎭⎪⎫0,12,12, 则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0,取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n |·|AD →|=63,即直线AD与平面MBC 所成角的正弦值为63.11 10.(2017·浙江)如图,已知四棱锥P -ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.解析 (1)如图,设PA 中点为F ,连接EF ,FB.因为E ,F 分别为PD ,PA 中点,所以EF∥AD 且EF =12AD , 又因为BC∥AD,BC =12AD ,所以EF∥BC 且EF =BC , 即四边形BCEF 为平行四边形,所以CE∥BF,因此CE∥平面PAB.(2)分别取BC ,AD 的中点为M ,N.连接PN 交EF 于点Q ,连接MQ.因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ ∥CE.由△PAD 为等腰直角三角形得P N⊥AD.由DC⊥AD,N 是AD 的中点得BN⊥AD.所以AD⊥平面PBN ,由BC∥AD 得BC⊥平面PBN ,那么平面PBC⊥平面PBN.过点Q 作PB 的垂线,垂足为H ,连接MH.MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,PD =2得CE =2,在△PBN 中,由PN =BN =1,PB =3得QH =14, 在Rt △MQH 中,QH =14,MQ =2, 所以sin ∠QMH =28, 所以,直线CE 与平面PBC 所成角的正弦值是28.。
2019-2020年高考数学 7.8 立体几何中的向量方法(二)——求空间角和距离练习
2019-2020年高考数学 7.8 立体几何中的向量方法(二)——求空间角和距离练习——求空间角和距离(25分钟60分)一、选择题(每小题5分,共25分)1.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为()A. B. C. D.【解析】选B.建立空间直角坐标系如图.则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2).=(-1,0,2),=(-1,2,1),cos<,>==.所以异面直线BC1与AE所成角的余弦值为.2.(xx·宁波模拟)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A. B. C. D.【解析】选A.以D为原点,建立如图所示的空间直角坐标系,设AB=1,则=(1,1,0),=(0,1,2),=(0,1,0),设平面DBC1的法向量为n=(x,y,z),则取z=1,则y=-2,x=2,所以n=(2,-2,1),所以sinθ====.【一题多解】本题还可以采用如下方法解答.方法一:选A.设AB=1,则AA1=2.设AC∩BD=O,连接C1O,过C作CH⊥C1O于H,连接DH,显然△C1DB是等腰三角形,所以C1O⊥BD,又C1C⊥BD,因为C1O∩C1C=C1,所以BD⊥平面C1CO,CH⊂平面C1CO,所以BD⊥CH,而CH⊥C1O,BD∩C1O=O,所以CH⊥平面C1BD,所以∠CDH是CD与平面C1BD所成的角,在Rt△C1OC中,OC=,C1C=2,所以C1O==,由C1C·OC=C1O·CH知CH==,在Rt△CDH中,sin∠CDH==.方法二:选A.设点C到平面C1BD的距离为h,CD与平面C1BD所成的角为θ,由=知·h=S△CBD·C1C,所以h=,所以sinθ==.3.已知长方体ABCD-A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为()A. B.C. D.【解题提示】以A为原点建立空间直角坐标系,分别求出直线BC1的方向向量与平面DBB1D1的法向量,用空间向量的直线与平面所成角的夹角公式计算得解.【解析】选C.如图建立空间直角坐标系,则B(4,0,0),C(4,4,0),C1(4,4,2),显然AC⊥平面BB1D1D,所以=(4,4,0)为平面BB1D1D的一个法向量.又=(0,4,2).所以cos<,>===.即直线BC1和平面DBB1D1所成角的正弦值为.4.(xx·厦门模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,则该二面角的大小为()A.150°B.45°C.60°D.120°【解析】选C.由条件知·=0,·=0,因为=++.所以||2=||2+||2+||2+2·+2·+2·=62+42+82+2×6×8cos<,>=(2)2.所以cos<,>=-,则<,>=120°,即<,>=60°.所以二面角的大小为60°.5.(xx·北京模拟)在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为()A. B.a C. D.a【解题提示】以P为原点建立空间直角坐标系,利用空间向量法求解.【解析】选B.根据题意,可建立如图所示的空间直角坐标系Pxyz,则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a).所以=(-a,a,0),=(-a,0,a),=(a,0,0).设平面ABC的法向量为n=(x,y,z).由得得令x=1,所以n=(1,1,1),所以P到平面ABC的距离d===a.二、填空题(每小题5分,共15分)6.如图,在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为.【解析】以C1为原点,C1A1,C1B1,C1C所在直线分别为x,y,z轴建立空间直角坐标系,则平面AA1C1C的法向量为n=(0,1,0),AM=-(1,0,)=,则直线AM与平面AA1C1C所成角θ的正弦值为sinθ=|cos<,n>|==,所以tanθ=.答案:7.已知点E,F分别在正方体ABCD -A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC 所成的二面角的正切值为.【解析】如图,建立空间直角坐标系Dxyz,设DA=1,由已知条件得A(1,0,0),E,F,=,=,设平面AEF的法向量为n=(x,y,z),面AEF与面ABC所成的二面角为θ,由图知θ为锐角,由得令y=1,z=-3,x=-1,则n=(-1,1,-3),平面ABC的法向量为m=(0,0,-1),cosθ=|cos<n,m>|=,tanθ=.答案:8.(xx·石家庄模拟)如图所示,正方体ABCD-A1B1C1D1的棱长为1,E是A1B1上的点,则点E到平面ABC1D1的距离是.【解析】以点D为坐标原点,DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,设点E(1,a,1)(0≤a≤1),连接D1E,则=(1,a,0).连接A1D,易知A1D⊥平面ABC1D1,则=(1,0,1)为平面ABC1D1的一个法向量.所以点E到平面ABC1D1的距离是d==.答案:三、解答题(每小题10分,共20分)9.(xx·湖南高考)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD.(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.【解题提示】(1)利用矩形的邻边垂直,及线线平行证明OO1⊥AC,OO1⊥BD.(2)由二面角的定义或者向量法求二面角的余弦值.【解析】(1)因为四边形ACC1A1和四边形BDD1B1均为矩形,所以CC1⊥AC,DD1⊥BD,又CC1∥DD1∥OO1,所以OO1⊥AC,OO1⊥BD,因为AC∩BD=O,所以O1O⊥底面ABCD.(2)方法一:如图,过O1作O1H⊥B1O,垂足为H,连接C1H,由(1)可得OO1⊥A1C1,由于A1B1C1D1是菱形,所以B1D1⊥A1C1,所以A1C1⊥平面B1D1DB,所以由三垂线定理得HC1⊥B1O,所以∠O1HC1就是二面角C1-OB1-D的平面角.设棱柱的棱长为2,因为∠CBA=60°,所以OB=,OC=1,OB1=,在直角三角形O1OB1中,O1H==,因为O1C1=1,所以C1H===,所以cos∠C1HO1==,即二面角C1-OB1-D的余弦值为.方法二:因为四棱柱的所有棱长都相等,所以四边形ABCD为菱形,AC⊥BD,又O1O⊥底面ABCD,所以OB,OC,OO1两两垂直.如图,以O为原点,OB,OC,OO1所在直线分别为x,y,z轴,建立空间直角坐标系.设棱长为2,因为∠CBA=60°,所以OB=,OC=1,所以O,B1,C1,平面BDD1B1的一个法向量为n=,设平面OC1B1的法向量为m=,则由m⊥,m⊥,所以x+2z=0,y+2z=0,取z=-,则x=2,y=2,所以m=,所以cos<m,n>===.由图形可知二面角C1-OB1-D为锐二面角,所以二面角C1-OB1-D的余弦值为.10.(xx·杭州模拟)如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a,(1)若a=2,求证:AB∥平面CDE.(2)求实数a的值,使得二面角A-EC-D的大小为60°.【解析】(1)如图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,2),=(2,0,0),=(0,-2,2),=(1,-1,),设平面CDE的一个法向量为n1=(x,y,z),则有-2y+2z=0,x-y+z=0,取z=时,n1=(0,2,),所以·n1=0,又AB不在平面CDE内,所以AB∥平面CDE.(2)如图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,a),=(0,-2,a),=(1,-1,),设平面CDE的一个法向量为n2=(x,y,z),则有-2y+az=0,x-y+z=0,取z=2时,n2=(a-2,a,2),又平面AEC的一个法向量为n3=(-1,1,0),因为二面角A-EC-D的大小为60°,所以=,即a2-2a-2=0, 解得a=±2.(20分钟40分)1.(5分)如图,在四面体ABCD中,AB=1,AD=2,BC=3,CD=2,∠ABC=∠DCB=,则二面角A-BC-D的大小为()A. B.C. D.【解析】选 B.二面角A-BC-D的大小等于AB与CD所成角的大小.=++.而=+++2||||·cos<,>,即12=1+9+4+2×1×2cos<,>,所以cos<,>=-,所以AB与CD所成角为,即二面角A-BC-D的大小为.2.(5分)(xx·北京模拟)已知在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到平面AB1D1的距离是.【解析】如图所示建立空间直角坐标系Dxyz,则A1(2,0,4),A(2,0,0),B1(2,2,4),D1(0,0,4),=(-2,0,4),=(0,2,4),=(0,0,4),设平面AB1D1的法向量为n=(x,y,z),则即解得x=2z且y=-2z,不妨设n=(2,-2,1),设点A1到平面AB1D1的距离为d,则d==.答案:3.(5分)(xx·郑州模拟)正四棱锥S -ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角的大小为.【解析】如图所示,以O为原点建立空间直角坐标系Oxyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(-a,0,0),P.则=(2a,0,0),=,=(a,a,0).设平面PAC的法向量为n,可求得n=(0,1,1),则cos<,n>===.所以<,n>=60°,所以直线BC与平面PAC的夹角为90°-60°=30°.答案:30°4.(12分)(能力挑战题)如图,在平行四边形ABCD中,AB=2BC=2,∠ABC=120°,M,N分别为线段AB,CD的中点,连接AN,DM交于点O,将△ADM沿直线DM翻折成△A′DM.使平面A′DM⊥平面BCD,F为线段A′C的中点.(1)求证:ON⊥平面A′DM.(2)求证:BF∥平面A′DM.(3)求直线FO与平面A′DM所成的角.【解析】(1)连接MN,由平面几何知四边形AMND是菱形.所以AN⊥DM.因为平面A′DM⊥平面ABCD,DM是交线,AN⊂平面ABCD,所以AN⊥平面A′DM,即ON⊥平面A′DM.(2)取A′D的中点E,连接EF,EM,因为F是A′C中点,所以EFCD.又M是AB中点,所以在平行四边形ABCD中,BMCD,所以EF BM,所以四边形EFBM是平行四边形.所以BF∥EM,因为EM⊂平面A′DM,BF⊄平面A′DM,所以BF∥平面A′DM.(3)因为AB=2BC=2,M是AB中点,所以A′D=A′M=1.因为菱形ADNM中O是DM中点,所以A′O⊥DM,因为平面A′DM⊥平面ABCD,所以A′O⊥平面ABCD.以ON为x轴,OM为y轴,OA′为z轴建立空间直角坐标系,∠ADN=∠ABC=120°,在△ADN中,AD=DN=1,所以AN==.同理求得DM=AD=AM=1,所以N,D,A′,因为N是CD的中点,所以C.因为F是A′C的中点,所以F.因为NO⊥平面A′DM,所以平面A′DM的一个法向量=.因为=,所以||==1.设OF与平面A′DM所成的角为θ,0<θ<,则sinθ=|cos<,>|===,所以θ=.所以直线FO与平面A′DM所成的角为.5.(13分)(xx·江西高考)如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD.(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面PBC与平面DPC 夹角的余弦值.【解题提示】(1)利用面面垂直的性质定理证明AB⊥平面PAD即可.(2)借助两平面垂直的性质,作PO⊥AD,即四棱锥的高找到,过点O作OM⊥BC于点M,连接PM.则四棱锥的体积能用AB的长度表示,即可建立体积与AB的函数,借助二次函数知识求最值;此时可建立空间直角坐标系,利用坐标法求解.【解析】(1)因为ABCD为矩形,所以AB⊥AD,又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD,又PD⊂平面PAD,所以AB⊥PD.(2)过点P作PO⊥AD于点O,则PO⊥平面ABCD,过点O作OM⊥BC于点M,连接PM.则PM⊥BC,因为∠BPC=90°,PB=,PC=2,所以BC=,PM=,设AB=t,则在Rt△POM中,PO=,所以VP-ABCD=·t··=,所以当t2=,即t=时,VP-ABCD最大为.此时PO=AB=,且PO,OA,OM两两垂直,以OA,OM,OP所在直线为x,y,z轴建立空间直角坐标系Oxyz, 则P,D,C,B.所以=,=,=.设平面PCD的一个法向量m=(x1,y1,z1),则即令x1=1,则m=(1,0,-2),|m|=;同理设平面PBC的一个法向量n=(x2,y2,z2),即令y2=1,则n=(0,1,1),|n|=,设平面PBC与平面DPC夹角为θ,显然θ为锐角,且cosθ===..。
高考数学总复习 基础知识名师讲义 第八章 第八节空间
第八节空间向量的应用(一)理解异面直线所成的角、线面角、二面角的概念,并会求这三类空间角的大小或它的一种三角函数值.知识梳理一、异面直线所成的角1.定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,a ′,b ′所成的角的大小与点O 的选择无关,把a ′,b ′所成的锐角(或直角)叫异面直线a ,b 所成的角(或夹角).为了简便起见,点O 通常取在异面直线的一条上.2.异面直线所成的角的取值范围:⎝⎛⎦⎥⎤0,π2.3.求异面直线所成的角的方法:①几何法;②向量法. 二、直线和平面所成的角1.定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角.特例:当一直线垂直于平面,规定它们所成的角是直角;当一直线平行于平面或在平面内,规定它们所成的角为0°角.2.直线和平面所成角的取值范围:⎣⎢⎡⎦⎥⎤0,π2.三、二面角1.定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.若棱为l ,两个面分别为α,β的二面角记为αlβ.2.二面角的平面角.(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线OA ,OB ,则∠AOB 叫做二面角αlβ的平面角.(2)一个平面垂直于二面角αlβ的棱l ,且与两半平面交线分别为OA ,OB ,O 为垂足,则∠AOB 就是αlβ的平面角.说明:①二面角的平面角范围是[0,π];②二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直. 3.二面角大小的求法:①几何法;②向量法.4.求二面角的射影公式:cos θ=S ′S,其中各个符号的含义是:S 是二面角的一个面内图形F 的面积,S ′是图形F 在二面角的另一个面内的射影,θ是二面角的平面角大小.四、三种空间角的向量法计算公式 1.异面直线a ,b 所成的角θ:cos θ=||cos a ,b (其中a ,b 分别是异面直线a ,b 的方向向量).2.直线a 与平面α(其法向量为n )所成的角θ:sin θ=||cos a ,n .3.锐二面角θ:(法一)cos θ=||cos m ,n ,其中m ,n 为两个面的法向量. (法二)cos θ=||cos a ,b ,其中a ,b 是分别在两个面内且与棱都垂直的向量.基础自测1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°解析:根据线面角的定义知,选项C 正确. 答案:C2.(2013·山东卷)已知三棱柱ABCA 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6解析:如题图所示:S ABC =12×3×3×sin 60°=334.所以VABCA 1B 1C 1=S ABC ×OP =334×OP =94, ∴OP = 3.又OA =32×3×23=1, 所以tan∠OAP =OP OA =3,又0<∠OAP <π2,所以∠OAP =π3.答案:B3.如图,在直三棱柱中,∠ACB =90°,AC =BC =1,侧棱AA 1=2,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为________.答案:134.如图所示,在长方体ABCDA 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2.E ,F 分别是线段AB ,BC 上的点,且EB =FB =1.则:(1)二面角CDEC 1的余弦值为________; (2)直线EC1与FD1所成角的余弦值________.解析:(1)如图,以A 为原点,AB →,AD →,AA 1→分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系Axyz ,则有D (0,3,0),D 1(0,3,2),E (3,0,0),F (4,1,0),C 1(4,3,2).于是,DE →=(3,-3,0),EC 1→=(1,3,2),FD 1→=(-4,2,2). 设向量n =(x ,y ,z )与平面C 1DE 垂直,则有⎭⎪⎬⎪⎫n ⊥DE →n ⊥EC 1→⇒⎭⎪⎬⎪⎫3x -3y =0x +3y +2z =0⇒x =y =-12z .∴n =⎝ ⎛⎭⎪⎫-z2,-z2,z =z2(-1,-1,2),其中z >0.取n 0=(-1,-1,2),则n 0是一个与平面C 1DE 垂直的向量.∵向量AA 1→=(0,0,2)与平面CDE 垂直,∴n 0与AA 1→所成的角θ为二面角CDEC 1的平面角.∴cos θ=n 0·AA 1→|n 0|×|AA 1→|=-1×0-1×0+2×21+1+4×0+0+4=63.(2)设EC 1与FD 1所成角为β,则cos β=EC 1→·FD 1→|EC 1→|×|FD 1→|=1×-4+3×2+2×212+32+22×-42+22+22= 2114. 答案:(1)63 (2)21141. (2012·陕西卷)如图,在空间直角坐标系中有直三棱柱ABCA1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( )A.55 B.53 C.255 D.35解析:设CB =a ,则CA =CC 1=2a ,A (2a,0,0),B (0,0,a ),C 1(0,2a ,0),B 1(0,2a ,a ), ∴AB 1→=(-2a,2a ,a ),BC 1→=(0,2a ,-a ).∴cos〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=55.故选A.答案:A2.(2013·广东卷)如图1,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC 、AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图2所示的四棱锥A ′BCDE ,其中A ′O = 3.(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′CDB 的平面角的余弦值.