七年级初一数学 第五章 相交线与平行线单元测试附解析

合集下载

人教版七年级数学下册第5章《相交线与平行线》单元测试卷(解析版)

人教版七年级数学下册第5章《相交线与平行线》单元测试卷(解析版)

人教版七年级数学下册第5章《相交线与平行线》单元测试卷一.选择题1.下列说法,正确的是( )A. 若ac=bc,则a=bB. 两点之间的所有连线中,线段最短C. 相等的角是对顶角D. 若AC=BC,则C是线段AB的中点【答案】B【解析】【分析】根据等式的性质可判断A的正误;根据线段的性质判断B的正误;根据对顶角的性质判断C的正误;根据中点的性质判断D的正误.【详解】解:A、若ac=bc(c≠0),则a=b,故此选项错误,B、两点之间的所有连线中,线段最短,说法正确,故此选项正确,C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误,D、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误,故选:B.【点睛】此题主要考查了等式的性质、对顶角的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.2.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )A. 50°B. 55°C. 60°D. 70°【答案】D【解析】【分析】先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.【详解】∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故答案选D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A. 55°B. 60°C. 65°D. 70°【答案】D【解析】【分析】根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.4.图中的∠1、∠2可以是对顶角的是( )A. B.C. D.【答案】C【解析】【分析】根据对顶角的定义,具有公共顶点且角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:A、∠1与∠2不是对顶角,B、∠1与∠2不是对顶角,C、∠1与∠2是对顶角,D、∠1与∠2不是对顶角,故选:C.【点睛】本题主要考查了对顶角的定义,熟练掌握定义是解题关键.5.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是( )A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角【答案】C【解析】【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【详解】解:∵∠AOE=90°,∴∠BOE=90°,∵∠AOD=∠BOC,∴∠EOC+∠BOC=90°,∠EOC+∠AOD=90°,∠AOE+∠EOB=180°,故A、B、D选项正确,C错误.故选:C.【点睛】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.6.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )A. 22°B. 46°C. 68°D. 78°【答案】C【解析】【分析】由垂直的定义可知∠AOB=90°,由角平分线的定义可知∠BOC=∠BOD=22°,从而求得∠AOC的度数. 【详解】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.故选C.【点睛】本题考查了垂直的定义,角平分线的定义.7.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为( )A. 78°B. 132°C. 118°D. 112°【答案】D【解析】【分析】根据补角的性质、对角的性质,再进行代换可以求出∠2-∠3的度数.【详解】延长直线c与b相交,令∠2的补角是∠4,则∠4=180º-∠2,令∠3的对顶角是∠5,则∠3=∠5,∵a∥b,∴∠6=∠1=68°.又∠4+∠5=∠6.∴(180º-∠2)+∠3=68°即:∠2-∠3= 112°【点睛】本题考查了补角的性质、对角的性质等知识点,熟练掌握是本题的解题关键.8.如图,下列条件中,能判断AB∥CD的是( )A. ∠FEC=∠EFBB. ∠BFC+∠C=180°C. ∠BEF=∠EFCD. ∠C=∠BFD【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A.由∠FEC=∠EFB,可得CE∥BF,故本选项错误;B.由∠BFC+∠C=180°,可得CE∥BF,故本选项错误;C.由∠BEF=∠EFC,可得AB∥CD,故本选项正确;D.由∠C=∠BFD,可得CE∥BF,故本选项错误.故选C.【点睛】本题考查了平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.9.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB 最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A. ②③B. ①②③C. ③④D. ①②③④【答案】A【解析】【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】①线段AP是点A到直线PC的距离,错误;②线段BP的长是点P到直线l的距离,正确;③P A,PB,PC三条线段中,PB最短,正确;④线段PC的长是点P到直线l的距离,错误.故选A.【点睛】本题考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.10.将长方形ABCD纸片沿AE折叠,得到如图所示的图形,已知∠CED′=70°,则∠AED的大小是( )A. 60°B. 50°C. 75°D. 55°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠AED′,由平角的定义得到∠AED+∠AED′+∠CED′=180°,而∠CED′=60°,则2∠DEA=180°-70°=110°,即可得到∠AED的度数.【详解】解:∵长方形ABCD沿AE折叠得到△AED′,∴∠AED=∠AED′,而∠AED+∠AED′+∠CED′=180°,∠CED′=70°,∴2∠DEA=180°-70°=110°,∴∠AED=55°.故选:D.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.二.填空题11.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=_____°.【答案】105【解析】【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°.∵∠3=∠4,∴∠4+∠CAD=∠2,∴∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.【点睛】本题考查了平移的性质、三角形外角的性质以及平行线的性质,正确转化角的关系是解题的关键.12.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有_____.【答案】①④【解析】【分析】根据垂直定义可得∠BCA=90°,∠ADC=∠BDC=∠ACF=90°,然后再根据余角定义和补角定义进行分析即可.【详解】∵AC⊥BF,∴∠BCA=90°,∴∠ACD+∠1=90°,∴∠1是∠ACD的余角,故①正确;∵CD⊥BE,∴∠ADC=∠CDB=90°,∴∠B+∠BCD=90°,∠ACD+∠DAC=90°.∵∠BCA=90°,∴∠B+∠BAC=90°,∠1+∠ACD=90°,∴图中互余的角共有4对,故②错误;∵∠1+∠DCF=180°,∴∠1的补角是∠DCF.∵∠1+∠DCA=90°,∠DAC+∠DCA=90°,∴∠1=∠DAC.∵∠DAC+∠CAE=180°,∴∠1+∠CAE=180°,∴∠1的补角有∠CAE,故③说法错误;∵∠ACB=90°,∠ACF=90°,∠ADC=∠BDC=90°,∴∠BDC,∠ACB,∠ACF和∠ADC互补,故④说法正确.正确的是①④.故答案为:①④.【点睛】本题考查了余角和补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.13.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD=____°.【答案】40【解析】【分析】根据OA⊥OC,OB⊥OD,可得∠AOC=90°,∠BOD=90°,然后得到∠AOB与∠BOC互余,∠COD与∠BOC互余,根据同角的余角相等,继而可求解即可.【详解】解:∵OA⊥OC,OB⊥OD,∴∠AOC=90°,∠BOD=90°,∴∠AOB与∠BOC互余,∠COD与∠BOC互余,∴∠AOB=∠COD =40°,故答案为:40°.【点睛】本题考查了余角的知识,关键发现∠AOB、∠COD都是∠BOC余角,根据同角的余角相等解答.14.点P是直线l外一点,点A,B,C,D是直线l上的点,连接PA,PB,PC,PD.其中只有PA与l垂直,若PA=7,PB=8,PC=10,PD=14,则点P到直线l的距离是_____.【答案】7【解析】【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短.∵P A与l垂直, P A=7,∴点P到直线l的距离=PA,即点P到直线l的距离=7故答案为:7.【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为______.【答案】55°【解析】【分析】过点E作EF∥AB,则EF∥CD,可得∠ABE=∠BEF, ∠DEF=∠CDE.先根据角平分线的定义,得出∠ABE =∠CBE=20°,∠ADE=∠CDE=35°,进而求得∠E的度数.【详解】过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF, ∠DEF=∠CDE.∵AB∥CD,∴∠BCD=∠ABC=40°,∠BAD=∠ADC=70°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC=20°,∠ADE=∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=20°+35°=55°.故答案为:55°.【点睛】此题考查了平行线的性质,角平分线的定义,正确做出辅助线是解题的关键.本题也考查了数形结合的数学思想.16.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.【答案】40°【解析】【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为:40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.三.解答题17.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.【答案】(1)见解析(2)35°【解析】【分析】(1)由知∠1=∠DCF,则∠2=∠DCF,即可证明;(2)由得∠B=90°-∠2=35°,再根据(1)可知的度数.【详解】∵∴∠1=∠DCF,∵∴∠2=∠DCF,∴;(2)∵,∴∠BEF=90°,∴∠B=90°-∠2=35°,又∵∴=∠B=35°.【点睛】此题主要考察平行线的性质与判定.18.如图,直线AB,CD相交于点O.OF平分∠AOE,OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角:______.(2)若∠AOD=150°,求∠AOE的度数.【答案】(1)∠BOD,∠DOE;(2)∠AOE=120°.【解析】【分析】(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;(2)根据垂直的定义得到∠DOF,根据角平分线的定义求出即可得到结论.【详解】解:(1)∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC,∴与∠AOD相等的角有∠BOD,∠DOE,故答案为:∠BOD,∠DOE.(2)∵OF⊥CD,∴∠DOF=90°,∵∠AOD=150°,∴∠AOF=60°,∵OF平分∠AOE,∴∠AOE=2∠AOF=120°.【点睛】本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.19.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴_______∥______,(_______)∴∠2=______.(______)又∵∠2+∠3=180°,(已知)∴∠3+_____=180°.(等量代换)∴______∥______,(______)∴∠ADC=∠EFC.(______)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴______⊥_____.【答案】略【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.故答案为:GD,AC,同位角相等,两直线平行;∠DAC,两直线平行,内错角相等;∠DAC;AD,EF,同旁内角互补,两直线平行;两直线平行,同位角相等;AD,BC.【点睛】本题考查平行线的判定和性质,已经垂线的定义,解题关键是注意平行线的性质和判定定理的综合运用.20.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.【答案】(1)证明见解析;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依据AB⊥BC于点B,DC⊥BC于点C,即可得到AB∥CF,进而得出∠BAF+∠F=180°,再根据∠BAF =∠EDF,即可得出ED∥AF,依据三角形外角性质以及角平分线的定义,即可得到∠DAF=∠F;(2)结合图形,根据余角的概念,即可得到所有与∠CED互余的角.【详解】解:(1)∵AB⊥BC于点B,DC⊥BC于点C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED与∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【点睛】本题主要考查了平行线的判定与性质、余角的概念,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)【答案】【探究】(1)30,125;(2)∠FOH=130°;【拓展】∠FOH=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(拓展)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。

人教版七年级数学下《第五章相交线与平行线》单元测试题含答案试卷分析详解

人教版七年级数学下《第五章相交线与平行线》单元测试题含答案试卷分析详解

第五章《相交线与平行线》单元测试题一、选择题1.如图,直线AB与直线CD相交于点,是内一点,已知,,则的度数是A.B.C.D.2.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三结果是每人的两句话中都只说对了一句,则可判断第一名是A. 甲B. 乙C. 丙D. 丁3.下列命题:两直线平行,内错角相等;如果,,那么;等边三角形是锐角三角形,其中原命题和它的逆命题都正确的有A. 1个B. 2个C. 3个D. 0个4.下列说法正确的是A. 不相交的两条线段是平行线B. 不相交的两条直线是平行线C. 不相交的两条射线是平行线D. 在同一平面内,不相交的两条直线是平行线5.如图,已知,,则的度数是A.B.C.D.6.如图,已知,,,则的度数是A.B.C.D.7.将如图所示的图案通过平移后可以得到A. B. C. D.8.如图,长方形ABCD中,,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形,第2次平移将长方形沿的方向向右平移5个单位,得到长方形,第n次平移将长方形沿的方向平移5个单位,得到长方形,若的长度为2016,则n的值为A. 400B. 401C. 402D. 4039.下列生活中的现象,属于平移的是A. 抽屉的拉开B. 汽车刮雨器的运动C. 坐在秋千上人的运动D. 投影片的文字经投影变换到屏幕二、填空题10.如图,在方格中平移三角形ABC,使点A移到点M,点,应移动到什么位置?再将A由点M移到点N?分别画出两次平移后的三角形如果直接把三角形ABC平移,使A点移到点N,它和前面先移到M后移到N的位置相同吗?11.字母,,,各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为______ .12.现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船的平移后图形.13.如图,在中,,将沿着BC的方向平移至,若平移的距离是3,则图中阴影部分的面积为______ .14.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积阴影部分间距均匀是______ .三、解答题15.质检员为控制盒装饮料产品质量,需每天不定时的30次去检测生产线上的产品若把从0时到24时的每十分钟作为一个时间段共计144个时间段,请你设计一种随机抽取30个时间段的方法,使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取?要求写出具体的操作步骤16.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点均在格点上,点A的坐标是,将沿y轴正方向平移3个单位得到,画出,并写出点的坐标.17.经过平移,小鱼上的点A移到了点B.请画出平移后的小鱼;该小鱼是怎样从点A移到了点B?上下左右18.如图,将三角形ABC沿射线AB的方向平移2个单位到三角形DEF的位置,连接CF,点,,的对应点分别是点,,.直接写出图中所有平行的直线;直接写出图中与AD相等的线段;若,则______ ;若,求的度数.为2m的曲折的小路,求这块草地的绿地面积.【答案】1. B2. B3.A4.D5.C6.A7.B8.C9.A10. 解:如图所示,直接把平移,使A点移到点N,它和前面先移到M后移到N 的位置相同.11.12. 解:如图所示:.13. 3014. 1215. 解:方法一:用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有144个编号;在144个小物品大小相同的小纸片或小球等上标出1到144个数;把这144个小物品用袋箱装好,并均匀混合;每次从袋箱中摸出一个小物品,记下上面的数字后,将小物品返回袋中并均匀混合;将上述步骤4重复30次,共得到30个数;对得到的每一个数除以60转换成具体的时间.方法二:用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有144个编号;使计算器进入产生随机数的状态;将1到144作为产生随机数的范围;进行30次按键,记录下每次按键产生的随机数,共得到30个数;对得到的每一个数除以60转换成具体的时间.16. 解:如图,点的坐标为,.17. 解:所画图形如下所示:观察图形即可看出,先向右平移9个方格,再向下平移5个方格或先向下平移5个方格,再向右平移9个方格.18. 519. 解:绿地的面积为:,答:这块草地的绿地面积是.。

