2007年普通高等学校招生全国统一考试理科数学试卷及答案-浙江卷

合集下载

2007年普通高等学校招生全国统一考试理科数学试卷及答案-浙江卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-浙江卷

2007年普通高等学校招生全国统一考试(浙江卷)数 学(理工科)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)“1x >”是“2x x >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (2)若函数()2sin(),f x x x R ωϕ=+∈,(其中0,||2πωϕ><)的最小正周期是π,且(0)f =,则(A )1,26πωϕ== (B )1,23πωϕ== (C )2,6πωϕ== (D )2,3πωϕ== (3)直线210x y -+=关于直线1x =对称的直线方程是(A )210x y +-= (B )210x y +-= (C )230x y +-= (D )230x y +-= (4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水。

假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是 (A )3 (B )4 (C )5 (D )6(5)已知随机变量服从正态分布2(2,),(4)0.84N P σξ≤=,则(0)P ξ≤= (A )0.16 (B )0.32 (C )0.68 (D )0.84 (6)若P 是两条异面直线,l m 外的任意一点,则(A )过点P 有且仅有一条直线与,l m 都平行 (B )过点P 有且仅有一条直线与,l m 都垂直 (C )过点P 有且仅有一条直线与,l m 都相交 (D )过点P 有且仅有一条直线与,l m 都异面 (7)若非零向量a 、b 满足|a +b |=|b |,则(A )|2a |>|2a +b | (B )|2a |<|2a +b | (C )|2b |>|a +2b | (D )|2b |<|a +2b | (8)设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个直角坐标系中,不可能正确的是(9)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,P 是准线上一点,且1212,||||4PF PF PF PF ab ⊥⋅=,则双曲线的离心率是 (A 2 (B 3 (C )2 (D )3(10)设2,||1(),||1x x f x x x ⎧≥=⎨<⎩,()g x 是二次函数,若(())f g x 的值域是[0,)+∞,则()g x 的值域是(A )(,1][1,)-∞-+∞ (B )(,1][0,)-∞-+∞ (C )[0,)+∞ (D )[1,)+∞ 二.填空题:本大题共7小题,每小题4分,共28分。

2007年高考.浙江卷.理科数学试题及解答

2007年高考.浙江卷.理科数学试题及解答

2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“1x >”是“2x x >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分不必要条件 D.既不充分也不必要条件 (2)若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =则( )A .126ωϕπ==,B .123ωϕπ==, C .26ωϕπ==, D .23ωϕπ==,(3)直线210x y -+=关于直线1x =对称的直线方程是( )A.210x y +-= B.210x y +-= C.230x y +-= D.230x y +-=(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是关径为6米的圆面,则需安装这种喷水龙头的个数最少是( ) A.3 B.4 C.5 D.6(5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( )A .0.16B .0.32C .0.68D ,0.84(6)若P 两条异面直线l m ,外的任意一点,则( ) A.过点P 有且仅有一条直线与l m ,都平行 B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交 D.过点P 有且仅有一条直线与l m ,都异面(7)若非零向量,a b 满足+=a b b ,则( )A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(8)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )A .B .C .D .(9)已知双曲线22221(00)x ya ba b-=>>,的左、右焦点分别为1F,2F,P是准线上一点,且12PF PF⊥,124PF PF ab=,则双曲线的离心率是()C.2D.3(10)设21()1x xf xx x⎧⎪=⎨<⎪⎩,≥,,,()g x是二次函数,若(())f g x的值域是[)0+,∞,则()g x的值域是()A.(][)11--+∞,,∞B.(][)10--+∞,,∞C.[)0+,∞D.[)1+,∞第II卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)已知复数11iz=-,121iz z=+,则复数2z=.(12)已知1sin cos5θθ+=,且324θππ≤≤,则cos2θ的值是.(13)不等式211x x--<的解集是.(14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是(用数字作答).(15)随机变量ξ的分布列如下:其中a b c,,成等差数列,若3Eξ=,则Dξ的值是.(16)已知点O在二面角ABαβ--的棱上,点P在α内,且45POB∠=.若对于β内异于O的任意一点Q,都有45POQ∠≥,则二面角ABαβ--的大小是.(17)设m为实数,若{}22250()30()25x yx y x x y x ymx y⎧⎫-+⎧⎪⎪⎪-⊆+⎨⎨⎬⎪⎪⎪+⎩⎩⎭≥,≥,≤≥,则m的取值范围是.三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.(18)(本题14分)已知ABC△1,且sin sinA B C+=.(I)求边AB的长;(II)若ABC△的面积为1sin6C,求角C的度数.(19)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.(20)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.(21)(本题15分)已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320k kx k x k -++=的两个根,且212(123)k k a a k -=≤,,,. (I )求1a ,2a ,3a ,7a ; (II )求数列{}n a 的前2n 项和2n S ;(Ⅲ)记sin 1()32sin nf n n ⎛⎫=+⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.(22)(本题15分)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(I )求函数()()t y f x g x =-的单调区间; (II )求证:(ⅰ)当0x >时,()f x g ()()t f x g x ≥对任意正实数t 成立;(ⅱ)有且仅有一个正实数0x ,使得00()()x t g x g x ≥对任意正实数t 成立.ED C M A(第19题) B2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)A (2)D (3)D (4)B (5)A (6)B (7)C (8)D (9)B (10)C二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. (11)1 (12)725- (13){}02x x << (14)266(15)59(16)90(17)403m ≤≤三、解答题(18)解:(I)由题意及正弦定理,得1AB BC AC ++=,BC AC +=, 两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =, 由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--==, 所以60C =.(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(I )证明:因为AC BC =,M 是AB 的中点, 所以CM AB ⊥. 又EA ⊥平面ABC , 所以CM EM ⊥.(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MD . FCM ∠是直线CM 和平面CDE 所成的角. 因为MH ⊥平面CDE ,所以MH ED ⊥,又因为CM ⊥平面EDM , 所以CM ED ⊥,则ED ⊥平面CMF ,因此ED MF ⊥. 设EA a =,2BD BC AC a ===, 在直角梯形ABDE 中,AB =,M 是AB 的中点,所以3DE a =,EM =,MD =, 得EMD △是直角三角形,其中90EMD =∠, 所以2EM MDMF a DE==.在Rt CMF △中,tan 1MFFCM MC==∠, 所以45FCM =∠,E DC MAE H故CM 与平面CDE 所成的角是45. 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设EA a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,,.(022)D a a ,,,(0)M a a ,,.(I )证明:因为()EM a a a =--,,,(0)CM a a =,,, 所以0EM CM =, 故EM CM ⊥.(II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥n ,CD ⊥n , 即0CE =n ,0CD =n .因为(20)CE a a =,,,(022)CD a a =,,, 所以02y =,02x =-, 即(122)=-,,n ,2cos 2CM CM CM ==,n n n, 直线CM 与平面CDE 所成的角θ是n 与CM所以45θ=,因此直线CM 与平面CDE 所成的角是45. (20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.(Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得12x =±, 所以1212S b x x =-221b b =-2211b b +-=≤.当且仅当b =S 取到最大值1.(Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,11||||AB x x =-222424k b k -==+. ②设O 到AB 的距离为d ,则21||Sd AB ==,x又因为d =,所以221b k =+,代入②式并整理,得42104k k -+=,解得212k =,232b =,代入①式检验,0∆>,故直线AB 的方程是y x =或y x =y x =+,或y x =-21.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分15分.(I )解:方程2(32)320k kx k x k -++=的两个根为13x k =,22k x =,当1k =时,1232x x ==,, 所以12a =;当2k =时,16x =,24x =, 所以34a =;当3k =时,19x =,28x =, 所以58a =时;当4k =时,112x =,216x =, 所以712a =.(II )解:2122n n S a a a =+++2(363)(222)n n =+++++++2133222n n n ++=+-.(III )证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++, 所以112116T a a ==, 2123411524T a a a a =+=.当3n ≥时,(1)3456212111(1)6f n n n nT a a a a a a +--=+-++, 345621211116n n a a a a a a -⎛⎫+-++⎪⎝⎭≥2311111662622n ⎛⎫+-++ ⎪⎝⎭≥ 1116626n =+>,同时,(1)5678212511(1)24f n n n nT a a a a a a +--=--++5612212511124n n a a a a a a -⎛⎫-+++ ⎪⎝⎭≤31511112492922n ⎛⎫-+++ ⎪⎝⎭≤ 515249224n =-<. 综上,当n ∈N*时,15624n T ≤≤.22.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.(I )解:316433x y x =-+. 由240y x '=-=,得 2x =±.因为当(2)x ∈-∞-,时,y '>0, 当(22)x ∈-,时,0y '<, 当(2)x ∈+∞,时,0y '>,故所求函数的单调递增区间是(2)-∞-,,(2)+∞,, 单调递减区间是(22)-,.(II )证明:(i )方法一:令2332()()()(0)33t x h x f x g x t x t x =-=-+>,则 223()h x x t '=-,当0t >时,由()0h x '=,得13x t =,当13()x x ∈+∞,时,()0h x '>, 所以()h x 在(0)+∞,内的最小值是13()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:对任意固定的0x >,令232()()(0)3t h t g x t x t t ==->,则 11332()()3h t t x t -'=-,由()0h t '=,得3t x =.当30t x <<时,()0h t '>.当3t x >时,()0h t '<,所以当3t x =时,()h t 取得最大值331()3h x x =. 因此当0x >时,()()f x g x ≥对任意正实数t 成立.(ii )方法一:8(2)(2)3t f g ==. 由(i )得,(2)(2)t t g g ≥对任意正实数t 成立. 即存在正实数02x =,使得(2)(2)x t g g ≥对任意正实数t 成立. 下面证明0x 的唯一性: 当02x ≠,00x >,8t =时,300()3x f x =,0016()43x g x x =-,由(i )得,30016433x x >-, 再取30t x =,得30300()3x x g x =,所以303000016()4()33x x x g x x g x =-<=, 即02x ≠时,不满足00()()x t g x g x ≥对任意0t >都成立.故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立. 方法二:对任意00x >,0016()43x g x x =-, 因为0()t g x 关于t 的最大值是3013x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是:300161433x x -≥, 即200(2)(4)0x x -+≤, ①又因为00x >,不等式①成立的充分必要条件是02x =, 所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.。