(1)证明:在题图1中,易得OC =3,AC =32,AD =22, 连接OD ,OE ,在△OCD 中,由余弦定理可得 OD =OC 2+CD 2-2OC ·CD cos 45°=5, 由翻折不变性可知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD ,同理可证A ′O ⊥OE ,又OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)解析:(法一)(几何法)过O 作OH ⊥CD 交CD 的延长线于H ,连接A ′H , 因为A ′O ⊥平面BCED ,所以A ′H ⊥CD , 所以∠A ′HO 为二面角A ′CDB 的平面角.结合题图可知,H 为AC 中点,故OH =322,从而A ′H =OH 2+OA ′2=302, 所以cos∠A ′HO =OH A ′H =155,所以二面角A ′CDB 的平面角的余弦值为155. (法二)(向量法)以点O 为原点,建立空间直角坐标系Oxyz 如图所示,则A ′(0,0,3),C (0,-3,0),D (1,-2,0),所以CA ′→=(0,3,3),DA ′→=(-1,2,3).设n =(x ,y ,z )为平面A ′CD →的法向量,则 ⎩⎪⎨⎪⎧n ·CA ′→=0,n ·DA ′→=0.即⎩⎨⎧3y +3z =0,-x +2y +3z =0,解得⎩⎨⎧y =-x ,z =3x .令x =1,得n =(1,-1,3),由(1)知,OA ′→=(0,0,3)为平面CDB 的一个法向量,所以cos 〈n ,OA ′→〉=n ·OA ′→|n ||OA ′→|=33·5=155,即二面角的平面角A ′CDB 的余弦值为155.1.如图所示,四棱锥PABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA = 3.(1)证明:平面PBE ⊥平面PAB ; (2)求二面角ABEP 的大小.(法一)(1)证明:连接BD ,由ABCD 是菱形且∠BCD =60°知,△BCD 是等边三角形. 因为E 是CD 的中点,所以BE ⊥CD .又AB ∥CD ,所以BE ⊥AB . 又因为PA ⊥平面ABCD ,BE ⊂平面ABCD ,所以PA ⊥BE ,而PA ∩AB =A ,因此 BE ⊥平面PAB . 又BE ⊂平面PBE ,所以平面PBE ⊥平面PAB .(2)解析:由(1)知,BE ⊥平面PAB, PB ⊂平面PAB, 所以PB ⊥BE . 又AB ⊥BE ,所以∠PBA 是二面角ABEP 的平面角. 在Rt△PAB 中, tan∠PBA =PAAB=3,∠PBA =60°. 故二面角ABEP 的大小为60°.(法二)如图所示,以A 为原点,建立空间直角坐标系.则相关各点的坐标分别是A (0,0,0),B (1,0,0),C ⎝ ⎛⎭⎪⎫32,32,0,D ⎝ ⎛⎭⎪⎫12,32,0,P (0,0,3),E ⎝ ⎛⎭⎪⎫1,32,0.(1)证明:因为BE →=⎝ ⎛⎭⎪⎫0,32,0,平面PAB 的一个法向量是n 0=(0,1,0),所以BE →和n 0共线.从而BE ⊥平面PAB .又因为BE ⊂平面PBE ,所以平面PBE ⊥平面PAB .(2)解析:易知PB →=(1,0,-3),BE →=⎝ ⎛⎭⎪⎫0,32,0,设n 1=(x 1,y 1,z 1)是平面PBE 的一个法向量,则由⎩⎪⎨⎪⎧ n 1·PB →=0,n 1·BE →=0得,⎩⎪⎨⎪⎧ x 1+0×y 1-3z 1=0,0×x 1+32y 1+0×z 1=0,所以y 1=0,x 1=3z 1.故可取n 1=(3,0,1).而平面ABE 的一个法向量是n 2=(0,0,1).于是,cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=12. 故二面角ABEP 的大小为60°.2.(2013·深圳一模)如图1,⊙O 的直径AB =4,点C 、D 为⊙O 上两点,且∠CAB =45°,∠DAB =60°,F 为BC 的中点.沿直径AB 折起,使两个半圆所在平面互相垂直(如图2).(1)求证:OF ∥平面ACD ;(2)求二面角CADB 的余弦值; (3)在BD 上是否存在点G ,使得FG ∥平面ACD ?若存在,试指出点G 的位置,并求直线AG 与平面ACD 所成角的正弦值;若不存在,请说明理由.(1)证明:如图,因为∠CAB =45°,连接OC ,则OC ⊥A B.以AB 所在的直线为y 轴,以OC 所在的直线为z 轴,以O 为原点,建立空间直角坐标系Oxyz ,则A (0,-2,0),C (0,0,2).AC →=(0,0,2)-(0,-2,0)=(0,2,2), 因为点F 为BC 的中点,所以点F 的坐标为(0,2,2),OF →=(0,2,2).所以OF →=22AC →,即OF ∥AC . 因为OF ⊄平面ACD ,AC ⊂平面ACD ,所以OF ∥平面ACD . (2)解析:因为∠DAB =60°,所以点D 的坐标D (3,-1,0),AD →=(3,1,0).设二面角CADB 的大小为θ,n 1=(x ,y ,z )为平面ACD 的一个法向量.由⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AD →=0,有⎩⎨⎧ x ,y ,z ·0,2,2=0,x ,y ,z ·3,1,0=0,即⎩⎨⎧ 2y +2z =0,3x +y =0.取x =1,解得y =-3,z = 3.所以n 1=(1,-3,3).取平面ADB 的一个法向量n 2=(0,0,1),所以cos θ=|n 1·n 2||n 1|·|n 2|=|1×0+-3×0+3×1|7×1=217. (3)解析:设在BD 上存在点G ,使得FG ∥平面ACD ,∵OF ∥平面ACD ,∴平面OFG ∥平面ACD ,则有OG ∥A D.设OG →=λAD →(λ>0),因为AD →=(3,1,0),所以OG →=(3λ,λ,0).又因为|OG →|=2,所以3λ2+λ2+02=2,解得λ=±1(舍去-1).所以,OG →=(3,1,0)则G 为BD 的中点.因此,在BD 上存在点G ,使得FG ∥平面ACD ,且点G 为BD 的中点.设直线AG 与平面ACD 所成角为α,因为,AG →=(3,1,0)-(0,-2,0)=(3,3,0),根据(2)的计算n 1=(1,-3,3)为平面ACD 的一个法向量,所以sin α=cos (90°-α)=|AG →·n 1||AG →|·|n 1|= |3×1+3×-3+0×3|23×7=77. 因此,直线AG 与平面ACD 所成角的正弦值为77.。
高考数学一轮复习 第八章 立体几何 8.8 立体几何中的向量方法(二)——求空间角和距离 理
第八章 立体几何 8.8 立体几何中的向量方法(二)——求空间角和距离 理1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【知识拓展】利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )1.(2017·烟台质检)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135° D .90°答案 C解析 cos 〈m ,n 〉=m ·n |m ||n |=11×2=22,即〈m ,n 〉=45°.∴两平面所成的二面角为45°或180°-45°=135°.2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150° 答案 A解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.故选A.3.(2016·郑州模拟)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=0+4-14+4+1×0+4+1=15=55,故选A. 4.(教材改编)如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________.答案π6解析 以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线为坐标轴(如图)建立空间直角坐标系,设D 为A 1B 1中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1→·AD→|AC 1→||AD →|=,3,22,0,2212×9=32, 又∵∠C 1AD ∈⎣⎢⎡⎦⎥⎤0,π2,∴∠C 1AD =π6.5.P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 答案 90°解析 不妨设PM =a ,PN =b ,如图,作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×22b cos 45°-22a ×b cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0,∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.题型一 求异面直线所成的角例1 (2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,可得EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.如图所示正方体ABCD -A ′B ′C ′D ′,已知点H 在A ′B ′C ′D ′的对角线B ′D ′上,∠HDA =60°.求DH与CC ′所成的角的大小.解 如图所示,以D 为原点,DA为单位长度,建立空间直角坐标系Dxyz ,则DA →=(1,0,0),CC ′→=(0,0,1). 设DH →=(m ,m,1)(m >0), 由已知,〈DH →,DA →〉=60°,由DA →·DH →=|DA →|·|DH →|·cos〈DH →,DA →〉, 可得2m =2m 2+1,解得m =22, ∴DH →=(22,22,1),∵cos〈DH →,CC ′→〉=22×0+22×0+1×11×2=22,又∵〈DH →,CC ′→〉∈[0°,180°], ∴〈DH →,CC ′→〉=45°, 即DH 与CC ′所成的角为45°.题型二 求直线与平面所成的角例2 (2016·全国丙卷)如图,四棱锥PABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. (1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,AE = AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5. 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz . 由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||A N →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525,∴直线AN 与平面PMN 所成角的正弦值为8525.思维升华 利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.(1)证明 ∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD , ∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)解 过点B 在平面BCD 内作BE ⊥BD ,如图.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD . ∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,12),则BC →=(1,1,0),BM →=(0,12,12),AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0,取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n ||AD →|=63,即直线AD 与平面MBC 所成角的正弦值为63. 题型三 求二面角例3 (2016·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC ,求二面角FBCA 的余弦值.(1)证明 设FC 的中点为I ,连接GI ,HI ,在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC ,又HI ∩GI =I , 所以平面GHI ∥平面ABC .因为GH ⊂平面GHI ,所以GH ∥平面ABC .(2)解 连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系Oxyz .由题意得B (0,23,0),C (-23,0,0).过点F 作FM 垂直OB 于点M ,所以FM =FB 2-BM 2=3,可得F (0,3,3). 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的一个法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎨⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎪⎫-1,1,33, 因为平面ABC 的一个法向量n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m ||n |=77.所以二面角FBCA 的余弦值为77. 思维升华 利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(2016·天津)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(1)求证:EG ∥平面ADF ;(2)求二面角O —EF —C 的正弦值;(3)设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.(1)证明 依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0), D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).依题意,AD →=(2,0,0),AF →=(1,-1,2). 设n 1=(x 1,y 1,z 1)为平面ADF 的法向量, 则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧2x 1=0,x 1-y 1+2z 1=0,不妨取z 1=1,可得n 1=(0,2,1), 又EG →=(0,1,-2),可得EG →·n 1=0, 又因为直线EG ⊄平面ADF ,所以EG ∥平面ADF .(2)解 易证OA →=(-1,1,0)为平面OEF 的一个法向量,依题意,EF →=(1,1,0),CF →=(-1,1,2).设n 2=(x 2,y 2,z 2)为平面CEF 的法向量, 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,-x 2+y 2+2z 2=0,不妨取 x 2=1,可得n 2=(1,-1,1). 因此有cos 〈OA →,n 2〉=OA →·n 2|OA →|·|n 2|=-63,于是sin 〈OA →,n 2〉=33.所以二面角O —EF —C 的正弦值为33. (3)解 由AH =23HF ,得AH =25AF .因为AF →=(1,-1,2), 所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45.因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以直线BH 和平面CEF 所成角的正弦值为721. 题型四 求空间距离(供选用)例4 如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,求点A 到平面MBC 的距离.解 如图,取CD 的中点O ,连接OB ,OM ,因为△BCD 与△MCD 均为正三角形,所以OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,所以MO ⊥平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为△BCD 与△MCD 都是边长为2的正三角形, 所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23), 所以BC →=(1,3,0),BM →=(0,3,3). 设平面MBC 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ⊥BC →,n ⊥BM→得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0,取x =3,可得平面MBC 的一个法向量为n =(3,-1,1). 又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.思维升华 求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离; (2)等体积法;(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.(2016·四川成都外国语学校月考)如图所示,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD =2,PA ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63?若存在,求出PQQD的值;若不存在,请说明理由.解 (1)在△PAD 中,PA =PD ,O 为AD 中点, ∴PO ⊥AD .又∵侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , ∴PO ⊥平面ABCD .在△PAD 中,PA ⊥PD ,PA =PD =2,∴AD =2. 在直角梯形ABCD 中,O 为AD 的中点,AB ⊥AD , ∴OC ⊥AD .以O 为坐标原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,如图所示,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0), ∴PB →=(1,-1,-1). 易证OA ⊥平面POC ,∴OA →=(0,-1,0)为平面POC 的法向量, cos 〈PB →,OA →〉=PB →·OA →|PB →||OA →|=33,∴PB 与平面POC 所成角的余弦值为63. (2)∵PB →=(1,-1,-1),设平面PCD 的法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP →=-x +z =0,u ·PD →=y -z =0.取z =1,得u =(1,1,1).则B 点到平面PCD 的距离d =|PB →·u ||u |=33.(3)假设存在,且设PQ →=λPD →(0≤λ≤1).∵PD →=(0,1,-1),∴OQ →-OP →=PQ →=(0,λ,-λ), ∴OQ →=(0,λ,1-λ), ∴Q (0,λ,1-λ).设平面CAQ 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·AC →=x +y =0,m ·AQ →=λ+y +-λz =0.取z =1+λ,得m =(1-λ,λ-1,λ+1). 平面CAD 的一个法向量为n =(0,0,1), ∵二面角Q -AC -D 的余弦值为63, ∴|cos〈m ,n 〉|=|m ·n ||m ||n |=63.整理化简,得3λ2-10λ+3=0. 解得λ=13或λ=3(舍去),∴存在,且PQ QD =12.6.利用空间向量求解空间角典例 (12分)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值. 规范解答(1)证明 依题意,以点A 为原点建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).[1分]由E 为棱PC 的中点,得E (1,1,1). BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0,所以BE ⊥DC .[3分] (2)解 BD →=(-1,2,0),PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的一个法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,[5分]可得n =(2,1,1).于是有cos 〈n ,BE →〉=n ·BE →|n ||BE →|=26×2=33,所以,直线BE 与平面PBD 所成角的正弦值为33.