新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。

【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附带答案

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附带答案

人教版七年级数学下册《第五章相交线与平行线》单元测试卷-附带答案班级姓名学号分数核心知识1. 相交线一选择题(共3小题)1.(2022春·黑龙江哈尔滨·七年级期中)在下列图中1∠属于对顶角的是()∠与2A.B.C.D.【答案】C【分析】根据对顶角的定义:有一个公共顶点并且一个角的两边分别是另一个角的两边的反向延长线具有这种位置关系的两个角互为对顶角可得结论.【详解】解:在选项B D中1∠的两边都不互为反向延长线A选项没有公共点所以不是对顶角∠与2是对顶角的只有选项C.故选:C.【点睛】本题主要考查了对顶角的定义熟记有一个公共顶点并且一个角的两边分别是另一个角的两边的反向延长线具有这种位置关系的两个角互为对顶角是解答此题的关键.2.(2022秋·重庆云阳·七年级校考阶段练习)春节过后某村计划挖一条水渠将不远处的河水引到农田(记作点O)以便对农田的小麦进行灌溉现设计了四条路段OA OB OC OD如图所示其中最短的一条路线是()A.OA B.OB C.OC D.OD【答案】B【分析】根据垂线段的性质:垂线段最短 可得答案.【详解】由垂线段最短 得四条线段OA OB OC OD 如图所示其中最短的一条路线是OB故选:B .【点睛】本题考查了垂线段的的性质 熟记性质是解题关键.3.(2022春·黑龙江哈尔滨·七年级哈尔滨风华中学校考期中)图中1∠与2∠是同位角的有( )A .1个B .2个C .3个D .4个 【答案】B【分析】根据同位角的定义作答.【详解】解:第1个图和第4个图中的1∠与2∠是同位角 有2个故选:B .【点睛】本题考查了同位角的识别 两条直线被第三条直线所截 在截线的同侧 在两条被截直线的同旁的两个角是同位角.如果两个角是同位角 那么它们一定有一条边在同一条直线上. 二 填空题(共3小题)4.(2022秋·江西九江·七年级统考期中)如图 过直线AB 上一点O 作射线OC 30BOC ∠=︒ OD 平分AOC ∠ 则DOC ∠的度数为__________.【答案】75︒##75度故答案为:75︒.【点睛】本题主要考查了角平分线的有关计算 领补角的计算 解题的关键是根据邻补角求出150AOC ∠=︒.5.(2022秋·北京·七年级校考阶段练习)如图 O 为直线AB 上一点 将一直角三角板()30M ∠=︒的直角顶点放在点O 处 一边ON 在射线OA 上 另一边OM 在直线AB 的上方.将三角板绕点O 以每秒3°的速度沿逆时针方向旋转一周.则经过______秒后 MN AB ⊥.6.(2022秋·上海·七年级校考期中)如图:与FDB ∠成内错角的是______ 与DFB ∠成同旁内角的是______.【答案】 EFD ∠ AFD ∠和CBD ∠ DBF ∠ BDF ∠和CBF ∠【分析】准确识别内错角 同旁内角的关键 是弄清哪两条直线被哪一条线所截.也就是说 在辨别这些角之前 要弄清哪一条直线是截线 哪两条直线是被截线.【详解】解:如图 与FDB ∠成内错角的是EFD ∠ AFD ∠和CBD ∠ 与DFB ∠成同旁内角的是:DBF ∠ BDF ∠和CBF ∠.故答案分别是:EFD ∠ AFD ∠和CBD ∠ DBF ∠ BDF ∠和CBF ∠.【点睛】本题考查了同位角 内错角 同旁内角.在复杂的图形中识别同位角 内错角 同旁内角时 应当沿着角的边将图形补全 或者把多余的线暂时略去 找到三线八角的基本图形 进而确定这两个角的位置关系.三 简答题(共1小题)7.(2022春·广东佛山·七年级校考阶段练习)已知直线AB 经过点O 90COD ∠=︒ OE 是BOC ∠的平分线.(1)如图1 若30AOC ∠=︒ 求DOE ∠(2)如图1 若AOC α∠= 直接写出DOE ∠=______ (用含α的式子表示)(3)将图1中的COD ∠绕顶点O 顺时针旋转到图2的位置 其他条件不变 (2)中的结论是否还成立?试说明理由.核心知识2.平行线及其判定一选择题(共3小题)1.(2022春·江苏·七年级专题练习)已知三角形ABC过AC的中点D作AB的平行线根据语句作图正确的是()A.B.C.D.【答案】B【分析】根据中点的定义平行线的定义判断即可.【详解】解:过AC的中点D作AB的平行线正确的图形是选项B故选:B.【点睛】本题考查作图——复杂作图平行线的定义中点的定义等知识解题关键是理解题意灵活运用所学知识解决问题.2.(2022秋·甘肃武威·七年级校考期中)如图 在平面内作已知直线a 的平行线 可作平行线的条数是( )A .1条B .2条C .无数条D .无法确定 【答案】C【分析】根据平行线的定义和性质求解即可.【详解】解:在同一平面内与已知直线平行的直线有无数条∵在平面内作已知直线a 的平行线 可作平行线的条数是无数条故选C .【点睛】本题主要考查了平行线的定义和性质 熟知相关知识是解题的关键.3.(2022春·北京东城·八年级校考期末)如图 在下列条件中 能够证明AD CB ∥的条件是( )A .14∠=∠B .5B ∠=∠C .12180D ∠+∠+∠=︒D .23∠∠= 【答案】D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A . 14∠=∠ 内错角相等两直线平行 能判定AB DE ∥ 故A 不符合题意B . 5B ∠=∠ 同位角相等两直线平行 能判定AB DE ∥ 故B 不符合题意C . 12180D ∠+∠+∠=︒ 同旁内角互补两直线平行 能判定AB DE ∥ 故C 不符合题意D . 32∠=∠ 内错角相等两直线平行 能判定AD BC ∥ 故D 符合题意.故选:D .【点睛】本题考查了平行线的判定方法 掌握平行线的判定方法“同位角相等 两直线平行 内错角相等 两直线平行 同旁内角互补 两直线平行”是解题的关键. 二 填空题(共3小题)4.(2022春·上海·九年级开学考试)如图 点E F 分别是梯形ABCD 两腰的中点 联结EF DE 如果图中DEF △的面积为1.5 那么梯形ABCD 的面积等于___.1.5DEFS=1 2EF AG⋅•EF AH5.(2022春·江苏·七年级专题练习)下列说法:①对顶角相等②两点之间的线段是两点间的距离③过一点有且只有一条直线与已知直线平行④过一点有且只有一条直线与已知直线垂直⑤一个锐角的补角一定比它的余角大90° 正确的有______.(填序号)【答案】①⑤【分析】根据对顶角线段直线垂直的定义平行线的性质及余补角的性质可直接进行求解.【详解】解:①对顶角相等原说法正确②两点之间的线段长度是两点间的距离原说法错误③过直线外一点有且只有一条直线与已知直线平行原说法错误④在同一平面内过一点有且只有一条直线与已知直线垂直原说法错误⑤一个锐角的补角一定比它的余角大90° 原说法正确综上所述:正确的有①⑤故答案为①⑤.【点睛】本题主要考查对顶角线段直线垂直的定义平行线的性质及余补角的性质熟练掌握相关概念及性质是解题的关键.6.(2022秋·江西赣州·七年级统考期中)如图点E在AC的延长线上若要使AB CD则需添加条件_______(写出一种即可)【答案】∵1=∵2 等(写出一种即可)【分析】根据平行线的判定定理得出直接得出即可.【详解】解:∵当∵1 =∵2时AB CD(内错角相等两直线平行)∵若要使AB CD则需添加条件∵1 =∵2故答案为:∵1=∵2.【点睛】本题主要考查了平行线的判定熟练掌握平行线的判定定理是解题关键.三简答题(共1小题)7.(2022秋·河南信阳·七年级校考期末)如图已知点O在直线AB上射线OE平分∵AOC过点O作OD∵OE G是射线OB上一点连接DG使∵ODG+∵DOG=90°.(1)求证:∵AOE=∵ODG(2)若∵ODG=∵C试判断CD与OE的位置关系并说明理由.【答案】(1)证明见解析(2)CD∥OE理由见解析【分析】(1)由OD ∵OE 得到∵EOC +∵COD =∵AOE +∵DOG =90° 再利用等角的余角相等即可证明∵AOE =∵ODG (2)证明∵EOC =∵C 利用内错角相等两直线平行 即可证明CD ∥OE .【详解】(1)证明:∵OD ∵OE∵∵EOC +∵COD =∵AOE +∵DOG =90°∵∵ODG +∵DOG =90°∵∵AOE =∵ODG(2)解:CD ∥OE .理由如下:由(1)得∵AOE =∵ODG∵射线OE 平分∵AOC∵∵AOE =∵EOC∵∵ODG =∵C∵∵EOC =∵C∵CD ∥OE .【点睛】本题考查了角平分线定义 垂直的定义 平行线的判定 等角的余角相等 正确识图是解题的关键.核心知识3.平行线的性质一 选择题(共3小题)1.(2022春·陕西商洛·八年级统考期末)将一副直角三角尺如图所示放置 已知AE BC ∥ 则AFD ∠的度数是( )A .80︒B .75︒C .65︒D .60︒ 【答案】B【分析】根据平行线的性质及三角形内角定理解答.【详解】解:由三角板的性质可知45,30,90EAD C BAC ADE ︒︒︒∠=∠=∠=∠=.∵AE BC ∥∵30EAC C ∠=∠=︒∵453015DAF EAD EAC ∠=∠-∠=︒-︒=︒.∵180180901575AFD ADE DAF ︒︒︒︒︒∠=-∠⋅∠=--=.故选:B .【点睛】本题考查的是平行线的性质及三角形内角和定理 平行线的性质:两直线平行同位角相等 同旁内角互补.三角形内角和定理:三角形的内角和等于180︒.2.(2022秋·北京·七年级校考阶段练习)如图 点A B 为定点 直线l AB ∥ P 是直线l 上一动点.对于下列各值:①APB ∠的度数 ②线段AB 的长 ③PAB 的面积 ④PAB 的周长 其中不会..随点P 的移动而变化的是( )A .①③B .①④C .②③D .①② 【答案】C【分析】根据运动得出APB ∠的大小不断发生变化 求出AB 长为定值 由于P 到AB 的距离为定值 再根据三角形的面积公式进行计算即可 根据运动得出PA PB +不断发生变化.【详解】解:当P 点移动时 APB ∠发生变化∵①错误∵A B 为定点∵AB 长为定值∵②正确∵点A B 为定点 直线l AB ∥∵P 到AB 的距离为定值 故PAB 的面积不变∵③正确当P 点移动时 PA PB +的长发生变化∵PAB 的周长发生变化∵④错误综上 正确的有②③故选:C .【点睛】本题考查了平行线的性质 等底等高的三角形的面积相等 平行线间的距离的运用 熟记定理是解题的关键.3.(2022春·八年级单元测试)对于命题“如果1290∠+∠=︒ 那么12∠≠∠” 能说明它是假命题的反例是( ) A .1245∠=∠=°B .150∠=︒ 250∠=︒C .150∠=︒ 240∠=︒D .140∠=︒ 240∠=︒ 【答案】A【分析】判断命题是假命题 结论错误即可 由此即可求解.【详解】解:当1245∠=∠=°时 1290∠+∠=︒ 但12∠=∠∵命题“如果1290∠+∠=︒ 那么12∠≠∠”是假命题故选:A .【点睛】本题主要考查命题真假的判定 掌握命题真假的判定方法是理解命题的条件与结论的关系 即掌握相关定理 命题的定义和性质是解题的关键. 二 填空题(共3小题)4.(2022春·广东深圳·八年级校考期末)光线在不同介质中传播速度不同 从一种介质射向另一种介质时会发生折射.如图 水面AB 与水杯下沿CD 平行 光线EF 从水中射向空气时发生折射 光线变成FH 点G 在射线EF 上 已知20HFB ∠︒= 45FED ∠︒= 则GFH ∠的度数为______.【答案】25︒##25度【分析】根据平行线的性质求得GFB ∠ 根据GFH GFB HFB ∠=∠-∠即可求解.【详解】解:∵AB CD ∥∵45GFB FED ∠=∠=︒.∵20HFB ∠=︒∵452025GFH GFB HFB ∠=∠-∠=︒-︒=︒故答案为25°.【点睛】本题考查了平行线的性质与判定 掌握平行线的性质与判定是解题的关键.5.(2022秋·上海闵行·七年级校考阶段练习)如图 已知直线a b ∥ 将一块三角板的直角顶点放在直线a 上 如果142∠=︒ 那么2∠=______度.【答案】48【分析】根据平行线得到内错角相等 在根据直角即可得到答案.【详解】解:∵a b ∥∵23∠∠=∵1+3=90∠∠︒ 142∠=︒∵3904248∠=︒-︒=︒故答案为48.【点睛】本题考查平行线性质:两直线平行内错角相等.6.(2022秋·陕西渭南·七年级统考阶段练习)下列命题:①经过直线外一点 有且只有一条直线与这条直线平行 ②在同一平面内 过一点有且只有一条直线与已知直线垂直 ③直线外一点到这条直线的垂线段的长度 叫做点到直线的距离 ④如果直线a b ∥ b c ⊥ 那么a c ∥.其中是真命题的有______.(填序号)【答案】①②③【分析】根据平行公理及其推论 垂线的性质 点到直线的距离定义等分析判断即可.【详解】解:①经过直线外一点 有且只有一条直线与这条直线平行 正确 为真命题②在同一平面内 过一点有且只有一条直线与已知直线垂直 正确 为真命题③直线外一点到这条直线的垂线段的长度 叫做点到直线的距离 正确 为真命题④如果直线a b ∥ b c ⊥ 那么a c ⊥ 原命题为假命题.综上所述 真命题有①②③.故答案为:①②③.【点睛】本题主要考查了命题与定理的知识 解题关键是理解平行公理及其推论 垂线的性质 点到直线的距离定义等知识.三 简答题(共1小题)7.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图1 AB CD ∥ 直线AB 外有一点M 连接AM CM .(1)证明:M A C ∠+∠=∠(2)如图2 延长MA 至点E 连接CE CM 平分ECD ∠ AF 平分EAB ∠ 且AF 与CM 交于点F 求E ∠与AFC ∠的数量关系(3)如图3 在2的条件下 100E ∠=︒ FA AN ⊥ 连接CN 且2M N ∠=∠ 30MCN ∠=︒ 求M ∠的度数. 【答案】(1)证明见解析(2)3602E AFC ∠=︒-∠(3)20︒【分析】(1)过点M 作MN AB ∥ 根据平行线性质即可得到角度关系 即可求证(2)过点E 作EP AB ∥ 过点F 作QF AB ∥根据平行线性质得到角度关系即可得到答案(3)过点N 做NY AB ∥ 过点M 作MX AB ∥ 根据平行线性质得到角度关系即可得到答案.【详解】(1)证明:过点M 作MN AB ∥∵AB CD ∥ MN AB ∥∵MN CD AB ∥∥∵180A NME AME ∠+∠+∠=︒ 180NME MEB ∠+∠=︒ MEB C ∠=∠∵A AME MEB ∠+∠=∠∵A AMC C ∠+∠=∠(2)解:∵CM 平分ECD ∠ 设ECM MCD a ∠=∠=又∵AF 平分EAB ∠ 设EAF FAB b ∠=∠=∵22ECD ECM a ∠=∠= 22EAB EAF b ∠=∠=过点E 作EP AB ∥∵AB CD ∥∵EP CD ∥∵180EAB AEP ∠+∠=︒ 180ECD CEP ∠+∠=︒∵1801802AEP EAB b ∠=︒-∠=︒- 1801802CEP ECD a ∠=︒-∠=︒-∵360223602()AEC AEP CEP b a a b ∠=∠+∠=--=-+过点F 作QF AB ∥∵QF CD ∥∵AFQ FAB ∠=∠ QFC MCD ∠=∠∵AFC QFA QFC a b ∠=∠+∠=+∵3602AEC AFC ∠=︒-∠(3)设NAB r ∠= NCD y ∠=过点N 做NY AB ∥∵AB CD ∥ NY CD ∥∵YNA NAB ∠=∠ YNC NCD ∠=∠∵ANC NCD NAB y r ∠=∠-∠=-∵2M N ∠=∠∵22M y r ∠=-过点M 作MX AB ∥∵MX CD ∥∵XMA MAB ∠=∠ XMC MCD ∠=∠∵XMA XMC AMC ∠=∠-∠∵AMC XMC XMA MCD MAB ∠=∠-∠=∠-∠∵2MAB r ∠= 2MCD y ∠=∵MCN MCD NCD y ∠=∠-∠=∵30MCN ∠=︒∵30y =︒∵260MCD y ∠==︒∵100AEC ∠=︒ 3602AEC AFC ∠=︒-∠∵360AFC AFC ∠=︒-∠130=︒由(2)知BAF FCD AFC ∠+∠=∠∵70BAF AFC MCD ∠=∠-∠=︒∵FA AN ⊥∵90FAN ∠=︒∵20NAB FAN BAF ∠=∠-∠=︒∵20r =︒∵240MAB r ∠==︒∵604020AMC MCD MAB ∠=∠-∠=︒-︒=︒.【点睛】本题考查根据平行线的性质 解题的关键是作平行辅助线转换角度关系.核心知识4.平移一 选择题(共3小题)1.(2022秋·北京西城·七年级北师大实验中学校考期末)下列现象是平移的是( )A .电梯从底楼升到顶楼B .卫星绕地球运动C .纸张沿着它的中线对折D .树叶从树上落下 【答案】A【分析】平移是物体运动时 物体上任意两点间 从一点到另一点的方向与距离都不变的运动 根据平移的定义分析即可.【详解】解:A 电梯从底楼升到顶楼为平移现象 故该选项符合题意B 卫星绕地球运动为旋转现象 故该选项不符合题意C 纸张沿着它的中线对折是轴对称现象 故该选项不符合题意D 树叶从树上落下既不是旋转也不是平移 故该选项不符合题意.故选:A .【点睛】本题考查了平移现象 熟练根据平移的定义联系实际生活是解题的关键.2.(2022秋·重庆璧山·七年级校联考期中)今年4月 被称为“猪儿虫”的璧山云巴正式运行.云巴在轨道上运行可以看作是( )A .对称B .旋转C .平移D .跳跃【答案】C【分析】根据平移与旋转定义判断即可.【详解】解:云巴在轨道上运行可以看作是数学上的平移.故选:C .【点睛】本题考查对平移与旋转的理解及在实际当中的运用.平移是物体运动时 物体上任意两点间 从一点到另一点的方向与距离都不变的运动 旋转是物体运动时 每一个点离同一个点(可以在物体外)的距离不变的运动 称为绕这个点的转动 这个点称为物体的转动中心.所以 它并不一定是绕某个轴的.正确理解平移与旋转的定义是解题的关键.3.(2022秋·福建龙岩·七年级校考阶段练习)如图是一段楼梯 2cm BC = 4cm AB = 若在楼梯上铺地毯至少要( )A .2cmB .4cmC .6cmD .8cm 【答案】C【分析】把楼梯的横竖向上向左平移 构成一个矩形 则AB +BC 即为所求.【详解】解:∵∵ABC 是直角三角形 BC =2cm AB =4cm∵如果在楼梯上铺地毯 那么至少需要地毯为AB +BC =6米.故选C .【点睛】本题考查的是生活中的平移现象 解决此题的关键是要利用平移的知识. 二 填空题(共3小题)4.(2022秋·浙江温州·七年级校联考阶段练习)如图 将长为5cm 宽为3cm 的长方形ABCD 先向右平移2cm 再向下平移1cm 得到长方形A B C D '''' 则阴影部分的周长为______cm .【答案】32【分析】阴影部分的周长刚好是长方形周长的两倍 据此作答即可.【详解】∵长方形的长为5cm 宽为3cm∵长方形的周长为:5+3+3+5=16(cm )根据图形可知:阴影部分的周长为:A D D C C B B A AD DC CB BA ''''''''+++++++即:阴影部分的周长刚好是长方形周长的两倍即阴影部分的周长为:16×2=32(cm )故答案为:32.【点睛】本题考查了图形的平移的知识 根据图形的平移判断出阴影部分的周长刚好是长方形周长的两倍是解答本题的关键.5.(2022春·上海静安·七年级上海市市西中学校考期中)如图 将周长为8厘米的ABC 沿射线BC 方向平移1厘米得到DEF 那么四边形ABFD 的周长为___________厘米.【答案】10【分析】利用平移的性质得到1AD CF AC DF ===, 然后根据8AB BC AC ++=可计算出四边形ABFD 的周长.【详解】解:ABC 沿射线BC 方向平移1厘米得到DEF1AD CF AC DF ∴===,8++=AB BC AC81110AB BC CF DF AD AB BC AC CF AD ∴++++=++++=++=cm .即四边形ABFD 的周长为10cm .故答案为10.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.新图形中的每一点 都是由原图形中的某一点移动后得到的 这两个点是对应点.连接各组对应点的线段平行(或共线)且相等. 6.(2022秋·浙江·七年级期中)作图题:将如图的三角形ABC 先水平向右平移4格 再竖直向下平移4格得到三角形DEF .观察线段AB 与DE 的关系是_____.【答案】AB ∵DE AB =DE【分析】根据网格结构找出平移后的点D E F 的位置 然后解答即可.【详解】解:∵DEF 如图所示AB ∵DE AB =DE .故答案为:AB ∵DE AB =DE .【点睛】本题考查了平移的性质 熟练掌握网格结构准确找出对应点的位置是解题的关键.三 简答题(共1小题)7.(2022春·江苏·八年级统考期中)在正方形网格中 小正方形的顶点称为“格点” 每个小正方形的边长均为1 内角均为直角 ABC 的三个顶点均在“格点”处.(1)将ABC 平移 使得点B 移到点B '的位置 画出平移后的A B C '''(2)利用正方形网格画出ABC 的高AD(3)连接BB ' CB ' 利用全等三角形的知识证明BB AC '⊥.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)利用平移变换的性质分别作出A B C 的对应点A ' B ' C '即可(2)根据三角形的高的定义画出图形即可(3)证明ADC BCB '△≌△ 可得结论.【详解】(1)过点B '作B C BC ''∥ 且5B C ''= 再沿着B '向右移动两个单位 再向上移动五个单位 就可得到点A ' 连接A B '' A C '' 即可得到A B C '''(2)设从点B 的位置向右两个单位的点为D 连接AD 则AD 就是所求的高(3)设AC 交BB '于点J .在ADC △和BCB '中AD BC = 90ADC BCB ︒'∠=∠= DC CB '=∵ADC BCB '△≌△∵DAC CBB '∠∠=∵90ACD DAC ∠+∠=︒∵90CBB ACB '∠+∠=︒∵90BJC ∠=︒∵BB AC '⊥.【点睛】本题考查作图平移变换全等三角形的判定和性质等知识解题的关键是掌握平移变换的性质正确寻找全等三角形解决问题.。