2007年高考全国1卷数学理科试卷含答案

2007年高考全国1卷数学理科试卷含答案

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D 1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e e 2x -x x x -+=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

2007年浙江数学(理科)含答案

2007年浙江数学(理科)含答案

2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“1x >”是“2x x >”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分不必要条件D.既不充分也不必要条件(2)若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f = )A .126ωϕπ==, B .123ωϕπ==, C .26ωϕπ==,D .23ωϕπ==,(3)直线210x y -+=关于直线1x =对称的直线方程是( ) A.210x y +-= B.210x y +-= C.230x y +-=D.230x y +-=(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是关径为6米的圆面,则需安装这种喷水龙头的个数最少是( ) A.3 B.4 C.5 D.6(5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( ) A .0.16 B .0.32 C .0.68 D ,0.84 (6)若P 两条异面直线l m ,外的任意一点,则( ) A.过点P 有且仅有一条直线与l m ,都平行 B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交 D.过点P 有且仅有一条直线与l m ,都异面 (7)若非零向量,a b 满足+=a b b ,则( ) A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(8)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab = ,则双曲线的离心率是( )C.2D.3(10)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( )A .(][)11--+ ∞,,∞B .(][)10--+ ∞,,∞C .[)0+,∞D .[)1+,∞第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分. (11)已知复数11i z =-,121i z z =+ ,则复数2z = . (12)已知1sin cos 5θθ+=,且324θππ≤≤,则cos 2θ的值是 . (13)不等式211x x --<的解集是 .(14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答). (15)随机变量ξ的分布列如下:其中a b c ,,成等差数列,若3E ξ=,则D ξ的值是. A . B .C .D .(16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=.若对于β内异于O 的任意一点Q ,都有45POQ ∠ ≥,则二面角AB αβ--的大小是.(17)设m 为实数,若{}22250()30()250x y x y x x y x y mx y ⎧⎫-+⎧⎪⎪⎪-⊆+⎨⎨⎬⎪⎪⎪+⎩⎩⎭≥,≥,≤≥,则m 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. (18)(本题14分)已知ABC △1,且sin sin A B C +. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.(19)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2A C B C B D A E ===,M 是AB 的中点.(I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.(20)(本题14分)如图,直线y kx b =+与椭圆2214xy +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.(21)(本题15分)已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320k kx k x k -++=的两个根,且212(123)k k a a k -= ≤,,,.(I )求1a ,2a ,3a ,7a ; (II )求数列{}n a 的前2n 项和2n S ; (Ⅲ)记sin 1()32sin nf n n ⎛⎫=+ ⎪⎝⎭,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n nT a a a a a a a a +-----=++++…, E DCMA(第19题)B(第20题)求证:15()624n T n ∈*N ≤≤. (22)(本题15分)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(I )求函数()()t y f x g x =-的单调区间;(II )求证:(ⅰ)当0x >时,()f x g ()()t f x g x ≥对任意正实数t 成立; (ⅱ)有且仅有一个正实数0x ,使得00()()x t g x g x ≥对任意正实数t 成立.2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.(1)A (2)D (3)D (4)B (5)A (6)B (7)C (8)D (9)B (10)C二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. (11)1 (12)725- (13){}02x x << (14)266(15)59(16)90(17)403m ≤≤三、解答题(18)解:(I )由题意及正弦定理,得1AB BC AC ++=,BC AC +,两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C = ,得13BC AC = , 由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--== , 所以60C =.(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(I )证明:因为AC BC =,M 是AB 的中点, 所以CM AB ⊥. 又EA ⊥平面ABC , 所以CM EM ⊥.(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MD .FCM ∠是直线CM 和平面CDE 所成的角. 因为MH ⊥平面CDE ,所以MH ED ⊥, 又因为CM ⊥平面EDM , 所以CM ED ⊥,则ED ⊥平面CMF ,因此ED MF ⊥.设EA a =,2BD BC AC a ===,在直角梯形ABDE 中,AB =,M 是AB 的中点,所以3DE a =,EM =,MD =, 得EMD △是直角三角形,其中90EMD =∠,所以EM MDMF DE== .在Rt CMF △中,tan 1MFFCM MC==∠, 所以45FCM =∠,故CM 与平面CDE 所成的角是45. 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设E A a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,,.(022)D a a ,,,(0)M a a ,,.(I )证明:因为()EM a a a =-- ,,,(0)CM a a =,,, 所以0EM CM =, 故EM CM ⊥.(II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥ n ,CD ⊥n , 即0CE =n ,0CD =n . EDC MAE H因为(20)CE a a = ,,,(022)CD a a = ,,, 所以02y =,02x =-, 即(122)=-,,n ,cos CM CM CM ==,n n n, 直线CM 与平面CDE 所成的角θ是n 与CM夹角的余角,所以45θ=,因此直线CM 与平面CDE 所成的角是45.(20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.(Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得12x =±, 所以1212S b x x =-2b =2211b b +-=≤.当且仅当b =S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,11||||AB x x =-2214k ==+ . ②设O 到AB 的距离为d ,则21||Sd AB ==, 又因为d =,所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0∆>,故直线AB 的方程是22y x =+或22y x =-或22y x =-+,或22y x =--.21.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分15分. (I )解:方程2(32)320k k x k x k -++= 的两个根为13x k =,22k x =, 当1k =时,1232x x ==,, 所以12a =;当2k =时,16x =,24x =, 所以34a =;当3k =时,19x =,28x =, 所以58a =时;当4k =时,112x =,216x =, 所以712a =.(II )解:2122n n S a a a =+++2(363)(222)n n =+++++++2133222n n n ++=+-.(III )证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++, 所以112116T a a ==, 2123411524T a a a a =+=. 当3n ≥时,(1)3456212111(1)6f n n n nT a a a a a a +--=+-++, 345621211116n n a a a a a a -⎛⎫+-++ ⎪⎝⎭≥ 2311111662622n ⎛⎫+-++ ⎪⎝⎭ ≥ 1116626n =+> , 同时,(1)5678212511(1)24f n n n nT a a a a a a +--=--++5612212511124n n a a a a a a -⎛⎫-+++ ⎪⎝⎭≤ 31511112492922n ⎛⎫-+++ ⎪⎝⎭≤ 515249224n =-< . 综上,当n ∈N *时,15624n T ≤≤. 22.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.(I )解:316433x y x =-+. 由240y x '=-=,得2x =±.因为当(2)x ∈-∞-,时,y '>0,当(22)x ∈-,时,0y '<, 当(2)x ∈+∞,时,0y '>,故所求函数的单调递增区间是(2)-∞-,,(2)+∞,, 单调递减区间是(22)-,. (II )证明:(i )方法一:令2332()()()(0)33t x h x f x g x t x t x =-=-+>,则 223()h x x t '=-,当0t >时,由()0h x '=,得13x t =, 当13()x x ∈+∞时,()0h x '>,所以()h x 在(0)+∞,内的最小值是13()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:对任意固定的0x >,令232()()(0)3t h t g x t x t t ==->,则 11332()()3h t t x t -'=-,由()0h t '=,得3t x =. 当30t x <<时,()0h t '>. 当3t x >时,()0h t '<,所以当3t x =时,()h t 取得最大值331()3h x x =. 因此当0x >时,()()f x g x ≥对任意正实数t 成立. (ii )方法一:8(2)(2)3t f g ==. 由(i )得,(2)(2)t t g g ≥对任意正实数t 成立.即存在正实数02x =,使得(2)(2)x t g g ≥对任意正实数t 成立. 下面证明0x 的唯一性: 当02x ≠,00x >,8t =时,300()3x f x =,0016()43x g x x =-,由(i )得,30016433x x >-, 再取30t x =,得30300()3x x g x =,所以303000016()4()33x x x g x x g x =-<=, 即02x ≠时,不满足00()()x t g x g x ≥对任意0t >都成立. 故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立. 方法二:对任意00x >,0016()43x g x x =-, 因为0()t g x 关于t 的最大值是3013x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是:300161433x x -≥, 即200(2)(4)0x x -+≤,①又因为00x >,不等式①成立的充分必要条件是02x =, 所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.。

2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案

2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚 5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB.-C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2) C.D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .13- D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,, 7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A.4B.4C.2D.28.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3 B .2 C .1 D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )ABCD12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim nn S n ∞=→ .全国卷Ⅱ理科数学(必修+选修Ⅱ)二.请把填空题答案写在下面相应位置处:13. 14 15. 16.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y .(1)求函数()yf x =的解析式和定义域;(2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小. 20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.AEBCFSD21.(本小题满分12分) 设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数.22.(本小题满分12分)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B二、填空题13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3, 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin cos sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值18.解:(1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故 01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===. 1180202100C C 160(1)C 495P ξ===. 2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD,所以AB DH ⊥,而AB AG A = , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系xyz .设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD , 所以EF ∥平面SAD .(2)不妨设(100)A ,,, 则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点AEBCFSD H G M111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥ 又1002EA ⎛⎫=- ⎪⎝⎭ ,,,0EA EF EA EF =,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.cos MD EA MD EA MD EA <>==,. 所以二面角A EF D --的大小为20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==. 得圆O 的方程为224x y +=. (2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y =----- ,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一:由(1)可知302n a <<,故0n b >.那么,221n nb b +- 2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,,因为132n n a a +-=, 所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a - 即 1n nb b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使 23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根.记 32()23g t t at a b =-++,则 2()66g t t at '=- 6()t t a =-. 当t 变化时,()()g t g t ',变化情况如下表:当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2at t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。