[7分] (3)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0). 由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ). 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34,即BF →=(-12,12,32).[9分]设n 1=(x ,y ,z )为平面FAB 的一个法向量, 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1).取平面ABP 的法向量n 2=(0,1,0), 则cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角, 所以其余弦值为31010.[12分]利用向量求空间角的步骤: 第一步:建立空间直角坐标系; 第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标; 第四步:计算向量的夹角(或函数值); 第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .60°或30°答案 C解析 设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ. 则sin β=|cos γ|=|cos 120°|=12.又∵β∈[0°,90°],∴β=30°,故选C.2.(2016·广州模拟)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( ) A .150° B .45° C .60° D .120° 答案 C解析 如图所示,二面角的大小就是〈AC →,BD →〉.∵CD →=CA →+AB →+BD →,∴CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →. ∴CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12,∴〈AC →,BD →〉=60°,故二面角为60°.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E (1,0,12),D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=(1,0,-12).设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.(2016·长春模拟)在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A.15B.255C.55D.25 答案 C解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D (12,0,0),E (12,12,0),F (0,12,1).∴PA →=(0,0,-2),DE →=(0,12,0),DF →=(-12,12,1).设平面DEF 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ, 则sin θ=|PA →·n ||PA →||n |=55,∴直线PA 与平面DEF 所成角的正弦值为55.故选C. 5.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1到平面BDE 的距离为( )A .2 B. 3 C. 2 D .1 答案 D解析 以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE .设n =(x ,y ,z )是平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DB →=2x +2y =0,n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量, 又DA →=(2,0,0),∴点A 到平面BDE 的距离是 d =|n ·DA →||n |=|-1×2+0+0|-2+12+-22=1.故直线AC 1到平面BDE 的距离为1.6.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52 B .-14C.14 D .-52答案 B解析 建立如图所示的空间直角坐标系,则D (1,0,2),B 1(0,1,3),设P (0,0,z ),则PD →=(1,0,2-z ),PB 1→=(0,1,3-z ), ∴PD →·PB 1→=0+0+(2-z )(3-z )=(z -52)2-14,故当z =52时,PD →·PB 1→取得最小值为-14.7.(2016·合肥模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则直线D 1C 1与平面A 1BC 1所成角的正弦值为________.答案 13解析 如图,建立空间直角坐标系Dxyz ,则D 1(0,0,1),C 1(0,2,1),A 1(1,0,1),B (1,2,0). ∴D 1C 1→=(0,2,0),A 1C 1→=(-1,2,0),A 1B →=(0,2,-1),设平面A 1BC 1的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·A 1C 1→=x ,y ,z-1,2,=-x +2y =0,n ·A 1B →=x ,y ,z ,2,-=2y -z =0,得⎩⎪⎨⎪⎧x =2y ,z =2y ,令y =1,得n =(2,1,2),设直线D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1→,n 〉|=|D 1C 1→·n ||D 1C 1→||n |=22×3=13,即直线D 1C 1与平面A 1BC 1所成角的正弦值为13.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值等于________.答案 23解析 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ, 则sin θ=|cos 〈n ,DC →〉|=|n ·DC →||n ||DC →|=23.9.(2016·石家庄模拟)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________. 答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E (1,1,13),F (0,1,23),AE →=(0,1,13),AF →=(-1,1,23),设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的二面角为θ,由图知θ为锐角, 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1),则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.10.(2016·南昌模拟)如图(1),在边长为4的菱形ABCD 中,∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC ∩EF =O ,沿EF 将△CEF 翻折到△PEF ,连接PA ,PB ,PD ,得到如图(2)的五棱锥P -ABFED ,且PB =10. (1)求证:BD ⊥平面POA ; (2)求二面角B -AP -O 的正切值.(1)证明 ∵点E ,F 分别是边CD ,CB 的中点, ∴BD ∥EF .∵菱形ABCD 的对角线互相垂直, ∴BD ⊥AC ,∴EF ⊥AC , ∴EF ⊥AO ,EF ⊥PO . ∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,∴EF ⊥平面POA ,∴BD ⊥平面POA . (2)解 设AO ∩BD =H ,连接BO .∵∠DAB =60°,∴△ABD 为等边三角形, ∴BD =4,BH =2,HA =23,HO =PO =3, 在Rt△BHO 中,BO =HB 2+HO 2=7. 在△PBO 中,BO 2+PO 2=10=PB 2, ∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED .以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系Oxyz ,如图所示,则A (0,-33,0),B (2,-3,0),P (0,0,3),H (0,-3,0), ∴AP →=(0,33,3),AB →=(2,23,0). 设平面PAB 的法向量为n =(x ,y ,z ), 由n ⊥AP →,n ⊥AB →,得⎩⎨⎧33y +3z =0,2x +23y =0.令y =1,得z =-3,x =- 3.∴平面PAB 的一个法向量为n =(-3,1,-3). 由(1)知平面PAO 的一个法向量为BH →=(-2,0,0), 设二面角B -AP -O 的平面角为θ,则cos θ=|cos 〈n ,BH →〉|=n ·BH →|n ||BH →|=2313×2=3913,∴sin θ=1-cos 2θ=13013, tan θ=sin θcos θ=303,∴二面角B -AP -O 的正切值为303. 11.(2016·四川)如图,在四棱锥PABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .E为棱AD 的中点,异面直线PA 与CD 所成的角为90°.(1)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角PCDA 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.理由如下:由已知,BC ∥ED 且BC =ED . 所以四边形BCDE 是平行四边形, 从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点) (2)方法一 由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A , 所以CD ⊥平面PAD ,从而CD ⊥PD . 所以∠PDA 是二面角PCDA 的平面角, 所以∠PDA =45°,设BC =1,则在Rt△PAD 中,PA =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知PA ⊥平面ABCD ,从而PA ⊥CE ,且PA ∩AH =A ,于是CE ⊥平面PAH . 又CE ⊂平面PCE , 所以平面PCE ⊥平面PAH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE , 所以∠APH 是PA 与平面PCE 所成的角. 在Rt△AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt△PAH 中,PH =PA 2+AH 2=322.所以sin∠APH =AH PH =13.方法二 由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A , 所以CD ⊥平面PAD . 于是CD ⊥PD .从而∠PDA 是二面角PCDA 的平面角.所以∠PDA =45°.由∠PAB =90°,且PA 与CD 所成的角为90°,可得PA ⊥平面ABCD . 设BC =1,则在Rt△PAD 中,PA =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0). 所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2). 设平面PCE 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).设直线PA 与平面PCE 所成角为α, 则sin α=|cos 〈n ,AP →〉|=|n ·AP →||n ||AP →|=22×22+-2+12=13. 所以直线PA 与平面PCE 所成角的正弦值为13.*12.(2017·潍坊月考)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直.已知AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;(2)判断点M 的位置,使得平面BDM 与平面ABF 所成的锐二面角为π3.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2, 又AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD .又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD , ∴BD ⊥平面ADEF , 又BD ⊂平面BDM , ∴平面BDM ⊥平面ADEF .(2)解 在平面DAB 内过点D 作DN ⊥AB ,垂足为N , ∵AB ∥CD ,∴DN ⊥CD ,又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,DE ⊥AD , ∴ED ⊥平面ABCD ,∴DN ⊥ED ,以D 为坐标原点,DN 所在的直线为x 轴,DC 所在的直线为y 轴,DE 所在的直线为z 轴,建立空间直角坐标系如图所示.∴B (1,1,0),C (0,1,0),E (0,0,2),N (1,0,0), 设M (x 0,y 0,z 0),EM →=λEC →(0≤λ<1), ∴(x 0,y 0,z 0-2)=λ(0,1,-2), ∴x 0=0,y 0=λ,z 0=2(1-λ), ∴M (0,λ,2(1-λ)).设平面BDM 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·DM →=0,n 1·DB →=0,又DM →=(0,λ,2(1-λ)),DB →=(1,1,0),∴⎩⎨⎧λy +2-λz =0,x +y =0,令x =1,得y =-1,z =λ2-λ,故n 1=(1,-1,λ2-λ)是平面BDM 的一个法向量.∵平面ABF 的一个法向量为DN →=(1,0,0),∴|cos〈n 1,DN →〉|=11+1+λ2-λ2=12,得λ=23, ∴M (0,23,23),∴点M 在线段CE 的三等分点且靠近点C 处.。
高考数学一轮复习 第八章 立体几何与空间向量8
高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。
2020新课标高考数学讲义:立体几何中的向量方法含解析
(1)证明:由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故B 1C 1⊥BE . 又BE ⊥EC 1, 所以BE ⊥平面EB 1C 1.(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC →1=(0,0,2).设平面EBC 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x =0,x -y +z =0, 所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧CC →1·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z1=0,x1-y1+z1=0, 所以可取m =(1,1,0). 于是cosn ,m=n·m |n||m|=-12. 所以,二面角B -EC -C 1的正弦值为32. 2.(20xx·高考全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,[对点训练]在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)依题意,以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4),设BA =a ,则A (a ,0,0),所以BA →=(a ,0,0),BD →=(0,2,2),B1D →=(0,2,-2),B1D →·BA →=0,B1D →·BD →=0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,BA ,BD ⊂平面ABD , 因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝⎛⎭⎫a 2,1,4, F (0,1,4),则EG →=⎝⎛⎭⎫a 2,1,1,EF →=(0,1,1), B1D →·EG →=0+2-2=0,B1D →·EF →=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,EG ,EF ⊂平面EGF ,解:(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD , 所以CD ⊥平面PAD .(2)过A 作AD 的垂线交BC 于点M . 因为PA ⊥平面ABCD , 所以PA ⊥AM ,PA ⊥AD . 如图建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以AE →=(0,1,1),PC →=(2,2,-2),AP →=(0,0,2). 所以PF →=13PC →=⎝⎛⎭⎫23,23,-23,AF →=AP →+PF →=⎝⎛⎭⎫23,23,43. 设平面AEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n·AE →=0,n·AF →=0,即⎩⎪⎨⎪⎧y +z =0,23x +23y +43z =0.令z =1,则y =-1,x =-1. 于是n =(-1,-1,1).又因为平面PAD 的法向量为p =(1,0,0), 所以cos 〈n ,p 〉=n·p |n||p|=-33.由题知,二面角F -AE -P 为锐二面角,所以其余弦值为33.。
高考数学空间向量的综合应用ppt课件
上一页
返回导航
下一页
第八章 立体几何与空间向量
5
设平面 PAD 的法向量为 n=(x,y,z),
则nn··AP→→AD==00,,即-2x+ x+y=y-0,3z=0,令 x=1,则 y=-2,z=- 3,故 n=(1,
-2,- 3)为平面 PAD 的一个法向量.
所以点 E 到平面 PAD 的距离 d=|n·|nP→|E|=
上一页
返回导航
下一页
第八章 立体几何与空间向量
10
设平面 A1BD 的法向量为 n=(x,y,z), 由D→A1·n=0 得 x+z=0,由D→B·n=0 得 x+y=0, 取 x=1,则 n=(1,-1,-1), 所以点 D1 到平面 A1BD 的距离是 d=|D→D|n1·| n|= 23=233.
下一页
第八章 立体几何与空间向量
24
翻折与展开问题
(2021·江西红色七校第一次联考)如图 1.梯形 ABCD 中,AB∥CD,过 A,B 分别作 AE⊥CD,BF⊥CD,垂足分别为 E,F.AB=AE=2,CD=5, DE=1,将梯形 ABCD 沿 AE,BF 折起,得空间几何体 ADE-BCF,如图 2.
上一页
返回导航
下一页
第八章 立体几何与空间向量
21
所以 AD⊥AN,所以 AN⊥MN, 因为 AP=AB,所以 AN⊥PB,MN∩PB=N,所以 AN⊥平面 PBC,
因为 AN⊂平面 ADM,所以平面 ADM⊥平面 PBC.
(2)存在符合条件的 λ. 以 A 为原点,建立如图所示的空间直角坐标系 A-xyz,
12×1+0×(-2)+- 23×(- 12+(-2)2+(- 3)2
3) =
高三数学复习课件:立体几何中的向量方法
=
解析
√3
√8
=
关闭
√6
4
.
答案
-10-
知识梳理
知识梳理
1
双基自测
2
3
4
5
3.
关闭
不妨令 CB=1,则 CA=CC1=2.
已知直三棱柱ABC-A
可得 O(0,0,0),B(0,0,1),C
1(0,2,0),A(2,0,0),B1(0,2,1),
1B1C1在空间直角坐标系中,如图所示,且
n1与n2的夹角的大小就是二面角的大小.
-5-
知识梳理
知识梳理
双基自测
1
2
3
4
-6-
5
4.利用空间向量求距离
(1)两点间的距离
设点 A(x1,y1,z1),点 B(x2,y2,z2),则
|AB|=||= (1 -2 )2 + (1 -2 )2 + (1 -2 )2 .
(2)点到平面的距离
(2)平面的法向量的确定:设 a,b 是平面 α 内两个不共线向量,n
· = 0,
为平面 α 的一个法向量,则可用方程组
求出平面 α 的一个
· = 0
法向量 n.
-8-
知识梳理
知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“√”,错误的打“×”.
(1)直线的方向向量是唯一确定的. (
)
(2)平面的单位法向量是唯一确定的. (
√5
关闭
A ∴直线 BC1 与直线 AB1 夹角的余弦值为 .
