第31讲 双曲线与方程

合集下载

专题31 几何变换之翻折模型--2024年中考数学核心几何模型重点突破(学生版)

专题31 几何变换之翻折模型--2024年中考数学核心几何模型重点突破(学生版)

专题31几何变换之翻折模型【理论基础】翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。

以这个性质为基础,结合圆的性质,三角形相似,勾股定理设方程思想来考查。

那么碰到这类题型,我们的思路就要以翻折性质为基础,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题。

对于翻折和折叠题型分两个题型来讲,一类题型就是直接计算型,另一类是涉及到分类讨论型,由浅入深难度逐步加大,,掌握好分类讨论型的翻折问题,那么拿下中考数学翻折题型就没问题了。

解决翻折题型的策略1.利用翻折的性质:①翻折前后两个图形全等。

对应边相等,对应角相等②对应点连线被对称轴垂直平分2.结合相关图形的性质(三角形,四边形等)3.运用勾股定理或者三角形相似建立方程。

翻折折叠题型(一),直接计算型,运用翻折的性质,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题。

一般难度小,我们要多做一些这些题型,熟练翻折的性质,以及常见的解题套路。

翻折折叠题型(二),分类讨论型,运用翻的性质,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题。

般难度较大,需要综合运用题中的条件,多种情况讨论分析,需要准确的画图,才能准确分析。

【例1】如图,在ABC 中,点D 是线段AB 上的一点,过点D 作DE ∥AC 交BC 于点E ,将BDE 沿DE 翻折,得到B DE ' ,若点C 恰好在线段B D '上,若90BCD ∠=︒,DC :3CB '=:2,AB =CE 的长度为()A.42B 722C.32D522【例2】如图,点E是菱形ABCD的边CD上一点,将ADE沿AE折叠,点D的对应点F恰好在边BC上,设DE k CE=.(1)若点F与点C重合,则k=__________.(2)若点F是边BC的中点,则k=__________.【例3】(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE 翻折到△BEF处,延长EF交CD边于G点,求证:△BFG≌△BCG.(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB 沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,直接写出AE的长.一、单选题1.一张正方形的纸片,如图进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个角剪下的实际是四个小三角形,再把余下的部分展开,展开后的这个图形的内角和是()度.A .1080︒B .360︒C .180︒D .900︒2.如图,四边形ABCD 为平行四边形,若将△ACB 沿对角线AC 翻折得到△ACE ,连接ED ,则图中与∠CAD 度数一定相等(除∠CAD 外)的角的个数有()A .2个B .4个C .5个D .7个3.如图,点D ,E 是正△ABC 两边上的点,将△BDE 沿直线DE 翻折,点B 的对应点恰好落在边AC 上,当AC =5AF 时,BD BE的值是()A .23B .34C .35D .574.如图,在△ABC 中,AB <AC ,∠C =45°,AB =5,BC =D 在AC 上运动,连接BD ,把△BCD 沿BD 折叠得到BC D '△,BC '交AC 于点E ,C D AB '∥,则图中阴影部分的面积是()A .78B .127C .52D .2075.如图,正方形ABCD 中,AB =4,延长DC 到点F (0<CF <4),在线段CB 上截取点P ,使得CP =CF ,连接BF 、DP ,再将△DCP 沿直线DP 折叠得到△DEP .下列结论:①若延长DP ,则DP ⊥FB ;②若连接CE ,则CE FB ∥;③连接PF ,当E 、P 、F 三点共线时,CF =4;④连接AE 、AF 、EF ,若△AEF 是等腰三角形,则CF =﹣4;其中正确有()A .4个B .3个C .2个D .1个6.已知:如图,在Rt △ABC 中,∠A =90°,AB =8,tan ∠ABC =32,点N 是边AC 的中点,点M 是射线BC 上的一动点(不与B ,C 重合),连接MN ,将△CMN 沿MN 翻折得△EMN ,连接BE ,CE ,当线段BE 的长取最大值时,sin ∠NCE 的值为()A B C D 7.如图,ABCD 中,对角线AC 与BD 相交于点E ,15ADE ∠=︒,BD =将ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ',恰好BE B E '⊥,若点F 为BC 上一点,则B F '的最短距离是()A .1B 2C 3D 58.如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点M 处,折痕为AP ;再将PCM △,ADM △分别沿PM ,AM 折叠,此时点C ,D 落在AP 上的同一点N 处.下列结论不.正确的是()A .M 是CD 的中点B .MN AP⊥C .当四边形APCD 是平行四边形时,3AB MN=D .AD BC∥二、填空题9.如图,在直角坐标系xOy 中,一次函数22y x =-+的图象与x 轴相交于点A ,与y 轴相交于点B .将ABO 沿直线AB 翻折得到ABC .若点C 在反比例函数(0)k y k x=≠的图象上,则k =____________.10.如图,在Rt △ABC 中,∠A =90°,AB 3AC =4,点D 是AB 的中点,点E 是边BC 上一动点,沿DE 所在直线把△BDE 翻折到△B ′DE 的位置,B ′D 交边BC 于点F ,若△CB ′F 为直角三角形,则CB ′的长为______.11.如图,将ABCD 沿对角线AC 折叠,使点B 落在点B '处,若138∠=︒,231∠=︒,则D ∠=___.12.如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C '△,A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为______.13.如图,抛物线y =2x ﹣2x ﹣3与x 轴相交于A ,B 两点,点C 在对称轴上,且位于x 轴的上方,将△ABC 沿直线AC 翻折得到△A B 'C ,若点B '恰好落在抛物线的对称轴上,则点C 的坐标为_____.14.四边形ABCD 为平行四边形,己知AB 13,BC =6,AC =5,点E 是BC 边上的动点,现将△ABE 沿AE 折叠,点B ′是点B 的对应点,设CE 长为x ,若点B ′落在△ADE 内(包括边界),则x 的取值范围为____________.15.如图,点A 、B 分别在平面直角坐标系xOy 的y 轴正半轴、x 轴正半轴上,且OA =4,OB =3,将△AOB 沿AB 折叠,O 的落点为P ,若双曲线y =k x过点P ,则k =________.16.如图,过点A 折叠边长为2的正方形ABCD ,使B 落在B ',连接D B ',点F 为D B '的中点,则CF 的最小值为_____.三、解答题17.如图,四边形ABCD 中,AC AD =,90BAC ∠=︒,45BDC ∠=︒.(1)求∠ABC 的度数;(2)把 BCD 沿BC 翻折得到 BCE ,过点A 作AF BE ⊥,垂足为F ,求证:2BE AF =;(3)在(2)的条件下,连接DE ,若四边形ABCD 的面积为45,10BC =,求DE 的长.18.(1)[初步尝试]如图①,在三角形纸片ABC 中,∠ACB =90°,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为____18____;(2)[思考说理]如图②,在三角形纸片ABC 中,AC =BC =6,AB =10,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,求AM BM的值;(3)[拓展延伸]如图③,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B '处,折痕为CM .①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB '上的一个动点,将△APM 沿PM 折叠得到A PM ' ,点A 的对应点为点A ',A M '与CP 交于点F ,求PF MF 的取值范围.19.综合与实践在数学教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动——折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF ,把纸片展平:再一次折叠纸片,使点A 落在EF 上的点N 处,并使折痕经过点B ,折痕为BM ,把纸片展平,连接AN ,如图①;(1)折痕BM 所在直线是否是线段AN 的垂直平分线?请判断图中ABN 是什么特殊三角形?请写出解答过程.(2)继续折叠纸片,使点A 落在BC 边上的点H 处,并使折痕经过点B ,得到折痕BG ,把纸片展平,如图②,求∠GBN 的度数.(3)拓展延伸:如图③,折叠矩形纸片ABCD ,使点A 落在BC 边上的点A '处,并且折痕交BC 边于点T ,交AD 边于点S ,把纸片展平,连接AA '交ST 于点O ,连接AT ;求证:四边形SATA '是菱形.20.图,一张矩形纸片ABCD ,点E 在边AB 上,将△BCE 沿直线CE 对折,点B 落在对角线AC 上,记为点F .(1)若AB =4,BC =3,求AE 的长.(2)连接DF ,若点D ,F ,E 在同一条直线上,且DF =2,求AE 的长.21.如图1,在△ABC 中,BC =6,P 是BC 边的一点,且不与B ,C 重合,将△APB 沿AP 折叠得'APB △,过点C 作AP 垂线,垂足为D ,连接DB BB B C '',,.(1)AB 和'AB 的数量关系是,AP 与'BB 的位置关系是;(2)如图2,当四边形'BDCB 是平行四边形时,求BP 的长;(3)在(2)的条件下,若BD =CD ,求证:223AB AC AD DP -=⋅.22.矩形ABCD 满足BC =2AB ,E 、F 分别为AD 、BC 边上的动点,连接EF ,沿EF 将四边形DEFC 翻折至四边形GEFH .(1)①如图1,若点G 落在矩形ABCD 内,当∠BFE =57°时,直接写出∠AEG =.②如图2,若点G 落在AB 边上,当G 为AB 中点时,直接写出sin ∠BFH =.(2)如图3,若点G 落在AB 边上,且满足AB =nAG ,①求BH DF 的值(用含n 的代数式表示);②在E 、F 运动的过程中,直接写出DE CF AG+的值(用含n 的代数式表示)23.小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在ABCD 中,AN 为BC 边上的高,AD m AN=,点M 在AD 边上,且BA BM =,点E 是线段AM 上任意一点,连接BE ,将ABE △沿BE 翻折得FBE .(1)问题解决:如图①,当60BAD ∠=︒,将ABE △沿BE 翻折后,使点F 与点M 重合,则AM AN =______;(2)问题探究:如图②,当45BAD ∠=︒,将ABE △沿BE 翻折后,使EF BM ∥,求ABE ∠的度数,并求出此时m 的最小值;(3)拓展延伸:当30BAD ∠=︒,将ABE △沿BE 翻折后,若EF AD ⊥,且AE MD =,根据题意在备用图中画出图形,并求出m 的值.24.【问题情境】:数学活动课上,同学们开展了以折叠为主题的探究活动,如图1,已知矩形纸片()ABCD AD AB >,其中宽8AB =.(1)【动手实践】:如图1,威威同学将矩形纸片ABCD 折叠,点A 落在BC 边上的点M 处,折痕为BN ,连接MN ,然后将纸片展平,得到四边形ABMN ,则折痕BN 的长度为______.(2)【探究发现】:如图2,胜胜同学将图1中的四边形ABMN 剪下,取AN 边中点E ,将ABE △沿BE 折叠得到A BE ' ,延长BA '交MN 于点F .点Q 为BM 边的中点,点P 是边MN 上一动点,将MQP △沿PQ 折叠,当点M 的对应点M '落在线段BF 上时,求此时tan PQM ∠的值;(3)【反思提升】:明明同学改变图2中Q 点的位置,即点Q 为BM 边上一动点,点P 仍是边MN 上一动点,按照(2)中方式折叠MQP △,使点M '落在线段BF 上,明明同学不断改变点Q 的位置,发现在某一位置QPM ∠与(2)中的PQM ∠相等,请直接写出此时BQ 的长度.。