2007年全国各地高考数学试卷及答案(37套)word--完整版

2007年全国各地高考数学试卷及答案(37套)word--完整版
2007年普通高等学校招生全国统一考试数学卷(四川.理)含答案
2007年普通高等学校招生全国统一考试数学卷(四川.文)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.理)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.文)含答案
2007年普通高等学校招生全国统一考试数学卷(浙江.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.文)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.文)含答案
2007年普通高等学校招生全国统一考试数学卷(山东.理)含答案
2007年全国各地高考数学试卷及答案(37套)--完整版
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.文)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
宁夏和海南都是新课标教材,使用的是同一套数学题。
பைடு நூலகம் 四川省蓬安中学校 张万建 整理 zwjozwj@
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.理) 含答案
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.文) 含答案
2007年普通高等学校招生全国统一考试数学卷(江苏卷不分文理)含答案
注:使用全国卷Ⅰ的省份:河北 河南 山西 广西 ;
使用全国卷Ⅱ的省份:吉林 黑龙江 云南 贵州 新疆 青海 甘肃 内蒙 西藏

2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国2

2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国2

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB .C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞,,D .(2)(1)-∞-+∞,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( )A B C D 8.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3B .2C .1D .129.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( )A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )A B CD 12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 . 15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.AEBCFSD20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B 二、填空题 13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 18.解:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥. 又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A =,所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角AE BCFSDH G Mtan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF =,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.3cos 3MD EA MD EA MD EA<>==,. 所以二面角A EF D --的大小为arccos3. 20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即 2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得222(2)x x y -+=+,即 222x y -=. (2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩, 由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=,所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32nn a a a -<.即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。

2007年普通高等学校招生全国统一考试(全国卷I)数学(理科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷I)数学(理科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷I )数学(理科)试卷参考答案一、选择题: 1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D9.B10.D11.C12.A二、填空题: 13.3614.3()xx ∈R15.1316.三、解答题: 17.解:(Ⅰ)由a=2bsinA ,根据正弦定理得sinA=2sinBsinA ,所以1sin 2B =, 由ABC △为锐角三角形得π6B =。

(Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭。

由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=。

2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭。

3A π⎛⎫<+< ⎪⎝⎭所以,cosA+sinC的取值范围为322⎛⎫⎪ ⎪⎝⎭,。

18.解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”。

知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=。

(Ⅱ)η的可能取值为200元,250元,300元。

(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=。

η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯=240(元)。

19.解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD 。

因为SA=SB ,所以AO=BO ,又45ABC=∠,故AOB △为等腰直角三角形,AO BO⊥, 由三垂线定理,得SA BC ⊥。

2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案

2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i 1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直 B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11), B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4A B1B1A1D1C C D(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答)(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .(16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .数学试卷(理科)2007-7-25二.请把填空题答案写在下面相应位置处:13. 14 15. 16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin ab A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.(18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB ==(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分)设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.DBCS(21)(本小题满分12分) 已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题: (13)36(14)3()x x ∈R(15)13(16)三、解答题:(17)解:(Ⅰ)由2s i n a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =.(Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=.2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元. (200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=. η的分布列为2000.4E η=⨯+240=(元).(19)解法一:(Ⅰ)作SO B C ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥,故SA AD ⊥,由AD BC ==,SA =AO =1SO =,SD =.SAB △的面积112S AB ==连结DB ,得DAB △的面积21sin1352S AB AD ==设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得 121133h S SO S = ,解得h = 设SD 与平面SAB 所成角为α,则sin 11h SD α===. 所以,直线SD 与平面SBC 所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,0)A ,,(0B ,(0C ,(001)S ,,(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,, 连结SE ,取SE 中点G ,连结OG ,1442G ⎛ ⎝,,1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直. 所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. cos 11OG DS OG DSα==,sin 11β=A所以,直线SD 与平面SAB所成的角为arcsin 11.(20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20x x g x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则 2122632k x x k +=-+,21223632k x x k -=+12BD x x =-== ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥.当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625.(22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+12)k k b +2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+43n n b a -<≤,123n =,,,….。

2007年高考浙江卷(理科数学)

2007年高考浙江卷(理科数学)

2007年普通高等学校招生全国统一考试理科数学(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.“1x >”是“2x x >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.若函数()2sin()f x x ωϕ=+,x R ∈(其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =A .12ω=,6ϕπ= B .12ω=,3ϕπ=C .2ω=,6ϕπ=D .2ω=,3ϕπ=3.直线210x y -+=关于直线1x =对称的直线方程是 A .210x y +-= B .230x y +-= C .230x y +-= D .210x y +-=4.要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是A .3B .4C .5D .6 5.已知随机变量ξ服从正态分布2(2,)N σ,(4)0.84P ξ≤=,则(0)P ξ≤= A .0.16 B .0.32 C .0.68 D.0.84 6.若P 两条异面直线l ,m 外的任意一点,则 A .过点P 有且仅有一条直线与l ,m 都平行 B .过点P 有且仅有一条直线与l ,m 都垂直 C .过点P 有且仅有一条直线与l ,m 都相交 D .过点P 有且仅有一条直线与l ,m 都异面 7.若非零向量a ,b 满足a b b +=,则A .2a a b >2+B .2a a b <2+C .2b a b >+2 D.2b a b <+28. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能的是9.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab ⋅=,则双曲线的离心率是 ABC .2D .310.设21()1x x f x xx ⎧≥⎪=⎨<⎪⎩,()g x 是二次函数,若(())f g x 的值域是[0)+∞,,则()g x 的值域是A .(1][1)-∞-+∞,3B .(1][0)-∞-+∞,C .[0)+∞,D .[1)+∞, 二、填空题:本大题共7小题,每小题4分,共28分. 11.已知复数11z i =-,121z z i ⋅=+,则复数2z = .12.已知1sin cos 5θθ+=,且324ππθ≤≤,则cos2θ的值是 .13.不等式211x x --<的解集是 .14.某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答). 15.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若3E ξ=,则D ξ的值是.16.已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=.若对于β内异于O 的任意一点Q ,都有45POQ ∠≥,则二面角AB αβ--的大小是 .17.设m 为实数,若{}22250()30()250x y x y x x y x y mx y ⎧⎫-+≥⎧⎪⎪⎪-≥⊆+≤⎨⎨⎬⎪⎪⎪+≥⎩⎩⎭,,,则m 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本小题满分14分)已知ABC ∆1,且sin sin A B C +=. (Ⅰ)求边AB 的长;(Ⅱ)若ABC ∆的面积为1sin 6C ,求角C 的度数.19.(本小题满分14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且AC =BC 2BD AE ==,M 是AB 的中点. (Ⅰ)求证:CM EM ⊥;(Ⅱ)求CM 与平面CDE 所成的角.20.(本小题满分14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S(Ⅱ)当2AB =,1S =时,求直线ABABCDEM21.(本小题满分15分)已知数列{}n a 中的相邻两项21k a -,2k a 是关于x 的方程2(32)320k k x k x k -++⋅=的两个根,且212k k a a -≤(123k =,,,). (Ⅰ)求1a ,3a ,5a ,7a ; (Ⅱ)求数列{}n a 的前2n 项和2n S ;(Ⅲ)记sin 1()(3)2sin n f n n =+,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n nT a a a a a a a a +-----=++++…, 求证:15()624n T n N ≤≤∈*.22.(本小题满分15分)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(Ⅰ)求函数8()()y f x g x =-的单调区间;(Ⅱ)求证:①当0x >时,()()t f x g x ≥对任意正实数t 成立; ②有且仅有一个正实数0x ,使得800()()t g x g x ≥对任意正实数t 成立.。

2007年普通高等学校招生全国统一考试(全国卷II)数学(理科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷II)数学(理科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷II )数学(理科)试卷参考答案一、选择题1.D 2.C 3.C 4.C 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B二、填空题13.-4214.0.815.16.52−三、解答题:17.解:(1)△ABC 的内角和A+B+C=π,由A=3π,B>0,C>0,得0<B<23π,应用正弦定理,知AC=sin sin 4sin sin sin 3BC B x xA π==AB=2sin 4sin()sin 3BC C x A π=−因为y =AB+BC+AC所以y =4sin x+224sin()33x x ππ−+<<(II )因为y=14(sin cos sin )22x x x +++=5)3(6666x x ππππ++<+<所以,当62x ππ+=,即3x π=时,y取得最大值。

18.解:(I )记A 0表示事件“取出的2件产品中无二等品”;A 1表示事件“取出的2件产品中只有1件二等品”;则A 0、A 1互斥,则A=A 0+A 1,故P (A )=P (A 0+A 1)=P (A 0)+P (A 1)=(1-p )2+12(1)C p p −=1-p 2于是,0.96=1-p 2解得p 1=0.2,p 2=-0.2(舍去)(II )ξ的可能取值为0,1,2若该批产品共100件,由(I )知其二等品有100×0.2=20件,故P (ξ=0)=2802100316495C C =P (ξ=1)=1180802100160495C C C =P (ξ=2)=220210019495C C =所以ξ的分布列为ξ012P3164951604951949519.解法一:(I )作FG ∥DC 交SD 于点G ,则G 为SD 的中点,连结AG ,FG 12CD ,又CD AB ,故FGAE ,AEFG 为平行四边形。

2007年高考真题试卷全国卷Ⅰ数学理科参考答案

2007年高考真题试卷全国卷Ⅰ数学理科参考答案

2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积211122S ABSA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. 22cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n=2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤, 也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

2007年高考真题试卷(全国卷Ⅰ)数学(理科)参考答案

2007年高考真题试卷(全国卷Ⅰ)数学(理科)参考答案

2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积112S AB ==连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = , 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 21221)32k BD x x k +=-==+ ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤,也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国2