5
解析
答案
-11-
知识梳理
2020版高考数学(理)新增分大一轮人教通用版讲义:第八章 立体几何与空间向量 8.1 Word版含解析
§8.1空间几何体的结构、三视图和直观图1.多面体的结构特征2.旋转体的形成3.三视图与直观图概念方法微思考1.底面是正多边形的棱柱是正棱柱吗,为什么? 提示 不一定.因为底面是正多边形的直棱柱才是正棱柱.2.什么是三视图?怎样画三视图?提示 光线自物体的正前方投射所得的正投影称为主视图,自左向右的正投影称为左视图,自上向下的正投影称为俯视图,几何体的主视图、左视图和俯视图统称为三视图.画几何体的三视图的要求是主视图与俯视图长对正;主视图与左视图高平齐;左视图与俯视图宽相等.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × ) (3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.( √ ) (4)正方体、球、圆锥各自的三视图中,三视图均相同.( × ) (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × ) (6)菱形的直观图仍是菱形.( × )题组二教材改编2.下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行答案 D解析由直观图的画法规则知,角度、长度都有可能改变,而线段的平行关系不变.3.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三易错自纠4.某空间几何体的主视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案 A解析由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其主视图为三角形,而圆柱的主视图不可能为三角形.5.(2019·沈阳模拟)如图是正方体截去阴影部分所得的几何体,则该几何体的左视图是()答案 C解析此几何体左视图是从左边向右边看.故选C.6.如图,直观图所表示的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案 D解析由直观图中,A′C′∥y′轴,B′C′∥x′轴,还原后AC∥y轴,BC∥x轴.所以△ABC 是直角三角形.故选D.7.(2018·全国Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为()A.217B.2 5C.3D.2答案 B解析先画出圆柱的直观图,根据题中的三视图可知,点M,N的位置如图①所示.圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中MN 即为M到N的最短路径.|ON|=14×16=4,|OM|=2,∴|MN|=|OM|2+|ON|2=22+42=2 5.故选B.题型一空间几何体的结构特征1.以下命题:①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0B.1C.2D.3答案 B解析由圆锥、圆台、圆柱的定义可知①②错误,③正确.对于命题④,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,④不正确.2.给出下列四个命题:①有两个侧面是矩形的立体图形是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为________.(填序号)答案①②③解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④由线面垂直的判定,可知侧棱垂直于底面,故④正确.综上,命题①②③不正确.思维升华空间几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析.题型二简单几何体的三视图命题点1已知几何体识别三视图例1(2018·全国Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案 A解析 由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.命题点2 已知三视图,判断简单几何体的形状例2 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱 答案 B解析 由题意知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.命题点3 已知三视图中的两个视图,判断第三个视图例3 (2019·包头质检)图中网格的各小格是单位正方形,粗线构成的上下两个图形分别是正三棱锥与圆台组合体的主视图和俯视图,那么该组合体的左视图的面积为( )A.6+ 3B.152C.6+334D.8 3答案 B解析 由三视图还原可得原图形为一个圆台上面放了一个正三棱锥,所以左视图下面圆台是一个等腰梯形,面积为S 1=(2+4)×22=6,上面是一个三角形,面积为S 2=12×32×2=32,所以左视图的面积为S =S 1+S 2=152,故选B.思维升华 三视图问题的常见类型及解题策略(1)注意观察方向,看到的部分用实线表示,不能看到的部分用虚线. (2)还原几何体.要熟悉柱、锥、台、球的三视图,结合空间想象还原.(3)由部分视图画出剩余的部分视图.先猜测,还原,再判断.当然作为选择题,也可将选项逐项代入.跟踪训练1 (1)(2018·大连模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为BD 1的中点,则△P AC 在该正方体各个面上的正投影可能是( )A.①②B.①④C.②③D.②④ 答案 B解析 P 点在上下底面投影落在AC 或A 1C 1上,所以△P AC 在上底面或下底面的投影为①,在前、后面以及左、右面的投影为④.(2)某几何体的三视图如图所示,则该几何体中最长棱的长度为( )A.3 3B.2 6C.21D.2 5 答案 B解析 由三视图得,该几何体为四棱锥P -ABCD ,如图所示.侧面P AB ⊥底面ABCD ,底面ABCD 为矩形, 过点P 作PE ⊥AB ,垂足为点E , 则AE =1,BE =2,AD =2,PE =4, 则该几何体中最长的棱为PC =42+22+22=26,故选B.题型三 空间几何体的直观图例4 已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.思维升华 用斜二测画法画直观图的技巧在原图形中与轴平行的线段在直观图中与轴平行,不平行的线段先画线段的端点再连线. 跟踪训练2 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是( )A.2+ 2B.1+ 2C.4+2 2D.8+4 2答案 D解析由已知直观图根据斜二测画法规则画出原平面图形,如图所示,所以这个平面图形的面积为4×(2+2+22)2=8+42,故选D.1.(2018·辽宁部分重点中学协作体模拟)在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是()A.圆面B.矩形面C.梯形面D.椭圆面或部分椭圆面答案 C解析将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面,故选C.2.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析主视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此主视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此左视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.3.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体答案 C解析截面是任意的且都是圆面,则该几何体为球体.4.某几何体的主视图与左视图如图所示,则它的俯视图不可能是()答案 C解析若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C.5.在一个几何体的三视图中,主视图和俯视图如图所示,则相应的左视图为()答案 D解析由主视图与俯视图知,几何体是一个三棱锥与被轴截面截开的半个圆锥的组合体,故左视图为D.6.如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案 C7.(2019·赤峰模拟)中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知某“堑堵”的主视图和俯视图如图所示,则该“堑堵”的左视图的面积为()A.18 6B.18 3C.18 2D.272 2答案 C解析 由主视图和俯视图可知,该几何体为直三棱柱, 底面直角三角形斜边的高为6×3=32,该“堑堵”的左视图的面积为32×6=182,故选C. 8.用一个平面去截正方体,则截面不可能是( ) A.直角三角形 B.等边三角形 C.正方形 D.正六边形答案 A解析 用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形; ③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形.9.一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为________.答案 2 2解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.10.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的主视图与左视图的面积的比值为________.答案 1解析 如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的主视图与左视图都是三角形,且面积都是12a 2,故面积的比值为1.11.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形; ②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ④存在每个面都是直角三角形的四面体. 其中正确命题的序号是________. 答案 ②③④解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面所在的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD -A 1B 1C 1D 1中的三棱锥C 1-ABC ,四个面都是直角三角形.12.某四面体的三视图由如图所示的三个直角三角形构成,则该四面体六条棱长最长的为________.答案41解析四面体如图所示,其中SB⊥平面ABC且在△ABC中,∠ACB=90°.由SB⊥平面ABC,AB⊂平面ABC得SB⊥AB,同理SB⊥BC,所以棱长最长的为SA且SA=SB2+AB2=SB2+AC2+BC2=41.13.如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()答案 B解析由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB1与面ACC1A1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.14.我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的主视图和左视图都是圆,则其俯视图的形状为()答案 B解析由题意得在正方体内做两次内切圆柱切割,得到的几何体的直观图如图所示,由图易得其俯视图为B,故选B.15.某几何体的三视图如图所示,则该几何体的左视图中的虚线部分是()A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分答案 D解析根据几何体的三视图,可得左视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故左视图中的虚线部分是双曲线的一部分,故选D.16.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 2 m,则圆锥底面圆的半径等于________ m.答案 1解析 把圆锥侧面沿过点P 的母线展开成如图所示的扇形,由题意OP =4,PP ′=42,则cos ∠POP ′=42+42-(42)22×4×4=0,且∠POP ′是三角形的内角,所以∠POP ′=π2.设底面圆的半径为r ,则2πr =π2×4,所以r =1.。
2020版高考数学新增分大一轮新高考专用讲义:第八章 8.7 立体几何中的向量方法(二)含解析
§8.7 立体几何中的向量方法(二)——求空间角和距离最新考纲 1.能用向量方法解决线线、线面、面面的夹角的计算问题.2.体会向量方法在研究几何问题中的作用.1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围(0,π2][0,π]求法cos θ=|a ·b ||a ||b |cos β=a ·b |a ||b |2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=.|a ·n ||a ||n |3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈,〉.AB → CD →(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).概念方法微思考1.利用空间向量如何求线段长度?提示 利用||2=· 可以求空间中有向线段的长度.AB → AB → AB →2.如何求空间点面之间的距离?提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为||=|||cos 〈,n 〉|.BO → AB → AB →题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )(3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是[0,π].(0,π2][0,π2]( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45° B .135°C .45°或135° D .90°答案 C解析 cos 〈m ,n 〉===,即〈m ,n 〉=45°.m·n |m||n |11·222∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为2,2则AC 1与侧面ABB 1A 1所成的角为______.答案 π6解析 如图,以A 为原点,以,(AE ⊥AB ),所在直线分别为x 轴、y 轴、z 轴(如图)AB → AE → AA 1→建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,,2),D (1,0,2),∴=(1,,2),322AC 1→32=(1,0,2).AD →2∠C 1AD 为AC 1与平面ABB 1A 1所成的角,cos ∠C 1AD =AC 1,→ ·AD →|AC 1→ ||AD →|==,(1,3,22)·(1,0,22)12×932又∵∠C 1AD ∈,∴∠C 1AD =.[0,π2]π6题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.B. C.D.11025301022答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴=(1,-1,2),BM → =(-1,0,2).AN →∴cos 〈,〉=BM → AN →BM ,→ ·AN→ |BM → ||AN →|==1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+2236×5=.30105.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-,则l12与α所成的角为________.答案 30°解析 设l 与α所成角为θ,∵cos 〈m ,n 〉=-,12∴sin θ=|cos 〈m ,n 〉|=,∵0°≤θ≤90°,∴θ=30°.12题型一 求异面直线所成的角例1 如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC =.3由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC .又AE ⊥EC ,所以EG =,且EG ⊥AC .3在Rt △EBG 中,可得BE =,故DF =.222在Rt △FDG 中,可得FG =.62在直角梯形BDFE 中,由BD =2,BE =,DF =,可得EF =,从而EG 2+FG 2=EF 2,222322所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,||为单位长度,GB →建立空间直角坐标系Gxyz ,由(1)可得A (0,-,0),E (1,0,),F ,32(-1,0,22)C (0,,0),3所以=(1,,),=.AE → 32CF →(-1,-3,22)故cos 〈,〉==-.AE → CF →AE ,→ ·CF→|AE → ||CF →|33所以直线AE 与直线CF 所成角的余弦值为.33思维升华 用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( )A.B. C. D.1103571045答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-,0,0),N ,3(-32,-12,2)所以=(0,1,2),AM →=,BN →(32,-12,2)所以cos 〈,〉===,故选C.AM → BN →AM ,→ ·BN →|AM → |·|BN → |725×5710题型二 求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得BF ⊥PF ,BF ⊥EF ,PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)解 如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,的方向为y 轴正方向,||为单位长,建立如图所示的空间直角坐标HF → BF →系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE =.3又PF =1,EF =2,所以PE ⊥PF .所以PH =,EH =.3232则H (0,0,0),P ,D ,(0,0,32)(-1,-32,0)=,=.DP → (1,32,32)HP →(0,0,32)又为平面ABFD 的法向量,HP →设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈,〉|===.HP → DP →|HP ,→ ·DP →||HP → ||DP →|34334所以DP 与平面ABFD 所成角的正弦值为.34思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=-β或θ=β-,故有sin θ=|cos β|=.π2π2|l ·n ||l ||n |跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2,PA =PB =PC =AC =4,2O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA-C 为30°,求PC 与平面PAM 所成角的正弦值.(1)证明 因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2.3如图,连接OB .因为AB =BC =AC ,22所以△ABC 为等腰直角三角形,所以OB ⊥AC ,OB =AC =2.12由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC ,所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,2),=(0,2,2).3AP →3由(1)知平面PAC 的一个法向量为=(2,0,0).OB →设M (a ,2-a ,0)(0≤a ≤2),则=(a ,4-a ,0).AM →设平面PAM 的法向量为n =(x ,y ,z ).