高三生物总复习课件-选择性必修1 稳态与调节:第31讲 神经冲动的产生和传导及神经系统的分级调节

高三生物总复习课件-选择性必修1 稳态与调节:第31讲 神经冲动的产生和传导及神经系统的分级调节
1 23456
重温真题 经典再现
5.(2021·河北卷,11)关于神经细胞的叙述,错误的是( ) A.大脑皮层言语区的H区神经细胞受损伤,患者不能听懂话 B.主动运输维持着细胞内外离子浓度差,这是神经细胞形成静息电位 的 基础 C.内环境K+浓度升高,可引起神经细胞静息状态下膜电位差增大 D.谷氨酸和一氧化氮可作为神经递质参与神经细胞的信息传递
典例·精心深研
考点一 神经冲动的产生和传导
典例·精心深研
跳出题海 1.兴奋的传导与传递方向
(1)在神经纤维上(离体条件下) 神经纤维上的某一点受到刺激后产生兴奋,兴奋在离体神经纤维上以局 部电流的方式双向传导。 (2)正常反射活动中 正常反射活动中,只能是感受器接受刺激,兴奋沿着反射弧传导,所以 正常机体内兴奋在神经纤维上的传导是单向的。 (3)在突触处 兴奋单向传递,由上一个神经元的轴突传递到下一个神经元。
典例·精心深研
【考向1】结合兴奋的产生及在神经纤维上的传导,考查科学思维
1.(2021·湖北卷,17)正常情况下,神经细胞内K+浓度约为150(mmol·L-1), 细胞外液约为4(mmol·L-1)。细胞膜内外K+浓度差与膜静息电位绝对值 呈正相关。当细胞膜电位绝对值降低到一定值(阈值)时,神经细胞兴奋。 离体培养条件下,改变神经细胞培养液的KCl浓度进行实验。下列叙述 正确的是( ) A.当K+浓度为4(mmol·L-1)时,K+外流增加,细胞难以兴奋 B.当K+浓度为150(mmol·L-1)时,K+外流增加,细胞容易兴奋 C.K+浓度增加到一定值[<150(mmol·L-1)],K+外流增加,导致细胞 兴奋
考点一 神经冲动的产生和传导
【考向1】结合兴奋的产生及在神经纤维上的传导,考查科学思维

2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2.3.2 双曲线的几何性质学习目标核心素养1.了解双曲线的简单几何性质.(重点)2.会求双曲线的渐近线、离心率、顶点、焦点坐标等.(重点)3.知道椭圆与双曲线几何性质的区别.1.通过双曲线性质的学习,提升直观想象素养.2.借助性质的应用,提升数学运算素养.1.双曲线的简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称轴x轴,y轴对称中心原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abx(1)实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①等轴双曲线的离心率e=2;②等轴双曲线的渐近线方程为y =±x ,它们互相垂直. 思考:(1)渐近线一样的双曲线是同一条双曲线吗? (2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示] (1)渐近线一样的双曲线有无数条,但它们实轴与虚轴的长的比值一样.(2)e 2=c 2a 2=1+b 2a 2,ba是渐近线的斜率或其倒数.1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±23xB .y =±49xC .y =±32xD .y =±94xC [双曲线的焦点在x 轴上,且a =2,b =3,因此渐近线方程为y =±32x .]2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)B [由题意知,双曲线的焦点在x 轴上,且a =4,因此双曲线的顶点坐标是(-4,0),(4,0).]3.假设双曲线x 24-y 2m =1(m >0)的渐近线方程为y =±32x ,那么双曲线的焦点坐标是________.(-7,0),(7,0) [由双曲线方程得出其渐近线方程为y =±m2x ,∴m =3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标为(-7,0),(7,0).]4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么双曲线的离心率为________.53 [因为渐近线方程为y =43x ,所以b a =43, 所以离心率e =ca=1+⎝ ⎛⎭⎪⎫b a2=1+⎝ ⎛⎭⎪⎫432=53.]由双曲线的方程求其几何性质【例1】 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路探究] 此题给出的方程不是标准方程,应先化方程为标准形式,然后根据标准方程求出根本量a ,b ,c 即可得解,注意确定焦点所在坐标轴.[解] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13, 因此顶点坐标A 1(-3,0),A 2(3,0), 焦点坐标F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133, 渐近线方程为y =±b a x =±23x .作草图,如下图:用双曲线标准方程研究几何性质的步骤1.将双曲线方程化为标准方程形式; 2.判断焦点的位置; 3.写出a 2与b 2的值; 4.写出双曲线的几何性质.1.求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、渐近线方程和离心率. [解] 将方程x 2-3y 2+12=0化为标准方程为y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4,∴双曲线的实轴长2a =4,虚轴长2b =43,焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2. 求双曲线的标准方程【例2】 求适合以下条件的双曲线的标准方程. (1)两顶点间的距离为6,渐近线方程为y =±32x ;(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).[思路探究] 利用待定系数法,当渐近线方程时,可利用双曲线设出方程进展求解. [解] (1)设以直线y =±32x 为渐近线的双曲线方程为x 24-y29=λ(λ≠0),当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=λ(λ≠0),将点(2,-2)代入双曲线方程,得λ=222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.双曲线方程的求解方法1.根据双曲线的几何性质求双曲线的标准方程时,一般采用待定系数法,首先要根据题目中给出的条件,确定焦点所在的位置,然后设出标准方程的形式,找出a ,b ,c 的关系,列出方程求值,从而得到双曲线的标准方程.2.以y =±n m x 为渐近线的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0),以此求双曲线方程可防止分类讨论.2.求适合以下条件的双曲线的标准方程. (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 225-x 2144=1.(2)法一:∵双曲线的渐近线方程为y =±12x ,假设焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),那么b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1. ②由①②联立,无解.假设焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),那么a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.法二:由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0).∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.求双曲线的离心率及其取值范围ABC ABC A B C 曲线的离心率为________.(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求双曲线离心率的取值范围.[思路探究] (1)根据图形并由双曲线的定义确定a 与c 的关系,求出离心率;(2)可以通过图形借助直线与双曲线的关系,因为过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,那么必有b a≥tan 60°.(1)1+32 [由题意2c =AB =BC ,∴AC =2×2c ×sin 60°=23c , 由双曲线的定义,有2a =AC -BC =23c -2c ⇒a =(3-1)c , ∴e =c a=13-1=1+32.] (2)[解] 因为双曲线渐近线的斜率为k =b a, 直线的斜率为k =tan 60°=3,故有b a≥3,所以e =ca =a 2+b 2a 2≥1+3=2, 所以所求离心率的取值范围是[2,+∞).双曲线离心率的求法1.求双曲线的离心率就是求a 和c 的关系,一般可以采用几何观察法和代数关系构造法来寻求a ,b ,c 三者中两者的关系,进而利用c 2=a 2+b 2进展转化.2.求双曲线离心率的取值范围,一般可以从以下几个方面考虑:(1)与范围联系,通过求值域或解不等式来完成.(2)通过判别式Δ>0来构造.(3)利用点在双曲线内部形成不等关系.(4)利用解析式的特征,如c >a ,或c >b .3.F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.[解] 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a.由PF 2=QF 2,∠PF 2Q =90°, 知PF 1=F 1F 2,∴b 2a=2c ,∴b 2=2ac ,∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a 2-2×c a-1=0, 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ(λ≠0),再结合其他条件求得λ,可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为准确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.1.判断(正确的打“√〞,错误的打“×〞)(1)双曲线虚轴的两个端点,不是双曲线的顶点.( ) (2)等轴双曲线的渐近线是y =±x .( ) (3)双曲线的实轴长一定大于虚轴长.( ) [答案] (1)√ (2)√ (3)×2.双曲线x 2a 2-y 23=1(a >0)的离心率为2,那么a =( )A .2B .62 C .52D .1 D [由题意得e =a 2+3a=2,∴a 2+3=2a ,∴a 2+3=4a 2,∴a 2=1,∴a =1.]3.假设双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),那么双曲线的方程是________.x 2-y 29=1 [双曲线的焦点在x 轴上,那么c =10,b a∵a 2+b 2=c 2,解得a 2=1,b 2=9, ∴方程为x 2-y 29=1.]4.求适合以下条件的双曲线的标准方程.(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分.[解] (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1,由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y216=1. (2)由两顶点间的距离是6,得2a =6,即a 2c =4a =12,即c =6,于是b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.。

新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)

新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)