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案

人教版七年级数学下册《第五章 相交线与平行线》单元测试卷-附参考答案(测试时间:90分钟 卷面满分:100分)班级 姓名 学号 分数一 选择题(本大题共10个小题 每小题3分 共30分 在每小题给出的四个选项中 只有一项是符合题目要求的)1.(2022春·全国·七年级单元测试)下图中 1∠和2∠是对顶角的是( )A .B .C .D . 【答案】B 【分析】根据对顶角的定义解答即可.【详解】解:A 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意B 1∠和2∠是对顶角 则此项符合题意C 1∠和2∠没有公共顶点 则不是对顶角 此项不符合题意D 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意故选:B .【点睛】本题考查了对顶角 解题的关键是熟记对顶角的定义:有一个公共顶点 并且一个角的两边分别是另一个角的两边的反向延长线 具有这种位置关系的两个角 互为对顶角. 2.(2022·全国·七年级单元测试)如图 直线AD BE 、 被直线BF 和AC 所截 则2∠的同位角有( )个.A .2B .3C .4D .1【答案】B【分析】根据同位角的定义求解即可:同位角:两条直线被第三条直线所截形成的角中 若两个角都在两直线的同侧 并且在第三条直线(截线)的同旁 则这样一对角叫做同位角.【详解】解:∠2的同位角有:∠1 ∠F AC ∠4 共三个.故选:B .【点睛】本题考查了同位角熟记同位角定义是解题的关键.3.(2022春·七年级单元测试)如图所示的图案可以看作由“基本图案”经过平移得到的是()A.B.C.D.【答案】B【分析】根据平移的概念:在平面内把一个图形整体沿某一的方向移动这种图形的平行移动叫做平移变换简称平移即可选出答案.【详解】解:A 不是由“基本图案”经过平移得到故此选项不符合题意B 是由“基本图案”经过平移得到故此选项符合题意C 不是由“基本图案”经过平移得到故此选项不符合题意D 不是由“基本图案”经过平移得到故此选项不符合题意故选B.【点睛】本题考查生活中的平移现象仔细观察各选项图形是解题的关键.4.(2022秋·江苏连云港·七年级校考单元测试)下列语句中属于命题的是()A.等角的余角相等B.两点之间线段最短吗C.连接P Q两点D.花儿会不会在春天开放【答案】A【分析】根据命题的定义对选项一一进行分析即可.【详解】解:选项A:是用语言可以判断真假的陈述句是命题故符合题意选项B C D:都不是可以判断真假的陈述句都不是命题故不符合题意.故选:A【点睛】本题考查了命题的定义解本题的关键在判断给出的语句是否用语言符号或式子表达是否为可以判断真假的陈述句.一般地对某件事情作出正确或不正确的判断的句子叫做命题命题可看做由题设和结论两部分组成.5.(2022·全国·七年级单元测试)如图若图形A经过平移与下方图形(阴影部分)拼成一个长方形则平移方式可以是()A .向右平移4个格 再向下平移4个格B .向右平移6个格 再向下平移5个格C .向右平移4个格 再向下平移3个格D .向右平移5个格 再向下平移4个格 【答案】A【分析】根据平移的性质 结合图形解答即可.【详解】解:图形A 向右平移4个格 再向下平移4个格可以与下方图形(阴影部分)拼成一个长方形 故选:A .【点睛】本题考查的是平移的性质 把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.6.(2022春·黑龙江哈尔滨·七年级校考单元测试)如图 已知直线AB CD ∥ 130GEF ∠=︒ 135EFH ∠=︒ 则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒ 【答案】D【分析】由130GEF ∠=︒ 135EFH ∠=︒可得1324265︒∠+∠+∠+∠= 由ABCD 得34180∠+∠=︒ 进而可求出12∠+∠的度数.【详解】解:如下图所示∠130GEF ∠=︒∠13130︒∠+∠=∠135EFH ∠=︒∠24135︒∠+∠=∠1324265︒∠+∠+∠+∠=∠AB CD∠34180∠+∠=︒∠121324(34)26518085︒∠∠︒+∠=∠+∠+∠+∠-+∠=︒=-故选:D .【点睛】本题考查了平行线的性质 解题的关键是根据平行线的性质找出图中角度之间的关系.7.(2022春·江苏·七年级单元测试)下列说法中 错误的有( )①若a b ∥ b c ∥ 则a c ∥②若a 与c 相交 b 与c 相交 则a 与b 相交③相等的角是对顶角④过一点有且只有一条直线与已知直线平行.A .3个B .2个C .1个D .0个【答案】A【分析】根据平行公理及推论可判断① 若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 可判断② 对顶角相等 但相等的角不一定是对顶角 可判断③ 根据平行公理及推论可判断④.【详解】解:根据平行线公理及推论可知 ①正确若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 ②错误对顶角相等 但相等的角不一定是对顶角 ③错误过直线外一点有且只有一条直线与已知直线平行④错误.故错误的有3个故选:A.【点睛】本题考查平行公理及推论平行线的判定与性质熟练掌握平行线的判定与性质是解答本题的关键.8.(2022·全国·七年级单元测试)如图P为直线l外一点A B C在l上且PB∠l下列说法中正确的个数是()①P A PB PC三条线段中PB最短②线段PB叫做点P到直线l的距离③线段AB的长是点A到PB 的距离④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度叫做点到直线的距离从直线外一点到这条直线上各点所连的线段中垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段根据垂线段最短可知P A PB PC三条线段中PB 最短故原说法正确②线段BP是点P到直线l的垂线段故线段BP的长度叫做点P到直线l的距离故原说法错误③线段AB是点A到直线PB的垂线段故线段AB的长度叫做点P到直线l的距离故故原说法正确④由题意及图形无法判断线段AC的长是点A到PC的距离故原说法错误综上所述正确的说法有①③故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中垂线段最短.∥的是()9.(2022春·天津·七年级校考单元测试)如图下列条件中能判断AB CDA .12∠=∠B .34∠∠=C .180DAB ABC ∠+∠=︒D .B D ∠=∠ 【答案】A 【分析】结合图形分析两角的位置关系 根据平行线的判定方法逐项进行判断即可得到结论.【详解】解:∠12∠=∠∠AB CD ∥故①选项符合题意∠34∠∠=∠AD BC ∥故②选项不符合题意∠180DAB ABC ∠+∠=︒∠AD BC ∥故③选项不符合题意∠B D ∠=∠ 不能判定AB CD ∥故④选项不符合题意故选:A .【点睛】本题主要考查了平行线的判定 能根据图形准确找出同位角 内错角和同旁内角是解决问题的关键.10.(2022秋·江苏盐城·七年级校联考单元测试)如图 在宽为20m 长为30m 的矩形地面上修建两条同样宽的道路 余下部分作为耕地.根据图中数据 计算耕地的面积为( )A .600m 2B .551m 2C .550m 2D .500m 2【答案】B【详解】由图可以看出两条路的宽度为:1m 长度分别为:20m 30m所以 可以得出路的总面积为:20×1+30×1-1×1=49m 2又知该矩形的面积为:20×30=600m 2所以 耕地的面积为:600-49=551m 2.故选B.二 填空题(本大题共8个小题 每题2分 共16分)11.(2022春·黑龙江哈尔滨·七年级哈尔滨工业大学附属中学校校考单元测试)如图 要把池水引到C 处 可作CD AB ⊥于点D 然后沿CD 开渠 可使所开渠道最短 依据是______.【答案】垂线段最短【分析】根据直线外一点到直线的距离解答.【详解】解:因为直线外一点到直线上各点的连线中 垂线段最短所以沿CD 开渠故答案为:垂线段最短.【点睛】本题考查垂线段的性质 熟练掌握垂线段最短是解决本题的关键.12.(2022秋·重庆铜梁·七年级校考单元测试)如图 O 是直线AB 上一点 32COB ∠=︒ 则1∠=___.【答案】148︒##148度 【分析】依据邻补角进行计算 即可得到∠1的度数.【详解】解:∠O 是直线AB 上一点 32COB ∠=︒∠118032148∠=︒-︒=︒故答案为:148︒.【点睛】本题主要考查了邻补角的概念 只有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 互为邻补角.邻补角互补 即和为180︒.13.(2022秋·河南安阳·七年级统考单元测试)如图 给出下列条件:①∠1=∠2 ②∠3=∠4 ③∠A =∠CDE ④∠A +∠ADC =180°.其中 能推出AB //DC 的条件为_______.【答案】①③④【分析】根据平行线的判定定理逐个分析判断即可求解.【详解】解:①∠∠1=∠2∥符合题意∠AB DC②∠∠3=∠4∥不符合题意∠BC AD③∠∠A=∠CDE∥符合题意∠AB DC④∠∠A+∠ADC=180°∥符合题意∠AB DC故答案为:①③④.【点睛】本题考查了平行线的判定定理掌握平行线的判定定理是解题的关键.14.(2022秋·云南昭通·七年级校考单元测试)如图把三角尺的直角顶点放在直线b上.若∠1= 50° 则当∠2=____时a∥b.【答案】40°##40度【分析】根据三角尺的直角顶点在直线b上∠1=50° 即可得到∠3=180°−90°−∠1=40° 再根据a//b即可得到∠2=∠3=40°.【详解】解:如图∠三角尺的直角顶点在直线b上∠1=20°∠∠3=180°−90°−∠1=40°又∠要使得a b∠只需要∠2=∠3=40°故答案为:40.【点睛】本题主要考查了平行线的性质熟记两直线平行线同位角相等是解题的关键.15.(2022秋·河北石家庄·七年级统考单元测试)在同一平面内直线a b相交于P 若a∠c 则b与c的位置关系是______.【答案】相交【详解】解:因为a∠c 直线b相交所以直线b与c也有交点故答案为:相交.【点睛】本题考查了平行线和相交线.同一平面内一条直线与两条平行线中的一条相交则必与另一条直线也相交.16.(2022秋·北京·七年级校考单元测试)如图快艇从P处向正北航行到A处时向右转60︒航行到B处再向左转90︒继续航行此时的航行方向为北偏西______°.【答案】30【分析】根据平行线的性质与方位角的定义即可求解.【详解】解:如图∠//PC BE 60CAB ∠=︒∠60EBF ∠=︒∠906030DBE此时的航行方向为:北偏西30︒故答案为:30.【点睛】此题主要考查方位角 解题的关键是熟知方位角的定义及平行线的性质.17.(2022·全国·七年级单元测试)如图 在三角形ABC 中 90BAC ∠=︒ 4cm AB = 5cm =BC 3cm AC = 将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF 且AC 与DE 相交于点G 连接AD .(1)阴影部分的周长为______cm(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm 则a 的值为______.【答案】 12 4.5##92##142 【分析】(1)由平移的性质可得出cm AD BE a == 5cm DE AB ==.再根据()5cm CE BC BE a =-=- 即ADG S ABC CEG ABEG S S S =+四边形 即可得出1342ADG CEG S S =⨯⨯- 再根据24.8cm ADG CEG S S -= 列出关于a 的等式 解出a 即可.【详解】(1)∠三角形ABC 沿BC cm(5)a <得到三角形DEFCE BC =∴阴影部分的周长为故答案为:(2)过AABC S =3AH =ADG ABED S四边形 ADG S . ABC CEG ABEG S S S =+四边形1342CEG ABEG S S =⨯⨯-四边形121342ADG CEG BE S S ⨯-=⨯⨯- 即125ADG CEG S S -=ADG 的面积比三角形EGC 的面积大24.8cm 4.8cm ADG CEG SS -=4 4.8⨯= 18.(2022春·黑龙江哈尔滨·七年级单元测试)如图 直线AB CD ∥ 点E F 分别为直线AB 和CD 上的点 点P 为两条平行线间的一点 连接PE 和PF 过点P 作EPF ∠的平分线交直线CD 于点G 过点F 作FH PG ⊥ 垂足为H 若120DGP PFH ∠-∠=︒ 则AEP ∠=________︒.【答案】30︒【分析】设FPG x GPM y ∠∠=︒=︒, 过P 作PM CD ∥ 则AB CD PM ∥∥ 用x y ︒︒,表示PGD ∠ PFH ∠ 代入求出x y ︒-︒ 即AEP ∠的值可以解出.【详解】解:设FPG x GPM y ∠∠=︒=︒,PG 平分EPF ∠EPG FPG x ∠∠∴==︒过P 作PM CD ∥∥AB CDAB CD PM ∴∥∥AEP EPM EPG MPG x y ∠∠∠∠∴==-=︒-︒ 180180PGD MPG y ∠∠=︒-=︒-︒FH PG ⊥90PHF ∠∴=︒909090PFH FPG FPG x ∠∠∠∴=︒-=︒-=︒-︒120DGP PFH ∠-∠=︒()()18090120y x ∴︒-︒-︒-︒=︒ 即30x y ︒-︒=︒30AEP x y ∠∴=︒-︒=︒.故答案为:30︒.【点睛】本题考查平行线的性质 角平分线的性质 垂线的性质 熟练运用性质计算是解题的关键.三 解答题(本大题共8个小题 共54分 第19-22每小题6分 23-24每小题7分 25-26每小题8分)19.(2022·全国·七年级单元测试)如图 在边长为1个单位的正方形网格中 ABC 经过平移后得到A B C ''' 点B 的对应点为B ' 根据下列条件 利用网格点和无刻度的直尺画图并解答 保留痕迹:(1)画出A B C ''' 线段AC 扫过的图形的面积为______(2)在A B ''的右侧确定格点Q 使A B Q ''△的面积和ABC 的面积相等 请问这样的Q 点有______个? 根据平移的性质得出'''ABC线段)根据平行线之间的距离处处相等可得答案.A B C '''即为所求111022612411022A B ∥ 则点1234,,,Q Q Q Q 即为所求本题主要考查了作图——平移变换20.(2022秋·北京海淀·七年级校考单元测试)如图 点C 在MON ∠的一边OM 上 过点C 的直线AB ON ∥CD 平分ACM ∠.当60DCM ∠=︒时 求O ∠的度数.解:∠CD 平分ACM ∠∠ACM ∠= .∠60DCM ∠=︒∠ACM ∠= °.∠直线AB 与OM 交于点C∠OCB ∠=ACM ∠= °( )∠AB ON ∥∠+=180O OCB ∠∠︒( )∠O ∠= °.【答案】2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60【分析】根据角平分线的定义 即可得到∠ACM 的度数 进而得出∠OCB 的度数 再依据平行线的性质 即可得到∠O 的度数.【详解】解:∠CD 平分ACM ∠∠=2ACM DCM ∠∠.∠∠60DCM ∠=︒∠=120ACM ∠︒.∠直线AB 与OM 交于点C∠==120OCB ACM ∠∠︒(对顶角相等)∠AB ON ∥∠+=180O OCB ∠∠︒(两直线平行 同旁内角互补)∠=60O ∠︒.故答案为:2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60.【点晴】本题主要考查了角的计算 平行线的性质以及角平分线的定义 解题的关键是熟练掌握平行线的性质:两直线平行 同旁内角互补.21.(2022秋·重庆铜梁·七年级校考单元测试)如图 在四边形ABCD 中 130A ∠=︒ 50ADC ∠=︒ 试说明12∠=∠.【答案】AB CD 同旁内角互补 两直线平行 两直线平行 内错角相等【分析】由180A ADC ∠+∠=︒ 利用同旁内角互补 两直线平行可得AB CD ∥ 再利用平行线的性质可得答案.【详解】证明:∠130A ∠=︒ 50ADC ∠=︒(已知)∠180A ADC ∠+∠=︒(等式的性质)∠AB CD ∥ (同旁内角互补 两直线平行)∠12∠=∠(两直线平行 内错角相等).【点睛】本题考查的是平行线的判定与性质 熟记平行线的性质与判定方法是解本题的关键.22.(2022·全国·七年级单元测试)如图 己知点P Q 分别在AOB ∠的边OA OB 、上 按下列要求画图:(1)画射线PQ(2)过点P 画垂直于射线OB 的线段PC 垂足为点C(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图分别P画垂直于射线OB的射线PC垂足为点C过点Q画直线QM平行于射线OA.【详解】(1)如图射线PQ为所求(2)如图线段PC为所求(3)如图直线QM为所求【点睛】此题主要考查了基本作图正确把握相关定义是解题关键.23.(2022春·七年级单元测试)如图汽车站码头分别位于A B,两点直线b和波浪线分别表示公路与河流.(1)从汽车站A到码头B怎样走最近?画出最近路线并说明理由(2)从码头B到公路b怎样走最近?画出最近路线BC并说明理由.【答案】(1)作图见解析 理由见解析(2)作图见解析 理由见解析【分析】(1)根据两点之间线段最短解决问题.(2)根据垂线段最短解决问题.【详解】(1)解:如图 连接,A B 线段AB 即为所求作.(2)如图 过点B 作BC b ⊥于点C 线段BC 即为所求作.【点睛】本题考查作图﹣应用与设计作图 垂线段最短 两点之间线段最短等知识 解题的关键是理解题意 灵活运用所学知识解决问题.24.(2022春·七年级单元测试)如图 AB CD ⊥ 垂足为O .(1)比较AOD EOB AOE ∠∠∠,,的大小 并用“<”号连接.(2)若28EOC ∠=︒ 求EOB ∠和EOD ∠的度数.【答案】(1)AOE AOD EOB ∠<∠<∠(2)118152EOB EOD ∠=︒∠=︒,【分析】(1)根据图形可判断各角的大小.(2)根据图形可得90118EOB EOC ∠=∠+︒=︒,根据平角的定义求得EOD ∠. 【详解】(1)解:∠AB CD ⊥∠909090AOD EOB EOC AOE EOC ∠=︒∠=︒+∠∠=︒-∠,,∠AOE AOD EOB ∠<∠<∠(2)∠AB CD ⊥∠90118EOB EOC ∠=∠+︒=︒∠180********EOD EOC ∠=︒-∠=︒-︒=︒.【点睛】本题考查了角的关系 垂直的定义 通过已知角求得未知角 数形结合是解题的关键. 25.(2022春·广东·七年级单元测试)如图 直线CD EF 交于点O OA OB 分别平分COE ∠和DOE ∠ 已知1290∠+∠=︒ 且2:32:5∠∠=.(1)求BOF ∠的度数(2)试说明AB CD 的理由.∠+∠)解:12AOCAB CD.【点睛】本题主要考查了平行线的判定与性质是解题的关键.26.(2022秋·上海宝山·七年级校考单元测试)已知AB∠CD点M为平面内的一点∠AMD=90°.(1)当点M在如图1的位置时求∠MAB与∠D的数量关系(写出说理过程)(2)当点M在如图2的位置时则∠MAB与∠D的数量关系是(直接写出答案)(3)在(2)条件下如图3 过点M作ME∠AB垂足为E∠EMA与∠EMD的角平分线分别交射线EB于点F G回答下列问题(直接写出答案):图中与∠MAB相等的角是∠FMG=度.【答案】(1)∠MAB+∠D=90°见解析(2)∠MAB﹣∠D=90°(3)∠MAB=∠EMD45【分析】(1)在题干的基础上通过平行线的性质可得结论(2)仿照(1)的解题思路过点M作MN∠AB由平行线的性质可得结论(3)利用(2)中的结论结合角平分线的性质可得结论.【详解】(1)解:如图①过点M作MN∥AB∵AB∥CD∴MN∥AB∥CD(如果一条直线和两条平行线中的一条平行那么它和另一条也平行).∴∠D=∠NMD.∵MN∥AB∴∠MAB+∠NMA=180°.∴∠MAB+∠AMD+∠DMN=180°.∵∠AMD=90°∴∠MAB+∠DMN=90°.∴∠MAB+∠D=90°(2)解:如图②过点M作MN∥AB∵MN∥AB∴∠MAB+∠AMN=180°.∵AB∥CD∴MN∥AB∥CD.∴∠D=∠NMD.∵∠AMD=90°∴∠AMN=90°﹣∠NMD.∴∠AMN=90°﹣∠D.第21页共22页第22页共22页。