由·n =0,·n =0,得AP → AM →Error!可取y =a ,得平面PAM 的一个法向量为n =((a -4),a ,-a ),333所以cos 〈,n 〉==.OB →OB ,→·n |OB ,→||n |23(a -4)23(a -4)2+3a 2+a 2由已知可得|cos 〈,n 〉|=cos 30°=,OB →32所以=,23|a -4|23(a -4)2+3a 2+a 232解得a =-4(舍去)或a =.43所以n =.(-833,433,-43)又=(0,2,-2),所以cos 〈,n 〉=.PC → 3PC →34所以PC 与平面PAM 所成角的正弦值为.34题型三 求二面角例3 (2018·济南模拟)如图1,在高为6的等腰梯形ABCD 中,AB ∥CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ⊥平面BCO 1O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∥OB .(1)证明:OD ⊥平面PAQ ;(2)若BE =2AE ,求二面角C —BQ —A 的余弦值.(1)证明 由题设知OA ,OB ,OO 1两两垂直,所以以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 中点,∴P ,(0,92,3)∴=(3,0,6),=(0,m ,0),=,OD → AQ → PQ →(6,m -92,-3)∵·=0,·=0,OD → AQ → OD → PQ →∴⊥,⊥,且与不共线,OD → AQ → OD → PQ → AQ → PQ →∴OD ⊥平面PAQ .(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =OB =3,12则Q (6,3,0),∴=(-6,3,0),=(0,-3,6).QB → BC →设平面CBQ 的法向量为n 1=(x ,y ,z ),∵Error!∴Error!令z =1,则y =2,x =1,则n 1=(1,2,1),易知平面ABQ 的一个法向量为n 2=(0,0,1),设二面角C —BQ —A 的平面角为θ,由图可知,θ为锐角,则cos θ==.|n 1·n 2|n 1|·|n 2||66思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧所在平面 CD垂直,M 是上异于C ,D 的点. CD(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径, CD所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .DA →当三棱锥M -ABC 体积最大时,M 为的中点.由题设得 CDD (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),=(-2,1,1),=(0,2,0),=(2,0,0),AM → AB → DA →设n =(x ,y ,z )是平面MAB 的法向量,则Error!即Error!可取n =(1,0,2),是平面MCD 的一个法向量,因此DA →cos 〈n ,〉==,DA →n ·DA ,→|n ||DA ,→|55sin 〈n ,〉=.DA →255所以平面MAB 与平面MCD 所成二面角的正弦值是.255利用空间向量求空间角例 (12分)如图,四棱锥S -ABCD 中,△ABD 为正三角形,∠BCD =120°,CB =CD =CS =2,∠BSD =90°.(1)求证:AC ⊥平面SBD ;(2)若SC ⊥BD ,求二面角A -SB -C 的余弦值.(1)证明 设AC ∩BD =O ,连接SO ,如图①,因为AB =AD ,CB =CD ,所以AC 是BD 的垂直平分线,即O 为BD 的中点,且AC ⊥BD . [1分]在△BCD 中,因为CB =CD =2,∠BCD =120°,所以BD =2,CO =1.3在Rt △SBD 中,因为∠BSD =90°,O 为BD 的中点,所以SO =BD =.123在△SOC 中,因为CO =1,SO =,CS =2,3所以SO 2+CO 2=CS 2,所以SO ⊥AC . [4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD .[5分](2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB .因为OK ∩AO =O ,OK ,AO ⊂平面AOK ,所以SB ⊥平面AOK . [6分]因为AK ⊂平面AOK ,所以AK ⊥SB .同理可证CK ⊥SB . [7分]所以∠AKC 是二面角A -SB -C 的平面角.因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD .在Rt △SOB 中,OK ==.SO ·OBSB 62在Rt △AOK 中,AK ==,AO 2+OK 2422同理可求CK =. [10分]102在△AKC 中,cos ∠AKC ==-.AK 2+CK 2-AC 22AK ·CK 10535所以二面角A -SB -C 的余弦值为-.[12分]10535方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . [6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD ,所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD ,所以SO ⊥平面ABCD .[7分]以O 为原点,,,的方向分别为x 轴、y 轴、z 轴的正方OA → OB → OS → 向建立空间直角坐标系,如图③,则A (3,0,0),B (0,,0),C (-1,0,0),S (0,0,).33所以=(-3,,0),=(1,,0),AB → 3CB →3=(0,,-). [8分]SB →33设平面SAB 的法向量n =(x 1,y 1,z 1),则Error!令y 1=,得平面SAB 的一个法向量为n =(1,,).333同理可得平面SCB 的一个法向量为m =(-,1,1).[10分]3所以cos 〈n ,m 〉===.n ·m |n ||m |-3+3+37×510535因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-.[12分]10535利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( )A .60° B .120°C .60°或120° D .90°答案 C解析 cos 〈m ,n 〉===-,m·n |m||n |-12·212即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.B.5553C.D.5654答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos 〈,〉=AB 1→ BC 1→ AB 1→ BC 1→ AB 1→ ·BC 1→ |AB 1→ ||BC 1→|===,故选A.0+4-14+4+1×0+4+115553.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A. B. C. D.12233322答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ,D (0,1,0),(1,0,12)∴=(0,1,-1),=.A 1D → A 1E →(1,0,-12)设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则有Error!即Error!∴Error!∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉==,23×123即所成的锐二面角的余弦值为.234.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( )A. B. C. D.π6π4π3π2答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴=(1,1,0),=(-1,1,-1),AC → B 1D →∵·=1×(-1)+1×1+0×(-1)=0,AC → B 1D →∴⊥,∴AC 与B 1D 所成的角为.AC → B 1D → π25.(2018·上饶模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( )A .0B .- C. D.141412答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z轴,建立空间直角坐标系,则A (0,0,0),B 1(,1,2),A 1(0,0,2),C (0,2,0),3=(,1,2),=(0,2,-2),AB 1→ 3A 1C →设异面直线AB 1和A 1C 所成的角为θ,则cos θ===.|AB 1→ ·A 1C →||AB 1→ |·|A 1C →||-2|8·814∴异面直线AB 1和A 1C 所成的角的余弦值为.146.(2018·上海松江、闵行区模拟)如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大OC →小为θ,则cos θ等于( )A. B. C. D .-43532323答案 C解析 由题意可知,平面ABO 的一个法向量为=(0,0,2),OC →由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ===.|OC ,→ ·n ||OC ,→ ||n ||4|2×3237.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案 55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ,(12,0,0)E ,F .(12,12,0)(0,12,1)∴=(0,0,-2),=,PA → DE → (0,12,0)=.DF → (-12,12,1)设平面DEF 的法向量为n =(x ,y ,z ),则由Error!得Error!取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,〉|=PA → =,|PA ,→ ·n ||PA ,→ ||n |55∴直线PA 与平面DEF 所成角的正弦值为.558.如图,在正方形ABCD 中,EF ∥AB,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶,则AF 与CE 所成角的余弦值为________.2答案 45解析 ∵AE ∶ED ∶AD =1∶1∶,2∴AE ⊥ED ,即AE ,DE ,EF 两两垂直,所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),∴=(-1,2,0),=(0,2,1),AF → EC →∴cos 〈,〉==,AF → EC → AF ,→ ·EC → |AF → ||EC →|45∴AF 与CE 所成角的余弦值为.459.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则=(0,-1,1),=(2,0,2),EF → BC 1→∴·=2,EF → BC 1→∴cos 〈,〉=EF → BC 1→ EF ,→ ·BC 1→ |EF → ||BC 1→ |==,22×2212∵异面直线所成角的范围是(0°,90°],∴EF 和BC 1所成的角为60°.10.(2018·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案 23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =,EB =1,322∴tan ∠EHB ==.EB BH 23方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ,(1,1,13)F ,=,(0,1,23)AE → (0,1,13)=,AF → (-1,1,23)设平面AEF 的法向量为n =(x ,y ,z ),由Error!得Error!令y =1,z =-3,x =-1,则n =(-1,1,-3),取平面ABC 的法向量为m =(0,0,-1),设平面AEF 与平面ABC 所成的锐二面角为θ,则cos θ=|cos 〈n ,m 〉|=,tan θ=.311112311.(2018·皖江八校联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =.2π3(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形,∴M 是AC 1的中点,又Q 是A 1B 的中点,∴MQ ∥BC ,MQ =BC ,12又∵B 1C 1∥BC 且BC =2B 1C 1,∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M ,∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1,∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (,-1,0),A 1(,-1,2),B (0,2,0),B 1(0,1,2),33∴=(,-1,0),=(,-2,0),CA → 3B 1A 1→3=(0,1,-2),B 1B →设平面A 1BB 1的法向量为n =(x ,y ,z ),则由n ⊥,n ⊥,B 1A 1→ B 1B →可得Error!可令y =2,3则x =4,z =,3∴平面A 1BB 1的一个法向量n =(4,2,),33设直线AC 与平面A 1BB 1所成的角为α,则sin α===.|n ·CA ,→ ||n |·|CA ,→ |23231933112.(2018·赣州模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =,PD =2,点E 52在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ;(2)求二面角A -BF -C 的余弦值.(1)证明 在Rt △ABE 中,由AB =AE =1,得∠AEB =45°,同理在Rt △CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC .在△PAD 中,cos ∠PAD ===,PA 2+AD 2-PD 22PA ·AD 5+9-82×3×555在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos ∠PAE =5+1-2××1×=4,555所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD ,所以PE ⊥平面ABCD ,所以PE ⊥BE .又因为CE ∩PE =E ,CE ,PE ⊂平面PEC ,所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (,0,0),C (0,2,0),P (0,0,2),A ,D (-,,0),F ,22(22,-22,0)22(-22,22,1)=,=,AB → (22,22,0)BF → (-322,22,1)=(-,2,0),BC →22设平面ABF 的法向量为m =(x 1,y 1,z 1),则Error!不妨设x 1=1,则m =(1,-1,2),2设平面BFC 的法向量为n =(x 2,y 2,z 2),则Error!不妨设y 2=2,则n =(4,2,5),2记二面角A -BF -C 为θ(由图知应为钝角),则cos θ=-=-=-,|m ·n ||m |·|n ||4-2+20|10·7011735故二面角A -BF -C 的余弦值为-.1173513.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足==λ,SF BF CE BE当实数λ的值为________时,∠AFE 为直角.答案 916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3,∴B (0,4,0),S (0,0,3).设BC =m ,则C (m ,4,0),∵==λ,∴=λ.SF BF CE BE SF → FB → ∴-=λ(-).AF → AS → AB → AF →∴=(+λ)=(0,4λ,3),AF → 11+λAS → AB → 11+λ∴F .(0,4λ1+λ,31+λ)同理可得E ,(m 1+λ,4,0)∴=.FE → (m 1+λ,41+λ,-31+λ)∵=,要使∠AFE 为直角,FA → (0,-4λ1+λ,-31+λ)即·=0,FA → FE →则0·+·+·=0,m 1+λ-4λ1+λ41+λ-31+λ-31+λ∴16λ=9,解得λ=.91614.(2018·海南五校模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且=λ(λ∈[0,1]).A 1P → A 1B 1→(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明 连接A 1Q .∵AA 1=AC =1,M ,Q 分别是CC 1,AC 的中点,∴Rt △AA 1Q ≌Rt △CAM ,∴∠MAC =∠QA 1A ,∴∠MAC +∠AQA 1=∠QA 1A +∠AQA 1=90°,∴AM ⊥A 1Q .∵N ,Q 分别是BC ,AC 的中点,∴NQ ∥AB .又AB ⊥AC ,∴NQ ⊥AC .在直三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,∴NQ ⊥AA 1.又AC ∩AA 1=A ,AC ,AA 1⊂平面ACC 1A 1,∴NQ ⊥平面ACC 1A 1,∴NQ ⊥AM .由NQ ∥AB 和AB ∥A 1B 1可得NQ ∥A 1B 1,∴N ,Q ,A 1,P 四点共面,∴A 1Q ⊂平面PNQ .∵NQ ∩A 1Q =Q ,NQ ,A 1Q ⊂平面PNQ ,∴AM ⊥平面PNQ ,∴无论λ取何值,总有AM ⊥平面PNQ .(2)解 如图,以A 为坐标原点,AB ,AC ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),M ,N ,(0,1,12)(12,12,0)Q ,(0,12,0)=,=(1,0,0).NM → (-12,12,12)A 1B 1→ 由=λ=λ(1,0,0)=(λ,0,0),A 1P → A 1B 1→可得点P (λ,0,1),∴=.PN → (12-λ,12,-1)设n =(x ,y ,z )是平面PMN 的法向量,则Error!即Error!得Error!令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|==,|2-2λ|9+(1+2λ)2+(2-2λ)212化简得4λ2-14λ+1=0,解得λ=或λ=(舍去).7-3547+354综上,存在点P ,且当A 1P =时,7-354满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,=(4,-2,3),=(-4,1,0),=(-6,2,-8),则AB → AD → AP →这个四棱锥的高h 等于( )A .1B .2C .13D .26答案 B 解析 设平面ABCD 的法向量为n =(x ,y ,z ),则Error!即Error!令y =4,则n =,(1,4,43)则cos 〈n ,〉===-,AP → n ·AP → |n ||AP → |-6+8-323133×2262626∴h =×2=2.26262616.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.(1)证明 设AD =CD =BC =1,∵AB ∥CD ,∠BCD =120°,∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,则BC ⊥AC .∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF ,∴AC ⊥平面BCF .∵EF ∥AC ,∴EF ⊥平面BCF .(2)解 以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤),3则C (0,0,0),A (,0,0),B (0,1,0),M (λ,0,1),3∴=(-,1,0),=(λ,-1,1).AB → 3BM →设n =(x ,y ,z )为平面MAB 的法向量,由Error!得Error!取x =1,则n =(1,,-λ).33易知m =(1,0,0)是平面FCB 的一个法向量,∴cos 〈n ,m 〉=== .n ·m |n ||m |11+3+(3-λ)2×11(λ-3)2+4∵0≤λ≤,3∴当λ=0时,cos 〈n ,m 〉取得最小值,77∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为.77。