2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国2

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)kkn kn n P k C p p k n -=-=,,,…,一、选择题1.sin 210=( )A .2B .2- C .12D .12-2.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫-⎪44⎝⎭, B .3ππ⎛⎫⎪44⎝⎭, C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 3.设复数z 满足12i i z+=,则z =( )A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .lnD .ln 25.在A B C △中,已知D 是A B 边上一点,若123A D DBCD C A C B λ==+,,则λ=( ) A .23 B .13 C .13- D .23-6.不等式2104x x ->-的解集是( )A .(21)-,B .(2)+∞,C .(21)(2)-+∞ ,,D .(2)(1)-∞-+∞ ,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1A B 与侧面11AC C A 所成角的正弦值等于( )A .4B .4C .2D 28.已知曲线23ln 4xy x =-的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .129.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种B .60种C .100种D .120种11.设12F F ,分别是双曲线2222x y ab-的左、右焦点,若双曲线上存在点A ,使1290F A F ∠=且123AF AF =,则双曲线的离心率为( )A .2B .2C 2D12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limn n S n∞=→ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 在A B C △中,已知内角A π=3,边BC =.设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S A B C D -中,底面A B C D 为正方形, 侧棱SD ⊥底面A B C D E F ,,分别为A B SC ,的中点. (1)证明E F ∥平面S A D ;(2)设2SD D C =,求二面角A EF D --的大小.20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x -=相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求P A P B的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,….(1)求{}n a 的通项公式;(2)设n b a =,证明1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则. 2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C10.B11.B12.B二、填空题 13.42- 14.0.8 15.2+ 16.52-三、解答题17.解:(1)A B C △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sinBC AC B x x A===3,2sin 4sin sin BCAB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC=++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y 取得最大值18.解:(1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p=+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C495P ξ===.所以ξ的分布列为19.解法一:(1)作F G D C ∥交S D 于点G ,则G 为S D 的中点.连结12A G F G C D∥,,又C D AB∥, 故F G A E A E F G ∥,为平行四边形. EF AG ∥,又A G ⊂平面SA D E F ⊄,平面S A D .所以E F ∥平面S A D .(2)不妨设2D C =,则42SD D G A D G ==,,△为等 腰直角三角形.取A G 中点H ,连结D H ,则D H A G ⊥.又AB ⊥平面S A D ,所以AB D H ⊥,而AB AG A = ,AEBCFSD H G M所以D H ⊥面AEF .取E F 中点M ,连结M H ,则H M EF ⊥.连结D M ,则D M EF ⊥.故D M H ∠为二面角A EF D --的平面角tan 1D H D M H H M∠===所以二面角A EF D --的大小为arctan.解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭,,. 取S D 的中点002b G ⎛⎫⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SA D E F ⊄,平面S A D ,所以E F ∥平面S A D .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,. E F 中点111111(101)0222222M M D EF M D EF M D EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥又1002EA ⎛⎫=- ⎪⎝⎭ ,,,0EA EF EA EF = ,⊥,所以向量MD 和EA的夹角等于二面角A EF D --的平面角.cos3M D E A M D E A M D E A<>==,. 所以二面角A EFD --的大小为arccos3.20.解:(1)依题设,圆O 的半径r 等于原点O 到直线4x -=的距离,即 2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=.(2)(2)P A P B x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB的取值范围为[20)-,.21.解:(1)由132342n n a a n --==,,,,…,整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a a a ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b+->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,,因为132nn a a +-=,所以12n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n nn n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a -<即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-.曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302a t t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。

2007年高考.浙江卷.理科数学试题及解答

2007年高考.浙江卷.理科数学试题及解答

2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“1x >”是“2x x >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分不必要条件 D.既不充分也不必要条件 (2)若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则( )A .126ωϕπ==,B .123ωϕπ==, C .26ωϕπ==, D .23ωϕπ==,(3)直线210x y -+=关于直线1x =对称的直线方程是( )A.210x y +-= B.210x y +-= C.230x y +-= D.230x y +-=(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是关径为6米的圆面,则需安装这种喷水龙头的个数最少是( ) A.3 B.4 C.5 D.6(5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( )A .0.16B .0.32C .0.68D ,0.84(6)若P 两条异面直线l m ,外的任意一点,则( ) A.过点P 有且仅有一条直线与l m ,都平行 B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交 D.过点P 有且仅有一条直线与l m ,都异面(7)若非零向量,a b 满足+=a b b ,则( )A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(8)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )y x O y x O y x O yx O A .B .C .D .(9)已知双曲线22221(00)x ya ba b-=>>,的左、右焦点分别为1F,2F,P是准线上一点,且12PF PF⊥,124PF PF ab=,则双曲线的离心率是()C.2D.3(10)设21()1x xf xx x⎧⎪=⎨<⎪⎩,≥,,,()g x是二次函数,若(())f g x的值域是[)0+,∞,则()g x的值域是()A.(][)11--+∞,,∞B.(][)10--+∞,,∞C.[)0+,∞D.[)1+,∞第II卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)已知复数11iz=-,121iz z=+,则复数2z=.(12)已知1sin cos5θθ+=,且324θππ≤≤,则cos2θ的值是.(13)不等式211x x--<的解集是.(14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是(用数字作答).(15)随机变量ξ的分布列如下:其中a b c,,成等差数列,若3Eξ=,则Dξ的值是.(16)已知点O在二面角ABαβ--的棱上,点P在α内,且45POB∠=.若对于β内异于O的任意一点Q,都有45POQ∠≥,则二面角ABαβ--的大小是.(17)设m为实数,若{}22250()30()25x yx y x x y x ymx y⎧⎫-+⎧⎪⎪⎪-⊆+⎨⎨⎬⎪⎪⎪+⎩⎩⎭≥,≥,≤≥,则m的取值范围是.三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.(18)(本题14分)已知ABC△1,且sin sinA B C+=.(I)求边AB的长;(II)若ABC△的面积为1sin6C,求角C的度数.(19)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.(20)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.(21)(本题15分)已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320k kx k x k -++=的两个根,且212(123)k k a a k -=≤,,,. (I )求1a ,2a ,3a ,7a ; (II )求数列{}n a 的前2n 项和2n S ;(Ⅲ)记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.(22)(本题15分)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(I )求函数()()t y f x g x =-的单调区间;(II )求证:(ⅰ)当0x >时,()f x g ()()t f x g x ≥对任意正实数t 成立; (ⅱ)有且仅有一个正实数0x ,使得00()()x t g x g x ≥对任意正实数t 成立.ED C M A (第19题) B(第20题)2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)A (2)D (3)D (4)B (5)A (6)B (7)C (8)D (9)B (10)C二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. (11)1 (12)725- (13){}02x x << (14)266(15)59(16)90(17)403m ≤≤三、解答题(18)解:(I)由题意及正弦定理,得1AB BC AC ++=,BC AC +=, 两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =, 由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--==, 所以60C =.(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(I )证明:因为AC BC =,M 是AB 的中点, 所以CM AB ⊥. 又EA ⊥平面ABC , 所以CM EM ⊥.(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MD . FCM ∠是直线CM 和平面CDE 所成的角. 因为MH ⊥平面CDE , 所以MH ED ⊥,又因为CM ⊥平面EDM , 所以CM ED ⊥,则ED ⊥平面CMF ,因此ED MF ⊥. 设EA a =,2BD BC AC a ===, 在直角梯形ABDE 中,AB=,M 是的中点,所以3DE a =,EM =,MD =, 得EMD △是直角三角形,其中90EMD =∠, 所以2EM MDMF a DE==.在Rt CMF △中,tan 1MFFCM MC==∠, 所以45FCM =∠,E D C MA BEH故CM 与平面CDE 所成的角是45. 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设EA a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,,.(022)D a a ,,,(0)M a a ,,.(I )证明:因为()EM a a a =--,,,(0)CM a a =,,, 所以0EM CM =, 故EM CM ⊥.(II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥n ,CD ⊥n , 即0CE =n ,0CD =n .因为(20)CE a a =,,,(022)CD a a =,,, 所以02y =,02x =-, 即(122)=-,,n ,2cos 2CM CM CM ==,n n n, 直线CM 与平面CDE 所成的角θ是n 与CM所以45θ=,因此直线CM 与平面CDE 所成的角是45. (20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.(Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得12x =±, 所以1212S b x x =-221b b =-2211b b +-=≤.当且仅当2b =时,S 取到最大值1.(Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,211||||AB x x =-22224214k b k -==+. ②设O 到AB 的距离为d ,则21||Sd AB ==,x又因为d =,所以221b k =+,代入②式并整理,得42104k k -+=,解得212k =,232b =,代入①式检验,0∆>,故直线AB 的方程是2y x =或2y x =2y x =-+,或2y x =--21.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分15分.(I )解:方程2(32)320k kx k x k -++=的两个根为13x k =,22k x =,当1k =时,1232x x ==,, 所以12a =;当2k =时,16x =,24x =, 所以34a =;当3k =时,19x =,28x =, 所以58a =时;当4k =时,112x =,216x =, 所以712a =.(II )解:2122n n S a a a =+++2(363)(222)n n =+++++++2133222n n n ++=+-.(III )证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++, 所以112116T a a ==, 2123411524T a a a a =+=.当3n ≥时,(1)3456212111(1)6f n n n nT a a a a a a +--=+-++, 345621211116n n a a a a a a -⎛⎫+-++⎪⎝⎭≥2311111662622n ⎛⎫+-++ ⎪⎝⎭≥ 1116626n =+>,同时,(1)5678212511(1)24f n n n nT a a a a a a +--=--++5612212511124n n a a a a a a -⎛⎫-+++ ⎪⎝⎭≤31511112492922n ⎛⎫-+++ ⎪⎝⎭≤ 515249224n =-<. 综上,当n ∈N*时,15624n T ≤≤.22.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.(I )解:316433x y x =-+. 由240y x '=-=,得 2x =±.因为当(2)x ∈-∞-,时,y '>0, 当(22)x ∈-,时,0y '<, 当(2)x ∈+∞,时,0y '>,故所求函数的单调递增区间是(2)-∞-,,(2)+∞,, 单调递减区间是(22)-,.(II )证明:(i )方法一:令2332()()()(0)33t x h x f x g x t x t x =-=-+>,则 223()h x x t '=-,当0t >时,由()0h x '=,得13x t =,当13()x x ∈+∞,时,()0h x '>, 所以()h x 在(0)+∞,内的最小值是13()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:对任意固定的0x >,令232()()(0)3t h t g x t x t t ==->,则 11332()()3h t t x t -'=-,由()0h t '=,得3t x =.当30t x <<时,()0h t '>.当3t x >时,()0h t '<,所以当3t x =时,()h t 取得最大值331()3h x x =. 因此当0x >时,()()f x g x ≥对任意正实数t 成立.(ii )方法一:8(2)(2)3t f g ==. 由(i )得,(2)(2)t t g g ≥对任意正实数t 成立. 即存在正实数02x =,使得(2)(2)x t g g ≥对任意正实数t 成立. 下面证明0x 的唯一性: 当02x ≠,00x >,8t =时,300()3x f x =,0016()43x g x x =-,由(i )得,30016433x x >-, 再取30t x =,得30300()3x x g x =,所以303000016()4()33x x x g x x g x =-<=, 即02x ≠时,不满足00()()x t g x g x ≥对任意0t >都成立.故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立. 方法二:对任意00x >,0016()43x g x x =-, 因为0()t g x 关于t 的最大值是3013x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是:300161433x x -≥, 即200(2)(4)0x x -+≤, ①又因为00x >,不等式①成立的充分必要条件是02x =, 所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.。