第五章相交线与平行线单元试卷测试卷(解析版)

第五章相交线与平行线单元试卷测试卷(解析版)

第五章相交线与平行线单元试卷测试卷(解析版)一、选择题1.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°2.如图,AB∥CD,∠1=120°,则∠2=()A.50°B.70°C.120°D.130°3.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.两条平行线被第三条直线所截,则下列说法错误的是()A.一对邻补角的平分线互相垂直 B.一对同位角的平分线互相平行C.一对内错角的平分线互相平行 D.一对同旁内角的平分线互相平行5.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线 B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短6.如图,直线AB,CD相交于点O,EO⊥AB,垂直为点O,∠BOD=50°,则∠COE=()A.30°B.140°C.50°D.60°7.如图,在△ABC中,AB=AC,CD∥AB,点E在BC的延长线上.若∠A=30°,则∠DCE的大小为()A.30° B.52.5° C.75° D.85°8.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线9.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°10.下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离 B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短11.下列说法中不正确的个数为().①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个12.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .4二、填空题13.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.14.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.15.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.16.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .17.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.18.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.19.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.(1)如图a 所示,//AB CD ,且点E 在射线AB 与CD 之间,请说明AEC A C ∠=∠+∠的理由.(2)现在如图b 所示,仍有//AB CD ,但点E 在AB 与CD 的上方,①请尝试探索1∠,2∠,E ∠三者的数量关系.②请说明理由.22.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.23.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.24.已知AB ∥CD ,点C 在点D 的右侧,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 相交于点E .(1)如图1,当点B 在点A 的左侧时,①若∠ABC =50º,∠ADC =70º,求∠BED 的度数;②请直接写出∠BED 与∠ABC ,∠ADC 的数量关系;(2)如图2,当点B 在点A 的右侧时,试猜想∠BED 与∠ABC ,∠ADC 的数量关系,并说明理由.25.(1)方法感悟如图①所示,求证:BCF B F ∠=∠+∠.证明:过点C 作//CD EF//AB EF (已知)//CD AB ∴(平行于同一条直线的两条直线互相平行)1,2B F ∴∠=∠∠=∠(两直线平行,内错角相等 )12B F ∴∠+∠=∠+∠即BCF B F ∠=∠+∠(2)类比应用如图②所示,//,AB EF 求证:360B BCF F ∠+∠+∠=︒.证明:(3)拓展探究如图③所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可). 如图④所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可).26.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OCPD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示). 27.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP28.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC 的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.2.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.3.D解析:D【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.4.D解析:D【解析】试题分析:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;故选:D.5.A解析:A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.6.B解析:B【解析】试题解析:EO⊥AB,∴∠=AOE90,∠=∠=AOC BOD50,∴∠=∠+∠=+=COE AOC AOE5090140.故选B.7.C解析:C【解析】试题分析:根据等腰三角形的性质:等边对等角,可得∠B=∠ACB,然后根据三角形的内角和可求得∠B=75°,然后根据平行线的性质可得∠B=∠DCE=75°.故选:C.点睛:此题主要考查了等腰三角形的性质,解题关键是利用等腰三角形的性质求得两底角的值,然后根据平行线的性质可求解问题.8.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.9.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.10.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.11.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.12.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.二、填空题13.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.14.或【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少,可得出答案.【详解】解:设为x ,则为,若两角互补,则,解得,;若两角相等,则,解得,.故答案解析:125︒或20︒【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40︒,可得出答案.【详解】解:设β∠为x ,则α∠为340x -︒,若两角互补,则340180x x +-︒=︒,解得55x =︒,125α∠=︒;若两角相等,则340x x =-︒,解得20x =︒,20α∠=︒.故答案为:125︒或20︒.【点睛】本题考查了平行线的性质,解题的关键是注意若∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,注意方程思想与分类讨论思想的应用.15.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD∥BC 时.∵AD∥BC, ∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD ∥BC 时.∵AD ∥BC , ∴∠D =∠BCD =30°,∵∠ACE+∠ECD =∠ECD+∠DCB =90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.16.【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=25解析:125【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.17.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】【分析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥. 18.40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,,∠2=50°,∴∠1=∠2,∵,∠2=50°,∴α+10°=50°,∴α=4解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.19.40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA 平分∠BCD,∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD ∥BC ,∴∠BCD=180°-∠D=80°,又∵CA 平分∠BCD ,∴∠ACB=12∠BCD=40°, ∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.20.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.三、解答题21.(1);(2)①∠1+∠2-∠E=180°;②见解析【分析】(1)过点E 作EF ∥AB ,根据平行线的性质得到∠A=∠AEF 和∠FEC=∠C ,再相加即可;(2)①、②过点E 作EF ∥AB ,根据平行线的性质可得∠AEF+∠1=180°和∠FEC=∠2,从而可得三者之间的关系.【详解】解:(1)过点E 作EF ∥AB ,∴∠A=∠AEF ,∵AB ∥CD ,∴EF ∥CD ,∴∠FEC=∠C ,∵∠AEC=∠AEF+∠FEC ,∴∠AEC=∠A+∠C ;(2)①∠1+∠2-∠E=180°,②过点E 作EF ∥AB ,∴∠AEF+∠1=180°,∵AB ∥CD ,∴EF ∥CD ,∴∠FEC=∠2,即∠CEA+∠AEF=∠2,∴∠AEF=∠2-∠CEA ,∴∠2-∠CEA+∠1=180°,即∠1+∠2-∠AEC=180°.【点睛】本题考查了平行线的性质,作辅助线并熟记性质是解题的关键.22.(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠; 过点P 作PM∥FD,则PM∥FD∥CG,∵PM∥FD,∴∠1=∠α,∵PM∥CG,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由: 过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP,AN 平分∠PAC, ∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.23.(1)证明见解析;(2)45IGJ ∠=︒.【分析】(1)根据平行线的性质可得180DEF BFE ∠+∠=︒,再利用角平分线的定义即可得证; (2)过点G 作//GK AB ,则////AB GK CD ,根据平行线的性质可得DEG EGK ∠=∠,KGF GFB ∠=∠,再结合(1)的结论易得90EGK KGF ∠+∠=︒,利用角平分线的定义及垂线的定义即可求解.【详解】(1)证明:∵//AB CD ,∴180DEF BFE ∠+∠=︒.∵EG 平分DEF ∠,FG 平分BFE ∠,∴22DEF GEF DEG ∠=∠=∠,22BFE EFG GFB ∠=∠=∠,∴22180GEF EFG ∠+∠=︒,∴90EFG GEF ∠+∠=︒.(2)解:过点G 作//GK AB .∵//AB CD ,∴////AB GK CD ,∴DEG EGK ∠=∠,KGF GFB ∠=∠.由(1)得90DEG GFB ∠+∠=︒,∴90EGK KGF ∠+∠=︒.∵GH AB ⊥,∴GH KG ⊥,即90KGH KGF HGF ∠=∠+∠=︒,∴EGK HGF ∠=∠.∵GJ 平分EGH ∠,∴EGJ HGJ ∠=∠.又KGJ EGJ EGK ∠=∠-∠,FGJ HGJ HGF ∠=∠-∠,∴KGJ FGJ ∠=∠,∴2KGF FGJ ∠=∠.∵GI 平分HGF ∠,∴2HGF FGI ∠=∠,∴2290FGJ FGI ∠+∠=︒,即45FGJ FGI ∠+∠=︒,∴45IGJ FGJ FGI ∠=∠+∠=︒.【点睛】本题考查平行线的性质、角平分线的定义等内容,掌握平行线的性质是解题的关键.24.(1)①∠BED =60º;②∠BED =12∠ABC +12∠ADC ;(2)∠BED =180º-12∠ABC +12∠ADC ,理由见解析. 【分析】(1)①过点E 作EF ∥AB ,然后说明AB ∥CD ∥EF ,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E 作EF ∥AB ,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒,∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF=12∠ABC,∠EDC=∠DEF=12∠ADC;.∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC∴∠BED=12∠ABC+12∠ADC(2)如图2,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠EDC=∠DEF,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE.∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=12∠ABC,∠DEF=12∠ADC,∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC.【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.25.(2)见解析;(2)BCF F B ∠=∠-∠,BCF B F ∠=∠-∠.【分析】(2)过点C 作CD ∥AB ,由平行线的性质,得到180B BCD ∠+∠=︒,180DCF F ∠+∠=︒,即可得到结论成立;(3)①过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案; ②过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案;【详解】()2证明:过点C 作//CD AB//AB EF (已知)//CD EF ∴(平行于同一条直线的两条直线互相平行)180,180B BCD DCF F ∴∠+∠=︒∠+∠=︒(两相线平行,同旁内角补),∵BCF BCD DCF ∠=∠+∠,∴360B BCF F ∠+∠+∠=︒;(3)①过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠=∠+∠,∴BCF F B ∠=∠-∠;故答案为:BCF F B ∠=∠-∠;②过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠+∠=∠,∴BCF B F ∠=∠-∠.故答案为:BCF B F ∠=∠-∠.【点睛】本题考查了平行线的判定和性质,解题的关键是熟练掌握题意,以及掌握平行线的判定和性质进行证明.26.(1)45;(2)①详见解析;②302α︒+或602α︒-; 【分析】(1)根据平行线性质可得180********BPD ∠=︒-︒-︒-︒=︒,再根据平行线性质得BOC BPD ∠=∠;(2)①根据平行线性质得160BOC ∠=∠=︒,2160∠=∠=︒,结合角平分线定义可证180DQE PDQ ∠+∠=︒,得PD QE ∥,根据平行线传递性可再证PD OC ∥; ②分两种情况分析:当Q 在H 的右侧时,根据平行线性质可得∠BPD=∠BOC=α,∠MQP=∠QPB=60°+α,根据角平分线性质∠MQE=12(60°+α),故∠PEQ=∠MQE ;当Q 在H 的右侧时,与上面同理,∠NQE=12(180°-60°-α),∠PEQ=∠NQE . 【详解】(1)由45NQD ∠=︒,MNAB ,可得180********BPD ∠=︒-︒-︒-︒=︒, 而PD OC ∥,则有BOC BPD ∠=∠.故45BPD α=∠=︒ (2)∵QE OC ∥,60BOC α∠==︒,∴160BOC ∠=∠=︒,又∵MN AB ,∴2160∠=∠=︒,又∵QE 平分PQH ∠,∴3260∠=∠=︒,又∵430∠=︒,∴4390DQE ∠=∠+∠=︒,且90PDQ ∠=︒,∴180DQE PDQ ∠+∠=︒,∴PD QE ∥,∵QE OC ∥,∴PD OC ∥.②当Q 在H 的右侧时,∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠MQP=∠QPB=60°+α又∵QE 平分∠MQP∴∠MQE=12(60°+α)=30°+12α ∴∠PEQ=∠MQE=30°+12α 当Q 在H 的左侧时∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠NQP=180°-60°-α又∵QE 平分∠NQP∠NQE=12(180°-60°-α)=60°-12α ∴∠PEQ=∠NQE=60°-12α∴302PEQ α∠=︒+或602α︒-.【点睛】 考核知识点:平移、平行线判定和性质综合运用.熟练运用平行线性质和判定,分类讨论问题是关键.27.(1)∠ADP+∠BCP=∠DPC,理由见解析;(2)∠ADP=∠DPC+∠BCP,理由见解析【分析】(1)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;(2)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP.过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键. 28.(1)∠AEC=130°;(2)∠A1EC=130°;(3)∠A1EC=40°.【解析】【分析】(1)由直线PQ∥MN,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得∠CAE=25°;由∠PAC=∠ACN,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,再求出∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA1;(3)根据平行线性质和角平分线定义可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA1=∠1+∠2即可求得答案.【详解】(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【点睛】本题考查了平行线性质,角平分线定义,熟练运用平行线性质和角平分线定义推出角的度数是解题的关键.。

人教版七年级下册数学第五章《相交线与平行线》单元测试(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元测试(含答案)

第五章相交线与平行线单元测试一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直3.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有().A.0个B.1个C.2个D.3个4.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完全重合的多边形二、填空题9.如图所示,AB ∥CD ,EF 分别交AB 、CD 于G 、H 两点,若∠1=50°,则∠EGB =________.10.平行用符号表示,直线AB 与CD 平行,可以记作为 .11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (广东湛江)如图所示,请写出能判断CE ∥AB 的一个条件,这个条件是;①:________ ②:________ ③:________13.如图,已知AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F ,EP ⊥EF ,与∠EFD 的平分线FP相交于点P ,且∠BEP=50°,则∠EPF=________度.14.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c .15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.如图所示,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有 条.北 北 甲 乙三、解答题17.把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC平分∠DAB,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?参考答案一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】D.3. 【答案】B;【解析】(1)只有两条直线平行时,同位角相等,错误;(2)正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误.故选:B.4. 【答案】D;【解析】因为不知道直线AB和CD是否平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角是否相等,故选D.5. 【答案】D【解析】易见A、B、C都可以通过基本图形平移得到,只有D不能.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q 点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C正确.8.【答案】C【解析】分析:两个能够完全重合的多边形,如果把其中一个多边形旋转一个角度,那么另一个多边形不论怎样平移,也不可能和这个多边形(指旋转一个角度的多边形)完全重合在一起,只有两个点或两个半径相等的圆总能完全重合在一起,故选C.二、填空题9. 【答案】50°【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF,故∠EGB=50°.10.【答案】∥,AB∥CD.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度. 12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B 或∠A+∠ACE=180°.13.【答案】70°;【解析】∠EFD+∠FEB=180°,∠EFD=180°-50°-90°=40°,∴∠EFP=20°,则∠EPF=180°-90°-20°=70°.14.【答案】∥,∥,⊥;15.【答案】48°;【解析】内错角相等,两直线平行.16.【答案】8;【解析】表示点到直线或线段距离的垂线段有:线段AC、BC、DE、CE、BE、CD、CB、AD.三、解答题17.【解析】解:AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.18.【解析】解:AB∥CD,理由如下:因为AC平分∠DAB(已知),所以∠1=∠3(角平分线定义).又因为∠1=∠2(已知),所以∠2=∠3(等量代换),所以AB∥CD(内错角相等,两直线平行).19.【解析】解:将马路的一边向另一边平移到重合,则此时草地的形状为:长为(a-2)米,宽为b米的长方形,所以面积为:(a-2)b=(ab-2b)平方米.20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF =∠B(等量代换).。