2020年高考数学(理)总复习:立体几何中的向量方法(解析版)
2020年高考数学(理)总复习:立体几何中的向量方法题型一 利用向量证明平行与垂直 【题型要点】向量证明平行与垂直的4步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;(3)通过空间向量的运算求出平面向量或法向量,再研究平行、垂直关系; (4)根据运动结果解释相关问题.【例1】如图,在直三棱柱ADE —BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .【证明】 方法一 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎪⎭⎫ ⎝⎛0,0,21,O ⎪⎭⎫ ⎝⎛21,21,21.OM →=⎪⎭⎫ ⎝⎛--21,21,0,BA →=(-1,0,0),∴OM →·BA →=0, ∴OM →⊥BA →. ∵棱柱ADE —BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎪⎭⎫ ⎝⎛-0,1,21,DC →=(1,0,0),CF →=(0,-1,1),由⎩⎪⎨⎪⎧ n 1·DF →=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎪⎭⎫⎝⎛-21,21,1.同理可得n 2=(0,1,1). ∵n 1·n 2=0,∴平面MDF ⊥平面EFCD .方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA → =-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF . (2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →,∴OM →·CD →=⎪⎭⎫ ⎝⎛--F B C B 2121BA →=0,OM →·FC →=⎪⎭⎫ ⎝⎛--F B C B 2121·(BC →-BF →)=-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C ,CD ,FC ⊂平面EFCD ,∴OM ⊥平面EFCD . 又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD . 题组训练一 利用向量证明平行与垂直如图,在底面是矩形的四棱锥P —ABCD 中,P A ⊥底面ABCD ,点E ,F 分别是PC ,PD的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .【证明】 (1)以点A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1).∵点E ,F 分别是PC ,PD 的中点,∴E ⎪⎭⎫⎝⎛21,1,21,F ⎪⎭⎫ ⎝⎛21,1,0,EF →=⎪⎭⎫ ⎝⎛-0,0,21,AB →=(1,0,0).∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB ⊂平面P AB ,EF ⊄平面P AB ,∴EF ∥平面P AB .(2)由(1)可知,PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ,AD ⊂平面P AD , ∴DC ⊥平面P AD .∵DC ⊂平面PDC ,∴平面P AD ⊥平面PDC . 题型二 利用空间向量求空间角 【题型要点】1.利用向量法求直线与平面所成角时易混淆直线与平面所成角与直线方向向量和平面的法向量的夹角的关系,一定要注意线面角θ与夹角α的关系为sin θ=|cos α|.2.求二面角θ,主要通过两平面的法向量n ,m 的夹角求得,即先求|cos 〈n ,m 〉|,再根据所求二面角是钝角还是锐角写出其余弦值.若θ为锐角,则cos θ=|cos 〈n ,m 〉|;若θ为钝角,则cos θ=-|cos 〈n ,m 〉|.【例2】如图,AD ∥BC 且AD =2BC ,AD ⊥CD ,EG ∥AD 且EG =CD ∥FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E -BC -F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长. 【解】 依题意,可以建立以D 为原点,分别以DA →,DC →,DG →的方向为x 轴、y 轴、z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M ⎪⎭⎫ ⎝⎛1,23,0,N (1,0,2).(1)证明:依题意得DC →=(0,2,0),DE →=(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则⎩⎪⎨⎪⎧n 0·DC →=0,n 0·DE →=0,即⎩⎪⎨⎪⎧2y =0,2x +2z =0.不妨令z =-1, 可得n 0=(1,0,-1).又MN →=⎪⎭⎫ ⎝⎛-1,23,1,可得MN →·n 0=0.又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE . (2)解:依题意,可得BC →=(-1,0,0),BE →=(1,-2,2), CF →=(0,-1,2).设n =(x ,y ,z )为平面 BCE 的法向量,则⎩⎪⎨⎪⎧n ·BC →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x =0,x -2y +2z =0.不妨令z =1,可得n =(0,1,1). 设m =(x ,y ,z )为平面BCF 的法向量,则⎩⎪⎨⎪⎧m ·BC →=0,m ·CF →=0,即⎩⎪⎨⎪⎧-x =0,-y +2z =0.不妨令z =1,可得m =(0,2,1). 因此有cos 〈m ,n 〉=m ·n |m ||n |=31010,于是sin 〈m ,n 〉=1010. 所以,二面角E -BC -F 的正弦值为1010. (3)解:设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP →=(-1,-2,h ).易知,DC →=(0,2,0)为平面ADGE 的一个法向量, 故|cos 〈BP →,DC →〉|=|BP →·DC →||BP →||DC →|=2h 2+5,由题意,可得2h 2+5=sin 60°=32,解得h =33∈[0,2]. 所以,线段DP 的长为33. 题组训练二 利用空间向量求空间角如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.【解析】 (1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC 又△ACD 是直角三角形,所以∠ACD =90°取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO 又由于△ABC 是正三角形,故BO ⊥AC . 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OC 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长,建立如图所示的空间直角坐标系O -xyz .则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1)由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎪⎪⎭⎫ ⎝⎛21,23,0.故AD →=(-1,0,1),AC →=(-2,0,0),AE →=⎪⎪⎭⎫⎝⎛-21,23,1. 设n =(x ,y ,z )是平面DAE 的法向量, 则⎩⎪⎨⎪⎧n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0.可取n =⎪⎪⎭⎫⎝⎛1,33,1. 设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可得m =(0,-1,3).则cos 〈n ,m 〉=n ·m |n ||m |=77.所以二面角D -AE -C 的余弦值为77. 题型三 利用空间向量解决探索性问题 【题型要点】利用空间向量巧解探索性问题(1)空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【例3】如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=1,E 为BC 中点. (1)求证:C 1D ⊥D 1E ;(2)在棱AA 1上是否存在一点M ,使得BM ∥平面AD 1E ?若存在,求AM AA 1的值,若不存在,说明理由. (3)若二面角B 1-AE -D 1的大小为90°,求AD 的长.【解析】 以D 为原点,建立如图所示的空间直角坐标系D -xyz 设AD =a , 则D (0,0,0),A (a,0,0),B (a,1,0),B 1(a,1,1),C 1(0,1,1),D 1(0,0,1),E ⎪⎭⎫⎝⎛0,1,2a ,∴C 1D →=(0,-1,-1),D 1E →=⎪⎭⎫ ⎝⎛-1,1,2a,(1)证明:C 1D →·D 1E →=0,∴C 1D ⊥D 1E . (2)设AMAA 1=h ,则M (a,0,h ), ∴BM →=(0,-1,h ),AE →=⎪⎭⎫ ⎝⎛-0,1,2a,AD 1→=(-a,0,1),设平面AD 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AE →·n =-a 2x +y =0,AD 1→·n =-ax +z =0,令x =2,∴平面AD 1E 的一个法向量为n =(2,a,2a ), ∵BM ∥平面AD 1E ,∴BM →⊥n ,即BM →·n =2ah -a =0, ∴h =12.即在AA 1上存在点M ,使得BM ∥平面AD 1E ,此时AM AA 1=12.(3)连接AB 1,B 1E ,设平面B 1AE 的法向量为m =(x ′,y ′,z ′),AE →=⎪⎭⎫ ⎝⎛-0,1,2a,AB 1→=(0,1,1),则⎩⎪⎨⎪⎧AE →·m =-a 2x ′+y ′=0,AB 1→·m =y ′+z ′=0,令x ′=2,∴平面B 1AE 的一个法向量为m =(2,a ,-a ). ∵二面角B 1-AE -D 1的大小为90°, ∴m ⊥n ,∴m ·n =4+a 2-2a 2=0,∵a >0,∴a =2,即AD =2.题组训练三 利用空间向量解决探索性问题如图,已知等边△ABC 中,E ,F 分别为AB ,AC 边的中点,M 为EF 的中点,N 为BC 边上一点,且CN =14BC ,将△AEF 沿EF 折到△A ′EF 的位置,使平面A ′EF ⊥平面EFCB .(Ⅰ)求证:平面A ′MN ⊥平面A ′BF ; (Ⅱ)求二面角E -A ′F -B 的余弦值.【解】 (Ⅰ)因为E ,F 为等边△ABC 的AB ,AC 边的中点,所以△A ′EF 是等边三角形,且EF ∥BC .因为M 是EF 的中点,所以A ′M ⊥EF .又由于平面A ′EF ⊥平面EFCB ,A ′M ⊂平面A ′EF ,所以A ′M ⊥平面EFCB 又BF ⊂平面EFCB ,所以A ′M ⊥BF .因为CN =14BC ,所以MF 綊CN ,所以MN ∥CF .在正△ABC 中知BF ⊥CF ,所以BF ⊥MN . 而A ′M ∩MN =M ,所BF ⊥平面A ′MN .又因为BF ⊂平面A ′BF ,所以平面A ′MN ⊥平面A ′BF .(Ⅱ)设等边△ABC 的边长为4,取BC 中点G ,连接MG ,由题设知MG ⊥EF ,由(Ⅰ)知A ′M ⊥平面EFCB ,又MG ⊂平面EFCB ,所以A ′M ⊥MG ,如图建立空间直角坐标系M -xyz ,则F (-1,0,0),A ′(0,0,3),B (2,3,0),F A →=(1,0,3),FB →=(3,3,0).设平面A ′BF 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧F A →·n =0,FB →·n =0,得⎩⎨⎧x +3z =0,3x +3y =0,令z =1,则n =(-3,3,1).平面A ′EF 的一个法向量为p =(0,1,0),所以cos 〈n ,p 〉=p ·n |p ||n |=31313, 显然二面角E -A ′F -B 是锐角,所以二面角E -A ′F -B 的余弦值为31313.题型四 建立空间直角坐标系的方法坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系,依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键,下面举例说明几种常见的空间直角坐标系的构建策略.方法一 利用共顶点的互相垂直的三条棱构建直角坐标系【例4】 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.【解析】 如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系,则C (0,1,0),C 1(0,1,2),B (2,4,0),∴BC 1→=(-2,-3,2),CD →=(0,-1,0).设BC 1→与CD →所成的角为θ,则cos θ=|BC 1→·CD →||BC 1→||CD →|=31717.故所求异面直线所成角的余弦值为31717.方法二 利用线面垂直关系构建直角坐标系【例5】 如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C ,C 1的一点,EA ⊥EB 1.已知AB =2,BB 1=2,BC =1,∠BCC 1=π3.求二面角A -EB 1-A 1的平面角的正切值.【解析】 如图,以B 为原点,分别以BB 1,BA 所在直线为y 轴、z 轴,过B 点垂直于平面ABB 1A 1的直线为x 轴建立空间直角坐标系.由于BC =1,BB 1=2,AB =2,∠BCC 1=π3,∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0),A (0,0,2),B 1(0,2,0),C ⎪⎪⎭⎫⎝⎛-0,21,23⎪⎪⎭⎫ ⎝⎛0,21,23,C 1⎪⎪⎭⎫⎝⎛0,23,23. 设E ⎪⎪⎭⎫⎝⎛0,,23a ,且-12<a <32,即EA →=⎪⎪⎭⎫ ⎝⎛--2,,23a ,EB 1→=⎪⎪⎭⎫ ⎝⎛--0,2,23a . 由EA ⊥EB 1,得EA →·EB 1→=0,即⎪⎪⎭⎫ ⎝⎛--2,,23a ·⎪⎪⎭⎫ ⎝⎛--0,2,23a =34+a (a -2)=a 2-2a +34=0, ∴⎪⎭⎫ ⎝⎛-21a ·⎪⎭⎫ ⎝⎛-23a =0,即a =12或a =32(舍去).故E ⎪⎪⎭⎫ ⎝⎛0,21,23. 由已知有EA →⊥EB 1→,B 1A 1→⊥EB 1→,故二面角A -EB 1-A 1的平面角θ的大小为向量B 1A 1→与EA →的夹角.因为B 1A 1→=BA →=(0,0,2),EA →=⎪⎪⎭⎫ ⎝⎛--2,21,23,故cos θ=EA →·B 1A 1→|EA →||B 1A 1→|=22×3=63,即tan θ=22.故所求二面角的平面角的正切值为22. 方法三 利用面面垂直关系构建直角坐标系【例6】 如图,在四棱锥V -ABCD 中,底面ABCD 是正方形, 侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)求证AB ⊥平面VAD ;(2)求二面角A -VD -B 的余弦值.【解析】 (1)证明:取AD 的中点O 为原点,建立如图所示的空间直角坐标系.设AD =2,则A (1,0,0),D (-1,0,0),B (1,2,0),V (0,0,3), ∴AB →=(0,2,0),VA →=(1,0,-3). 由AB →·VA →=(0,2,0)·(1,0,-3)=0, 得AB ⊥VA .又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA ,AD 都垂直,∴AB ⊥平面VAD .(2)设E 为DV 的中点,则E ⎪⎪⎭⎫⎝⎛-23,0,21, ∴EA →=⎪⎪⎭⎫ ⎝⎛-23,0,23,EB →=⎪⎪⎭⎫ ⎝⎛-23,2,23, DV →=(1,0,3).∴EB →·DV →=32-32=0,∴EB ⊥DV .又EA ⊥DV ,因此∠AEB 是所求二面角的平面角. ∴cos 〈EA →,EB →〉=EA →·EB →|EA →||EB →|=217.故所求二面角的余弦值为217. 方法四 利用正棱锥的中心与高所在直线构建直角坐标系【例7】 已知正四棱锥V -ABCD 中,E 为AC 中点,正四棱锥底面边长为2a ,高为h .(1)求∠DEB 的余弦值;(2)若BE ⊥VC ,求∠DEB 的余弦值.【解析】 如图,以V 在平面ABCD 的射影O 为坐标原点建立空间直角坐标系,其中Ox ∥BC ,Oy ∥AB ,则由AB=2a ,OV =h ,有B (a ,a,0),C (-a ,a,0),D (-a ,-a,0),V (0,0,h ),E ⎪⎭⎫⎝⎛-2,2,2h a a ,即BE →=⎪⎭⎫ ⎝⎛--2,2,23h a a ,DE →=⎪⎭⎫ ⎝⎛2,23,2h a a ,VC →=(-a ,a ,-h ). (1)cos 〈BE →,DE →〉=BE →·DE →|BE →||DE →|=-6a 2+h 210a 2+h 2, 即cos ∠DEB =-6a 2+h 210a 2+h 2.(2)因为BE ⊥AC ,所以BE →·VC →=0,即⎪⎭⎫⎝⎛--2,2,23h a a ·(-a ,a ,-h )=0, 所以32a 2-a 22-h 22=0,解得h =2a .这时cos 〈BE →,DE →〉=-6a 2+h 210a 2+h 2=-13, 即cos ∠DEB =-13.【专题训练】1.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,PE =2BE .(1)求证:平面EAC ⊥平面PBC ;(2)若二面角P -AC -E 的余弦值为63,求直线P A 与平面EAC 所成角的正弦值.【解析】 (1)证明:∵PC ⊥底面ABCD ,AC ⊂平面ABCD ,∴PC ⊥AC .∵AB =2,AD =CD =1,∴AC =BC =2,∴AC 2+BC 2=AB 2,∴AC ⊥BC ,又BC ∩PC =C ,∴AC ⊥平面PBC ,又AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)取AB 的中点F ,两角CF ,则CF ⊥AB ,以点C 为原点,建立空间直角坐标系,可得:C (0,0,0),A (1,1,0),B (1,-1,0),设P (0,0,a )(a >0),则E ⎪⎭⎫ ⎝⎛-3,32,32a , CA →=(1,1,0),CP →=(0,0,a ),CE →=⎪⎭⎫ ⎝⎛-3,32,32a ,取n =(1,-1,0),则m ·CP →=m ·CA →=0,∴n 为平面P AC 的法向量. 设n =(x ,y ,z )为平面EAC 的法向量,则⎩⎪⎨⎪⎧n ·EA →=0n ·CE →=0,即⎩⎪⎨⎪⎧x +y =02x -2y +az =0,取n =(a ,-a ,-4),∵二面角P -AC -E 的余弦值为63, ∴|cos 〈m ,n 〉|=|m ·n ||m ||n |=2a 2×2a 2+16=63,解得a =4,∴n =(4,-4,-4),P A →=(1,1,-4). 设直线P A 与平面EAC 所成角为θ,则sin θ=|cos 〈P A →,n 〉|=|P A →·n ||P A →||n |=1618×16×3=269,∴直线P A 与平面EAC 所成角的正弦值为269.2.如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.