2007年浙江省高考数学试卷(理科)及解析

2007年浙江省高考数学试卷(理科)及解析

精心整理2007年浙江省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2007?浙江)“x>1”是“x2>x”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)(2007?浙江)若函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,)的最小正周期是π,且,则()A.B.C.D.3.(5分)(2007?浙江)直线x﹣2y+1=0关于直线x=1对称的直线方程是()A.x+2y﹣1=0 B.2x+y﹣1=0 C.2x+y﹣3=0 D.x+2y﹣3=04.(5分)(2007?浙江)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是()A.3 B.4 C.5 D.65.(5分)(2007?浙江)已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤4)=0.84,则P(ξ≤0)=()A.0.16 B.0.32 C.0.68 D.0.846.(5分)(2007?浙江)若P两条异面直线l,m外的任意一点,则()A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面7.(5分)(2007?浙江)若非零向量,满足|+|=||,则()A.|2|>|2+| B.|2|<|2+| C.|2|>|+2| D.|2|<|+2|8.(5分)(2007?浙江)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是()A.B.C.D.9.(5分)(2007?浙江)已知双曲线的左、右焦点分别为F1,F2,P是准线上一点,且PF1⊥PF2,|PF1|?|PF2|=4ab,则双曲线的离心率是()A.B.C.2 D.310.(5分)(2007?浙江)设f(x)=,g(x)是二次函数,若f(g(x))的值域是[0,+∞),则函数g(x)的值域是()A.(﹣∞,﹣1]∪[1,+∞) B.(﹣∞,﹣1]∪[0,+∞) C.[0,+∞)D.[1,+∞)二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2007?浙江)已知复数z1=1﹣i,z1?z2=1+i,则复数z2=.12.(4分)(2007?浙江)已知,且≤θ≤,则cos2θ的值是.13.(4分)(2007?浙江)不等式|2x﹣1|﹣x<1的解集是.14.(4分)(2007?浙江)某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是(用数字作答).15.(4分)(2007?浙江)随机变量ξ的分布列如下:ξ﹣1 0 1P a b c其中a,b,c成等差数列,若.则Dξ的值是.16.(4分)(2007?浙江)已知点O在二面角α﹣AB﹣β的棱上,点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,则二面角α﹣AB﹣β的取值范围是.17.(4分)(2007?浙江)设m为实数,若,则m的取值范围是.三、解答题(共5小题,满分72分)18.(14分)(2007?浙江)已知△ABC的周长为+1,且sinA+sinB=sinC(I)求边AB的长;(Ⅱ)若△ABC的面积为sinC,求角C的度数.19.(14分)(2007?浙江)在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE,M 是AB的中点.(I)求证:CM⊥EM;(Ⅱ)求CM与平面CDE所成的角.20.(14分)(2007?浙江)如图,直线y=kx+b与椭圆=1交于A,B两点,记△AOB的面积为S.(I)求在k=0,0<b<1的条件下,S的最大值;(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.21.(15分)(2007?浙江)已知数列{a n}中的相邻两项a2k﹣1,a2k是关于x的方程x2﹣(3k+2k)x+3k?2k=0的两个根,且a2k﹣1≤a2k(k=1,2,3,…).(Ⅰ)求a1,a3,a5,a7;(Ⅱ)求数列{a n}的前2n项和S2n;(Ⅲ)记,,求证:.22.(15分)(2007?浙江)设,对任意实数t,记.(Ⅰ)求函数y=f(x)﹣g8(x)的单调区间;(Ⅱ)求证:(ⅰ)当x>0时,f(x)≥g t(x)对任意正实数t成立;(ⅱ)有且仅有一个正实数x0,使得g8(x0)≥g t(x0)对任意正实数t成立.2007年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)【考点】必要条件、充分条件与充要条件的判断.【分析】由题意解不等式x2>x,提出公因式x,根据因式分解法,解出不等式的解,再判断是不是必要条件,判断此解和x>1的关系.【解答】解:由x2>x,可得x>1或x<0,∴x>1,可得到x2>x,但x2>x得不到x>1.故选A.【点评】注意必要条件、充分条件与充要条件的判断.2.(5分)【考点】三角函数的周期性及其求法.【分析】先根据最小正周期求出ω的值,再由求出sinφ的值,再根据φ的范围可确定出答案.【解答】解:由.由.∵.故选D【点评】本题主要考查三角函数解析式的确定.属基础题.3.(5分)【考点】与直线关于点、直线对称的直线方程.【分析】设所求直线上任一点(x,y),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.【解答】解:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于x=1对称点为(2﹣x,y)在直线x﹣2y+1=0上,∴2﹣x﹣2y+1=0化简得x+2y﹣3=0故选答案D.解法二:根据直线x﹣2y+1=0关于直线x=1对称的直线斜率是互为相反数得答案A或D,再根据两直线交点在直线x=1选答案D故选D.【点评】本题采用两种方法解答,一是相关点法:求轨迹方程法;法二筛选和排除法.本题还有点斜式、两点式等方法.4.(5分)【考点】圆方程的综合应用.【分析】这是一个与圆面积相关的新运算问题,因为龙头的喷洒面积为36π≈113,正方形面积为256,故至少三个龙头.但由于喷水龙头的喷洒范围都是半径为6米的圆面,而草坪是边长为16米的正方形,3个龙头不能使整个草坪都能喷洒到水,故还要结合圆的性质,进一步的推理论证.【解答】解:因为龙头的喷洒面积为36π≈113,正方形面积为256,故至少三个龙头.由于2R<16,故三个龙头肯定不能保证整个草坪能喷洒到水.当用四个龙头时,可将正方形均分四个小正方形,同时将四个龙头分别放在它们的中心,由于,故可以保证整个草坪能喷洒到水;故选B.【点评】本题考查的知识点是圆的方程的应用,难度不大,属于基础题.5.(5分)【考点】正态分布曲线的特点及曲线所表示的意义.【分析】由正态分布曲线知,P(ξ≤0)=1﹣P(ξ≤4).【解答】解:由P(ξ≤4)=P(ξ﹣2≤2)=P=0.84.又P(ξ≤0)=P(ξ﹣2≤﹣2)=P=0.16.故选A.【点评】本题考查正态曲线的形状认识,从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的.6.(5分)【考点】空间中直线与直线之间的位置关系.【分析】选项A由反证法得出判断;选项B由异面直线的公垂线唯一得出判断;选项C、D可借用图形提供反例.【解答】解:设过点P的直线为n,若n与l、m都平行,则l、m平行,与l、m异面矛盾,故选项A错误;由于l、m只有唯一的公垂线,而过点P与公垂线平行的直线只有一条,故B正确;对于选项C、D可参考下图的正方体,设AD为直线l,A′B′为直线m,若点P在P1点,则显然无法作出直线与两直线都相交,故选项C错误;若P在P2点,则由图中可知直线CC′及D′P2均与l、m异面,故选项D错误.故选B.【点评】本题考查直线与异面直线平行、垂直、相交、异面的情况,同时考查空间想象能力.7.(5分)【考点】向量的模.【分析】本题是对向量意义的考查,根据|||﹣|||≤|+|≤||+||进行选择,题目中注意|+2|=|++|的变化,和题目所给的条件的应用.【解答】解:∵|+2|=|++|≤|+|+||=2||,∵,是非零向量,∴必有+≠,∴上式中等号不成立.∴|2|>|+2|,故选C【点评】大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化.8.(5分)(【考点】利用导数研究函数的单调性;导数的几何意义.【分析】本题可以考虑排除法,容易看出选项D不正确,因为D的图象,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数.【解答】解析:检验易知A、B、C均适合,不存在选项D的图象所对应的函数,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数,故选D.【点评】考查函数的单调性问题.9.(5分)【考点】双曲线的简单性质.【分析】由PF1⊥PF2,|PF1|?|PF2|=4ab可知:PF1|?|PF2|=|F1F2|?|PA|,导出,由此能够求出双曲线的离心率.【解答】解:设准线与x轴交于A点.在Rt△PF1F2中,∵|PF1|?|PF2|=|F1F2|?|PA|,∴,又∵|PA|2=|F1A|?|F2A|,∴,化简得c2=3a2,∴.故选答案B【点评】本题考查双曲线的离心率的求法解三角形的相关知识.解题时不能联系三角形的有关知识,找不到解题方法而乱选.双曲线的离心率的求法是解析几何的一个重点,且方法较多,要善于总结各种方法,灵活应用10.(5分)【考点】函数的图象;函数的值域.【分析】先画出f(x)的图象,根据图象求出函数f(x)的值域,然后根据f(x)的范围求出x的范围,即为g(x)的取值范围,然后根据g(x)是二次函数可得结论.【解答】解:如图为f(x)的图象,由图象知f(x)的值域为(﹣1,+∞),若f(g(x))的值域是[0,+∞),只需g(x)∈(﹣∞,﹣1]∪[0,+∞).而g(x)是二次函数,故g(x)∈[0,+∞).故选:C【点评】本题主要考查了函数的图象,以及函数的值域等有关基础知识,同时考查了数形结合的数学思想,属于基础题.二、填空题(共7小题,每小题4分,满分28分)11.(4分)【考点】复数代数形式的乘除运算.【分析】根据两个复数的积是1+i和所给的另一个复数的表示式,写出复数是由两个复数的商得到的,进进行复数的除法运算,分子和分母同乘以分母的共轭复数,化简以后得到结果.【解答】解:∵复数z1=1﹣i,z1?z2=1+i,∴.故答案为:i【点评】本题考查复数的除法运算,考查在两个复数和两个复数的积三个复数中,可以知二求一,这里的做法同实数的乘除一样,本题是一个基础题.12.(4分)【考点】同角三角函数基本关系的运用;二倍角的余弦.【分析】把题设等式两边平方利用同角三角函数的基本关系和二倍角公式求得sin2θ的值,进而利用θ的范围确定2θ的范围,最后利用同角三角函数的基本关系求得cos2θ的值.