新高考数学复习考点知识讲解与专题训练专题31、 双曲线的方程及几何性质一、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ⎪⎪⎪⎪| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 二 、双曲线的标准方程和几何性质一、常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2、与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b2=t (t ≠0).3、双曲线的焦点到其渐近线的距离为b .4、若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .题型一、双曲线的方程与渐近线的方程例1、【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -=D .221x y -=【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a=±,所以b b a-=-,1b b a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .变式、【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得:2b y a=±, 不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=.本题选择C 选项.例2、【2018年高考全国Ⅱ理数】双曲线22221(0,0)x y a b a b-=>>的离心率A.y =B.y =C.2y x =±D.2y x =±【答案】A【解析】因为c e a ==,所以2222221312b c a e a a-==-=-=,所以b a =因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 变式、(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .y =C .y =D .y x =±【答案】B【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF FO c ==, 故而由几何性质可得160AFO ∠=,即260MOF ∠=,故渐近线方程为y =, 故选B.题型二、双曲线的离心率例3、【2018年高考全国III 理数】设1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD 【答案】C【解析】由题可知2PF b =,2OF c =,PO a ∴=,在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F △中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即223c a =,e ∴=C .变式1、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b -=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()a y x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= ,解得:53e = ,或1e =-(舍)故选:C变式2、【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =,因此,双曲线C 的离心率为2. 故答案为:2.变式3、【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________.【答案】2 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120FB F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠, 又OA 与OB 都是渐近线,∴21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB 的斜率为tan 60ba=︒=,∴该双曲线的离心率为2c e a ====. 题型三、双曲线的综合问题例4、【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>,∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8.故选:B .变式1、(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6【解析】2214y x -=1222A A a ∴==,1224B B b ==,12A A ,12B B ,1PF 成等比数列212112A A PFB B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:6变式2、【2020年高考全国Ⅲ卷理数】.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A . 1B . 2C . 4D . 8【答案】A【解析】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .1、【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c =,所以双曲线的离心率ce a==故选C. 2、【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(0),0) B .(−2,0),(2,0) C .(0,,(0 D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =, 所以焦点坐标为(2,0)±,故选B .3、(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>的,则其渐近线方程为( )A .230x y ±=B .320x y ±=C .20x y ±=D .230x y ±=【答案】C【解析】由题,离心率c e a ===,解得12b a =,因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±=故选:C4、【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .【答案】A【解析】由2,,a b c ====,2P PO PF x =∴=, 又P 在C 的一条渐近线上,不妨设为在by x a=上,则P P b y x a =⋅==1122PFO P S OF y ∴=⋅==△,故选A . 5、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN =A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为3±,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y x =和y x =联立,求得M ,3(,2N ,所以||3MN ==,故选B .6、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2 D .【答案】D【解析】如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+,当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为e == 故选:D.7、【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C=.故答案为:()3,08、【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =,因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.9、【2020年高考江苏】在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 【答案】32【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =⇒=,所以3c ==,所以双曲线的离心率为32c a =.故答案为:3221/ 21。

一建【市政】第31讲-地铁结构及地下水控制(一)

一建【市政】第31讲-地铁结构及地下水控制(一)

2020一级建造师《市政公用工程管理与实务》1v1课前5问1.高架站台客流量不大时,可选择哪种站台形式?2.某地铁车站工程地处市中心,埋深较浅,无地下水影响,土质较差,应选择哪种明挖基坑类型?3.据图判断为哪种工法,说明工序b、工序f与工序g的名称。

此工法存在什么问题,应如何处理?4.浅埋暗挖法“十八字”原则是什么?5.指出图中构造名称,简述初期支护的施工顺序与设计承载要求。

本节任务1.轻轨交通高架桥梁结构2.城市轨道交通的轨道结构3.明挖基坑施工准备4.地下水控制始发井始发就位反力架管片运输拼装接收井1K413012 地铁区间隧道结构与施工方法一、暗挖施工方法比较与选择(二)盾构法(41)进洞时的102)3)保持匀速,严格控制出土量,必要时同步注浆。

4)适当增加压力,提早做二次压浆。

5)作为盾构法隧道设计,应进行纵向强度和变形验算,适当加大螺栓直径。

二、不同方法施工地铁区间隧道的结构形式(一)明挖法:整体式、预制装配式(二)喷锚暗挖法2.衬砌结构变化方案干燥无水坚硬围岩——单层喷锚,不做防水隔离层和二次衬砌;防水要求不高、围岩有一定自稳能力——单层模筑衬砌(整体式衬砌)等截面直墙式适用于坚硬围岩,变截面曲墙式适用于软弱围岩。

(三)盾构法隧道1.管片类型:1)强度较大金属管片、直径和厚度较大混凝土管片;)加劲肋数量应大于千斤顶台数。

:1)具有较大承载力,对通风阻力较小;2)多采用形式。

1)厚度:300mm和350mm;2)环宽:1000mm、1200mm和1500mm。

2.拼装方法【ABK】3.管片拼装【通缝、错缝】1)工艺相对简单;2)变形大;3)对防水要求高。

1)避免误差积累,减少管片破损;)T形接缝,有效减少渗水;3)小半径曲线径向变形控制好;4)配筋量稍大,整环空间刚度大。

4.衬砌环类型123)通用性管片。

1及防火、消防等;2600m;并列反向开启甲级防火门;3之间;4;51K413013 轻轨交通高架桥梁结构二、高架桥基本结构1.高架桥墩台和基础(1)基础:扩大基础(地质情况良好);桩基础(软土地基)。

双曲线的定义,距离之间的绝对值解读

双曲线的定义,距离之间的绝对值解读
(2)渐近线方程为 y=±12x,焦距为 10; (3)以椭圆2x52+y92=1 的焦点为顶点,顶点为焦点. (4)经过两点 P(-3,2 7)和 Q(-6 2,-7).
精辟讲解版
高考调研
高中数学(新课标版·理)
【答案】 (1)y32-1x22 =1 (2)2x02 -y52=1 或y52-2x02 =1 (3)1x62 -y92=1 (4)2y52 -7x52 =1
∴1--613m-3kmk232>+k02 1>0


由②、③、④得 m>4.
精辟讲解版
高考调研
高中数学(新课标版·理)
思考题 4 过点(0,2)的直线 l 与双曲线 x2-y2=2 相 交于不同两点 E、F,若△OEF 的面积不小于 2 2,求直 线 l 的斜率的取值范围.
精辟讲解版
高考调研
高中数学(新课标版·理)
集合 P={M||MF1|-|MF2|=2a},|F1F2|=2c,其中 a、 c 为常数且 a>0,c>0;
①当 a<c 时,P 点的轨迹是双曲线; ②当 a=c 时,P 点的轨迹是两条射线; ③当 a>c 时,P 点不存在.
精辟讲解版
高考调研
2.双曲线的两个标准方程 ax22-by22=1;ay22-bx22=1. (1)a>0,b>0;(2)c2=a2+b2 .
(0,0) (0,a),(0,-a) |y|≥a (0,c),(0,-c) y=abx,y=-abx
e=ac>1
精辟讲解版
高考调研
高中数学(新课标版·理)
题型一 双曲线的定义及应用
例 1 根据下列条件,求曲线的轨迹方程. (1)已知动圆 M 与圆 C1:(x+4)2+y2=2 外切,与圆 C2: (x-4)2+y2=2 内切,求动圆圆心 M 的轨迹方程. (2)在△ABC 中,B(4,0),C(-4,0),动点 A 满足条件 sinB -sinC=12sinA 时,求点 A 的轨迹方程.

第31-32讲结构试验3

第31-32讲结构试验3

第三节结构单调加载静力试验建筑结构单调加载静力试验是指在短时期内对试验对象进行平稳地一次连续施加荷载,荷载从“零”开始一直加到结构构件破坏,或是在短时期内平稳地施加若干次预定的重复荷载后,再连续增加荷载直到结构构件破坏。

一、结构单调加载静力试验的加载制度试验加载制度指的是试验进行期间荷载与时间的关系。

试验加载的数值及加载程序取决于不同的试验对象和试验目的。

科学研究与生产鉴定的结构构件试验一般均需作破坏试验,试验加载常是分级并按几个循环进行,最后才加载至结构破坏。

在进行混凝土结构试验时就必须按试验的性质和要求分别确定相应于各个受力阶段的试验荷载值。

各种不同的试验荷载值可按《混凝土结构设计规范》和《混凝土结构试验方法标准》要求进行计算。

图18—3—1是一个典型的单调加载静力试验的加载程序。

混凝土结构试验的荷载分级、加载程序和测读时间等可按《混凝土结构试验方法标准》(GB 50152—92)第四章试验荷载和加载方法第三节加载程序的规定进行。

二、受弯构件试验(一)试件安装和加载方法预制板和梁等受弯构件一般都是简支的,试验安装时都采用正位试验。

板一般是承受均布荷载,应将荷载均匀施加于板面。

梁承受的荷载较大,施加集中荷载时可用杠杆加载,更方便的是用液压加载器通过分配梁或由液压加载系统控制多台加载器直接加载。

受弯构件试验中经常采用等效荷载,即用几个等效的集中荷载来替代均布荷载进行试验。

(二)试验观测和测点布置1.挠度测量受弯构件最主要量测跨中的最大挠度值f max和弹性挠度曲线。

为了测得真正的f max,同时还必须量测构件两端支座处支承面的刚性位移或沉降值,所以至少要按图18—3—2(a)所示布置三个测点。

对于跨度较大的梁,为了求得梁在变形后的弹性挠度曲线,则相应的要增加至5—7个测点,并沿梁的跨间对称布置,如图18—3—2(b)所示。

对于宽度较大的单向板,一般均需在板宽的两侧布点,当有纵肋的情况下,挠度测点可按测量梁的挠度的原则布置于肋下。

新课改高中数学目录大全

新课改高中数学目录大全

新课标人教版高中数学教材目录必修1第一章集合与函数概念1.1 集合 1.2 函数及其表示 1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数 2.2 对数函数 2.3 幂函数第三章函数的应用3.1 函数与方程 3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系 2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率 3.2 直线的方程 3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程 4.2 直线、圆的位置关系 4.3 空间直角坐标系必修3第一章算法初步1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例第二章统计2.1 随机抽样 2.2 用样本估计总体 2.3 变量间的相关关系第三章概率3.1 随机事件的概率 3.2 古典概型 3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积 2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理 1.2 应用举例 1.3 实习作业第二章数列2.1 数列的概念与简单表示法 2.2 等差数列 2.3 等差数列的前n项和 2.4 等比数列 2.5 等比数列前n项和第三章不等式3.1 不等关系与不等式 3.2 一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线第三章导数及其应用3.1 变化率与导数 3.2 导数的计算 3.3 导数在研究函数中的应用 3.4 生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用 1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明 2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念 3.2 复数代数形式的四则运算第四章框图4.1 流程图 4.2 结构图选修3-4引言第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义 2.平面刚体运动的性质二对称变换1.对称变换的定义 2.正多边形的对称变换 3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn 二多项式的对称变换三抽象群的概念1.群的一般概念 2.直积第二讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论。