【解析】 (1)证明:取P A 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF ∥AD ,EF =12AD ,由∠BAD =∠ABC =90°得BC ∥AD ,又BC =12AD ,所以EF 綊BC .四边形BCEF 为平行四边形,CE ∥BF .又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0),设M (x ,y ,z )(0<x <1)则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3),因为BM 与底面ABCD 所成的角为45°,而n =(0,0,1)是底面ABCD 的法向量,所以,|cos 〈BM →,n 〉|=sin 45° ,|z |(x -1)2+y 2+z2=22,即(x -1)2+y 2-z 2=0. ① 又M 在棱PC 上,设PM →=λPC →,则 x =λ,y =1,z =3-3λ. ②由①,②解得⎩⎨⎧x =1+22y =1(舍去)z =-62,⎩⎨⎧x =1-22y =1z =62.所以M ⎪⎪⎭⎫ ⎝⎛-26,1,221,从而AM →=⎪⎪⎭⎫ ⎝⎛-26,1,221. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n |=105,因此二面角M -AB -D的余弦值为105. 3.如图所示的几何体中,四边形ABCD 为等腰梯形, AB ∥CD, AB =2AD =2, ∠DAB =60°,四边形CDEF 为正方形,平面CDEF ⊥平面ABCD .(1)若点G 是棱AB 的中点,求证: EG ∥平面BDF ; (2)求直线AE 与平面BDF 所成角的正弦值;(3)在线段FC 上是否存在点H ,使平面BDF ⊥平面HAD ?若存在,求FHHC 的值;若不存在,说明理由.(1)【证明】 由已知得EF ∥ CD ,且EF =CD . 因为四边形ABCD 为等腰梯形,所以BG ∥CD . 因为G 是棱AB 的中点,所以BG =CD .所以EF ∥BG ,且EF =BG ,故四边形EFBG 为平行四边形,所以EG ∥FB . 因为FB ⊂平面BDF , EG ⊄平面BDF ,所以EG ∥平面BDF . (2)【解】 因为四边形CDEF 为正方形,所以ED ⊥DC .因为平面CDEF ⊥平面ABCD ,平面CDEF ∩平面ABCD =DC ,DE ⊂平面CDEF , 所以ED ⊥平面ABCD .在△ABD 中,因为∠DAB =60°, AB =2AD =2, 所以由余弦定理,得BD =3,所以AD ⊥BD . 在等腰梯形ABCD 中,可得DC =CB =1.如图,以D 为原点,以DA ,DB ,DE 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,则D ()0,0,0,A ()1,0,0, E ()0,0,1, B ()0,3,0,F ⎪⎪⎭⎫⎝⎛-1,23,21,所以AE →=()-1,0,1, DF →=⎪⎪⎭⎫ ⎝⎛-1,23,21,DB →=()0,3,0.设平面BDF 的法向量为n =()x ,y ,z , 因为⎩⎪⎨⎪⎧n ·DB →=0,n ·DF →=0,所以⎩⎪⎨⎪⎧3y =0,-12x +32y +z =0. 取z =1,则x =2,y =0,则n =()2,0,1.设直线AE 与平面BDF 所成的角为θ,则sin θ=||cos 〈AE →,n 〉=||AE →·n ||AE→||n =1010, 所以AE 与平面BDF 所成角的正弦值为1010. (3)【解】 线段FC 上不存在点H ,使平面BDF ⊥平面HAD .证明如下: 假设线段FC 上存在点H ,设H ⎪⎪⎭⎫ ⎝⎛-t ,23,21()0≤t ≤1,则DH →=⎪⎪⎭⎫ ⎝⎛-t ,23,21 设平面HAD 的法向量为m =()a ,b ,c , 因为⎩⎪⎨⎪⎧m ·DA →=0,m ·DH →=0,所以⎩⎪⎨⎪⎧a =0,-12a +32b +tc =0. 取c =1,则a =0,b =-23 t ,得m =⎪⎭⎫ ⎝⎛-1,32,0. 要使平面BDF ⊥平面HAD ,只需m ·n =0, 即2×0-23t ×0+1×1=0, 此方程无解. 所以线段FC 上不存在点H ,使平面BDF ⊥平面HAD .4.如图,已知圆锥OO 1和圆柱O 1O 2的组合体(它们的底面重合),圆锥的底面圆O 1半径为r =5, OA 为圆锥的母线,AB 为圆柱O 1O 2的母线,D ,E 为下底面圆O 2上的两点,且DE =6,AB =6.4,AO =52,AO ⊥AD .(1)求证:平面ABD ⊥平面ODE ; (2)求二面角B —AD —O 的正弦值.(1)【证明】 依题易知,圆锥的高为h =(52)2-52=5,又圆柱的高为AB =6.4,AO ⊥AD ,所以OD 2=OA 2+AD 2,因为AB ⊥BD ,所以AD 2=AB 2+BD 2,连接OO 1,O 1O 2,DO 2,易知O ,O 1,O 2三点共线,OO 2⊥DO 2,所以OD 2=OO 22+O 2D 2,所以BD 2=OO 22+O 2D 2-AO 2-AB 2=(6.4+5)2+52-(52)2-6.42=64,解得BD =8,又因为DE =6,圆O 2的直径为10,圆心O 2在∠BDE 内,所以∠BDE =90°,所以DE ⊥BD .因为AB ⊥平面BDE ,所以DE ⊥AB ,因为AB ∩BD =B ,AB ,BD ⊂平面ABD ,所以DE ⊥平面ABD . 又因为DE ⊂平面ODE ,所以平面ABD ⊥平面ODE .(2)【解】 如图,以D 为原点, DB ,DE 所在的直线为x ,y 轴,建立空间直角坐标系.则D (0,0,0),A (8,0,6.4),B (8,0,0),O (4,3,11.4).所以DA →=(8,0,6.4),DB →=(8,0,0),DO →=(4,3,11.4),设平面DAO 的法向量为u =(x ,y ,z ),所以DA →·u =8x +6.4z =0, DO →·u =4x +3y +11.4z =0,令x =12,则u =(12,41,-15). 可取平面BDA 的一个法向量为v =(0,1,0),所以cos 〈u ,v 〉=u ·v |u ||v |=41582=8210,所以二面角B —AD —O 的正弦值为3210.。
高考数学(人教a版,理科)题库:立体几何中的向量方法(二)(含答案)
第8讲 立体几何中的向量方法(二)一、选择题1.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )A.32B.22 C.3 D .3 2 解析 两平面的一个单位法向量n 0=⎝ ⎛⎭⎪⎫-22,0,22,故两平面间的距离d=|OA →·n 0|=22.答案 B2.已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( ).A .30°B .60°C .120°D .150°解析 设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=12,∴θ=30°. 答案 A3.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( ).A.1010B.3010C.21510D.31010解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2). BC 1→=(-1,0,2),AE →=(-1,2,1), cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→||AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010. 答案 B4.已知直二面角αl β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足,若AB =2,AC =BD =1,则CD =( ).A .2 B. 3 C. 2 D .1 解析 如图,建立直角坐标系D xyz ,由已知条件B (0,0,1),A (1,t,0)(t >0), 由AB =2解得t = 2. 答案 C5.如图,在四面体ABCD 中,AB =1,AD =23,BC =3,CD =2.∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为( ).A.π6 B.π3 C.5π3D.5π6解析 二面角A -BC -D 的大小等于AB 与CD 所成角的大小.AD →=AB →+BC →+CD →.而AD →2=AB →2+CD →2+BC →2-2|AB →|·|CD →|·cos 〈AB →,CD →〉,即12=1+4+9-2×2cos 〈AB →,CD →〉,∴cos 〈AB →,CD →〉=12,∴AB 与CD 所成角为π3,即二面角A -BC -D 的大小为π3.故选B. 答案 B6.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A. 2B. 3 C .2D.22解析 如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1)设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ). 则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⇒⎩⎨⎧2y +2z =0x +az =0,令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n (0,1,0),则由cos60°=m·n |m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案 A 二、填空题7.若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为________. 解析 cos 〈n ,a 〉=n ·a |n ||a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133. 答案41133.8.若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为89,则λ=________.解析 由已知得89=a·b |a ||b |=2-λ+45+λ2·9, ∴8 5+λ2=3(6-λ),解得λ=-2或λ=255. 答案 -2或2559.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值为________. 解析 如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ), 面AEF 与面ABC 所成的二面角为θ, 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3) 平面ABC 的法向量为m =(0,0,-1) cos θ=cos 〈n ,m 〉=31111,tan θ=23. 答案 2310.在三棱锥O -ABC 中,三条棱OA ,OB ,OC 两两垂直,且OA =OB =OC ,M 是AB 边的中点,则OM 与平面ABC 所成角的正切值是________. 解析 如图所示建立空间直角坐标系,设OA =OB =OC =1,则A (1,0,0),B (0,1,0),C (0,0,1),M ⎝ ⎛⎭⎪⎫12,12,0,故AB →=(-1,1,0),AC →=(-1,0,1),OM →=⎝ ⎛⎭⎪⎫12,12,0. 设平面ABC 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ⊥AB →,n ⊥AC →,得⎩⎨⎧-x +y =0,-x+z =0,令x =1,得n =(1,1,1).故cos 〈n ,OM →〉=13×22=63, 所以OM 与平面ABC 所成角的正弦值为63,其正切值为 2. 答案2三、解答题11.如图,四面体ABCD 中,AB 、BC 、BD 两两垂直,AB =BC =BD =4,E 、F 分别为棱BC 、AD 的中点. (1)求异面直线AB 与EF 所成角的余弦值; (2)求E 到平面ACD 的距离;(3)求EF 与平面ACD 所成角的正弦值.解 如图,分别以直线BC 、BD 、BA 为x 、y 、z 轴建立空间直角坐标系,则各相关点的坐标为A (0,0,4)、C (4,0,0)、D (0,4,0),E (2,0,0)、F (0,2,2). (1)∵AB →=(0,0,-4),EF →=(-2,2,2), ∴|cos 〈AB →,EF →〉|=⎪⎪⎪⎪⎪⎪-84×23=33, ∴异面直线AB 与EF 所成角的余弦值为33. (2)设平面ACD 的一个法向量为n =(x ,y,1), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·CD →=0,∵AC →=(4,0,-4),CD →=(-4,4,0),∴⎩⎨⎧4x -4=0,-4x +4y =0, ∴x =y =1,∴n =(1,1,1,).∵F ∈平面ACD ,EF →=(-2,2,2),∴E 到平面ACD 的距离为d =|n ·EF →||n |=23=233.(3)EF 与平面ACD 所成角的正弦值为|cos 〈n ,EF →〉|=23×23=1312.如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面P AC ;(2)求二面角P -BD -A 的大小. (1)证明 如图,建立空间直角坐标系, 则A (0,0,0),B (23,0,0), C (23,6,0),D (0,2,0),P (0,0,3),∴AP →=(0,0,3),AC →=(23,6,0), BD →=(-23,2,0).∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC . 又∵P A ∩AC =A ,∴BD ⊥面P AC .(2)解 设平面ABD 的法向量为m =(0,0,1), 设平面PBD 的法向量为n =(x ,y ,z ), 则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0解得⎩⎨⎧y =3x ,z =233x .令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m·n |m||n |=12.∴二面角P -BD -A 的大小为60°.13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC .(2)求二面角A 1-BD -C 1的大小.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点, 故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC . 而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD . 因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1A 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA →的方向为x 轴的正方向,|CA →|为单位长,建立如图所示的空间直角坐标系 C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2).则A 1D →=(0,0,-1),BD →=(1,-1,1),DC 1→=(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则 ⎩⎪⎨⎪⎧n ·BD →=0,n ·A 1D →=0,即⎩⎨⎧x -y +z =0,z =0,可取n =(1,1,0). 同理,设m =(x ,y ,z )是平面C 1BD 的法向量,则 ⎩⎪⎨⎪⎧m ·BD →=0,m ·DC 1→=0,即⎩⎨⎧x -y +z =0,-x +z =0,可取m =(1,2,1). 从而cos 〈n ,m 〉=n ·m |n |·|m |=32. 故二面角A 1-BD -C 1的大小为30°.14.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点. (1)求证:AF ∥平面BCE ;(2)求证:平面BCE⊥平面CDE;(3)求直线BF和平面BCE所成角的正弦值.解方法一:(1)证法一:取CE的中点G,连接FG、BG.∵F为CD的中点,∴GF∥DE且GF=12 DE,∵AB⊥平面ACD,DE⊥平面ACD,∴AB∥DE,∴GF∥AB.又AB=12DE,∴GF=AB.又DE=2AB,∴四边形GFAB为平行四边形,则AF∥BG. ∵AF⊄平面BCE,BG⊂平面BCE,∴AF∥平面BCE.证法二:取DE的中点M,连接AM、FM,∵F为CD的中点,∴FM∥CE.∵AB⊥平面ACD,DE⊥平面ACD,∴DE∥AB.又AB=12DE=ME,∴四边形ABEM为平行四边形,则AM∥BE. ∵FM、AM⊄平面BCE,CE、BE⊂平面BCE,∴FM∥平面BCE,AM∥平面BCE.又FM∩AM=M,∴平面AFM∥平面BCE.∵AF⊂平面AFM,∴AF∥平面BCE.(2)证明:∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE . ∵BG ⊂平面BCE , ∴平面BCE ⊥平面CDE .(3)在平面CDE 内,过F 作FH ⊥CE 于H ,连接BH , ∵平面BCE ⊥平面CDE ,∴FH ⊥平面BCE . ∴∠FBH 为BF 和平面BCE 所成的角.设AD =DE =2AB =2a ,则FH =CF sin45°=22a ,BF =AB 2+AF 2=a 2+3a2=2a ,在Rt △FHB 中,sin ∠FBH =FH BF =24. ∴直线BF 和平面BCE 所成角的正弦值为24. 方法二:设AD =DE =2AB =2a ,建立如图所示的坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝ ⎛⎭⎪⎫32a ,32a ,0.(1)证明:AF →=⎝ ⎛⎭⎪⎫32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a,0,-a ),∵AF →=12(BE →+BC →),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)证明:∵AF →=⎝ ⎛⎭⎪⎫32a ,32a ,0,CD →=(-a ,3a,0),ED →=(0,0,-2a ),∴AF →·CD →=0,AF →·ED →=0,∴AF →⊥CD →,AF →⊥ED →. ∴AF →⊥平面CDE ,又AF ∥平面BCE , ∴平面BCE ⊥平面CDE .(3)设平面BCE 的法向量为n =(x ,y ,z ),由n ·BE →=0,n ·BC →=0可得x +3y +z =0,2x -z =0,取n =(1,-3,2).又BF →=⎝ ⎛⎭⎪⎫32a ,32a ,-a ,设BF 和平面BCE 所成的角为θ,则sin θ=|BF →·n ||BF →|·|n |=2a 2a ·22=24.∴直线BF 和平面BCE 所成角的正弦值为24.。
2020版高考数学_福建专用_一轮复习课件_第八章 立体几何 立体几何中的向量方法
������������ ·������������ + ������������ ·������������=abcos 60°-a× √22bcos 45°-√22abcos
45°+√22a×
√22b=���2���������
−
������������ 2
−
������������ 2
+
���2���������=0.
∴
������������
⊥
������������ .
∴二面角 α-AB-β 的大小为 90°.
核心考点
考点1
考点2
考点3
考点 1 利用空间向量证明平行、垂直
例1
-15-
如图所示,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD 是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求 证:PB∥平面EFG.
知识梳理
-8-
知识梳理 双基自测
12345
1.下列结论正确的打“√”,错误的打“×”.
(1)直线的方向向量是唯一确定的. ( ) (2)平面的单位法向量是唯一确定的. ( ) (3)若两条直线的方向向量不平行,则这两条直线不平行. ( ) (4)若空间向量a平行于平面α,则a所在直线与平面α平行. ( ) (5)两条直线的方向向量的夹角就是这两条直线所成的角. ( )
θ,a与b的夹角为φ,则有cos θ= |cos φ| .
(2)直线与平面所成的角
①范围:直线和平面所成的角θ的取值范围是
π 0, 2
.