【解答】解:∵,∴两边平方,得sin2θ+2sinθcosθ+cos2θ=,即.∴.∵≤θ≤,∴π≤2θ≤.∴.故答案为:﹣【点评】本题主要考查了同角三角函数的基本关系和二倍角公式的化简求值.在利用同角三角函数的基本关系时,一定要注意角度范围,进而判定出三角函数的正负.13.(4分)【考点】绝对值不等式的解法.【分析】利用绝对值的几何意义去绝对值号转化为一次不等式求解.【解答】解:|2x﹣1|﹣x<1?|2x﹣1|<x+1?﹣(x+1)<2x﹣1<x+1,∴?0<x<2,故答案为(0,2).【点评】考查绝对值不等式的解法,此类题一般两种解法,一种是利用绝对值的几何意义去绝对值号,另一种是用平方法去绝对值号,本题用的是前一种方法.14.(4分)【考点】排列、组合的实际应用.【分析】根据题意,分两种情况讨论,①用10元钱买2元1本的杂志,②用10元钱买2元1本的杂志4本和1元1本的杂志2本,分别求得可能的情况数目,由加法原理计算可得答案.【解答】解:根据题意,可有以下两种情况:①用10元钱买2元1本的杂志,共有C85=56②用10元钱买2元1本的杂志4本和1元1本的杂志2本共有C84?C32=70×3=210,故不同买法的种数是210+56=266,故答案为266.【点评】本题考查排列、组合的综合应用,注意分类讨论与分步进行,即先组合再排列.15.(4分)【考点】离散型随机变量的期望与方差.【分析】要求这组数据的方差,需要先求出分布列中变量的概率,这里有三个条件,一个是三个数成等差数列,一个是概率之和是1,一个是这组数据的期望,联立方程解出结果.【解答】解:∵a,b,c成等差数列,∴2b=a+c,∵a+b+c=1,Eξ=﹣1×a+1×c=c﹣a=.联立三式得,∴.故答案为:【点评】这是一个综合题目,包括等差数列,离散型随机变量的期望和方差,主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望的公式.16.(4分)【考点】与二面角有关的立体几何综合题.【分析】本题考查的知识点是二面角及其度量,由于二面角α﹣AB﹣β的可能是锐二面角、直二面角和钝二面角,故我们要对二面角α﹣AB﹣β的大小分类讨论,利用反证法结合点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,易得到结论.【解答】解:若二面角α﹣AB﹣β的大小为锐角,则过点P向平面β作垂线,设垂足为H.过H作AB的垂线交于C,连PC、CH、OH,则∠PCH就是所求二面角的平面角.根据题意得∠POH≥45°,由于对于β内异于O的任意一点Q,都有∠POQ≥45°,∴∠POH≥45°,设PO=2x,则又∵∠POB=45°,∴OC=PC=,而在Rt△PCH中应有PC>PH,∴显然矛盾,故二面角α﹣AB﹣β的大小不可能为锐角.即二面角α﹣AB﹣β的范围是:[90°,180°].若二面角α﹣AB﹣β的大小为直角或钝角,则由于∠POB=45°,结合图形容易判断对于β内异于O的任意一点Q,都有∠POQ≥45°.即二面角α﹣AB﹣β的范围是[90°,180°].故答案为:[90°,180°].【点评】高考考点:二面角的求法及简单的推理判断能力,易错点:画不出相应的图形,从而乱判断.备考提示:无论解析几何还是立体几何,借助于图形是我们解决问题的一个重要的方法,它可以将问题直观化,从而有助于问题的解决.17.(4分)【考点】简单线性规划的应用.【分析】利用不等式表示的平面区域得出区域与圆形区域的关系,把握好两个集合的包含关系是解决本题的关键,通过图形找准字母之间的不等关系是解决本题的突破口.【解答】解:由题意知,可行域应在圆内,如图:如果﹣m>0,则可行域取到x<﹣5的点,不能在圆内;故﹣m≤0,即m≥0.当mx+y=0绕坐标原点旋转时,直线过B点时为边界位置.此时﹣m=﹣,∴m=.∴0≤m≤.故答案为:0≤m≤【点评】本题考查线性规划问题的理解和掌握程度,关键要将集合的包含关系转化为字母之间的关系,通过求解不等式确定出字母的取值范围,考查转化与化归能力.三、解答题(共5小题,满分72分)18.(14分)【考点】正弦定理;余弦定理.【分析】(I)先由正弦定理把sinA+sinB=sinC转化成边的关系,进而根据三角形的周长两式相减即可求得AB.(2)由△ABC的面积根据面积公式求得BC?AC的值,进而求得AC2+BC2,代入余弦定理即可求得cosC的值,进而求得C.【解答】解:(I)由题意及正弦定理,得AB+BC+AC=+1.BC+AC=AB,两式相减,得:AB=1.(Ⅱ)由△ABC的面积=BC?ACsinC=sinC,得BC?AC=,∴AC2+BC2=(AC+BC)2﹣2AC?BC=2﹣=,由余弦定理,得,所以C=60°.【点评】本题主要考查了正弦定理、三角形的面积计算等相关知识.此类问题要求大家对正弦定理、余弦定理、面积公式要熟练掌握,并能运用它们灵活地进行边与角的转化,解三角形问题也是每年高考的一个重点,但难度一般不大,是高考的一个重要的得分点.19.(14分)【考点】棱柱的结构特征;空间中直线与直线之间的位置关系;直线与平面所成的角.【分析】方法一(I)说明△ACB是等腰三角形即可说明CM⊥AB,然后推出结论.(II)过点M作MH⊥平面CDE,垂足是H,连接CH交延长交ED于点F,连接MF,MD.∠FCM是直线CM和平面CDE所成的角,解三角形即可,方法二建立空间直角坐标系,(I)证明垂直写出相关向量CM和向量EM,求其数量积等于0即可证明CM⊥EM.(II)求CM与平面CDE所成的角,写出向量CM,以及平面的法向量,利用数量积公式即可解答.【解答】解:方法一:(I)证明:因为AC=BC,M是AB的中点,所以CM⊥AB.又EA⊥平面ABC,所以CM⊥EM.(II)解:过点M作MH⊥平面CDE,垂足是H,连接CH交延长交ED于点F,连接MF,MD.∠FCM是直线CM和平面CDE所成的角.因为MH⊥平面CDE,ED⊥MH,又因为CM⊥平面EDM,所以CM⊥ED,则ED⊥平面CMF,因此ED⊥MF.设EA=a,在直角梯形ABDE中,,M是AB的中点,所以DE=3a,,,得△EMD是直角三角形,其中∠EMD=90°,所以.在Rt△CMF中,,所以∠FCM=45°,故CM与平面CDE所成的角是45°.方法二:如图,以点C为坐标原点,以CA,CB分别为x轴和y轴,过点C作与平面ABC垂直的直线为z轴,建立直角坐标系C﹣xyz,设EA=a,则A(2a,0,0),B(0,2a,0),E(2a,0,a).D(0,2a,2a),M(a,a,0).(I)证明:因为,,所以,故EM⊥CM.(II)解:设向量n=(1,y0,z0)与平面CDE垂直,则,,即,.因为,,所以y0=2,x0=﹣2,,直线CM与平面CDE所成的角θ是n与夹角的余角,所以θ=45°,因此直线CM与平面CDE所成的角是45°.【点评】本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.利用空间直角坐标系解答时,注意计算的准确性.20.(14分)【考点】直线与圆锥曲线的综合问题;直线的一般式方程;椭圆的简单性质.【分析】(Ⅰ)设出点A,B的坐标利用椭圆的方程求得A,B的横坐标,进而利用弦长公式和b,求得三角形面积表达式,利用基本不等式求得其最大值.(Ⅱ)把直线与椭圆方程联立,进而利用弦长公式求得AB的长度的表达式,利用O到直线AB的距离建立方程求得b 和k的关系式,求得k.则直线的方程可得.【解答】解:(Ⅰ)设点A的坐标为(x1,b),点B的坐标为(x2,b),由,解得,所以=≤b2+1﹣b2=1.当且仅当时,S取到最大值1.(Ⅱ)解:由得,①△=4k2﹣b2+1,=.②设O到AB的距离为d,则,又因为,所以b2=k2+1,代入②式并整理,得,解得,,代入①式检验,△>0,故直线AB的方程是或或,或.【点评】本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.21.(15分)【考点】数列的求和;不等式的证明.【分析】(1)用解方程或根与系数的关系表示a2k﹣1,a2k,k赋值即可.(2)由S2n=(a1+a2)+…+(a2n﹣1+a2n)可分组求和.(3)T n复杂,常用放缩法,但较难.【解答】解:(Ⅰ)解:方程x2﹣(3k+2k)x+3k?2k=0的两个根为x1=3k,x2=2k,当k=1时,x1=3,x2=2,所以a1=2;当k=2时,x1=6,x2=4,所以a3=4;当k=3时,x1=9,x2=8,所以a5=8时;当k=4时,x1=12,x2=16,所以a7=12.(Ⅱ)解:S2n=a1+a2+…+a2n=(3+6+…+3n)+(2+22+…+2n)=.(Ⅲ)证明:,所以,.当n≥3时,=,同时,=.综上,当n∈N*时,.【点评】本题主要考查等差、等比数列的基本知识,考查运算及推理能力.本题属难题,一般要求做(1),(2)即可,让学生掌握常见方法,对(3)不做要求.22.(15分)【考点】利用导数研究函数的单调性;函数恒成立问题;利用导数求闭区间上函数的最值.【分析】(I)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求函数y=f(x)﹣g8(x)的单调区间;(II)(ⅰ)由题意当x>0时,f(x)≥g t(x),求出f(x)最小值,和g t(x)的最大值,从而求证;(ⅱ)由(i)得,g t(2)≥g t(2)对任意正实数t成立.即存在正实数x0=2,使得g x(2)≥g t(2)对任意正实数t,然后再证明x0的唯一性.【解答】解:(I)解:.由y'=x2﹣4=0,得x=±2.因为当x∈(﹣∞,﹣2)时,y'>0,当x∈(﹣2,2)时,y'<0,当x∈(2,+∞)时,y'>0,故所求函数的单调递增区间是(﹣∞,﹣2),(2,+∞),单调递减区间是(﹣2,2).(II)证明:(i)方法一:令,则,当t>0时,由h'(x)=0,得,当时,h'(x)>0,所以h(x)在(0,+∞)内的最小值是.故当x>0时,f(x)≥g t(x)对任意正实数t成立.方法二:对任意固定的x >0,令,则, 由h'(t )=0,得t=x 3.当0<t <x 3时,h'(t )>0.当t >x 3时,h'(t )<0,所以当t=x 3时,h (t )取得最大值.因此当x >0时,f (x )≥g (x )对任意正实数t 成立.(ii )方法一:.由(i )得,g x (2)≥g t (2)对任意正实数t 成立.即存在正实数x 0=2,使得g x (2)≥g t (2)对任意正实数t 成立.下面证明x 0的唯一性:当x 0≠2,x 0>0,t=8时,,,由(i )得,,再取t=x 03,得,所以,即x 0≠2时,不满足g x (x 0)≥g t (x 0)对任意t >0都成立.故有且仅有一个正实数x 0=2,使得g x (x 0)0≥g t (x 0)对任意正实数t 成立.方法二:对任意x 0>0,, 因为g t (x 0)关于t 的最大值是,所以要使g x (x 0)≥g t (x 0)对任意正实数成立的充分必要条件是:, 即(x 0﹣2)2(x 0+4)≤0,①又因为x 0>0,不等式①成立的充分必要条件是x 0=2,所以有且仅有一个正实数x 0=2,使得g x (x 0)≥g t (x 0)对任意正实数t 成立. 【点评】本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力,难度较大.。