双曲线(高三一轮复习)

双曲线(高三一轮复习)

双曲线C的左支上,所以|PF2|-|PF1|=2a,则|PF2|=|PF1|+2a=7+6=13.
数学 N 必备知识 自主学习 关键能力 互动探究
— 13 —
5.(易错题)若双曲线的渐近线方程为y=±3x,它的焦距为2 10,则该双曲线的
标准方程为 x2-y92=1或y92-x2=1
.
解析 双曲线的焦距为2 10,所以c= 10. 当双曲线的焦点在x轴时, 因为双曲线的渐近线方程为y=±3x, 所以ba=3⇒b=3a,
tan 2
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
(5)与双曲线
ห้องสมุดไป่ตู้
x2 a2

y2 b2
=1(a>0,b>0)有共同渐近线的方程可表示为
x2 a2

y2 b2

t(t≠0).
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
基|础|自|测
1.思考辨析(正确的打“√”,错误的打“×”) (1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.( × ) (2)方程xm2-yn2=1(mn>0)表示焦点在x轴上的双曲线.( × ) (3)双曲线mx22-ny22=1(m>0,n>0)的渐近线方程是mx ±ny=0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )
y2 9
-x2=1.因此该
双曲线的标准方程为x2-y92=1或y92-x2=1.
数学 N 必备知识 自主学习 关键能力 互动探究
关键能力 互动探究
— 15 —
命题点1 双曲线的定义及应用
例1 (1)与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆P的圆心在( D )

双曲线的标准方程1

双曲线的标准方程1

坐标为 F1(-c,0),F2(c,0). (3)列式:由 MF1-MF2=±2a,
可得 (x+c)2+y2- (x-c)2+y2=±2a.
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2).
令 c2-a2=b2,得双曲线的标准方程为 ax22-by22=1 (a>0,b>0).
① ②
由①式两边平方得 20-2PF1·PF2=4,
∴PF1·PF2=8, S△F1PF2=12PF1·PF2=12×8=4.
例:若椭圆x2 y2 1(m n 0)与双曲线 x2 y2 1
mn
ab
(a 0,b 0)有相同焦点F1,F2,P是两条曲线的一个
交点,求| PF1 | | PF2 |


把 x=3 代入双曲线方程得 y=± 15,即 M(3,± 15).
由两点间距离公式得|MF|= (3-4)2+(± 15-0)2=4.
5.在三角形ABC中,B(-6,0),C(6,0),直线AB,AC的斜
9
率为 ,求顶点A的轨迹。
4
解:设点A(x,y)(x≠±6,y≠0),依题意,得
y y 9 ,整理,得 x2 y 2 1(x 6)
识”,进一步巩固数形结合思想.
填一填·知识要点、记下疑难点
2.3.1
1.双曲线的定义
把平面内与两个定点 F1,F2 的距离的 差的绝对值等于常数

(小于 F1F2 的正数)的点的轨迹叫做双曲线,这两个定点叫
讲 栏
做 双曲 线的焦点 ,两焦点间的距离叫做双曲线的焦距.
目 开
2.双曲线的标准方程

焦点在 x 轴上

双曲线.参考教案.学生版 普通高中数学复习讲义Word版

双曲线.参考教案.学生版 普通高中数学复习讲义Word版

【例3】 双曲线22149y x -=的渐近线方程是( )A . 32y x =±B . 23y x =±C . 94y x =±D . 49y x =±【例4】 动点P 与点1(05)F -,、2(05)F ,满足216PF PF -=,则点P 的轨迹方程为( ) A .221916x y -= B .221169x y -+=C .221(3)169x y y -+=≥ D.221(3)169x y y -+=-≤【例6】已知椭圆2222135x y m n +=和双曲线2222123x y m n -=有公共的焦点,那么双曲线的渐近线方程是( )A .x y =B .y =C .x y =D .y =【例7】 到两定点1(30)F -,.2(30)F ,的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线【例8】 若R k ∈,则“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件.B .必要不充分条件.C .充要条件D .既不充分也不必要条件双曲线.参考教案【例9】 若双曲线的渐近线方程为3y x =±,它的一个焦点是,则双曲线的方程是______.【例10】 双曲线C 的左、右焦点12F F ,与椭圆2214924x y +=的焦点相同,且离心率互为倒数,则双曲线C 的方程是______________;它的渐近线的方程是__________.【例11】 如图,OA 是双曲线的实半轴,OB 是虚半轴,F 为焦点,且30BAO ∠=︒,ABF S ∆=1(62-,则设双曲线方程是 .【例12】 根据下列条件,求双曲线的标准方程.⑴c =(52)-,,焦点在x 轴上.⑵与双曲线221164x y -=有相同焦点,且经过点2).【例13】 已知下列双曲线方程,求它们的焦点坐标、顶点坐标、渐近线方程,以及焦距、实轴和虚轴长,并在同一坐标系中分别画出这两个双曲线的图象. ⑴223412x y -= ⑵224312y x -=【例14】 已知双曲线C :22221x y a b-=(00)a b >>,C 的两个焦点为12F F ,,直线l 过2F ,且l 与线段12F F 的垂直平分线交点为P ,线段2PF与双曲线交点为Q ,12tan F F Q ∠,2:2:1PQ QF =,求双曲线的方程.【例15】 已知双曲线的中心在原点,过右焦点(20)F ,作斜率为的直线,交双曲线于M N ,两点,且||4MN =,求双曲线方程.【例16】 已知点()0A 和)0B,动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线2y x =-交于D 、E 两点,⑴求轨迹C 的方程;⑵求线段DE 的长.【例17】 已知椭圆的中心在原点,焦点在坐标轴上,焦距为公共焦点,且其实轴比椭圆的长轴小8,两曲线的离心率之比为37∶,求此椭圆、双曲线的方程.【例18】 设12F F ,分别是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=°且12||3||AF AF =,则双曲线的离心率等于( )A B C D【例19】 下 )A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -=【例20】 设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A.)2B.C .()25,D.(2【例21】 设ABC ∆是等腰三角形,120ABC ∠=︒,则以A ,B 为焦点且过点C 的双曲线的离心率为( )ABC.1+ D.1+【例22】 已知双曲线22219x y a -=()0a >的中心在原点,右焦点与抛物线216y x =的焦点重合,则该双曲线的离心率等于( )A .45 BC .54D【例23】 已知点1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若2ABF ∆为锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,)+∞B.(1,C .(1,2) D.(1,1【例28】 已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60︒,则双曲线C 的离心率为_________.【例29】 以双曲线两焦点为直径端点的圆与双曲线的四个交点连同双曲线的焦点恰好构成一个正六边形,则该双曲线的离心率为 .【例30】 过双曲线2222:1(00)x y C a b a b-=>>,的一个焦点作圆222x y a +=的两条切线,切点分别为A , B .若120AOB ∠=︒(O 是坐标原点),则双曲线C 的离心率为 .【例31】 已知双曲线22221(00)x y a b a b-=>>,的左,右焦点分别为12F F ,,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 .三、双曲线的几何性质【例32】 设P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为320x y -=,1F 、2F 分别是双曲线的左、右焦点,若1||3PF =,则2||PF =( ) A .1或5 B . 6 C .7 D .9【例33】 已知点P 在双曲线222x y a -=(0a >)的右支上(P 与2A 不重合),12A A ,分别为双曲线的左、右顶点,且21122A PA PA A ∠=∠,则12PA A ∠=( )A .30︒B .27.5︒C .25︒D .22.5︒【例34】 设12F F ,为双曲线22221(00)sin 2x y b b θθ-=<>π≤,的两个焦点,过1F 的直线交双曲线的同支于A B ,两点,如果||AB m =,则2AF B ∆的周长的最大值是( ). A .4m - B .4 C .4m + D .42m +2a双曲线右支上的任意一点,则OP FP ⋅的取值范围为(7⎡则PA PF ⋅最小值为【例37】 如图,已知双曲线的左、右焦点分别为12F F ,,过1F 的直线与左支交于A B ,两点,若5AB =且实轴长为8,则2ABF △的周长为 .【例38】 若直线l 过点(30),与双曲线224936x y -=只有一个公共点,则这样的直线有________条.【例39】 已知F 是双曲线221412x y -=的左焦点,()14A ,,P 是双曲线右支上的动点,则PF PA +的最小值为 .【例40】 P是双曲线221916x y -=的右支上一点,M 、N 分别是圆1C :22(5)4x y ++=和2C :22(5)1x y -+=上的点,则PM PN -的最大值为 .【例42】 过双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则AFB ∆的面积为______________.【例43】 舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,若不计空气阻力与舰高,问舰A 发射炮弹的方位角应是多少?【例44】已知双曲线22214x ya-=(0)a>的离心率e,⑴求该双曲线的方程;⑵如图,点A的坐标为()0,B是圆22(1x y+=上的点,点M在双曲线右支上,求MA MB+的最小值,并求此时M点的坐标.。

第31讲 群落的结构与演替

第31讲  群落的结构与演替
火烧演替、弃耕演替、放牧演替等。
三、人类活动对群落演替的影响
过度放牧、 导致草原退化
过度砍伐、 污水排放, 导致森林破坏 破坏水域生物群落
(1)人类活动往往是有目的、有意 识地进行的,可以对生物之间、人类与 其他生物之间以及生物与环境之间的相 互关系加以控制,甚至可以改造或重建 新的关系; (2)人类活动往往会使群落演替 按照不同于自然演替的速度和方向进行。
我国从北到南,越靠近热带地区,单位 面积内的物种越丰富
常绿阔叶林
常绿针叶林
三.种间关系
种内互助 种内关系包括 种内竞争
种间关系包括
捕食 竞争 互利共生 寄生
种间关系
(“+”表示有利,“-”表示有害。)
关系名 称
互利共 生 寄生 竞争 捕食
物种 A B
++ +- -- +-
特点
实例
相互依存、彼此有 地衣、根瘤 利 一方有利,一方受 蛔虫和人 害 彼此抑制 种群A得利 种群B有害 水稻和稗草 羊与草