七年级初一数学 第五章 相交线与平行线测试试题附解析

七年级初一数学 第五章 相交线与平行线测试试题附解析

七年级初一数学 第五章 相交线与平行线测试试题附解析一、选择题1.如图,直线AC 和直线BD 相交于点O ,OE 平分∠BOC .若∠1+∠2=80°,则∠3的度数为( )A .40°B .50°C .60°D .70°2.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70° 3.如图,直线//AB CD ,AP 平分BAC CP AP ∠⊥,于点P ,若149︒∠=,则2∠的度数为( )A .40︒B .41︒C .50︒D .51︒ 4.在同一坐标平面内,图象不可能...由函数221y x =+的图象通过平移变换、轴对称变换得到的函数是( )A .22(1)1y x =+-B .223y x =+C .221y x =--D .2112y x =- 5.如图,已知AB ∥CD ,AD 平分∠BAE ,∠D =40°,则∠DAE 的度数是( )A .20°B .40°C .60°D .80° 6.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个7.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒8.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( ) A .先右转30,后左转60︒B .先右转30后左转60︒C .先右转30后左转150︒D .先右转30,后左转309.下列命题中,正确的是( )A .两个直角三角形一定相似B .两个矩形一定相似C .两个等边三角形一定相似D .两个菱形一定相似 10.下列命题:①同位角相等;②过一点有且只有一条直线与已知直线平行; ③过一点有且只有一条直线与已知直线垂直; ④如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行.其中假命题的个数是( )A .1个B .2个C .3个D .4个二、填空题11.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;12.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.13.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD绕点A顺时针旋转一周,共有 _________次出现三角形ACD的一边与三角形AOB的某一边平行.14.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.15.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)16.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.17.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有_____.18.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.19.如图,长方形ABCD的周长为30,则图中虚线部分总长为____________.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.为了探究n 条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数把平面最多 分成的部分数 写成和的形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n 时,把平面最多分成多少部分?22.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕B 点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点A 顺时针旋转一定角度交CD 于H (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=23.如图1,//PQ MN ,点A ,B 分别在MN ,QP 上,2BAM BAN ∠=∠射线AM 绕A 点顺时针旋转至AN 便立即逆时针回转,射线BP 绕B 点顺时针旋转至BQ 便立即逆时针回转.射线AM 转动的速度是每秒2度,射线BQ 转动的速度是每秒1度.(1)直接写出QBA ∠的大小为_______;(2)射线AM 、BP 转动后对应的射线分别为AE 、BF ,射线BF 交直线MN 于点F ,若射线BP 比射线AM 先转动30秒,设射线AM 转动的时间为t ()0180t <<秒,求t 为多少时,直线//BF 直线AE ?(3)如图2,若射线BP 、AM 同时转动m ()090m <<秒,转动的两条射线交于点C ,作120ACD ∠=︒,点D 在BP 上,请探究BAC ∠与BCD ∠的数量关系.24.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.25. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P 在B ,D 两点之间运动时(P 不与B ,D 重合),求α,β和∠APC 之间满足的数量关系.(2)当点P 在B ,D 两点外侧运动时(P 不与点O 重合),直接写出α,β和∠APC 之间满足的数量关系.26.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据对顶角和邻补角的定义即可得到∠BOC 的度数,再根据角平分线即可得出∠3的度数.【详解】解:∵∠1=∠2,∠1+∠2=80°,∴∠1=∠2=40°,∴∠BOC =140°,又∵OE 平分∠BOC ,∴∠3=70°.故选:D .【点睛】本题考查了邻补角、对顶角、角平分线的应用,解题时注意运用:对顶角相等,邻补角互补,即和为180°.2.C解析:C【分析】由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.【详解】∵AB∥CD,∠BAD=35°,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.3.B解析:B【分析】根据平行线的性质和角平分线的定义可得∠ACD=82°,再根据CP⊥AP,即可得∠2的度数.【详解】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵AP平分∠BAC,∴∠BAC=2∠1=98°,∴∠ACD=180°-98°=82°,∵CP⊥AP,∴∠P=90°,∴∠ACP=90°-∠1=90°-49°=41°,∴∠2=∠ACD-∠ACP=82°-41°=40°.则∠2的度数为41°.故选:B.【点睛】本题考查了平行线的性质、垂线,解题的关键是掌握平行线的性质.4.D解析:D【解析】分析:根据图形平移的性质可得,平移后的图形与原图形大小、形状、开口相同,再根据抛物线的形状由二次项的系数a决定的进行分析即可.解:由于抛物线的形状由二次项的系数a决定,所以两个函数表达式中的a要相同或互为相反数才可以通过平移变换、轴对称变换得到,A、B选项的二次项系数为2;C选项的二次项系数为-2;D 选项的二次项系数为12,故D 不能由原函数平移而得到. 故选D . 5.B解析:B【分析】根据平行线的性质得出∠DAB =∠D =40°,再由角平分线即可得解.【详解】解:∵AB ∥CD ,∴∠DAB =∠D =40°(两直线平行,内错角相等),∵AD 平分∠BAE ,∴∠DAE =∠DAB =40°,故选:B .【点睛】本题考查平行线的性质和角平分线性质,关键是求出∠DAE 的度数,题目比较好,难度适中.6.D解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.7.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.8.D解析:D【分析】根据平行线的性质分别判断即可.【详解】解:因为两次拐弯后,行驶的方向与原来的方向相同,所以两边拐弯的方向相反,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,利用两直线平行,同位角相等是解题的关键.9.C解析:C【分析】利用反例可分析排除判断.【详解】解:等腰直角三角形和非等腰直角三角形显然不相似,故A错误;正方形和长方形都是矩形,显然不相似,故B错误;内角分别是60°,120°,60°,120°的菱形和内角分别是80°,100°,80°,100°的菱形显然不相似,故D 错误;故选C .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.A解析:A【分析】根据平行线的性质、八个基本事实、平行线的判定等知识分别判断即可.【详解】解:同位角不一定相等,①是假命题;过直线外一点有且只有一条直线与已知直线平行,②是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,③是假命题;如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行,④是真命题,故选:A .【点睛】本题考查了命题与定理、平行线的判定与性质、八个基本事实,熟记八个基本事实,会判断命题的真假是解答的关键.二、填空题11.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.12.PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E 作EF ∥AB ,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;解析:PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,过E作EF∥AB,则EF∥CD,∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,∴∠PEQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t=45+t,解得,t=15(s);②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,∵AB∥CD,PB′∥QC′,∴∠APB′=∠PED=180°﹣∠CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.13.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°;(2)如图2,解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.14.或【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少,可得出答案.【详解】解:设为x ,则为,若两角互补,则,解得,;若两角相等,则,解得,.故答案解析:125︒或20︒【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40︒,可得出答案.【详解】解:设β∠为x ,则α∠为340x -︒,若两角互补,则340180x x +-︒=︒,解得55x =︒,125α∠=︒;若两角相等,则340x x =-︒,解得20x =︒,20α∠=︒.故答案为:125︒或20︒.【点睛】本题考查了平行线的性质,解题的关键是注意若∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,注意方程思想与分类讨论思想的应用.15.【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠解析:【解析】【详解】作IF ∥AB,GK ∥AB,JH ∥AB因为AB ∥CD所以,AB ∥CD ∥ IF ∥GK ∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.16.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 17.2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=12n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋解析:2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得, n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.【点睛】此题主要考查推理与论证,解题的关键是根据题意分析运动规则,再列出式子来解答. 18.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.19.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:130152AB BC+=⨯=.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.解析:73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC =∠ABE =12∠CBE =73°.三、解答题21.(1) 16; (2) 56; (3)(1)12n n +⎡⎤+⎢⎥⎣⎦部分 【分析】(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分; (2)通过已知探究结果,写出一般规律,当直线为n 条时,把平面最多分成1+1+2+3+…+n ,求和即可.【详解】(1)16;1+1+2+3+4+5.(2)56.根据表中规律知,当直线条数为10时,把平面最多分成56部分,即1+1+2+3+…+10=56.(3)当直线条数为n 时,把平面最多分成1+1+2+3+…+n=(1)12n n +⎡⎤+⎢⎥⎣⎦部分. 【点睛】本题考查了图形的变化,通过直线分平面探究其中的隐含规律,运用了从特殊到一般的数学思想,解决此题关键是写出和的形式.22.(1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.【分析】(1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;【详解】解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C ,360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒. (2)①如图3中,作//BE CD ,3EBQ,1EBP EBQ , 2132BPD EBP .②如图4中,连接EH .180A AEH AHE ,180C CEB CBE , 360AAEH AHE CEH CHE C , 360A AEC C AHC .(3)如图5中,设AC 交BG 于H .AHB A B F ,AHB CHG ∠=∠, 在五边形HCDEG 中,540CHG CD E G , 540A B F C D E G【点睛】本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.23.(1)60°;(2)当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,2BAC BCD ∠=∠.【分析】(1)根据2BAM BAN ∠=∠得到60BAN ∠=︒,再根据直线平行的性质即可得到答案;(2)设灯转动t 秒,直线//BF 直线AE ,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出BAC ∠,再根据三角形内角和即可表示出BCD ∠,即可得到答案;【详解】解:(1)∵2BAM BAN ∠=∠180BAM BAN ∠+∠=︒,∴60BAN ∠=︒,∴QBA ∠60BAN =∠=︒(两直线平行,内错角相等)故结果为:60︒;(2)设灯转动t 秒,直线//BF 直线AE ,①当090t <<时,如图,//PQ MN ,PBF BFA ∴∠=∠,//AE BF ,EAM BFA ∴∠=∠,EAM PBF ∴∠=∠,21(30)t t ∴=⋅+,解得30t =;②当90180t <<时,如图,//PQ MN ,180PBF BFA ∴∠+∠=︒,//AE BF ,EAN BFA ∴∠=∠180PBF EAN ∴∠+∠=︒,1(30)(2180)180t t ∴⋅++-=,解得110t =,综上所述,当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,理由:设射线AM 转动时间为m 秒,作//CH PQ ,//PQ MN ,////CH PQ MN ∴,2180QBC ∴∠+∠=︒,1180MAC ∠+∠=︒,21360QBC MAC ∴∠+∠+∠+∠=︒,180QBC m ∠=︒-,2MAC m ∠=,()123601802180BCA m m m ∴∠=∠+∠=---=︒︒-︒,而120ACD ∠=︒,()12012018060BCD BCA m m ︒︒∴∠=-∠=--=-︒︒,1802CAN m ∠=︒-,()18022120BAC QBA m m ︒︒∴∠=∠--=-,:2:1BAC BCD ∴∠∠=,即2BAC BCD ∠=∠,BAC ∴∠和BCD ∠关系不变.本题主要考查了补角、角的运算、直线平行的性质和判定以及三角形的内角和定理,结合图形添加辅助线、分类讨论是解题的关键.24.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.25.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P 在OD 上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.26.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【分析】(1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.。

最新人教版七年级下册第五章《相交线与平行线》单元测试(解析版)

最新人教版七年级下册第五章《相交线与平行线》单元测试(解析版)