2007年全国高考数学(理科)试卷(全国卷Ⅰ)(解析版)

2007年全国高考数学(理科)试卷(全国卷Ⅰ)(解析版)

2007年全国高考数学(理科)试卷(全国卷Ⅰ)(解析版)2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A. B. C. D.2.(4分)设a是实数,且是实数,则a=()A. B.1 C. D.23.(4分)已知向量,,则与()A.垂直 B.不垂直也不平行C.平行且同向 D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.5.(4分)设a,bR,集合1,ab,a={0,,b,则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1) C.(﹣1,﹣1) D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A. B. C. D.8.(4分)设a1,函数f(x)=logax在区间a,2a上的最大值与最小值之差为,则a=()A. B.2 C. D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件 B.充分而不必要的条件C.必要而不充分的条件 D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是()A.4 B. C. D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A. B. C. D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则an}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosAsinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD,已知ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SABC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=ex﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)2;(Ⅱ)若对所有x0都有f(x)ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且ACBD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列an}中,a1=2,,n=1,2,3,…(Ⅰ)求an}的通项公式;(Ⅱ)若数列bn}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007?全国卷Ⅰ)α是第四象限角,,则sinα=()A. B. C. D.【分析】根据tanα=,sin2αcos2α=1,即可得答案.【解答】解:α是第四象限角,=,sin2αcos2α=1,sinα=﹣.2.(4分)(2007?全国卷Ⅰ)设a是实数,且是实数,则a=()A. B.1 C. D.2【分析】复数分母实数化,化简为abi(a、bR)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007?全国卷Ⅰ)已知向量,,则与()A.垂直 B.不垂直也不平行C.平行且同向 D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:向量,,得,⊥,4.(4分)(2007?全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007?全国卷Ⅰ)设a,bR,集合1,ab,a={0,,b,则b﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得ab=0,进而分析可得a、b的值,计算可得答案.【解答】解:根据题意,集合,又a≠0,a+b=0,即a=﹣b,,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007?全国卷Ⅰ)下面给出的四个点中,到直线x ﹣y1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1) C.(﹣1,﹣1) D.(1,﹣1)【分析】要找出到直线x﹣y1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y1=0的距离都为,但,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007?全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A. B. C. D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,A1B=C1B=a,A1C1=a,A1BC1的余弦值为,故选D.8.(4分)(2007?全国卷Ⅰ)设a1,函数f(x)=logax在区间a,2a上的最大值与最小值之差为,则a=()A. B.2 C. D.4【分析】因为a1,函数f(x)=logax是单调递增函数,最大值与最小值之分别为loga2a、logaa=1,所以loga2a﹣logaa=,即可得答案.【解答】解.a>1,函数f(x)=logax在区间a,2a上的最大值与最小值之分别为loga2a,logaa,loga2a﹣logaa=,,a=4,故选D9.(4分)(2008?上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件 B.充分而不必要的条件C.必要而不充分的条件 D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),h(﹣x)=f(﹣x)g(﹣x)=f(x)g(x)=h(x),“h(x)为偶函数”,而反之取f(x)=x2x,g(x)=2﹣x,h(x)=x22是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007?全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=315,当n=6时,C62=15,故选项为D11.(4分)(2007?全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是()A.4 B. C. D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AKl,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AKl,垂足为K(﹣1,2),AKF的面积是4故选C.12.(4分)(2007?全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A. B. C. D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007?全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,不同的选法共有C31?A42=34×3=36种.14.(5分)(2007?全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x0)的图象关于直线y=x对称,则f(x)=3x(xR).【分析】由题意推出f(x)与函数y=log3x(x0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x0)互为反函数,f(x)=3x(xR)故答案为:3x(xR)15.(5分)(2007?全国卷Ⅰ)等比数列an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则an}的公比为.【分析】先根据等差中项可知4S2=S13S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:等比数列an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,an=a1qn﹣1,又4S2=S13S3,即4(a1a1q)=a13(a1a1q+a1q2),解.故答案为16.(5分)(2007?全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007?全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosAsinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosAsinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosAsinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由ABC为锐角三角形得.(Ⅱ)===.由ABC为锐角三角形知,0A<,0﹣A,<A<,,所以.由此有,所以,cosAsinC的取值范围为(,).18.(12分)(2007?全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)P(ξ=3)=0.20.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.η的分布列为η 200 250 300 P 0.4 0.4 0.2 Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007?全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD,已知ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SABC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SOBC,垂足为O,连接AO,说明SO 底面ABCD.利用三垂线定理,得SABC.(Ⅱ)由(Ⅰ)知SABC,设ADBC,连接SE.说明ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SOBC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SABC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SOBC,垂足为O,连接AO,由侧面SBC底面ABCD,得SO底面ABCD.因为SA=SB,所以AO=BO,又ABC=45°,故AOB为等腰直角三角形,AOBO,由三垂线定理,得SABC.(Ⅱ)由(Ⅰ)知SABC,依题设ADBC,故SAAD,由,,.又,作DEBC,垂足为E,则DE平面SBC,连接SE.ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SOBC,垂足为O,连接AO,由侧面SBC底面ABCD,得SO平面ABCD.因为SA=SB,所以AO=BO.又ABC=45°,AOB为等腰直角三角形,AOOB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SABC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007?全国卷Ⅰ)设函数f(x)=ex﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)2;(Ⅱ)若对所有x0都有f(x)ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用ab≥2当且仅当a=b时取等号.得到f''(x)2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f''(x)=exe﹣x.由于,故f''(x)2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g''(x)=f''(x)﹣a=exe﹣x ﹣a,(ⅰ)若a2,当x0时,g''(x)=exe﹣x﹣a2﹣a0,故g(x)在(0,)上为增函数,所以,x0时,g(x)g(0),即f(x)ax.(ⅱ)若a2,方程g''(x)=0的正根为,此时,若x(0,x1),则g''(x)0,故g(x)在该区间为减函数.所以,x(0,x1)时,g(x)g(0)=0,即f(x)ax,与题设f (x)ax相矛盾.综上,满足条件的a的取值范围是(﹣,2.21.(14分)(2007?全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且ACBD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由ACBD知点P在以线段F1F2为直径的圆上,故x02y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x1),代入椭圆方程,并化简得(3k22)x26k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知BD|=再求出AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由ACBD知点P在以线段F1F2为直径的圆上,故x02y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k0时,BD的方程为y=k (x1),代入椭圆方程,并化简得(3k22)x26k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,AC|=.四边形ABCD的面积?BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007?全国卷Ⅰ)已知数列an}中,a1=2,,n=1,2,3,…(Ⅰ)求an}的通项公式;(Ⅱ)若数列bn}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即an的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k1时,==,又,所以=.也就是说,当n=k1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.参与本试卷答题和审题的老师有:wsj1012;qiss;wkqd;danbo7801;豫汝王世崇;minqi5;wdlxh;wdnah;涨停;zhwsd;yhx01248;sllwyn;zlzhan(排名不分先后)菁优网2017年2月4日。

2007年普通高等学校招生全国统一考试 (浙江卷)数学(理工科)

2007年普通高等学校招生全国统一考试 (浙江卷)数学(理工科)