取样方法 取样器取样法(采集罐、吸虫器) 鼠妇 蜈蚣等,它们不适合 常见动物 样方法、 标记重捕法 采集小 诱虫器、吸虫器、镊子等 动物法 记名计算法--直接数个体数; 统计方法 目测估计法--分等级估测
四种抽样调查方法比较
适 用 对 象 样方法 标志重捕法 取样器取样法 显微计数法 常用于双 活动能力强, 活动能力较强、 肉眼看不到 子叶植物、活动范围大 身体微小的动 的酵母菌等 活动能力 的动物,鼠 物如鼠妇 蜈 微生物 弱的动物 鸟 鱼 蚣等 各样方种 群密度的 平均值即 (n1+n2+n3 + …n m ) ÷ m 标记总数 /N=重捕个 体中被标记 的个体数/ 重捕总数 1.记名计算法 -直接数个体 数目; 2.目测估计法 -分等级估测

双曲线的教案

双曲线的教案

双曲线的教案双曲线是初中数学中的一个不可或缺的知识点。

作为一名数学老师,如何灵活地对待这个知识点,帮助学生更好地掌握和理解呢?本教案旨在针对初中学生双曲线这一知识点进行深入浅出的探讨,通过学生感兴趣的方式来引导他们学习和掌握。