人教版七年级数学下册第五章订交线与平行线单元测试题一、选择题 ( 每题 3 分,共 30 分 )1.以下图形能够由一个图形经过平移变换获得的是()A B C D2.以下说法中, 正确的个数是()(1) 相等且互补的两个角都是直角;(2)互补角的均分线相互垂直 ;(3)邻补角的均分线相互垂直 ;(4)一个角的两个邻补角是对顶角 .A.1B.2C.3.43 以下图 , △ABC的三个极点分别在直线a, b 上,且 a∥b,∠1=120°, ∠2=80°, 则∠ 3 的度数是()A.40°B.60°C.80°D.120°4.如图,以下判断:①∠ A 与∠ 1 是同位角;②∠ A 与∠ B 是同旁内角;③∠ 4 与∠1是内错角;④∠ 1 与∠ 3 是同位角.此中正确的选项是 ()A .①②③B.①②④C.②③④D.①②③④5.如图,直线AD ∥BC .若∠ 1= 42°,∠ BAC= 78°,则∠ 2 的度数为 ()A . 42°B .50° C.60° D .68°6.如图,∠ BAC= 90°, AD⊥ BC 于点 D,则以下结论中:①AB⊥ AC;② AD 与 AC 互相垂直;③点 C 到AB的垂线段是线段AB;④点 A 到BC的距离是线段AD的长度;⑤线段 AB 的长度是点 B 到AC 的距离;⑥线段AB 是点B 到AC 的距离.此中正确的有()A.3个B.4 个C.5 个D.6 个7.如图,将直尺与含30°角的三角尺摆放在一同.若∠1= 20°,则∠ 2 的度数是 ()A . 50°B .60° C.70° D .80°8.一架飞机向北飞翔, 两次改变方向后, 行进的方向与本来的航行方向平行, 已知第一次向左拐50°, 那么第二次向右拐()A.40°B.50°C.130°D.150°9.如图,已知∠1=∠ 2,有以下结论:①∠3=∠ D;② AB∥ AB;③ AD ∥ BC;④∠ A +∠ D= 180°.此中正确的有()A.1个B.2 个C.3 个D.4 个10.如图, AB∥ AB∥ AB,则以下各式中正确的选项是()A .∠ 1= 180 °-∠ 3B.∠ 1=∠ 3-∠ 2C.∠ 2+∠ 3= 180 °-∠ 1D.∠ 2+∠ 3= 180 °+∠ 1二、填空题 (每题 4 分,共 24 分 )11.如图,点 D 在∠ AOB 的均分线 OC 上,点 E 在 OA 上,ED ∥ OB,∠ 1= 25°,则∠AED 的度数为 _______.12.一大门栏杆的平面表示图以下图, BA 垂直地面 AE 于点 A, AB 平行于地面 AE. 若∠ BAB = 150°,则∠ ABC =________.13.如图, C 岛在 A 岛的北偏东 50°方向, C 岛在 B 岛的北偏西 40°方向,则从 C 岛看A,B 两岛的视角∠ ACB 等于 _________.14.以下图 , AB⊥CD于O, EF为过点O 的直线, MN均分∠ AOC,若∠ EON=100°,那么∠EOB=,15.已知∠α是锐角 , ∠α与∠β互补 , ∠α与∠γ互余 , 则∠β - ∠ γ的值等于.16.如图所示 , ∠AOB=75°, ∠AOC=15°,OD是∠BOC的平分线 , 则∠BOD=.三、解答题 (共 66 分)17. (8 分) 如图,增补以下结论和依照.∵∠ ACE=∠ D(已知 ),∴_____∥______(___________________________) .∵∠ ACE=∠ FEC (已知 ),∴______∥______(___________________________) .∵∠ AEC=∠ BOC(已知 ),∴_____∥______(_____________________________) .∵∠ BFD+∠ FOC = 180°(已知 ),∴_____∥ ______(______________________________) .18.(8 分 )如图,直线 AB 与 AB 订交于点O,OP 是∠ BOC 的均分线, OE⊥ AB, OF ⊥ AB.(1)图中除直角和平角外,还有相等的角吗?请写出两对:①__________________ ;② _________________________________________ .(2)假如∠ AOD = 40°,求∠ COP 和∠ BOF 的度数.19. (8 分) 如图,已知∠ ABC= 180 °-∠ A, BD⊥ AB 于点 D, AB⊥ AB 于点 F.(1)求证: AD ∥BC ;(2)若∠ 1= 36°,求∠ 2 的度数.20.(10 分) 如图,点 C 在∠ AOB 的一边 OA 上,过点 C 的直线 DE ∥ OB,CF 均分∠ AAB ,CG⊥ CF 于点 C.(1)若∠ O= 38°,求∠ ECF 的度数;(2)试说明 CG 均分∠ OAB 的原因;(3)当∠ O 为多少度时,AB 均分∠ OCF ,请说明原因.21.(10 分 )如图, BD ⊥ AC 于点 D,AB⊥ AC 于点 F,∠ AMD =∠ AGF,∠ 1=∠ 2= 35°.(1)求∠ GFC 的度数;(2)求证: DM ∥ BC.22. (10 分)是大众汽车的标记图案,此中蕴涵着很多几何知识.依据下边的条件完成证明.已知:如图,BC∥ AD ,BE∥AF .(1)求证:∠ A=∠ B;(2)若∠ DOB = 135 °,求∠ A 的度数.23. (12分 ) 有一天李小虎同学用《几何画板》绘图, 他先画了两条平行线AB CD, , 而后在平行线间画了一点 E,连结 BE, CE后(如图(1)所示 ),他用鼠标左键点住点E,拖动后,分别获得图(2)(3)(4),这时忽然想 ,∠ ,∠D 与∠之间的度数有没有某种联系呢?接着李小虎同学通B BED过利用《几何画板》的“胸怀角度”和“计算”的功能, 找到了这三个角之间的关系.(1)你能商讨出图 (1) 至 (4) 中的∠B, ∠D与∠BED之间的关系吗 ?(2)请从所得的四个关系中 , 选一个说明它建立的原因.参照答案一、1.C2.C3.A4.A5.C6.A7.A8.B9.B10.D二、11. 50°【分析】∵DE∥ OB,∴∠ EDO=∠1=25°.∵ OD均分∠ AOB,∴∠ AOD=25°,∴∠ AED =25°+ 25°= 50°.12. 120 °【分析】如答图,过点 B 作 BF ⊥ AB, AB⊥ AE.∴∠ ABF = 90°.∵ AB⊥ AE,∴AE ∥BF .∵AB∥AE ,∴ AB∥ BF.∵∠ BAB = 150°,∴∠ CBF = 180°-∠ BAB= 30°.则∠ ABC =∠ ABF +∠ CBF= 120°.13. 90°14.. 55°15. . 90° ( 分析: ∠ α与∠β互补 , 有∠α +∠β =180 ° , ∠α与∠γ互余 , 有∠α +∠γ=90° , 可推出∠β- ∠ γ =90°. )16.30三、17. CE DF同位角相等,两直线平行EF AD内错角相等,两直线平行AE BF同位角相等,两直线平行EC DF同旁内角互补,两直线平行18. (1)∠ COE=∠ BOF∠COP=∠BOP、∠COB=∠AOD (写出随意两对即可 )解: (2) ∵∠ AOD =∠BOC= 40°,1∴∠ COP=∠BOC= 20°.∵∠ AOD= 40°,∴∠ BOF =90°- 40°= 50°.19.(1)证明:∵∠ ABC= 180 °-∠A,∴∠ ABC+∠ A= 180°,∴AD∥ BC.(2)解:∵ AD ∥BC ,∠ 1= 36°,∴∠ 3=∠ 1= 36°.∵BD⊥ AB, AB⊥ AB,∴BD∥ AB,∴∠ 2=∠ 3= 36°.20.解: (1)∵ DE∥ OB,∠ O= 38°,∴∠ ACE=∠ O= 38°.∵∠ AAB+∠ ACE= 180°,∴∠ AAB=142°.∵CF 均分∠ AAB,1∴∠ ACF=∠ AAB= 71°,∴∠ ECF=∠ ACE +∠ ACF = 109°.(2)∵ CG⊥ CF,∴∠ FCG = 90°,∴∠ DCG +∠ DCF = 90°.又∵∠ GCO+∠ DCG +∠ DCF +∠ ACF = 180°,∴∠ GCO+∠ FCA = 90°.∵∠ ACF=∠ DCF ,∴∠ GCO=∠ GAB,即 CG 均分∠ OAB.(3)当∠ O= 60°时, AB 均分∠ OCF .原因以下:当∠ O= 60°时,∵ DE∥ OB,∴∠ DCO=∠ O= 60°,∴∠ AAB=120°,又∵CF 均分∠AAB,∴∠ DCF = 60°,∴∠ DCO=∠DCF ,即 AB 均分∠OCF .21.解: (1)∵ BD ⊥ AC, AB⊥ AC,∴BD∥ AB,∴∠ ABG=∠ 1=35°,∴∠ GFC= 90°+ 35°= 125°.(2)∵ BD ∥ AB,∴∠ 2=∠ CBD,∴∠ 1=∠ CBD,∴GF∥ BC.∵∠ AMD =∠AGF ,∴MD∥ GF,∴DM∥ BC.22.解: (1)证明:∵BC∥AD ,∴∠ B=∠ DOE .又∵BE∥AF,∴∠ DOE=∠A,∴∠ A=∠B.(2)∵∠ DOB =∠ EOA,由 BE∥ AF,得∠EOA +∠A= 180°,∴∠ DOB+∠ A= 180°.又∵∠ DOB = 135°,∴∠ A= 45°.23.解:由于AB⊥BC, 因此∠ 3+∠EBC=90 ° ( 垂直定义 ) .由于∠ 1+∠ 2=90 ° , ∠2=∠ 3, 因此∠ 1+∠3=90°( 等量代换 ) .因此∠ 1=∠EBC(等角的余角相等 ) .因此BE∥DF( 同位角相等 ,两直线平行 ) .24.解 :(1)图(1):∠ BED=∠ B+∠ D;图(2):∠ B+∠ BED+∠ D=360°;图(3):∠ BED=∠ D-∠ B;图(4):∠ BED=∠ B-∠ D.(2)选图 (3) .原因以下 : 以下图 , 过点E作EF∥AB.由于AB∥CD, 因此EF∥CD, 因此∠D=∠DEF,∠ B=∠BEF,由于∠ BED=∠人教版七年级数学下册第五章订交线与平行线单元提高人教版七年级数学下册第五章订交线与平行线单元提高一、选择题1.以下现象不属于平移的是( C )A.飞机腾飞前在跑道上加快滑行B.汽车在笔挺的公路上行驶C.游玩场的过山车在翻筋斗D.起重机将重物由地面竖直吊起到必定高度2.以下语句是命题的是( C )A.延伸线段AB B.你吃过午餐了吗C.直角都相等D.连结A,B 两点3. 如图,已知∠ 1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°4.以下说法正确的有 ( B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角必定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1 个B.2个C.3 个D.4 个5.如图, OA⊥OB,若∠ 1=55°,则∠ 2= ( A )A.35°6. 以下各图中,过直线B.40°l 外一点P 画 l的垂线C.45°D.60°CD,三角板操作正确的选项是( D )7.以下图,点 P 到直线 l 的距离是 ( B )A.线段 PA的长度B.线段 PB 的长度C.线段 PC的长度D.线段 PD的长度8.如图,以下说法错误的选项是 ( D )A.∠A与∠ EDC是同位角C.∠A与∠ ADC是同旁内角B.∠A与∠ ABF 是内错角D.∠A与∠C是同旁内角9.在同一平面内的两条不重合的直线的地点关系( C )A.有两种:垂直或订交B.有三种:平行,垂直或订交C.有两种:平行或订交D.有两种:平行或垂直10.以下说法中,正确的有 ( A )①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③假如两条线段不订交,那么它们就平行;④假如两条直线不订交,那么它们就平行.A.1 个B.2个C.3 个D.4 个二、填空题11. 已知 a, b, c 为平面内三条不一样的直线,若a⊥b,c⊥b,则12. 如图,装饰工人向墙上钉木条.若∠2=100°,要使木条ba 与 c 的地点关系是平行.与 a 平行,则∠1 的度数等于 80°.13.如图,已知∠ 1+∠ 2=100°,则∠ 3=130°.14.如图,在同一平面内, OA⊥l , OB⊥l ,垂足为 O,则 OA与 OB重合的原因是同一平面内,过一点有且只有一条直线与已知直线垂直.15.如图, AB 与 BC被 AD所截得的内错角是∠1 和∠ 3; DE与 AC被直线 AD所截得的内错角是∠2和∠ 4;图中∠4 的内错角是∠5 和∠ 2.16. 如图,直角三角形ABO的周长为 88,在其内部的n 个小直角三角形的周长之和为88.三、解答题17.如图, P, Q分别是直线 EF外两点.(1)过点 P画直线 AB∥EF,过点 Q画直线 CD∥EF;(2)AB 与 CD有如何的地点关系?为何?解: (1) 如图.(2)AB ∥CD.原因:由于AB∥EF,CD∥EF,因此 AB∥CD.18.如图,已知直线 AB, CD,EF 订交于点 O.(1)∠AOD的对顶角是∠ BOC,∠EOC的对顶角是∠ DOF;(2)∠AOC的邻补角是∠ AOD 和∠ BOC,∠EOB的邻补角是∠ EOA 和∠ BOF.19.如图,两直线AB,CD订交于点 O, OE均分∠ BOD,∠ AOC∶∠ AOD=7∶11.(1)求∠ COE的度数;(2)若 OF⊥OE,求∠ COF 的度数.解: (1) 由于∠ AOC∶∠ AOD=7∶11,∠ AOC+∠ AOD=180°,因此∠ AOC=70°,∠ AOD=110°.因此∠ BOD=∠ AOC=70°,∠BOC=∠ AOD=110°.又由于 OE均分∠ BOD,1因此∠ BOE=∠ DOE=2∠BOD=35°.因此∠ COE=∠ BOC+∠ BOE=110°+ 35°= 145°.(2)由于 OF⊥OE,因此∠ FOE=90°.因此∠ FOD=∠ FOE-∠ DOE=90°- 35°= 55°.因此∠ COF=18人教版七年级下册第 5 章订交线与平行线能力水平测试卷一.选择题(共10 小题)1.如图,直线AB,CD 订交于点O,OE,OF,OG分别是∠ AOC,∠ BOD,∠ BOC 的均分线,以下说法不正确的选项是()A.∠ DOF与∠ COG 互为余角B.∠ COG与∠ AOG 互为补角C.射线 OE,OF不必定在同一条直线上D.射线 OE,OG 相互垂直2.如图,直线AB、CD订交于点O,EO⊥ AB,垂足为 O,∠ EOC=35° 15′.则∠ AOD 的度数为()A.55° 15′B. 65°15′C.125° 15′D. 165°15′3.如图 ,∠ ACB=90° ,CD⊥ AB,垂足为D,则点 B 到直线CD的距离是指()A.线段BC的长度B.线段CD的长度C.线段AD 的长度D.线段BD 的长度4.在以下图形中,由∠1=∠ 2 必定能获得AB∥ CD 的是()A.B.C.D.5.如图,以下条件:①∠1=∠2,②∠ 3+∠4=180 °,③∠ 5+∠ 6=180 °,④∠ 2=∠ 3,⑤∠ 7=∠ 2+∠3,⑥∠ 7+∠4-∠ 1=180°中能判断直线a∥ b 的有()A.3 个B.4 个C.5 个D.6 个6.以下命题中是假命题的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确立一条直线D.两点之间的全部连线中,线段最短7.如图,直线EF分别交 AB、CD 于点 E、F,EG均分∠ BEF,AB∥ CD.若∠ 1=72 °,则∠ 2 的度数为()A.54°B. 59°C.72°D. 108 °A、B 两8.已知直线m∥ n,将一块含30°角的直角三角板ABC,按以下图方式搁置,此中点分别落在直线m、 n 上,若∠ 1=25°,则∠ 2 的度数是()A.25°B. 30°C. 35°D.55°C(∠ ACB=90°)在直尺的一边上,9.如图,将三角板与直尺贴在一同,使三角板的直角极点若∠ 2=56°,则∠ 1 的度数等于()A.54°B. 44°C. 24°D.34°10.如图在一块长为12m, 宽为 6m 的长方形草地上,有一条曲折的柏油小道(小道任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70B. 60C. 48D.18二.填空题(共 6 小题)11.如图,∠ 1=15° ,∠ AOC=90°,点 B、 O、 D 在同向来线上,则∠ 2 的度数为.12.命题“同位角相等”的抗命题是13.如图,直线 a,b 与直线 c 订交,给出以下条件:①∠ 1=∠ 2;②∠ 3=∠ 6;③∠ 4+∠7=180 °;④∠ 5+∠ 3=180°;⑤∠ 6=∠ 8,此中能判断a∥ b 的是(填序号)14.如图,∠A=70°,O 是AB 上一点,直线OD与AB 所夹的∠AOD=100°,要使OD∥ AC,直线OD 绕点O 按逆时针方向起码旋转.15.将一块60°的直角三角板DEF搁置在45°的直角三角板ABC上,挪动三角板DEF使两条直角边DE、 DF恰分别经过B、 C 两点,若EF∥ BC,则∠ ABD=°.16.在长为a(m), 宽为 b(m)一块长方形的草坪上修了一条宽2(m)的笔挺小道,则余下草坪的面积可表示为m2;先为了增添美感,把这条小道改为宽恒为2(m) 的曲折小道(如图),则此时余下草坪的面积为m2.三.解答题(共7 小题)17.如图,直线AB 和直线 CD 订交于点 O,已知∠ AOC=30°,作 OE均分∠ BOD.(1)求∠ AOE 的度数;(2)作 OF⊥ OE,请说明 OF 均分∠ AOD 的原因.18.如图, AB、 CD 交于点 O,∠ AOE=4∠ DOE,∠ AOE 的余角比∠ DOE小 10°(题中所说的角均是小于平角的角).(1)求∠ AOE 的度数;(2)请写出∠ AOC在图中的全部补角;(3)从点 O 向直线 AB 的右边引出一条射线 OP,当∠ COP=∠ AOE+∠ DOP 时,求∠ BOP 的度数.19.如图, OD 是∠ AOB 的均分线 ,∠ AOC=2∠BOC.(1)若 AO⊥ CO,求∠ BOD 的度数;(2)若∠ COD=21°,求∠ AOB 的度数.20.填空或标注原因:如图,已知∠ 1=∠ 2,∠A=∠ D,试说明: AE∥ BD证明:∵∠ 1=∠ 2(已知)∴AB∥ CD()∴∠ A=()()∵∠ A=∠ D(已知)∴=∠D()∴AE∥ BD()21.如图,已知点D、E、B、C 分别是直线m、 n 上的点,且m∥ n,延伸 BD、CE交于点 A,DF 均分∠ ADE,若∠ A=40° ,∠ ACB=80°.求:∠ DFE的度数.22.如图,直线AB∥ CD,而且被直线MN 所截, MN 分别交 AB 和 CD于点 E、 F,点 Q 在 PM 上,且∠ AEP=∠ CFQ.求证:∠ EPM=∠ FQM.23.如图,在 6× 6 的正方形网格中,每个小正方形的边长为1,点 A、B、C、D、E、F、M 、N、 P 均为格点(格点是指每个小正方形的极点).(1)利用图①中的网格,过P 点画直线MN 的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF经过平移使之首尾按序相接构成一个三角形(在图②中画出三角形).(3)第( 2)小题中线段AB、 CD、EF首尾按序相接构成一个三角形的面积是.答案:1-5CCDAC6-10 AACDB11. 10512.相等的角是同位角13.①③④⑤14.10 °15.1516.( ab-2a) , ( ab-2a)17.解:( 1)∵∠ AOC=30°,∴∠ BOD=∠AOC=30°,∵OE均分∠ BOD,∴∠ EOB=15°,∴∠ AOE=180° -15 °=165°,(2)∵∠ AOC=30°,∴∠ AOD180° -30 ° =150°,∵∠ DOE=∠EOB=15°,∵OF⊥ OE,∴∠ EOF=90°,∴∠ DOF=90° -15 ° =75°,∴∠ DOF=∠AOF=150° -75 ° =75°,∴OF均分∠ AOD18.解:( 1)设∠ DOE=x,则∠ AOE=4x,∵∠ AOE的余角比∠ DOE小 10°,∴90° -4x=x-10°,∴x=20°,∴∠ AOE=80°;(2)∠ AOC 在图中的全部补角是∠ AOD 和∠ BOC;(3)∵∠ AOE=80°,∠ DOE=20°,∴∠ AOD=100°,∴∠ AOC=80°,如图,当OP 在 CD 的上方时,设∠ AOP=x,∴∠ DOP=100° -x,∵∠ COP=∠ AOE+∠ DOP,∴80° +x=80°+100° -x,∴x=50°,∴∠ AOP=∠ DOP=50°,∵∠ BOD=∠AOC=80°,∴∠ BOP=80° +50°=130°;当OP 在CD 的下方时,设∠ DOP=x,∴∠ BOP=80° -x,∵∠COP=∠AOE+∠DOP,∴100° +x=80° +80° -x,∴x=30°,∴∠BOP=30°,综上所述,∠ BOP的度数为 130°或 30°.19.解:( 1)∵ AO⊥ CO,∴∠ AOC=90°,∵∠ AOC=2∠ BOC,∴∠ BOC=45°,∴∠ AOB=∠AOC+∠ BOC=135°,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=67.5°;(2)∵∠ AOC=2∠ BOC,∴∠ AOB=3∠ BOC,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=∠ BOC,∵∠ COD=21°,∴21° +∠ BOC=∠ BOC,∴∠ BOC=42°,∴∠ AOB=3∠ BOC=126°.20. 故答案为:内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.21.解:∵ m∥n,∠ ACB=80°∴∠ AED=∠ACB=80°,∵∠ A=40°,∴△ ADE中,∠ ADE=180° - (∠ A+∠ AED) =180°- ( 40°+80°) =60°,。

第五单元《相交线与平行线》单元测试卷(较易)(含答案)

第五单元《相交线与平行线》单元测试卷(较易)(含答案)

