高一数学 立体几何专题复习
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 旋转 (1)以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围 成的旋转体叫做圆柱.
(2)以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转 形成的面所围成的旋转体体叫做圆锥. (3)以半圆的直径所在的直线为旋转轴,将半圆旋转一周形成的旋转 体叫做球体,简称球.
3. 三视图和直观图 (1)三视图是从一个几何体的正前方、正左方、正上方三个不同的方 向看这个几何体,描绘出的图形,分别称为正视图、侧视图、俯视图.
△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧
视图为
()
解析 由正三棱柱的性质得,侧面AED⊥底面EFD,则侧视图必为直 角梯形,且线段BE在梯形内部.
答案 A
题型四几何体的直观图
【例4】(12分)用斜二测法画出水平放置的等腰梯形的直观图.
分析 画水平放置的直观图应遵循以下原则: (1)坐标系中∠x′O′y′=45°;
解析 如图,等腰直角三角形旋转而成的旋转体为圆锥.
1
V=3
S·h=1
3
π R ·h2 =
π1 ×
3
×2 22 =
.8
3
答案 8
3wenku.baidu.com
题型三 三视图与直观图 【例3】螺栓是由棱柱和圆柱构成的组合体,如下图,画出它的三视图.
分析 螺栓是棱柱、圆柱组合而成的,按照画三视图的三大原则 “长对正,高平齐,宽相等”画出. 解 该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六 棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧 面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的 三视图如下图:
图1
图2
图3
学后反思 对于不规则的平面图形绕轴旋转问题,要对原平面图形作适 当的分割,再根据圆柱、圆锥、圆台的结构特征进行判断.
举一反三
1. 观察如图几何体,分析它们是由哪些基本几何体组成的,并说出主要 结构特征.
解析 (1)是一个四棱柱和一个四棱锥组成的,它有9个面,9个顶 点,16条棱.(2)是由一个四棱台、一个四棱柱和一个球组成的,其 主要结构特征就是相应四棱台、四棱柱和球的结构特征.
5 13
学后反思 (1)把空间问题转化为平面问题去解是解决立体几何问 题的常用方法. (2)找出相关的直角梯形,构造直角三角形是解题的关键,正棱 台中许多元素都可以在直角梯形中求出.
举一反三
2. (2009·上海)若等腰直角三角形的直角边长为2,则以一直角边所 在的直线为轴旋转一周所成的几何体的体积是_____.
②已知图形中平行于x轴或y轴的线段,在直观图中,分别画成平行于x′轴 或y′轴的线段. ③已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,在直观图中长度变为原来的一半.
典例分析
题型一 空间几何体的结构特征
【例1】根据下列对几何体结构特征的描述,说出几何体的名称. (1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都 是矩形; (2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封 闭曲面所围成的图形; (3)一个直角梯形绕较长的底边所在的直线旋转一周形成的曲面所围成的 几何体.
题型二 柱、锥、台中的计算问题
【例2】正四棱台的高是17 cm,两底面边长分别是4 cm和16 cm,求棱台 的侧棱长和斜高.
分析 求棱台的侧棱长和斜高的关键是找到相关的直角梯形,然后构造 直角三角形,解决问题.
解 和EE 1,如连图接所示、,设O 、1 棱O 台E、1的E O两BO底、1 B面1 、的O中E心,O则分1 E四1别边是形、O 1 O和,
(2)横线相等,即A′B′=AB,C′D′=CD;
(3)竖线是原来的 1 ,即O′E′= OE.1
2
2
画法 (1)如图1,取AB所在直线为x轴,AB中点O为原点,建立直角坐标 系,…………………………………………………………..3′ 画对应的坐标系x′O′y′,使∠x′O′y′=45°……….5′
第九单元 立体几何
第一节 空间几何体的结构及其三视图和直观图
基础梳理
1. 多面体
(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形 的公共边都互相平行,由这些面所围成的多面体叫做棱柱.
(2)有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这 些面所围成的多面体叫做棱锥.
(3)用一个平行于棱锥底面的平面截棱锥,底面和截面之间的这部分 多面体叫做棱台.
学后反思 在绘制三视图时,若相邻两物体的表面相交,表面的交线是 它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出.例如上 图中,表示上面圆柱与下面棱柱的分界线是正视图中的线段AB、侧视 图中的线段CD以及俯视图中的圆.
举一反三
3. (2008·广东)将正三棱柱截去三个角(如图1所示,A、B、C分别是
分析 要判断几何体的类型,从各类几何体的结构特征入手,以柱、 锥、台的定义为依据,把复杂的几何体分割成几个简单的几何体.
解 (1)如图1所示,该几何体满足有两个面平行,其余六个面都是矩形, 可使每相邻两个面的公共边都互相平行,故该几何体是正六棱柱. (2)如图2所示,等腰梯形两底边中点的连线将梯形平分为两个直角梯 形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台. (3)如图3所示,由梯形ABCD的顶点A引AO⊥CD于O点,将直角梯形分 为一个直角三角形AOD和矩形AOCB,绕CD旋转一周形成一个组合体, 该组合体由一个圆锥和一个圆柱组成.
和B 1 CB1C的中点分别是 O都BB是1O直1 角O梯EE形1O.1
∵ =4 cm,AB=16 cm,
∴ A 1=B 12 cm,OE=8 cm, =2 cm,OB=8 cm,
∴ O 1E1
O 1B1
2
2
=1B 91BcmO , 1O2OBO 1B12
∴E 棱1E 台的O 1 侧O 2棱长O E 为O 11 9E 1c2m,5 斜1 高3为 cm.
(2)三视图的排列顺序:先画正视图,俯视图放在正视图的下方,侧视图 放在正视图的右方. (3)三视图的三大原则:长对正、高平齐、宽相等.
(4)水平放置的平面图形的直观图的斜二测画法: ①在已知图形中,取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把 它们画成对应的x′轴和y′轴,两轴相交于O′,且使∠x′O′y′=45°(或135°), 用它们确定的平面表示水平面.