一、引入1.1 探索双曲线为了引起学生的兴趣,可以从游戏中入手。

安排一个团队PK 的游戏来探索双曲线。

团队分为两队,每个团队有一名队长,队长要负责组织并分配任务。

队员在规定的时间内需要解决有关双曲线的问题,如怎样画出双曲线、双曲线的特征、双曲线的性质等,任务完成后交由队长审核,获得的分数也直接相加。

这样既锻炼了学生合作的能力,同时也培养了学生对双曲线的兴趣。

1.2 引入双曲线的概念为了让学生更好地了解到双曲线的概念,可以设计一个双曲线的知识答题游戏。

游戏分为多个关卡,每个关卡会给出一个或多个与双曲线相关的问题,学生需要根据问题来选择正确的答案。

游戏难度逐渐递增,同时也可以设置额外奖励来吸引学生的积极参与。

这样不仅让学生了解了双曲线的基础知识,同时也增加了他们的趣味性。

二、探究双曲线2.1 给出具体的例子学生学习新知识时最好有具体的例子来讲解。

对于双曲线也是一样,可以给学生提供一些具体的例子来说明双曲线的性质和图像。

例如,当$b>a>0$时,解析式$y=\frac{b}{a}\sqrt{x^2-a^2}$的图像是一条开口向上的双曲线。

通过这样的例子来让学生形象的认识双曲线,并且进行深入的探究。

2.2 安排实验在学习双曲线时,可以为学生设置一个实验任务,让他们自己去求解与双曲线相关的问题。

例如,在图像中取三点,计算三条线段的斜率,探讨斜率的规律对应的性质是否可以通过自己的计算达成证明。

这样既增加了自学的动力,同时也增强了学生对双曲线的理解。

三、巩固双曲线3.1 在不同场景应用双曲线除了在课堂上学习和探究双曲线外,学生还可以在不同的场景中应用所学的知识。

例如,在钢琴曲线中,学生可以发现许多弯曲的形状相似,而这些形状都可以被拟合成双曲线。

(新课标)人教版高中教材目录

(新课标)人教版高中教材目录

(新课标)人教版高中教材目录——数学必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换1必修5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式======================================================== 选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图2选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线3选修4-4 坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5 不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式4(新课标)人教版高中教材目录——政治必修1 经济生活【第一单元生活与消费】第一课神奇的货币揭开货币的神秘面纱信用工具和外汇第二课多变的价格影响价格的因素价格变动的影响第三课多彩的消费消费及其类型树立正确的消费观综合探究正确对待金钱【第二单元生产、劳动与经营】第四课生产与经济制度发展生产满足消费我国的基本经济制度第五课企业与劳动者公司的经营新时代的劳动者第六课投资理财的选择储蓄存款和商业银行股票、债券和保险综合探究做好就业与自主创业的准备【第三单元收入与分配】第七课个人收入的分配按劳分配为主体多种分配方式并存收入分配与社会公平第八课财政与税收国家财政征税和纳税综合探究提高效率促进公平【第四单元发展社会主义市场经济】第九课走进社会主义市场经济市场配置资源社会主义市场经济第十课社会发展观和小康社会的经济建设全面建设小康社会的经济目标又好又快科学发展第十一课经济全球化与对外开放面对经济全球化积极参与国际经济竞争与合作综合探究经济全球化与中国5【第一单元公民的政治生活】第一课生活在人民当家作主的国家人民民主专政:本质是人民当家作主政治权利与义务:参与政治生活的基础和准则政治生活:有序参与第二课我国公民的政治参与民主选举:投出理性一票民主决策:作出最佳选择民主管理:共创幸福生活民主监督:守望公共家园综合探究有序与无序的政治参与【第二单元为人民服务的政府】第三课我们政府是人民的政府政府的职能:管理与服务政府的责任:对人民负责第四课我国政府受人民的监督政府的权力:依法行使权力的行使:需要监督综合探究政府的权威从何而来【第三单元发展社会主义民主政治】第五课我国的人民代表大会制度人民代表大会:国家权力机关人民代表大会制度:我国的根本政治制度第六课我国的政党制度中国共产党执政:历史和人民的选择中国共产党:以人为本执政为民共产党领导的多党合作和政治协商制度:中国特色的政党制度第七课我国的民族区域自治制度及宗教政策处理民族关系的原则:平等、团结、共同繁荣民族区域自治制度:适合国情的基本政治制度我国的宗教政策综合探究社会主义民主政治的特点和优势【第四单元当代国际社会】第八课走近国际社会国际社会的主要成员:主权国家和国际组织国际关系的决定性因素:国家利益第九课维护世界和平促进共同发展和平与发展:时代的主题世界多极化:不可逆转我国外交政策的宗旨:维护世界和平促进共同发展6【第一单元文化与生活】第一课文化与社会体味文化文化与经济、政治第二课文化对人的影响感受文化影响文化塑造人生综合探究聚焦文化竞争力【第二单元文化传承与创新】第三课文化的多样性与文化传播世界文化的多样性文化在交流中传播第四课文化的继承性与文化发展传统文化的继承文化在继承中发展第五课文化创新文化创新的源泉和作用文化创新的途径综合探究建设“学习型社会”【第三单元中华文化与民族精神】第六课我们的中华文化源远流长的中华文化博大精深的中华文化第七课我们的民族精神永恒的中华民族精神弘扬中华民族精神综合探究铸牢中华民族的精神支柱【第四单元发展中国特色社会主义文化】第八课走进文化生活色彩斑斓的文化生活在文化生活中选择第九课推动社会主义文化大发展大繁荣坚持先进文化的前进方向建设社会主义精神文明第十课文化发展的中心环节加强思想道德建设思想道德修养与科学文化修养综合探究感悟当代中国的先进文化7必修4 生活与哲学【第一单元生活智慧与时代精神】第一课美好生活的向导生活处处有哲学关于世界观的学说第二课百舸争流的思想哲学的基本问题唯物主义和唯心主义第三课时代精神的精华真正的哲学都是自己时代的精神上的精华哲学史上的伟大变革综合探究走进哲学问辩人生【第二单元探索世界与追求真理】第四课探究世界的本质世界的物质性认识运动把握规律第五课把握思维的奥妙意识的本质意识的作用第六课求索真理的历程人的认识从何而来在实践中追求和发展真理综合探究求真务实与时俱进【第三单元思想方法与创新意识】第七课唯物辩证法的联系观世界是普遍联系的用联系的观点看问题第八课唯物辩证法的发展观世界是永恒发展的用发展的观点看问题第九课唯物辩证法的实质与核心矛盾是事物发展的源泉和动力用对立统一的观点看问题第十课创新意识与社会进步树立创新意识是唯物辩证法的要求创新是民族进步的灵魂综合探究坚持唯物辩证法反对形而上学【第四单元认识社会与价值选择】第十一课寻觅社会的真谛社会发展的规律社会历史的主体第十二课实现人生的价值价值与价值观价值判断与价值选择价值的创造与实现综合探究坚定理想铸就辉煌思想政治选修1 科学社会主义常识思想政治选修2 经济学常识思想政治选修4 科学思维常识思想政治选修5 生活中的法律常识思想政治选修6 公民道德与伦理常识8(新课标)人教版高中教材目录——历史必修一第一单元古代中国的政治制度第一课夏、商、西周的政治制度第二课秦朝中央集权制度的形成第三课从汉至元政治制度的演变第四课明清君主专制的加强第二单元古代希腊罗马的政治制度第五课古代希腊民主政治第六课罗马法的起源与发展探究活动课“黑暗”的西欧中世纪——历史素材阅读与研讨第三单元近代西方资本主义政治制度的确立与发展第七课英国君主立宪制的建立第八课美国联邦政府的建立第九课资本主义政治制度在欧洲大陆的扩展第四单元近代中国反侵略、求民主的潮流第十课鸦片战争第十一课太平天国运动第十二课甲午中日战争和八国联军侵华第十三课辛亥革命第十四课新民主主义革命的崛起第十五课国共的十年对峙第十六课抗日战争第十七课解放战争第五单元从科学社会主义理论到社会主义制度的建立第十八课马克思主义的诞生第十九课俄国十月革命的胜利第六单元现代中国的政治建设与祖国统一第二十课新中国的民主政治建设第二十一课民主政治建设的曲折发展第二十二课祖国统一大业第七单元现代中国的对外关系第二十三课新中国初期的外交第二十四课开创外交新局面第八单元当今世界政治格局的多极化趋势第二十五课两极世界的形成第二十六课世界多极化趋势的出现第二十七课世纪之交的世界格局必修二第一单元古代中国经济的基本结构与特点第一课发达的古代农业第二课古代手工业的进步第三课古代商业的发展第四课古代的经济政策第二单元资本主义世界市场的形成和发展第五课开辟新航路第六课殖民扩张与世界市场的拓展第七课第一次工业革命第八课第二次工业革命第三单元近代中国经济结构的变动与资本主义的曲折发展第九课近代中国经济结构的变动第十课中国民族资本主义的曲折发展第四单元中国特色社会主义建设的道路第十一课经济建设的发展和曲折第十二课从计划经济到市场经济第十三课对外开放格局的初步形成第五单元中国近代社会生活的变迁第十四课物质生活与习俗的变迁第十五课交通工具和通讯工具的进步第十六课大众传媒的变迁探究活动课中国民生百年变迁(20世纪初~21世纪)──历史展览第六单元世界资本主义经济政策的调整第十七课空前严重的资本主义世界经济9危机第十八课罗斯福新政第十九课战后资本主义的新变化第七单元苏联的社会主义建设第二十课从“战时共产主义”到“斯大林模式”第二十一课二战后的苏联经济改革第八单元世界经济的全球化趋势第二十二课战后资本主义世界经济体系的形成第二十三课世界经济的区域集团化第二十四课世界经济的全球化趋势必修三第一单元中国传统文化主流思想的演变第1课“百家争鸣”和儒家思想的形成第2课“罢黜百家,独尊儒术”第3课宋明理学第4课明清之际活跃的儒家思想第二单元西方人文精神的起源及其发展第5课西方人文主义思想的起源第6课文艺复兴和宗教改革第7课启蒙运动第三单元古代中国的科学技术与文学艺术第8课古代中国的发明和发现第9课辉煌灿烂的文学第10课充满魅力的书画和戏曲艺术探究活动课中国传统文化的过去、现在与未来──历史小论文第四单元近代以来世界的科学历程第11课物理学的重大进展第12课探索生命起源之谜第13课从蒸汽机到互联网第五单元近代中国的思想解放潮流第14课从“师夷长技”到维新变法第15课新文化运动与马克思主义的传播第六单元20世纪以来中国重大思想理论成果第16课三民主义的形成和发展第17课毛泽东思想第18课新时期的理论探索第七单元现代中国的科技、教育与文学艺术第19课建国以来的重大科技成就第20课“百花齐放”“百家争鸣”第21课现代中国教育的发展第八单元19世纪以来的世界文学艺术第22课文学的繁荣第23课美术的辉煌第24课音乐与影视艺术第一单元梭伦改革第1课雅典城邦的兴起第2课除旧布新的梭伦改革第3课雅典民主政治的奠基石第一单元资料与注释第1课改革变法风潮与秦国历史机遇第2课“为秦开帝业”──商鞅变法第3课富国强兵的秦国第二单元资料与注释第1课改革迫在眉睫第2课北魏孝文帝的改革措施第3课促进民族大融合第三单元资料与注释第1课社会危机四伏和庆历新政第2课王安石变法的主要内容第3课王安石变法的历史作用第四单元资料与注释探究活动课一历史上的改革与发展10第五单元欧洲的宗教改革第1课宗教改革的历史背景第2课马丁·路德的宗教改革第3课宗教改革运动的扩展第五单元资料与注释第六单元穆罕默德·阿里改革第1课18世纪末19世纪初的埃及第2课穆罕默德·阿里改革的主要内容第3课改革的后果第六单元资料与注释第七单元1861年俄国农奴制改革第1课19世纪中叶的俄国第2课农奴制改革的主要内容第3课农奴制改革与俄国的近代化第七单元资料与注释探究活动课二古老文化与现代文明第八单元日本明治维新第1课从锁国走向开国的日本第2课倒幕运动和明治政府的成立第3课明治维新第4课走向世界的日本第八单元资料与注释第九单元戊戌变法第1课甲午战争后民族危机的加深第2课维新运动的兴起第3课百日维新第4课戊戌政变第九单元资料与注释探究活动课三改革成败的机遇与条件选修二近代社会的民主思想与实践第一单元专制理论与民主思想的冲突第1课西方专制主义理论第2课近代西方的民主思想第二单元英国议会与国王的斗争第1课英国议会与王权矛盾的激化第2课民主与专制的反复较量第三单元向封建专制统治宣战的檄文第1课美国《独立宣言》第2课法国《人权宣言》第3课《中华民国临时约法》探究活动课一撰写历史短评──试评辛亥革命和《中华民国临时约法》第四单元构建资产阶级代议制的政治框架第1课英国君主立宪制的建立第2课英国责任制内阁的形成第3课美国代议共和制度的建立第五单元法国民主力量与专制势力的斗争第1课法国大革命的最初胜利第2课拿破仑帝国的建立与封建制度的复辟第3课法国资产阶级共和制度的最终确立第六单元近代中国的民主思想与反对专制的斗争第1课西方民主思想对中国的冲击第2课中国资产阶级的民主思想第3课资产阶级民主革命的酝酿和爆发第4课反对复辟帝制、维护共和的斗争第七单元无产阶级和人民群众争取民主的斗争第1课英国宪章运动第2课欧洲无产阶级争取民主的斗争第3课抗战胜利前中国人民争取民主的斗争第4课抗战胜利后的人民民主运动探究活动课二近代时期人民对民主的追求与斗争──学习编辑历史报纸1112(新课标)人教版高中教材目录——地理必修1第一章行星地球第一节宇宙中的地球第二节太阳对地球的影响第三节地球的运动第四节地球的圈层结构第二章地球上的大气第一节冷热不均引起大气运动第二节气压带和风带第三节常见天气系统第四节全球气候变化第三章地球上的水第一节自然界的水循环第二节大规模的海水运动第三节水资源的合理利用第四章地表形态的塑造第一节营造地表形态的力量第二节山岳的形成第三节河流地貌的发育第五章自然地理环境的整体性与差异性第一节自然地理环境的整体性第二节自然地理环境的差异性必修2第一章人口的变化第一节人口的数量变化第二节人口的空间变化第三节人口的合理容量第二章城市与城市化第一节城市内部空间结构第二节不同等级城市的服务功能第三节城市化第三章农业地域的形成与发展第一节农业的区位选择第二节以种植业为主的农业地域类型第三节以畜牧业为主的农业地域类型第四章工业地域的形成与发展第一节工业的区位因素与区位选择第二节工业地域的形成第三节传统工业区与新工业区第五章交通运输布局及其影响第一节交通运输方式的布局第二节交通运输布局变化的影响第六章人类与地理环境的协调发展第一节人地关系思想的演变第二节中国的可持续发展实践必修3第一章地理环境与区域发展第一节地理环境对区域发展的影响第二节地理信息技术在区域地理环境研究中的应用第二章区域生态环境建设13第一节荒漠化的防治──以我国西北地区为例第二节森林的开发和保护──以亚马孙热带林为例第三章区域自然资源综合开发利用第一节能源资源的开发──以我国山西省为例第二节河流的综合开发──以美国田纳西河流域为例第四章区域经济发展第一节区域农业发展──以我国东北地区为例第二节区域工业化与城市化──以我国珠江三角洲地区为例第五章区际联系与区域协调发展第一节资源的跨区域调配──以我国西气东输为例第二节产业转移──以东亚为例选修1 宇宙与地球第一章宇宙第一节天体和星空第二节探索宇宙第三节恒星的一生和宇宙的演化第二章太阳系与地月系第一节太阳和太阳系第二节月球和地月系第三节月相和潮汐变化第三章地球的演化和地表形态的变化第一节地球的早期演化和地质年代第二节板块构造学说第三节地表形态的变化选修2 海洋地理第一章海洋概述第一节地球上的海与洋第二节人类对海洋的探索与认识第二章海岸与海底地形第一节海岸第二节海底地形的分布第三节海底地形的形成第三章海洋水体第一节海水的温度和盐度第二节海水的运动第四章海-气作用第一节海-气相互作用及其影响第二节厄尔尼诺和拉尼娜现象第五章海洋开发第一节海岸带的开发第二节海洋资源的开发利用第三节海洋能的开发利用第四节海洋空间的开发利用第六章人类与海洋协调发展第一节海洋自然灾害与防范第二节海洋环境问题与环境保护14第三节维护海洋权益加强国际合作选修3 旅游地理第一章现代旅游及其作用第一节现代旅游第二节现代旅游对区域发展的意义第二章旅游资源第一节旅游资源的分类与特性第二节旅游资源开发条件的评价第三节我国的旅游资源第三章旅游景观的欣赏第一节旅游景观的审美特性第二节旅游景观欣赏的方法第三节中外著名旅游景观欣赏第四章旅游开发与保护第一节旅游规则第二节旅游开发中的环境保护第五章做一个合格的现代游客第一节设计旅游活动第二节参与旅游环境保护选修4 城乡规划第一章城乡发展与城市化第一节聚落的形成和发展第二节城市化与城市环境问题第二章城乡合理布局与协调发展第一节城市空间形态及变化第二节城镇布局与协调发展第三节城乡特色景观与传统文化的保护第三章城乡规划第一节城乡规划的内容及意义第二节城乡土地利用与功能分区第三节城乡规划中的主要布局第四章城乡建设与人居环境第一节城乡人居环境第二节城乡商业与生活环境第三节城乡公共服务设施与生活环境选修5 自然灾害与防治第一章自然灾害与人类活动第一节自然灾害及其影响第三节人类活动对自然灾害的影响第二章中国的自然灾害第一节中国自然灾害的特点第二节中国的地质灾害第三节中国的水文灾害第四节中国的气象灾害第五节中国的生物灾害第三章防灾与减灾第一节自然灾害的监测与防御第二节自然灾害的求援与求助第三节自然灾害中的自救与互救15。