人教版初中数学七年级下册第五单元《相交线与平行线》单元测试卷(较易)(含答案解析)考试范围:第五单元;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 下列图形中线段PQ的长度表示点P到直线a的距离的是( )A. B. C. D.2. 如图,在线段PA、PB、PC、PD中,长度最小的是( )A. 线段PAB. 线段PBC. 线段PCD. 线段PD3. 如图所示,已知∠1=∠2,要使∠3=∠4,只要( )A.∠1=∠3B.∠2=∠4C.∠1=∠4D. AB//CD4. 在同一平面内,a、b、c是直线,下列说法正确的是( )A. 若a//b,b//c,则a//cB. 若a⊥b,b⊥c,则a⊥cC. 若a//b,b⊥c,则a//cD. 若a//b,b//c,则a⊥c5. 如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④∠B+∠BAD=180°,其中能推出AB//DC的是( )A. ①②B. ①③C. ②③D. ②④6. 下列说法中,正确的是( )A. “同位角相等”是一个真命题B. 图形的平移是指把图形沿水平方向移动C. “凡直角都相等”是一个假命题D. 在平移的过程中,对应线段互相平行(或在同一条直线上)且相等7. 从操场某处看旗杆是北偏东70°,则从旗杆看此处是( )A. 南偏西70°B. 南偏东70°C. 南偏西20°D. 南偏北20°8. 一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90∘,∠A= 60∘,∠E=45∘,则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°9. 皮影戏是中国民间古老的传统艺术,是一种用兽皮或纸板做成人物剪影来表演故事的民间戏剧.2011年中国皮影戏入选人类非物质文化遗产代表作名录.图1是孙悟空的皮影造型,在下面的四个图中,能由图1经过平移得到的是( )A. B.C. D.10. 如图2是图1将__________平移__________所得到的( )A. △AOB,BC的长度B. △COD,BC的长度C. △AOD,AD的长度D. △BOC,BA的长度11. 如图,多边形的相邻两边互相垂直,则这个多边形的周长为( )A. 21B. 26C. 37D. 4212. 如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为( )A. 5B. 6C. 10D. 4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,AB//CD,AB⊥AE,∠CAE=42°,则∠ACD的度数为______.14. 如图,∠1=70∘,直线a平移后得到直线b,则∠2−∠3=___15. 如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为______.16. 如图,∠3=38°,直线b平移后得到直线a,则∠1+∠2=______°.三、解答题(本大题共9小题,共72分。

七年级初一数学 第五章 相交线与平行线测试试题及解析

七年级初一数学 第五章 相交线与平行线测试试题及解析

七年级初一数学 第五章 相交线与平行线测试试题及解析一、选择题1.下列定理中有逆定理的是( )A .直角都相等B .全等三角形对应角相等C .对顶角相等D .内错角相等,两直线平行2.如图所示,下列说法正确的是( ).A .1∠与2∠是同位角B .1∠与3∠是同位角C .2∠与3∠是内错角D .2∠与3∠是同旁内角3.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .44.如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A .∠EMB=∠ENDB .∠BMN=∠MNCC .∠CNH=∠BPGD .∠DNG=∠AME5.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④6.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个 7.如图,已知AB ∥CD ,BE 和DF 分别平分∠ABF 和∠CDE ,2∠E-∠F=48°,则∠CDE 的度数为( ).A .16°B .32°C .48°D .64°8.三条互不重合的直线的交点个数可能是( )A .0,1,3B .0,2,3C .0,1,2,3D .0,1,29.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线10.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个二、填空题11.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .12.某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ ∥MN . 如图所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度. 若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动_________秒,两灯的光束互相平行.13.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.14.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .15.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.16.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n 为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n 的式子表示)17.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___18.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.19.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.20.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.三、解答题21.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:180A B ACB ∠+∠+∠=︒;(2)如图2,求证:∠AGF=∠AEF+∠F ;(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点,150∠=︒,求FF AGF∠的度数.22.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.23.课题学习:平行线的“等角转化”功能.阅读理解:∠+∠+∠的度数.如图1,已知点A是BC外一点,连接AB,AC,求BAC B C(1)阅读并补充下面推理过程.∥解:过点A作ED BCB EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)24.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由25.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.26.如图1,已知a ∥b ,点A 、B 在直线a 上,点C 、D 在直线b 上,且AD ⊥BC 于E .(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF 平分∠ABC 交AD 于点F ,DG 平分∠ADC 交BC 于点G ,求∠AFB+∠CGD 的度数;(3)如图3,P 为线段AB 上一点,I 为线段BC 上一点,连接PI ,N 为∠IPB 的角平分线上一点,且∠NCD=12∠BCN ,则∠CIP 、∠IPN 、∠CNP 之间的数量关系是______.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先写出各选项的逆命题,判断出其真假即可得出答案.【详解】A 、直角都相等的逆命题是相等的角是直角,错误;B 、全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,错误;C 、对顶角相等的逆命题是相等的角是对顶角,错误;D 、逆命题为两直线平行,内错角相等,正确;故选D .【点睛】本题考查的是命题与定理的区别,正确的命题叫定理,错误的命题叫做假命题,关键是对逆命题的真假进行判断.2.D解析:D【分析】根据同位角、同旁内角.内错角的定义进行判断.【详解】A .1∠与2∠不是同位角,故选项A 错误;B .1∠与3∠是内错角,故该选项错误;C .2∠与3∠是同旁内角,故选项C 错误,选项D 正确.故选:D .【点睛】本题考查了同位角、同旁内角、内错角的定义.熟记同位角、同旁内角、内错角的定义是解答此题的关键.3.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.D解析:D【解析】试题分析:根据平行线的性质可得A 、∵AB ∥CD ,∴∠EMB=∠END (两直线平行,同位角相等);B 、∵AB ∥CD ,∴∠BMN=∠MNC (两直线平行,内错角相等);C 、∵AB ∥CD ,∴∠CNH=∠MPN (两直线平行,同位角相等),∵∠MPN=∠BPG (对顶角),∴∠CNH=∠BPG (等量代换);D 、∠DNG 与∠AME 没有关系,无法判定其相等.故答案选D.考点:平行线的性质.5.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC 的长和△CEG 的面积求EG ;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B ,E 是对应点,且BE =2,所以△ABC 平行的距离是2,则①错误; ②根据题意得,13.5×2=(8-2)EG ,解得EG =4.5,则②正确;③因为A ,D 是对应点,C ,F 是对应点,所以AD ∥CF ,则③正确;④平行四边形ADFC 的面积为AB ·CF =AB ·BE =6×2=12,则④错误.故选B .点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.6.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.7.B解析:B【解析】【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键. 8.C解析:C【解析】分四种情况:①三条直线平行,有0个交点;②三条直线相交于同一点,有1个交点;③一条直线截两条平行线有2个交点;④三条直线两两相交有3个交点.故选C.点睛:本题没有明确平面上三条不重合直线的相交情况,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.9.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.10.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题11.(1)35,55;(2)与,【分析】(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.【详解】(1),,,解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】 本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键. 12.30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B 射线到达BQ 之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t 秒,两灯的光束互相平行,即AC∥BD,①当解析:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B 射线到达BQ 之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t 秒,两灯的光束互相平行,即AC ∥BD ,①当0<t ≤90时,如图1所示:∵PQ ∥MN ,则∠PBD =∠BDA ,∵AC ∥BD ,则∠CAM =∠BDA ,∴∠PBD =∠CAM有题意可知:2t =30+t解得:t =30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110【点睛】本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.13.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A 和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 14.【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN ,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CD E=25解析:125【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠ABF=12∠ABE ,∠CDF=12∠CDE , ∴∠ABF+∠CDF=12(∠ABE+∠CDE )=125°, ∵∠DFN=∠CDF ,∠BFN=∠ABF ,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】 此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.15.【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F 点,G 点,H 点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角,解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F 点,G 点,H 点作2L ,3L ,4L 平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键.16.(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都解析:(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,根据同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,可得答案.试题解析:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有 2对,同旁内角有 2对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有 12对,内错角有 6对,同旁内角有 6对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有 n(n-1)对,同旁内角有n(n-1)对,点睛:本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.17.130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计解析:130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,∴梯形EFGH≌梯形ABCD,∴GH=CD,BC=FG,∵梯形EFMD是两个梯形的公共部分,∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,∴S阴影=S梯形MGHD=12(DM+GH)•GM=12(28-4+28)×5=130(cm2).故答案是130cm2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.18.270°根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.19.40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=18解析:40根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.20.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EB C,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.三、解答题21.(1)见详解;(2)见详解;(3)29.5°.【分析】(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;(2)因为根据平角的定义和三角形的内角和定理即可得到结论;(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论.【详解】(1)如图1所示,在ABC ∆中,//DE AB ,A ACD ∴∠=∠,B BCE ∠=∠.180ACD BCA BCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.即三角形的内角和为180︒;(2)180AGF FGE ∠+∠=︒,由(1)知,180GEF F FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(3)//AB CD ,119CDE ∠=︒,119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,∵EF 平分DEB ∠,59.5DEF ∴∠=︒,120.5AEF AED FED ∴∠=∠+∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.【点睛】本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.22.(1)a =3,b =1;(2)当t =15秒或82.5秒时,两灯的光束互相平行;(3)∠BAC 与∠BCD 的数量关系不发生变化,其大小比值为∠BCD:∠BAC =2:3.【分析】(1)利用绝对值和完全平方式的非负性即可解决问题.(2)分三种情况,利用平行线的性质列出方程即可解决.(3)将∠BAC 和∠BCD 分别用t 的代数式表示,然后在进行运算即可.【详解】(1)∵|a ﹣3b|+(a+b ﹣4)2=0.又∵|a ﹣3b|≥0,(a+b ﹣4)2≥0.∴a =3,b =1;故答案为a=3,b=1.(2)设A 灯转动t 秒,两灯的光束互相平行,①当0<t <60时,3t =(30+t )×1,解得t =15;②当60<t <120时,3t ﹣3×60+(30+t )×1=180,解得t =82.5;③当120<t <150时,3t ﹣360=t+30,解得t =195>150(不合题意)综上所述,当t =15秒或82.5秒时,两灯的光束互相平行.故答案为:t=15秒或t=82.5秒.(3)设A 灯转动时间为t 秒,∵∠CAN =180°﹣3t ,∴∠BAC =45°﹣(180°﹣3t )=3t ﹣135°,又∵PQ ∥MN ,∴∠BCA =∠CBD+∠CAN =t+180°﹣3t =180°﹣2t ,∵∠ACD =90°,∴∠BCD =90°﹣∠BCA =90°﹣(180°﹣2t )=2t ﹣90°,∴∠BCD :∠BAC =2:3.故答案为:∠BAC 与∠BCD 的数量关系不发生变化,其大小比值为∠BCD:∠BAC =2:3.【点睛】本题考查了绝对值和完全平方式的非负性、平行线的性质、解方程等知识,读懂题目的意思,掌握好平行线的性质是解题的关键.23.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; ②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n°. 【详解】(1)过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=∠DAC .EAB BAC DAC ∠+∠+∠180=︒180B BAC C ∴∠+∠+∠=︒故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;(2)如图2,过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D+∠FCD=180°,∵CF ∥AB ,∴∠B =∠BCF ,∵BCD ∠=∠FCD+∠BCF ,∴D BCD B ∠+∠-∠=180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒;(3)①如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°, ∴∠BED =∠BEF +∠DEF =30°+35°=65°; 故答案为:65;②如图4,过点E 作EF ∥AB ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n°,∠ADC =70°∴∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35° ∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠BEF=180°−∠ABE=180°−12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°−12n°+35°=215°−12n°.故答案为:215°−12 n.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.24.(1)∠APB=∠PAC +∠PBD,不会变化;(2)∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB,理由见解析.【分析】(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等以及三角形外角的性质,即可求得∠PAC,∠APB,∠PBD之间的关系.【详解】(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)如图②,当点P 在C 、D 两点的外侧运动,且在l 1上方时,∠PBD=∠PAC+∠APB .理由如下:∵l 1∥l 2,∴∠PEC=∠PBD ,∵∠PEC=∠PAC+∠APB ,∴∠PBD=∠PAC+∠APB .当点P 在C 、D 两点的外侧运动,且在l 2下方时,∠PAC=∠PBD+∠APB .如图③,理由如下:∵l 1∥l 2,∴∠PED=∠PAC ,∵∠PED=∠PBD+∠APB ,∴∠PAC=∠PBD+∠APB .【点睛】本题主要考查平行线的性质与三角形外角的性质.解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去); 综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.26.(1)见解析;(2)225°;(3)3∠CNP=∠CIP+∠IPN 或3∠IPN=∠CIP+∠CNP .【分析】(1)如图1中,过E 作EF ∥a ,利用平行线的性质即可解决问题;(2)如图2中,作FM ∥a ,GN ∥b ,设∠ABF=∠EBF=x ,∠ADG=∠CDG=y ,可得x+y=45°,证明∠AFB=180°-(2y+x ),∠CGD=180°-(2x+y ),推出∠AFB+∠CGD=360°-(3x+3y )即可解决问题;(3)分两种情形:①当点N 在∠DCB 内部时,②当点N′在直线CD 的下方时,分别画出图形求解即可.【详解】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°-(2y+x),同理:∠CGD=180°-(2x+y),∴∠AFB+∠CGD=360°-(3x+3y),=360°-3×45°=225°.(3)解:如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=12∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同理可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【点睛】本题考查平行线的性质,对顶角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

第五章相交线与平行线单元试卷测试卷(含答案解析)

第五章相交线与平行线单元试卷测试卷(含答案解析)

第五章相交线与平行线单元试卷测试卷(含答案解析)一、选择题1.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45° 2.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56°3.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°4.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180°5.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④6.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个 7.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°8.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个 9.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm ,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm10.下列命题是假命题的是( )A .等腰三角形底边上的高是它的对称轴B .有两个角相等的三角形是等腰三角形C .等腰三角形底边上的中线平分顶角D .等边三角形的每一个内角都等于60°11.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个12.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°二、填空题13.如图,已知,∠ABG 为锐角,AH ∥BG ,点C 从点B (C 不与B 重合)出发,沿射线BG 的方向移动,CD ∥AB 交直线AH 于点D ,CE ⊥CD 交AB 于点E ,CF ⊥AD ,垂足为F (F 不与A 重合),若∠ECF =n°,则∠BAF 的度数为_____度.(用n 来表示)14.如图,AB ∥CD, AC ∥BD, CE 平分∠ACD ,交BD 于点E ,点F 在CD 的延长线上,且∠BEF=∠CEF ,若∠DEF=∠EDF ,则∠A 的度数为_____︒.15.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.17.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.18.如图,//AB CD ,FN AB ⊥,垂足为点O ,EF 与CD 交于点G ,若130∠=︒,则2∠=______.19.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)22.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF //CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; (2)如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,直接写出∠BED 的度数(用含有α,β的式子表示).23.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)24.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 25.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.26.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。

七年级初一数学 第五章 相交线与平行线单元测试含答案

七年级初一数学 第五章 相交线与平行线单元测试含答案

七年级初一数学 第五章 相交线与平行线单元测试含答案一、选择题1.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°2.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒3.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④4.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③5.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒6.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒7.将一副三角板按如图放置,则下列结论①13∠=∠;②如果230∠=,则有//AC DE ;③如果245∠=,则有//BC AD ;④如果4C ∠=∠,必有230∠=,其中正确的有( )A .①②③B .①②④C .③④D .①②③④ 8.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来的方向相反,那么两次拐弯的角度可能是是( ) A .第一次右拐60°,第二次左拐120°B .第一次左拐60°,第二次右拐60°C .第一次左拐60°,第二次左拐120°D .第一次右拐60°,第二次右拐60° 9.下列说法中正确的是( )A .两条射线组成的图形叫做角B .小于平角的角可分为锐角和钝角两类C .射线就是直线D .两点之间的所有连线中,线段最短10.已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .6二、填空题11.如图,//AB CD ,FN AB ⊥,垂足为点O ,EF 与CD 交于点G ,若130∠=︒,则2∠=______.12.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.13.如图,∠AEM =∠DFN =a ,∠EMN =∠MNF =b ,∠PEM =12∠AEM ,∠MNP =12∠FNP ,∠BEP ,∠NFD 的角平分线交于点I ,若∠I =∠P ,则a 和b 的数量关系为_____(用含a 的式子表示b ).14.镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B 灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.15.如图,A、B、C表示三位同学所站位置,C同学在A同学的北偏东50方向,在B同学∠=______.的北偏西60方向,那么C同学看A、B两位同学的视角ACB16.下列说法中正确的有_____________(填序号).①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AC=BC,则点C是线段AB的中点;⑤相等的角是对顶角;⑥180°角是补角;⑦65.5°=65.50′;⑧如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.17.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.18.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.19.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.已知//AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=, 求证:90︒∠-∠=BEG DFG ;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K , FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明. (不可以直接用三角形内角和180°)22.如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由; (问题应用):(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.23.已知,90AOB ︒∠=,点C 在射线OA 上,//CD OE .(1)如图 1,若120OCD ︒∠=,求∠BOE 的度数;(2)把“90AOB ︒∠=°”改为“120AOB ︒∠=”,射线OE 沿射线OB 平移,得到O E ',其它条件不变(如 图 2 所示),探究,OCD BO E '∠∠ 的数量关系;(3)在(2)的条件下,作PO OB '⊥,垂足为O ' ,与OCD ∠ 的角平分线CP 交于点P ,若BO E α'∠= , 用含 α 的式子表示CPO '∠(直接写出答案).24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.25.直线AB ∥CD ,点M ,N 分别在直线AB ,CD 上,点E 为平面内一点.(1)如图①,探究∠AME,∠MEN,∠ENC的数量关系,并说明理由;(2)如图②,∠AME=30°,EF平分∠MEN,NP平分∠ENC,EQ∥NP,求∠FEQ的度数;(3)如图③,点G为CD上一点,∠AMN=m∠EMN,∠GEK=m∠GEM,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系(用含m的式子表示).26.在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.2.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