②向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平
面所成的角为θ,a与u的夹角为φ,则有sin θ= |cos φ| 或cos θ=sin
2020版高考数学新增分大一轮新高考专用精练:第八章第8讲 立体几何中的向量方法(二)——求空间角含解析
第8讲 立体几何中的向量方法(二)——求空间角一、选择题1.(2016·长沙模拟)在正方体A 1B 1C 1D 1-ABCD 中,AC 与B 1D 所成的角的大小为( )A. B. C. D.π6π4π3π2解析 建立如图所示的空间直角坐标系,设正方体边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴=(1,1,0),=(-1,1,-1),AC → B 1D →∵·=1×(-1)+1×1+0×(-1)=0,AC → B 1D →∴⊥,AC → B 1D →∴AC 与B 1D 所成的角为.π2答案 D2.(2017·郑州调研)在正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的正弦值为( )A.B.C. D.32333525解析 设正方体的棱长为1,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.则B (1,1,0),B 1(1,1,1),A (1,0,0),C (0,1,0),D 1(0,0,1),所以=(0,0,1),=(-1,1,0),=(-1,0,1).BB 1→ AC → AD 1→令平面ACD 1的法向量为n =(x ,y ,z ),则n ·=-x +y =0,n ·=-x +z =0,AC → AD 1→ 令x =1,可得n =(1,1,1),所以sin θ=|cos 〈n ,〉|==.BB1→ 13×133答案 B3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD所成的锐二面角的余弦值为( )A. B. C. D.12233322解析 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ,D (0,1,0),(1,0,12)∴=(0,1,-1),A 1D →=,A 1E →(1,0,-12)设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有即{A 1D →·n 1=0,A 1E →·n 1=0,)解得{y -z =0,1-12z =0,){y =2,z =2.)∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴ cos 〈n 1,n 2〉==.23×123即所成的锐二面角的余弦值为.23答案 B4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成的角为( )A.45° B.60°C.90°D.30°解析 如图所示,取AC 的中点N ,以N 为坐标原点,建立空间直角坐标系.则A ,C ,B 1,D ,C 1(0,-a2,0)(0,a 2,0)(3a 2,0,a)(0,a 2,a 2),(0,a2,a )∴=,=,=(0,0,a ).AB 1→ (3a 2,a 2,a )AD →(0,a ,a 2)CC 1→ 设平面AB 1D 的法向量为n =(x ,y ,z ),由n ·=0,n ·=0,可取n =(,1,-2).AB 1→ AD →3∴cos 〈,n 〉===-,CC 1→CC 1→·n|CC 1→||n |-2a a ×2222∴直线CC 1与平面AB 1D 所成的角为45°.答案 A5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.B.C. D.3222223233解析 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),=(2,0,0),D 1A 1→=(2,2,0),DB →设平面A 1BD 的一个法向量n =(x ,y ,z ),则{n ·DA 1→=0,n ·DB →=0,)∴令z =1,得n =(-1,1,1).{2x +2z =0,2x +2y =0,)∴D 1到平面A 1BD 的距离d ===.|D 1A 1→·n ||n |23233答案 D 二、填空题6.(2017·昆明月考)如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则=(0,-1,1),=(2,0,2),∴·=2,EF → BC 1→ EF → BC 1→∴cos 〈,〉==,EF → BC 1→ 22×2212∴EF 和BC 1所成的角为60°.答案 60°7.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于__________.解析 以D 为坐标原点,建立空间直角坐标系,如图.设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则=(0,1,0),DC →=(1,1,0),=(0,1,2).DB → DC 1→设平面BDC 1的一个法向量为n =(x ,y ,z ),则n ⊥,n ⊥,所以DB → DC 1→ 有令y =-2,得平面BDC 1的一个法向量为n = (2,-2,1).{x +y =0,y +2z =0,)设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,〉|==.DC →|n ·DC → |n ||DC →||23答案 238.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值等于________.解析 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求二面角的平面角.∵BH =,EB =1,∴tan ∠EHB ==.322EB BH 23答案 23三、解答题9.(2015·全国Ⅰ卷)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,D F ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ,(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC =.3由BE ⊥平面ABCD ,AB =BC ,可知AE =EC .又AE ⊥EC ,所以EG =,且EG ⊥AC .3在Rt △EBG 中,可得BE =,故DF =.222在Rt △FDG 中,可得FG =.62在直角梯形BDFE 中,由BD =2,BE =,DF =,可得EF =,222322从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,可得EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以,的方向为x 轴,y 轴正方向,||GB → GC → GB →为单位长度,建立空间直角坐标系G -xyz ,由(1)可得A (0,-,0),E (1,0,),F ,32(-1,0,22)C (0,,0).3所以=(1,,),=.AE → 32CF →(-1,-3,22)故cos 〈,〉==-.AE → CF→AE → ·CF → |AE → ||CF →|33所以直线AE 与直线CF 所成角的余弦值为.3310.(2016·全国Ⅰ卷)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ;(2)求二面角E -BC -A 的余弦值.(1)证明 由已知可得AF ⊥DF ,AF ⊥EF ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G .由(1)知DG ⊥平面ABEF .以G 为坐标原点,的方向为x 轴正方向,||为单位长,建立如图所示的空GF → GF →间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=.3可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,).3由已知得AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°.从而可得C (-2,0,).3所以=(1,0,),=(0,4,0),=(-3,-4,),=(-4,0,0).EC → 3EB → AC → 3AB →设n =(x ,y ,z )是平面BCE 的法向量,则即{n ·EC →=0,n ·EB →=0,){x +3z =0,4y =0,)所以可取n =(3,0,-).3设m 是平面ABCD 的法向量,则{m ·AC →=0,m ·AB →=0,)同理可取m =(0,,4).3则cos 〈n ,m 〉==-.n ·m|n ||m |21919故二面角E -BC -A 的余弦值为-.2191911.(2017·济南质检)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.B.C. D.555325535解析 不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴=(0,2,-1),=(-2,2,1),BC 1→ AB 1→∴cos 〈,〉====>0.BC 1→ AB1→ BC 1→ ·AB 1→|BC 1→ ||AB 1→|4-15×91555∴与的夹角即为直线BC 1与直线AB1的夹角,BC 1→ AB 1→∴直线BC 1与直线AB 1夹角的余弦值为.55答案 A12.在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且 SO =OD ,则直线BC 与平面PAC 所成的角是( )A.30°B.45°C.60°D.90°解析 如图,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a .则A (a ,0,0),B (0,a ,0),C (-a ,0,0),P .(0,-a 2,a 2)则=(2a ,0,0),=,CA → AP →(-a ,-a 2,a 2)=(a ,a ,0),CB →设平面PAC 的一个法向量为n =(x ,y ,z ),则解得可取n =(0,1,1),{n ·CA →=0,n ·AP →=0,){x =0,y =z ,)则 cos 〈,n 〉===,CB →CB → ·n |CB →|·|n |a 2a 2·212又∵〈,n 〉∈(0°,180°),∴〈,n 〉=60°,CB → CB →∴直线BC 与平面PAC 所成的角为90°-60°=30°.答案 A13.如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,A C =6,BD =8,CD =2,则该二面角的大小为__________.17解析 ∵=++,CD → CA → AB → BD →∴·=||·||· cos 〈,〉=-24.CA → BD → CA → BD → CA→BD →∴ cos 〈,〉=-.CA → BD → 12又所求二面角与〈,〉互补,CA → BD →∴所求的二面角为60°.答案 60°14.(2016·四川卷)如图,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =AD .E 为棱AD 的中12点,异面直线PA 与CD 所成的角为90°.(1)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(2)若二面角P -CD -A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.理由如下:由已知,知BC ∥ED ,且BC =ED .所以四边形BCDE 是平行四边形.从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE ,所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)法一 由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A ,所以CD ⊥平面PAD .从而CD ⊥PD .所以∠PDA 是二面角P -CD -A 的平面角.所以∠PDA =45°.设BC =1,则在Rt △PAD 中,PA =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH .易知PA ⊥平面ABCD ,从而PA ⊥CE .于是CE ⊥平面PAH .所以平面PCE ⊥平面PAH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE .所以∠APH 是PA 与平面PCE 所成的角.在Rt △AEH 中,∠AEH =45°,AE =1,所以AH =.22在Rt △PAH 中,PH ==,PA 2+AH 2322所以sin ∠APH ==.AH PH 13法二 由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A ,所以CD ⊥平面PAD .于是CD ⊥PD .从而∠PDA 是二面角P -CD -A 的平面角.所以∠PDA =45°.由PA ⊥AB ,可得PA ⊥平面ABCD .设BC =1,则在Rt △PAD 中,PA =AD =2.作Ay ⊥AD ,以A 为原点,以,的方向分别为x 轴,z 轴的正方向,建立AD → AP →如图所示的空间直角坐标系A -xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2),PE → EC → AP →设平面PCE 的一个法向量为n =(x ,y ,z ),由得{n ·PE →=0,n ·EC →=0,){x -2z =0,x +y =0,)设x =2,解得n =(2,-2,1).设直线PA 与平面PCE 所成角为α,则sin α===.|n ·AP →||n|·|AP →|22×22+(-2)2+1213所以直线PA 与平面PCE 所成角的正弦值为.13。
高考数学一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法课件 理.ppt
2 5×
= 8
10 10 .
∴直线BB1与平面PAB所成角的正弦值为
10 10 .
悟·技法 向量法求线面角的两大途径
(1)分别求出斜线和它所在平面内的射影直线的方向向量,转 化为求两个方向向量的夹角(或其补角).
(2)通过平面的法向量来求,即求出斜线的方向向量与平面的 法向量所夹的锐角,取其余角就是斜线和平面所成的角.
=-
510,所以异面直线SM与BN所成角的余弦值为
10 5.
答案:B
3.[2020·东北三校模拟]在正三棱柱ABC-A1B1C1中,已知AB =1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成角的正弦 值为( )
6 A. 4
B.-
6 4
10 C. 4
D.-
10 4
解析:
取AC的中点E,连接BE,则BE⊥AC,以B为坐标原点,BE, BB1所在直线分别为x轴,z轴,建立如图所示的空间直角坐标系B -xyz,则A 23,12,0,D(0,0,1),B(0,0,0),E 23,0,0,
【知识重温】
一、必记4个知识点
1.异面直线所成角的求法
设a,b分别是两异面直线l1,l2的方向向量,则
a与b的夹角β
l1与l2所成的角θ
范围
[0,π]
①__0_,__π2_
求法
cos β=|aa|·|bb|
|a·b| cos θ=|cos β|=②__|a_|_|b_|_
2.直线和平面所成角的求法 如图所示,设直线l的方向向量为e,平面α的法向量为n,直线 l=与③平_面|_|ee_|·α|nn_所|_| _成. 的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|
2020版高考数学大一轮复习第八章立体几何8.4空间向量及其运算课件
∴CD= 12 + (3-1)2 = 5.
∴CE2+DC2=DE2,∴EC⊥CD. ∵平面EDC⊥平面ABCD,平面EDC∩平面ABCD=DC, ∴CE⊥平面ABCD.∴CE⊥AB. 又AB⊥BC,BC∩CE=C,∴AB⊥平面BCE.
-19-
考点一
考点二
考点三
考点四
(2)解:过A作AH⊥DC,交DC于H,则AH⊥平面DCE,连接EH, 则∠AEH是直线AE与平面DCE所成的平面角,
角是 30° .
解析
关闭
B
解析 答案
知识梳理
双击自测
3.(2018北京高三模拟)已知正方体ABCD-A'B'C'D',记过点A与三条 直线AB,AD,AA'所成角都相等的直线条数为m,过点A与三个平面 AB',AC,AD'所成角都相等的直线条数为n,则下面结论正确的是 ( ) A.m=1,n=1 B.m=4,n=1 C.m=3,n=4 D.m=4,n=4 连接AC ,显然AC 与AB,AD,AA'所成角都相等.
-6知识梳理 双击自测
4.平面与平面垂直 (1)定义:两个平面相交,如果它们所成的二面角是 直二面角 就说这两个平面互相垂直. (2)判定定理和性质定理:
文字语言 判 定 定 理 性 质 定 理 一个平面过另一个平面 的 垂线 ,则这两个平面 互相垂直 两个平面互相垂直 ,则一个 平面内垂直于 交线 的 直线垂直于另一个平面 图形语言 符号语言 l⊂β ⇒α⊥β l⊥α α⊥β α⋂β = a ⇒ l⊥α l⊂β l⊥a
关闭
显然,A1C1⊥平面 BB1D1D,垂足为 O(A1C1 与 B1D1 的交点),则∠A1BO 即为 A1B 与平面 BB1D1D 所成的角. ������ ������ 1 在 Rt△A1OB 中,∵sin∠A1BO= 1 = ,∴A1B 与平面 BB1D1D 所成的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲 立体几何中的向量方法(二)——求空间角一、选择题1.(2016·长沙模拟)在正方体A 1B 1C 1D 1-ABCD 中,AC 与B 1D 所成的角的大小为( ) A.π6B.π4C.π3D.π2解析 建立如图所示的空间直角坐标系,设正方体边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2. 答案 D2.(2017·郑州调研)在正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的正弦值为( ) A.32B.33C.35D.25解析 设正方体的棱长为1,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.则B (1,1,0),B 1(1,1,1),A (1,0,0),C (0,1,0),D 1(0,0,1),所以BB 1→=(0,0,1),AC →=(-1,1,0),AD 1→=(-1,0,1). 令平面ACD 1的法向量为n =(x ,y ,z ),则n ·AC →=-x +y =0,n ·AD 1→=-x +z =0,令x =1,可得n =(1,1,1), 所以sin θ=|cos 〈n ,BB 1→〉|=13×1=33. 答案 B3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD所成的锐二面角的余弦值为( ) A.12B.23C.33D.22解析 以A 为原点建立如图所示的空间直角坐标系 A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=⎝ ⎛⎭⎪⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎨⎧y =2,z =2. ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23. 答案 B4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成的角为( ) A.45° B.60° C.90°D.30°解析 如图所示,取AC 的中点N ,以N 为坐标原点,建立空间直角坐标系.则A ⎝ ⎛⎭⎪⎫0,-a 2,0,C ⎝ ⎛⎭⎪⎫0,a 2,0,B 1⎝ ⎛⎭⎪⎫3a 2,0,a ,D ⎝ ⎛⎭⎪⎫0,a 2,a 2,C 1⎝ ⎛⎭⎪⎫0,a 2,a , ∴AB 1→=⎝ ⎛⎭⎪⎫3a 2,a 2,a ,AD →=⎝ ⎛⎭⎪⎫0,a ,a 2,CC 1→=(0,0,a ). 设平面AB 1D 的法向量为n =(x ,y ,z ), 由n ·AB 1→=0,n ·AD →=0,可取n =(3,1,-2). ∴cos 〈CC 1→,n 〉=CC 1→·n|CC 1→||n |=-2a a ×22=-22,∴直线CC 1与平面AB 1D 所成的角为45°. 答案 A5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22C.223D.233解析 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0), 设平面A 1BD 的一个法向量 n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,∴⎩⎨⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.答案 D 二、填空题6.(2017·昆明月考)如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________. 解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2, ∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°. 答案 60°7.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于__________.解析 以D 为坐标原点,建立空间直角坐标系,如图.设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的一个法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎨⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n = (2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 答案 238.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值等于________.解析 延长FE ,CB 相交于点G ,连接AG ,如图所示. 设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求二面角的平面角. ∵BH =322,EB =1,∴tan ∠EHB =EB BH =23. 答案 23 三、解答题9.(2015·全国Ⅰ卷)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC , (2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC .在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322, 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,可得EG ⊥平面AFC . 因为EG ⊂平面AEC , 所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB→|为单位长度,建立空间直角坐标系G -xyz , 由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0).所以AE→=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22. 故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.10.(2016·全国Ⅰ卷)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.(1)证明 由已知可得AF ⊥DF ,AF ⊥EF , 所以AF ⊥平面EFDC . 又AF ⊂平面ABEF , 故平面ABEF ⊥平面EFDC . (2)解 过D 作DG ⊥EF ,垂足为G . 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |= 3.可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知得AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量, 则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E -BC -A 的余弦值为-21919.11.(2017·济南质检)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55B.53C.255D.35解析 不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC 1→=(0,2,-1),AB 1→=(-2,2,1), ∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. 答案 A12.在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且 SO =OD ,则直线BC 与平面P AC 所成的角是( ) A.30°B.45°C.60°D.90°解析 如图,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a .则A (a ,0,0),B (0,a ,0),C (-a ,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2. 则CA→=(2a ,0,0),AP →=⎝ ⎛⎭⎪⎫-a ,-a 2,a 2, CB→=(a ,a ,0),设平面P AC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·AP →=0,解得⎩⎨⎧x =0,y =z ,可取n =(0,1,1),则 cos 〈CB →,n 〉=CB →·n|CB →|·|n |=a 2a 2·2=12, 又∵〈CB→,n 〉∈(0°,180°),∴〈CB →,n 〉=60°, ∴直线BC 与平面P AC 所成的角为90°-60°=30°. 答案 A13.如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__________.解析 ∵CD→=CA →+AB →+BD →,∴CA→·BD →=|CA →|·|BD →|· cos 〈CA →,BD →〉=-24. ∴ cos 〈CA→,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补,∴所求的二面角为60°. 答案 60°14.(2016·四川卷)如图,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .E 为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角P -CD -A 的大小为45°,求直线P A 与平面PCE 所成角的正弦值.解(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,知BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)法一由已知,CD⊥P A,CD⊥AD,P A∩AD=A,所以CD⊥平面P AD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△P AD中,P A=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知P A⊥平面ABCD,从而P A⊥CE.于是CE⊥平面P AH.所以平面PCE⊥平面P AH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是P A与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=2 2.在Rt△P AH中,PH=P A2+AH2=32 2,所以sin∠APH=AHPH=13.法二由已知,CD⊥P A,CD⊥AD,P A∩AD=A,所以CD ⊥平面P AD . 于是CD ⊥PD .从而∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.由P A ⊥AB ,可得P A ⊥平面ABCD . 设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD→,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE→=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2), 设平面PCE 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎨⎧x -2z =0,x +y =0,设x =2,解得n =(2,-2,1). 设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13. 所以直线P A 与平面PCE 所成角的正弦值为13.。