高考数学 双曲线及其性质 讲解

高考数学 双曲线及其性质    讲解
- =1
16 9
例2 (2022广东茂名调研三,14)若双曲线经过点(1, 3 ),其渐近线方程为y
=±2x,则双曲线的方程是
.
x2 y2
13
解析 ①若双曲线的焦点在x轴上,则设 a2 - b2 =1(a>0,b>0),则 a2 - b2 =1且
b
1
a =2,联立解得a= 2 ,b=1,则双曲线的方程为4x2-y2=1;
③若Δ<0,则l与C相离.
综合篇
考法一 求双曲线的标准方程 1.定义法:由已知条件,若所求轨迹满足双曲线的定义,则利用双曲线的定 义求出参数a,b的值,从而得到所求的轨迹方程,求轨迹方程时,满足条件 “|PF1|-|PF2|=2a(0<2a<|F1F2|)”的轨迹为双曲线的一支,应注意合理取舍; 2.待定系数法:根据题目条件确定焦点的位置,从而设出所求双曲线的标 准方程,利用题目条件构造关于a,b的方程(组),解得a,b的值,即可求得方 程. 方程的常见设法:
高考 数学
专题九 平面解析几何
9.3 双曲线及其性质
基础篇
考点一 双曲线的定义及标准方程
1.定义
把平面内与两个定点F1,F2的距离之差的绝对值等于常数2a(0<2a<|F1F2|) 的点的轨迹叫做双曲线.
2.标准方程
焦点在x轴上: x2 - y2 =1(a>0,b>0);
a2 b2
焦点在y轴上: y2 - x2 =1(a>0,b>0).
双曲线C的渐近线方程为y=±
bx.∵
a
F1B·F2 B=0,∴F1B⊥F2B,
∴点B在☉O:x2+y2=c2上,如图所示,不妨设点B在第一象限,

高考数学双曲线 椭圆仿射变换

高考数学双曲线 椭圆仿射变换

仿射变换与双曲线的标准方程22221x y a b 相比椭圆的标准方程22221x y a b在形式上极为接近圆的标准方程222x y r .在这一讲,我们着重讲述利用仿射变换将椭圆变换为圆,再利用圆的良好几何性质解决问题的方法.对椭圆的标准方程22221x y a b ,我们需要在y 轴进行伸缩变换x x b y y a得到方程22221x y a a .伸缩变换不会改变直线与圆锥曲线的交点个数、也不会改变共线线段长度的比例关系、平行和直线共点关系等等,但是伸缩变换会改变线段的长度,这需要引起充分的注意.【备注】仿射变换(Affine Transform )是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注: straightness ,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness ,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,而直线上点的位置顺序不变,另特别注意向量间夹角可能会发生变化.仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation )、缩放(Scale )、翻转(Flip )、旋转(Rotation )和错切(Shear ).【备注】在伸缩变换①下,椭圆方程2222:1x y E a b变为圆222:E x y a ,椭圆上的点 00,P x y 变为00,a P x y b,因此过圆E 上一点P 的圆的切线方程为:l 200a x x y y a b 该直线通过伸缩变换①就可以得到过椭圆E 上一点P 的椭圆的切线方程22002:a l x x y y a b即00221x x y ya b典型例题例1(2010年上海)已知椭圆22x y ⑴设直线l 【解析】 ⑴ 作仿射变换,椭圆方程变为222x y a ,则121k k∴C D O E ,根据垂径定理,E 是弦C D 的中点于是E 是CD 的中点.⑵如下图,求作点1P 、2P 的步骤为:1.以O 为圆心,椭圆的长轴长a 为半径作圆;2.过O 作射线,使Ox 轴正方向到该射线的角为 ,射线与圆交于Q ;3.过圆与y 轴正向的交点作y 轴的垂线,过圆与x 轴负向的交点作x 轴的垂线,两条垂线交于点P ;4.连结P Q ,取其中点N ;认识仿射变换5.连结ON ,过N 作与ON 垂直的直线,交圆于点1P 、2P ; 6.过点1P 、2P 作x 轴的垂线,交椭圆于点1P、2P 即为所求. 证明:这样作图相当于作了纵轴方向上的伸缩变换22b y y a,容易证明线段P Q 与12P P互相平分,而坐标轴方向上的伸缩变换不改变线段的比例,因此PQ 与12PP 互相平分.这样就有12121222PQ PN PP PP PP PP【备注】题⑴说明弦中点问题中由点差法得到的结论可以看做是椭圆的“垂径定理”;题⑵利用仿射变换完成纯几何...作图,注意椭圆的参数方程在仿射变换图形下获得了确切的几何意义.练习1(2012年湖北理)设A 是单位圆221x y 上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (0m ,且1m ).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求焦点坐标.【解析】 曲线C 的方程为2221y x m.当01m 时,曲线C 为焦点在x轴上的椭圆,焦点坐标为,0;当1m 时,曲线C 为焦点在y轴上的椭圆,焦点坐标为 0,.通过仿射变换可以将椭圆内接三角形变为圆内接三角形,它们之间存在固定的比例关系.而求解圆内接三角形的面积运算量要低很多.例2(2012年人大附开学考试)已知直线【解析】作仿射变换x x y,则直线l 是椭圆22334y x即2213944x y 的切线. 设O 到直线l 的距离为d ,23944d ≤(∵直线l 的斜率存在)12AOB A O B S d△△利用仿射变换处理面积问题等号当且仅当23 2d 时取得.因此AOB△.练习2(2010年朝阳一模文)已知椭圆22162x y中有一内接三角形ABC,其顶点C的坐标 1,AB.当ABC△的面积最大时,求直线AB的方程.B'A'O【解析】将椭圆通过仿射变换x xy y变成圆226x y,则A B C ABCS△△,1A Bk,C 坐标为,.∵直线OC ∥直线A B ,∴A B C OA BS S△△设直线A B 的方程为0x y m,则O到直线A B ,A B12OA BS△3≤∴当232m,即mOA BS△取得最大值3,此时直线A B 的方程为0xy.因此OABS△AB的方程为0x .练习3(2011年顺义二模)已知椭圆2214xy的左、右顶点分别记为A、B.过A斜率为1的直线交椭圆于另一点S,在椭圆C上的T满足:TSA△的面积为15.试确定点T的个数.【解析】将椭圆通过仿射变换12x xy y变成圆224x y,则225S AT SATS S△△.AS :22y x,即240x y∴圆心到直线ASAS∴T 到直线AS的距离为25142,∴在优弧上存在两个T 点2 T 点.综上,点T 的个数也即点T 的个数是2.练习4 (2010年宣武一模文)直线:220l x y 与椭圆2214y x 的交点为A 、B .求使PAB 的面积为12的点P 的个数;【解析】 2.练习5(2011年西城二模)设直线l 与椭圆2219x y 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC △面积的最大值.【解析】 如图,将坐标系原点平移至C ,则椭圆方程变为22319x y 即22690x x y .设直线AB 的方程为x my a ,则联立直线方程与椭圆方程有22690x my x x y a ,即266910y m yx a x a而12121y y x x ,∴6910a ,35a ,因此35CD . 将椭圆通过变换3x x y y变为圆229x y ,则13ABC A B C S S △△O (O')B'A'D (D')C (C')∵35C D ,3O C ,∴3153435A B C O A B S C D S O D△△设O 到A B 的距离为d,1122O A B S A B d d △∴当且仅当29d 时,O A B S △取得最大值92于是13128ABC O A B S S △△≤,即ABC △面积的最大值为38.例3(2011年辽宁)如图,已知椭圆的短轴为MN ,且1C 、C 这四点按纵坐标从大到小依次为【解析】 ⑴ 设2MN a ,则椭圆1C :2222211e x y a a ;椭圆2C :2222211e x y a a ;231e 4BC AD.⑵对椭圆1C 作仿射变换x x y ,则1C :222x y a ;对椭圆2C 作仿射变换x x ,1y y ,则2C :222x y a .BO AN EO EN BO AN k k∥211e EO EN k k设点 cos ,sin E a a (0π ),则sin cos EO k,sin cos 1EN k利用仿射变换处理弦长问题∴设cos 1cos EO EN k y k,则cos 1cos y , 1cos 1,11y 因此 ,02,y BO AN ∥2121e,∴当0<e时,不存在;当e 时,存在.利用仿射变换可以将一些题目中“平凡”的条件转化为对解题很有利的“特殊”条件,比如:① 利用仿射变换可以改变斜率,从而可以使得某些与椭圆相关的平行四边形转化为矩形,从而简化问题;② 利用仿射变化可以将椭圆变为圆,从而可以使某些与椭圆相关的平行四边形转化为菱形,从而简化问题. 例422x y【解析】 作仿射变换,椭圆方程变为224x y ,且OM ON .(理科)四边形OM P N 为正方形,于是OP M N∴P 点的轨迹方程为圆228x y , 因此P 点的轨迹方程为228x,即22184x y .∴存在符合题意的点1F 、2F ,坐标为 2,0 .(即椭圆的两个焦点) (文科)四边形OM P N 为矩形,OP M N ∴P 点的轨迹方程为圆2220x y ,因此P 点的轨迹方程为2220x,即2212010x y .∴存在符合题意的点F ,坐标为,0.(即椭圆的右焦点). 练习1(2011年海淀一模)设直线:l y kx m (12k ≤)与椭圆22143x y 相交于A 、B 两点,以线利用仿射变换凸显隐藏几何条件段OA ,OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.【解析】 用仿射变换椭圆转化为圆,于是平行四边形OAPB 变为菱形OA P B ,由12AB k ≤得A B k ≤.根据菱形的对角线互相垂直,于是OP k ≥,因此1P x ≤.也就是说,1P P x x ≤ 于是22222231344P P P P Px x OP x y x133,4因此OP的取值范围是,.练习2(2012年海淀一模理)已知直线1l :1y kx m 与椭圆G :2212x y 交于A 、B 两点,直线2l :2y kx m (12m m )与椭圆G 交于C 、D 两点,且AB CD ,如图所示.⑴ 证明:120m m ;⑵ 求四边形ABCD 的面积S 的最大值.【解析】 考虑用仿射变换.⑴ ABCD 为椭圆内接平行四边形,作仿射变换后变为圆内接平行四边形,为矩形.因此对角线为直径,也就是说椭圆内接平行四边形的对角线互相平分于原点,于是120m m ;⑵ 圆内接矩形当且仅当矩形为正方形时面积最大,最大值为4,于是椭圆内接平行四边形面积.【备注】也可以看作相关直线问题⑴ 设直线y kx m 与椭圆交于两点A 、B ,则联立直线与方程,有22212102k x kmx m∴22AB k22k∴AB CD 等价于2212m m ,又12m m ,∴12m m ,即120m m⑵ 由①,AB 与CD 关于原点对称,四边形ABCD 为对称中心在原点的平行四边形.不妨设10m ,则4ABCD OABS S△21422k22211221412m k m k≤(当且仅当22112m k时取得等号). ∴四边形ABCD 的面积S 的最大值是例5Q【解析】 如图,将椭圆22182x y通过仿射变换2x x y y变成圆228x y ,则 2,2M 过M 作x 轴的垂线,垂足为H ,交圆228x y 于点N ,则易知 2,2N . ∵ 2,2N ,∴OM ON ,又OM A B ∥,∴ON A B 根据垂径定理,N 平分弧A B ,于是M N是A M B 的平分线.于是22MP M P M Q MQ k k k k ,又MH PQ ,∴MPQ △是等腰三角形,证毕.【备注】(2012年密云一模理)如图所示,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的3倍,且经过点 3,1M .平行于OM 的直线l 在y 轴上的截距为m (0m ),且交椭圆于A 、B 两不同点.⑴ 求椭圆的方程; ⑵ 求m 的取值范围;⑶ 求证:直线MA 、MB 与x 轴始终围成一个等腰三角形.【解析】 ⑴ 221182x y ;⑵ 设直线l :13y x m (0m ),则 2,00,2m ;⑶ 视为连线垂直问题的推广或用仿射变换均可解决.练习6(2011年四中高二期中考试)已知点 2,1M 是椭圆22182x y 上一点,直线102y x m m 与椭圆相交于A 、B 两点.求MAB 的内心的横坐标.【解析】 考虑到图形的特点与求解的问题,考虑使用仿射变换将椭圆转化为圆加以解决.在圆中,容易证明M Q 是B MA 的平分线;于是MQ 是BMA 的平分线.因此MAB 的内心的横坐标为M 的横坐标,也就是2.例6(201122x y【解析】 ⑴ 如图,作仿射变换x x y yC 变为圆C :223x y .∴32OP Q OPQ S S△△ 设O 到直线P Q 的距离为d ,则1322d ,解得d 于是P Q ,OP OQ ,因此2212x y ,2221x y 而222211223x y x y ,∴22221212x x x x 3,2222121223y y y y 2 .综合⑵设PQ 的斜率为k ,则OM 的斜率为23k,OM PQ OM P Q333 设2249k m k ,则43m ≥.3OM PQ 52≤.⑶∵ODE ODG OEG S S S△△△32OD E OD G OE G S S S △△△∴在圆C 中,D E 、D G 、E G 所对的圆心角均为90 因此,不存在满足题意的三角形.练习7(2013北京昌平二模理)如图,已知椭圆22221x y a b (0a b )的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率e,F 为椭圆的左焦点,且1AF BF . ⑴求此椭圆的方程;⑵设P 是此椭圆上异于A B ,的任意一点,PH x 轴,H 为垂足,延长HP 到点Q 使得HP PQ . 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【备注】设AQ 与椭圆交于点R ,则NR 与椭圆相切,此题与⑵均可以利用仿射变换解决.例7已知椭圆22143x y上的两点A 、点.设直线PB 与椭圆相交于D ,证明:直线利用仿射变换将问题转化为几何问题【解析】 将椭圆通过伸缩变换为圆,则需证明:若点A 、B 为关于圆的直径HG 对称的两点,HG 所在直线上的一点P 与B 点的连线交圆于D ,则AD 与PH 交于定点E .证明如下:如图,连结AG 、GD ,设PA 与圆交于C .HG PDBECA∵G 为弧CD 和弧AB 的中点,∴AG 、DH 分别是A 和BDG 的平分线 而DG DH ,∴DG 是EDP 的平分线.于是AE DE EGAP DP GP,因此2AE DE EG AP DP GP , 而AE DE EG EH (相交弦定理),AP DP AP CP PG PH (切割线定理) 于是EG EH EG EG PG PH PG PG ,即EG PGEH PH .∵PG PH 为定值(在本例中为13),∴EG EH 为定值,E 为定点(在本例中 1,0E ).练习8 设直线l :y kx m 与椭圆2212x y 相交于M 、N 两点,F 是椭圆的右焦点,直线FM 与直线FN 的斜率互为相反数.求证:直线l 过定点,并求该定点的坐标.【解析】 直线l 过定点 2,0.本质与例题相同.练习9(2010年江苏)如图,在平面直角坐标系xOy 中,已知椭圆22195x y 的左、右顶点为A 、B ,右焦点为F .设过点 9,T m 的直线,TA TB 与此椭圆分别交于点 11,M x y 、 22,N x y ,其中0m ,10y ,20y .设9t ,求证:直线MN 必过x 轴的一定点(其坐标与m 无关).【解析】 如下左图所示,利用坐标变换x xa y y b可以把椭圆22221x y a b 变换圆222x y a ,由于伸缩变换不改变共线以及线段长度的比,于是问题就转化为如下右图所示的:已知以AB 为直径圆O ,T 为与AB 垂直的圆外直线上任意一点,连结AT 、BT 与圆O 分别交于M 、N .求证MN 恒过定点D .x法1连结AN 、MB 并延长交于点T ,容易知道T 与T 在同一条垂直于AB 的直线上(B 为ATT △的垂心)CT'T对ABT △的割线MN ,根据梅涅劳斯定理有1AD BM T NDB MT NA ;而AM 、NB 、T T 交于一点,根据赛瓦定理有1BM T N ACMT NA CB;于是1AD CB DB AC,即AD ACDB BC 为定值,因此D 为定点. 法2CT NM A BOD 设4AC a ,TAC ,NAC ,则4cos aAT,2cos AM a ,2cos a BT ,2cos BN a ,AN AD ADN MDB AD AD DM AN AM MB MD AM DM DB MD DB MB BNADM NDB BN DB△∽△△∽△而AN AT ANT BMT BM BT △∽△,于是22824AD AT AM a DB BT BN a.法3PCD O BA M NT 设2MOC ,2NOC ,则OC 到OP 的角为 ,以O 为极点,OC 为极径,那么直线MN 的方程为 cos ,d O MN ,即 cos cos AB 于是ODcos cos AB cos cos sin sin cos cos sin sin AB1tan tan 1tan tan AB而12TAC MAB MOB ,12NAB NOB ,∴tan TC AC ,tan tan BCBTC TC因此11BC AC OD AB BC AC,于是点D 为定点.。