2007年普通高等学校招生全国统一考试 (浙江卷)数学(理工
科)
金雪东
【期刊名称】《上海中学数学》
【年(卷),期】2007(000)000
【摘要】^10F;上海中学数学
【总页数】1页(P)
【作者】金雪东
【作者单位】浙江衢州一中
【正文语种】中文
【中图分类】G63
【相关文献】
1.2009年普通高等学校招生全国统一考试浙江卷(文、理科数学) [J],
2.2007年普通高等学校招生全国统一考试 (重庆卷)数学(理工科) [J], 陶兴模;龙云飞;邓礼咸
3.2007年普通高等学校招生全国统一考试(重庆卷)数学(理工科) [J],
4.2007年普通高等学校招生全国统一考试(浙江卷)数学(理工科) [J],
5.2012年普通高等学校招生全国统一考试数学(浙江卷) [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试(浙江卷)数学(理工科)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)“1x >”是“2x x >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (2)若函数()2sin(),f x x x R ωϕ=+∈,(其中0,||2πωϕ><)的最小正周期是π,且(0)f =(A )1,26πωϕ== (B )1,23πωϕ== (C )2,6πωϕ== (D )2,3πωϕ== (3)直线210x y -+=关于直线1x =对称的直线方程是(A )210x y +-= (B )210x y +-= (C )230x y +-= (D )230x y +-= (4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水。

假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是 (A )3 (B )4 (C )5 (D )6(5)已知随机变量服从正态分布2(2,),(4)0.84N P σξ≤=,则(0)P ξ≤=(A )0.16 (B )0.32 (C )0.68 (D )0.84 (6)若P 是两条异面直线,l m 外的任意一点,则(A )过点P 有且仅有一条直线与,l m 都平行 (B )过点P 有且仅有一条直线与,l m 都垂直 (C )过点P 有且仅有一条直线与,l m 都相交 (D )过点P 有且仅有一条直线与,l m 都异面 (7)若非零向量a 、b 满足|a +b |=|b |,则(A )|2a |>|2a +b | (B )|2a |<|2a +b | (C )|2b |>|a +2b | (D )|2b |<|a +2b |(8)设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个直角坐标系中,不可能正确的是(9)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,P 是准线上一点,且1212,||||4PF PF PF PF ab ⊥⋅=,则双曲线的离心率是(A (B (C )2 (D )3(10)设2,||1(),||1x x f x x x ⎧≥=⎨<⎩,()g x 是二次函数,若(())f g x 的值域是[0,)+∞,则()g x 的值域是(A )(,1][1,)-∞-+∞ (B )(,1][0,)-∞-+∞ (C )[0,)+∞ (D )[1,)+∞ 二.填空题:本大题共7小题,每小题4分,共28分。

(11)已知复数11z i =-,121z z i ⋅=+,则复数2z =_____________。

(12)已知1sin cos 5θθ+=,且324ππθ≤≤,则cos 2θ的值是_____________。

(13)不等式|21|1x x --<的解集是_____________。

(14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张有10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是_____________(用数字作答) (15) 随机变量ξ的分布列如下:其中,,a b c 成等差数列。

若3E ξ=,则D ξ的值是_____________。

(16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=︒。

若对于β内异于O 的任意一点Q ,都有45POQ ∠≥︒,则二面角AB αβ--的大小是_____________。

(17)设m 为实数,若22250(,)30{(,)|25}0x y x y x x y x y mx y ⎧⎫-+≥⎧⎪⎪⎪-≥⊆+≤⎨⎨⎬⎪⎪⎪+≥⎩⎩⎭,则m 的取值范围是_____________。

二.解答题:本大题共5小题,共72分。

解答应写出文字说明,证明过程或演算步骤。

(18)(本题14分)已知ABC ∆1,且sin sin A B C += (Ⅰ)求边AB 的长; (Ⅱ)若ABC ∆的面积为1sin 6C ,求角C 的度数。

(19)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点。

(Ⅰ)求证:CM EM ⊥;(Ⅱ)求CM 与平面CDE 所成的角。

EMACBD(20)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A 、B 两点,记ABC ∆的面积为S 。

(Ⅰ)求在0k =,01b <<的条件下,S 的最大值; (Ⅱ)当||2,1AB S ==时,求直线AB 的方程。

(21)(本题15分)已知数列{}n a 中的相邻两项21,2k k a a -是关于x 的方程的两个根,且212(1,2,3,)k k a a k -≤=(Ⅰ)求1,357,,a a a a ;(Ⅱ)求数列{}n a 的前2n 项的和2n S ;(Ⅲ)记1|sin |()(3)2sin n f n n =+,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n nT a a a a a a a a +-----=++++求证:*15()624n T n N ≤≤∈(22)(本题15分)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-(Ⅰ)求函数8()()y f x g x =-的单调区间;(Ⅱ)求证:(ⅰ)当0x >时,()()t f x g x ≥对任意正实数t 成立;(ⅱ)有且仅有一个正实数0x ,使得800()()t g x g x ≥对于任意正实数t 成立。

2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)A (2)D (3)D (4)B (5)A (6)B (7)C (8)D (9)B (10)C二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. (11)1 (12)725- (13){}02x x << (14)266(15)59(16)90(17)403m ≤≤三、解答题(18)解:(I)由题意及正弦定理,得1AB BC AC ++=,BC AC +=,两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C = ,得13BC AC = , 由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--== , 所以60C =.(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(I )证明:因为AC BC =,M 是AB 的中点, 所以CM AB ⊥. 又EA ⊥平面ABC , 所以CM EM ⊥.(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MD .FCM ∠是直线CM 和平面CDE 所成的角. 因为MH ⊥平面CDE ,所以MH ED ⊥, 又因为CM ⊥平面EDM , 所以CM ED ⊥,则ED ⊥平面CMF ,因此ED MF ⊥.设EA a =,2BD BC AC a ===,EDC MAE H在直角梯形ABDE 中,AB =,M 是AB 的中点,所以3DE a =,EM =,MD =, 得EMD △是直角三角形,其中90EMD =∠,所以EM MDMF DE== .在Rt CMF △中,tan 1MFFCM MC==∠, 所以45FCM =∠,故CM 与平面CDE 所成的角是45. 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设E A a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,,.(022)D a a ,,,(0)M a a ,,.(I )证明:因为()EM a a a =-- ,,,(0)CM a a =,,, 所以0EM CM =, 故EM CM ⊥.(II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥ n ,CD ⊥n , 即0CE =n ,0CD =n . 因为(20)CE a a = ,,,(022)CD a a = ,,, 所以02y =,02x =-,即(122)=-,,n ,cos CM CM CM ==,n n n, 直线CM 与平面CDE 所成的角θ是n 与CM夹角的余角,所以45θ=,因此直线CM 与平面CDE 所成的角是45.(20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.(Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得12x =±, 所以1212S b x x =-2b =2211b b +-=≤.当且仅当2b =时,S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,11||||AB x x =-224k ==+. ②设O 到AB 的距离为d ,则21||Sd AB ==,又因为d =,所以221b k =+,代入②式并整理,得42104k k -+=,解得212k =,232b =,代入①式检验,0∆>, 故直线AB 的方程是22y x =+或22y x =-或22y x =-+,或22y x =--.21.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分15分. (I )解:方程2(32)320k k x k x k -++= 的两个根为13x k =,22k x =, 当1k =时,1232x x ==,, 所以12a =;当2k =时,16x =,24x =, 所以34a =;当3k =时,19x =,28x =, 所以58a =时;当4k =时,112x =,216x =, 所以712a =.(II )解:2122n n S a a a =+++2(363)(222)n n =+++++++2133222n n n ++=+-.(III )证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++, 所以112116T a a ==, 2123411524T a a a a =+=. 当3n ≥时,(1)3456212111(1)6f n n n nT a a a a a a +--=+-++, 345621211116n n a a a a a a -⎛⎫+-++ ⎪⎝⎭≥ 2311111662622n ⎛⎫+-++ ⎪⎝⎭ ≥ 1116626n =+> , 同时,(1)5678212511(1)24f n n n nT a a a a a a +--=--++5612212511124n n a a a a a a -⎛⎫-+++ ⎪⎝⎭≤31511112492922n ⎛⎫-+++ ⎪⎝⎭≤ 515249224n =-< . 综上,当n ∈N *时,15624n T ≤≤. 22.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.(I )解:316433x y x =-+. 由240y x '=-=,得2x =±.因为当(2)x ∈-∞-,时,y '>0, 当(22)x ∈-,时,0y '<, 当(2)x ∈+∞,时,0y '>, 故所求函数的单调递增区间是(2)-∞-,,(2)+∞,, 单调递减区间是(22)-,. (II )证明:(i )方法一:令2332()()()(0)33t x h x f x g x t x t x =-=-+>,则 223()h x x t '=-,当0t >时,由()0h x '=,得13x t =, 当13()x x ∈+∞时,()0h x '>,所以()h x 在(0)+∞,内的最小值是13()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:对任意固定的0x >,令232()()(0)3t h t g x t x t t ==->,则 11332()()3h t t x t -'=-, 由()0h t '=,得3t x =.当30t x <<时,()0h t '>.当3t x >时,()0h t '<,所以当3t x =时,()h t 取得最大值331()3h x x =. 因此当0x >时,()()f x g x ≥对任意正实数t 成立. (ii )方法一:8(2)(2)3t f g ==. 由(i )得,(2)(2)t t g g ≥对任意正实数t 成立. 即存在正实数02x =,使得(2)(2)x t g g ≥对任意正实数t 成立. 下面证明0x 的唯一性:当02x ≠,00x >,8t =时,300()3x f x =,0016()43x g x x =-,由(i )得,30016433x x >-, 再取30t x =,得30300()3x x g x =, 所以303000016()4()33x x x g x x g x =-<=, 即02x ≠时,不满足00()()x t g x g x ≥对任意0t >都成立. 故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立.方法二:对任意00x >,0016()43x g x x =-, 因为0()t g x 关于t 的最大值是3013x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是: 300161433x x -≥, 即200(2)(4)0x x -+≤,① 又因为00x >,不等式①成立的充分必要条件是02x =, 所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.。

相关文档
最新文档