人教版选修21第二章双曲线双曲线的标准方程讲义

人教版选修21第二章双曲线双曲线的标准方程讲义

案例〔二〕——精析精练课堂 合作 探究重点难点打破知识点一 双曲线的定义平面内与两个定点1F ,2F 的间隔 的差的绝对值等于常数(小于21F F 且不等于零)的点 的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的间隔 叫做双曲线的焦距。

注意 〔1〕在此定义中“常数要大于0且小于21F F 〞这一限制条件非常重要,不可去 掉。

〔2〕假如定义中常数改为等于21F F ,此时动点轨迹是以1F 、2F 为端点的两条射线(包 括端点)。

〔3〕假如定义中常数为0,此时动点轨迹为线段1F 2F 的垂直平分线。

(4)假如定义中常数改为大于21F F ,此时动点轨迹不存在。

(5)假设定义中“差的绝对值〞中的“绝对值〞去掉的话,点的轨迹成为双面线的一支。

(6)设()y x M ,为双曲线上的任意一点,假设M 点在双曲线右支上,那么()02,2121>=->a a MF MF MF MF ;假设M 在双曲线的左支上,那么 a MF MF MF MF 2,2121-=-<,因此得a MF MF 221±=-,这是与椭圆不同的地方。

知识点二 双曲线的标准方程〔1〕通过比拟两种不同类型的双曲线方程()0,12222>>=-b a by a x (焦点在x 轴上)和()0,12222>>=-b a bx a y (焦点在y 轴上),可以看出,假如2x 项的系数是正的,那么焦点就在 x 轴上;假如2y 项的系数是正的,那么焦点就在y 轴上。

对于双曲线,a 不一定大于b ,因此不能像椭圆那样通过比拟分母的大小来断定焦点在哪一条 坐标轴上。

焦点在x 轴上的方程,只要将y x ,互换就能得到 焦点在y 轴上的方程。

(2)无论双曲线的焦点在哪个坐标轴上,标准方程中的c b a ,,三个量都满足222b ac +=所以c b a ,,恰好构成一个直角三角形的三边,且c 为斜边,如下图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第31讲 双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b-=,即0x y a b ±=,或by x a =±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a =±的双曲线方程可以设为()22220x y a bλλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、通径过双曲线()22221,0x y a b a b-=>焦点F 作垂直于实轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=. 5、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.6、双曲线的焦点到渐近线的距离为b (虚半轴长).7、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠8、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.9、平行于(不重合)渐近线的直线与双曲线只有一个交点. 【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条.10、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则O M a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E 为CD 的中点,则2122b k k a=.12、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b-=>交于,A B 两点,且AM BM =,则直线l 的斜率2020ABb x k a y =.13、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab . 【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________. 【变式2】双曲线221412x y -=的两条渐近线的夹角为_________. 【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若b a +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN 的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值;(2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是y x =,双曲线过点()6,6P .(1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP ⋅的值;(3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上. (3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.例15、已知等轴双曲线C 的两个焦点1F 、2F 在直线y x =上,线段12F F 的中点是坐标原点O ,且双曲线C 经过点33,2⎛⎫ ⎪⎝⎭.(1)已知下列所给的三个方程中有一个是等轴双曲线C 的方程:①22274x y -=;②9xy =;③92xy =.请确定哪个是等轴双曲线C 的方程,并求出此双曲线C 的实轴长; (2)现要在等轴双曲线C 上选一处P 建一座码头,向()3,3A 、()9,6B 两地转运货物.经测算,从P 到A 、从P 到B 修建公路的费用都是每单位长度a 万元,则码头应建在何处,才能使修建两条公路的总费用最低? (3)如图,函数1y x=+的图象也是双曲线,请尝试研究此双曲线的性质,你能得到哪些结论?l。

相关文档
最新文档