七年级数学(下)第五章《相交线与平行线》单元检测题含答案解析

七年级数学(下)第五章《相交线与平行线》单元检测题含答案解析

七年级数学(下)第五章《相交线与平行线》单元检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,A为垂足,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.(2013•安徽)如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°第3题图第4题图4.(2013•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°5.(2013•孝感)如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第5题图第6题图7.如图,点在的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第7题图第8题图8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个9. 下列条件中能得到平行线的是()①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线.A.①②B.②③C.②D.③10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.(2013•镇江)如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= °.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.(2013•江西)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.(2012•郴州)如图,已知AB∥CD,∠1=60°,则∠2= 度.三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED ∥FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.第五章相交线与平行线检测题参考答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段的长度(垂线段最短),所以点P到直线l的距离等于4 cm,故选B.3. C 解析:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°.∵AB∥CD,∴∠C=∠EOB=75°,故选C.4. A 解析:∵CD∥AB,∴∠ABC+∠DCB=180°.∵∠BCD=70°,∴∠ABC=180°-70°=110°.∵BD平分∠ABC,∴∠ABD=55°.5. C 解析:如题图所示,∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=40°,∴∠5=40°,∴∠4=180°-∠5=180°-40°=140°,故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. A 解析:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.8. D 解析:如题图所示,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断.10. B 解析:∵两条平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.11. 144°解析:由题图得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 50 解析:∵∠BAC=80°,∴∠EAC=100°.∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°.∵AD∥BC,∴∠B=∠EAD=50°.故答案为50.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 65°解析:∵∠1=155°,∴∠EDC=180°-155°=25°.∵DE∥BC,∴∠C=∠EDC=25°.∵在△ABC中,∠A=90°,∠C=25°,∴∠B=180°-90°-25°=65°.故答案为65°.16. 54° 解析:∵ AB ∥CD ,∴ ∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵ EG 平分∠BEF ,∴ ∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78° 解析:延长BC 与直线a 相交于点D , ∵ a ∥b ,∴ ∠ADC=∠DBE=50°. ∴ ∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 120 解析:∵AB ∥CD ,∴∠1=∠3,而∠1=60°,∴∠3=60°.又∵∠2+∠3=180°,∴∠2=180°-60°=120°.故答案为120.19.解:(1)(2)如图所示.第19题答图(3)∠PQC=60°. 理由:∵ PQ ∥CD,∴ ∠DCB+∠PQC=180°.∵ ∠DCB=120°,∴ ∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×621 ×5×621 ×2×521 ×4×221 ×1.5×121×21 ×11=16. (2)将每个关键点向左平移3个单位,连接即可.第20题答图21.证明:∵ ∠BAP+∠APD = 180°,∴ AB ∥CD.∴ ∠BAP =∠APC.又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF.∴ AE ∥FP.∴ ∠E =∠F.22.证明:∵ ∠3 =∠4,∴ AC ∥BD.∴ ∠6+∠2+∠3 = 180°.∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°.∴ ED ∥FB.23. 解:∵ DE ∥BC ,∠AED=80°,∴ ∠EDC=∠BCD ,∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD = 21∠ACB =40°,∴ ∠EDC =∠BCD =40°. 24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补).∵ ∠B =65°,∴ ∠BCE =115°.∵ CM 平分∠BCE ,∴ ∠ECM =21 ∠BCE =57.5°. ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.。

人教版初一数学7年级下册 第5章(相交线与平行线)单元测试题(含答案解析)

人教版初一数学7年级下册 第5章(相交线与平行线)单元测试题(含答案解析)

人教版七年级下册第5章《相交线与平行线》单元测试题满分100分学校:___________姓名:___________班级:___________考号:___________一、选择题(共30分)1.下列各组图形可以通过平移互相得到的是( )A .B .C .D .2.在同一平面内,两条直线的位置关系可能是( )A .相交或平行B .相交或垂直C .平行或垂直D .不能确定3.如图,直线m ,n 被直线l 所截,则1∠的同位角是()A .2∠B .3∠C .4∠D .5∠4.下列各命题中,是真命题的是( )A .同位角相等B .内错角相等C .邻补角相等D .对顶角相等5.下列图形中,线段AD 的长表示点A 到直线BC 距离的是().A .BC .D .6.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是( )A .先把△ABC 向左平移5个单位,再向下平移2个单位B .先把△ABC 向右平移5个单位,再向下平移2个单位C .先把△ABC 向左平移5个单位,再向上平移2个单位D .先把△ABC 向右平移5个单位,再向上平移2个单位7.如图,点O 在直线AB 上,CO AB ⊥,若52COD ∠=︒,则AOD ∠的度数是( )A .38︒B .128︒C .142︒D .150︒8.下列说法中正确的个数为()①不相交的两条直线叫做平行线;②平面内,过一点有且只有一条直线与已知直线垂直;③平行于同一条直线的两条直线互相平行;④在同一平面内,两条直线不是平行就是相交.A .1个B .2个C .3个D .4个9.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个10.如图,已知12//l l ,将一个含45°角的三角尺按图中方式放置,124∠=︒,则2∠的度数为( )A .21°B .24°C .30°D .66°二、填空题(共28分)11.小明列举生活中几个例子,你认为是平行线的是_____(填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.12.如图,直线a ,b 被c 所截,则∠1与∠2是 ______________(填内错角,同位角或同旁内角)13.如图,点A ,B ,C 在直线l 上,PB l ⊥,4PA cm =,3PB cm =,5PC cm =,则点P 到直线l 的距离是_____cm .14.如图,直线AB 、CD 相交于点O ,若12100∠+∠= ,则BOC ∠等于______________.15.如图,直线DE 经过点A ,//DE BC ,60B ∠=︒,DAB ∠=______.16.如图,将ABC ∆沿BC 所在的直线平移得到DEF ∆.如果2GC =, 4.5DF =, 那么AG =____.17.如图,AEFC 是折线,AB//CD ,那么∠1,∠2,∠3,∠4的大小所满足的关系式为_______________;三、解答题(共42分)18.(8分)如图,直线EF 分别与直线AB CD 、交于,M N 两点,155,2125∠=︒∠=︒,求证://AB CD (要求写出每一步的理论依据)19.(6分)补全下列各题解题过程如图,E 点为DF 上的点,B 为AC 上的点,12∠=∠,C D ∠=∠,求证//DF AC .证明:∵12∠=∠(已知)且23∠∠=,14∠=∠(________)∴34∠=∠(等量代换)∴//DB ________(________)∴C ABD ∠=∠(________)∵C D ∠=∠(已知)∴D ABD ∠=∠(________)∴//DF AC (________)20.(6分)如图, 已知46EAF NCM MCB ∠=∠=∠=︒.(1)请说明//AB CD 的理由.(2)求ABG ∠的度数.21.(7分)如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF ⊥CD ,垂足为O ,若∠BOF=38°.(1)求∠AOC 的度数;(2)过点O 作射线OG ,使∠GOE=∠BOF ,求∠FOG 的度数.22.(7分)如图,点P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点E ;(2)过点P 画OA 的垂线,垂足为H ;(3)过点P 画OA 的平行线PC ;(4)若每个小正方形的边长是1,则点P 到OA 的距离是___________;(5)线段,,PE PH OE 的大小关系是_____________________(用“<”连接).23.(8分)问题情境:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)小明的思路,易求得APC ∠的度数为________度;(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β户之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接APC ∠与α、β之间的数量关系.参考答案1.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】考查的是平移变换及其基本性质,掌握以上知识是解题的关键.2.A【分析】根据同一平面内,两条直线的位置关系即可得到结论.【详解】解:在同一平面内,两条直线只有两种位置关系:相交或平行,故选:A.【点睛】考查平面内两条直线的位置关系,注意垂直是相交的特殊情况,包括在相交里.3.B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】由图可得,∠1与∠3是直线m,n被直线l所截而成的同位角,故选:B.【点睛】主要考查了同位角,解答此类题确定三线八角是关键.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.4.D【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A、两直线平行,同位角相等,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误;C、邻补角不一定相等,只有都为90度时,它们才相等,所以C选项错误;D、对顶角相等,所以D选项正确.故选:D.【分析】主要考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.解题的关键是关键是要熟练掌握课本中的性质定理.5.D【分析】点A到直线BC的距离为过点A作直线BC的垂线,点A至垂足点D的距离;结合题意分析,即可得到答案.【详解】结合题意,线段AD的长表示点A到直线BC距离的为:故选:D.【点睛】考查了点到直线距离的知识;解题的关键是熟练掌握点到直线距离的性质,从而完成求解.6.A【详解】解:根据网格结构,观察点对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以,平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选A.7.C【分析】根据垂直的定义可得∠AOC =90°,再根据角的和差计算即可.【详解】解:∵CO AB ⊥,∴∠AOC =90°,∵52COD ∠=︒,∴∠AOD =∠AOC +∠COD =90°+52°=142°.故选:C .【点睛】考查了垂直的定义和角的和差计算,属于基础题型,熟练掌握基础知识是解题的关键.8.C【分析】从平行线的定义及平行公理入手,对选项逐一分析即可.【详解】解:①不相交的两条直线叫做平行线必须是在同一个平面内才能成立,故错误.②平面内,过一点有且只有一条直线与已知直线垂直是正确的.③平行于同一条直线的两条直线互相平行,正确.④在同一平面内,两条直线不是平行就是相交是正确的.正确的说法共3个故选:C .【点睛】考查平行线的定义及平行公理,正确理解概念是解题关键.9.B解:34∠∠= //AB CD ∴,①正确;12∠=∠ //AD BC ∴,②不正确;5B∠=∠ //AB CD ∴,③正确;//AD BE5D ∴∠=∠B D∠=∠ 5B ∴∠=∠//AB CD ∴,④正确;综上所述,①、③、④正确,故选B .10.A【分析】作32//l l ,则13//l l ,可得∠1=∠3,∠2=∠4,结合已知条件求解即可.【详解】作32//l l ,则13//l l ,∵13//l l ,∴ ∠3=∠1=24°,∴∠4=45°-∠3=21°,32∴∠2=∠4=21°,故选:A.【点睛】考查平行线的性质,熟练掌握辅助线的添加方法是关键.11.①②③④【解析】【分析】根据平行线的判定进行判断即可.【详解】解:是平行线的是①②③④.故答案为①②③④【点睛】考查了平行线的含义,应结合生活实际进行解答.12.内错角【分析】由内错角的定义(两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线的两旁,则这样一对角叫做内错角)进行解答.【详解】解:如图所示,两条直线a 、b 被直线c 所截形成的角中,∠1与∠2都在a 、b 直线的之间,并且在直线c 的两旁,所以∠1与∠2是内错角,故答案为:内错角.【点睛】考查了同位角,内错角以及同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.13.3【分析】根据点到直线的距离的概念确定出那条线段的长度即可;【详解】点P 到直线l 的距离是点P 到直线l 垂线段的长度,PB l ⊥ ,且3PB cm =,∴点P 到直线l 的距离是3cm ,故答案为:3.【点睛】主要考查了点到直线的距离判断,准确理解垂线段的概念进行判断是关键.14.130°【分析】根据对顶角相等可得∠1=∠2,再求出∠1,然后根据邻补角的定义列式计算即可得.【详解】解:由对顶角相等可得,∠1=∠2,∵∠1+∠2=100°,∴∠1=50°,∴∠BOC =180°−∠1=180°−50°=130°故答案为:130°.【点睛】考查对顶角、邻补角,关键是熟记对顶角的性质和邻补角的定义.15.60°【分析】根据平行线的性质,根据内错角相等可得结果.【详解】解:∵DE ∥BC ,∠B=60°,∴∠DAB=∠B=60°(两直线平行,内错角相等).故答案为:60°.【点睛】考查了两直线平行,内错角相等的性质,难度适中.16.2.5【分析】根据平移的性质可得AC DF =,从而由AG AC GC =-求解即可.【详解】由平移的性质可得:45AC DF .==,∴45225AG AC GC ..=-=-=,故答案为:2.5.【点睛】考查图形平移的性质,理解基本性质是解题关键.17.2314180∠+∠=∠+∠+︒或2314180∠+∠-∠-∠=︒【分析】首先过点E 作//EM AB ,过点F 作//FN CD ,由//AB CD ,即可得//////AB EM FN CD ,根据两直线平行,内错角相等与两直线平行,同旁内角互补即可求得1AEM ∠=∠,180MEF NFE ∠+∠=︒,2NFC ∠=∠,则可求得1∠、2∠、3∠、4∠的大小所满足的关系式.【详解】解:过点E 作//EM AB ,过点F 作//FN CD ,//AB CD ,//////AB EM FN CD ∴,1AEM ∴∠=∠,180MEF NFE ∠+∠=︒,4NFC ∠=∠,2MEF AEM ∠=∠-∠ ,3NFE NFC ∠=∠-∠,2314180∴∠+∠=∠+∠+︒或2314180∠+∠-∠-∠=︒.故答案为:2314180∠+∠=∠+∠+︒或2314180∠+∠-∠-∠=︒.【点睛】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用与辅助线的作法.18.见解析【分析】根据对顶角相等求出∠CNM=155∠= ,再根据同旁内角互补证明AB ∥CD.【详解】证明:155∠= (已知)55CNM ∴∠= (对顶角相等)2125∠= (已知)2180CNM ∴∠+∠= (等式的性质)//AB CD ∴(同旁内角互补,两直线平行)【点睛】此题考查平行线的判定,熟记判定定理并熟练用于解题是关键.19.见解析【分析】根据平行线的性质和判定,对顶角相等即可得出答案.【详解】解:证明:∵12∠=∠(已知)且23∠∠=,14∠=∠(对顶角相等)∴34∠=∠(等量代换)∴//DB CE (内错角相等两直线平行)∴C ABD ∠=∠(两直线平行同位角相等)∠=∠(已知)∵C D∠=∠(等量代换)∴D ABDDF AC(内错角相等两直线平行).∴//【点睛】考查平行线的性质和判定,对顶角相等,解题的关键是掌握平行线的性质和判定.20.(1)见解析;(2)134°【分析】(1)求出∠EAF=∠ACD,根据平行线的判定得出即可;(2)根据平行线的性质得出∠ABC=∠MCB=46°,根据邻补角求出∠ABG即可.【详解】解:(1)∵∠NCM=∠ACD=46°,又∵∠EAF=46°,∴∠EAF=∠ACD,∴AB∥CD;(2)∵AB∥CD,∴∠MCB=∠ABC=46°,∴∠ABG=180°-∠ABC=134°.【点睛】考查了平行线的性质和判定,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.21.(1)52°;(2)图见解析,26°或102°【分析】(1)依据OF⊥CD,∠BOF=38°,可得∠BOD=90°−38°=52°,依据对顶角相等得到∠AOC=52°;(2)分两种情况求解即可.【详解】(1)∵OF⊥CD,∠BOF=38°,∴∠BOD=90°−38°=52°,∴∠AOC=52°;(2)由(1)知:∠BOD=52°,∵OE平分∠BOD,∴∠BOE=26°,此时∠GOE=∠BOF=38°,分两种情况:如图:此时∠FOG=∠BOF+∠BOE-∠GOE=38°+26°-38°=26°;如图:此时∠FOG=∠BOF+∠BOE+∠GOE=38°+26°+38°=102°;综上:∠FOG的度数为26°或102°.【点睛】考查了对顶角,角平分线定义,角的有关定义的应用,主要考查学生的计算能力,并注意数形结合.<<22.(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【分析】(1)(2)根据题意画垂线;(3)根据题意画平行线;(4)根据点到直线距离的定义计算;(5)根据直角三角形的直角边小于斜边可以证得.【详解】∠的边OB上的一点.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,∴答案为1;(5)∵在RT△PHE中,PH是直角边,PE是斜边,∴PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,∴PE<OE,<<.∴线段PE,PH,OE的大小关系是PH PE OE故答案为PH<PE<OE.【点睛】考查垂线和平行线的画法、垂线的应用及直角三角形的性质,熟练掌握“垂线段最短”的定理是解题关键.23.(1)110°,(2)∠APC=α+β,理由见解析,(3)当P在BD延长线上时,∠CPA=α﹣β;,当P在DB延长线上时,∠CPA=β﹣α.【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AB交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【详解】1)解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案为:110°.(2)∠APC=α+β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,当P在BD延长线上时,∠CPA=α﹣β;由(2)可得,α=∠APE,β=∠CPE,∠APC=∠APE-∠CPE=α-β;如图所示,当P在DB延长线上时,∠CPA=β﹣α.由(2)可得,α=∠APE,β=∠CPE,∠APC=∠CPE -∠APE=β-α;【点睛】主要考查了平行线的性质和判定的应用,解题关键是恰当的作平行线,把题目中的角建立联系,解题时注意分类思想的运用.。

七年级初一数学 第五章 相交线与平行线单元测试及解析

七年级初一数学 第五章 相交线与平行线单元测试及解析

七年级初一数学 第五章 相交线与平行线单元测试及解析一、选择题1.在同一坐标平面内,图象不可能...由函数221y x =+的图象通过平移变换、轴对称变换得到的函数是( )A .22(1)1y x =+-B .223y x =+C .221y x =--D .2112y x =- 2.把一把直尺和一块三角板ABC 含30度,60度,按如图所示摆放,直尺一边与三角板的两直角边分别交于点D 和E ,另一边与三角板的两直角边分别交于点F 和A ,∠CED=50°,则∠CFA 的大小为( )A .40︒B .50︒C .60︒D .70︒3.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为( ).A .100︒B .80︒C .75︒D .50︒4.已知AB CD ∥,点E F ,分别在直线AB CD ,上,点P 在AB CD ,之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则EPF ∠的度数为( )A .120︒B .135︒C .45︒或135︒D .60︒或120︒ 5.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个6.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )A .1个B .2个C .3个D .4个7.两条平行线被第三条直线所截,则下列说法错误的是( )A .一对邻补角的平分线互相垂直B .一对同位角的平分线互相平行C .一对内错角的平分线互相平行D .一对同旁内角的平分线互相平行8.已知两个角的两边两两互相平行,则这两个角的关系是( )A .相等B .互补C .相等或互补D .相等且互补9.下列命题中,其逆命题为真命题的是( )A .若a =b ,则a 2=b 2B .同位角相等C .两边和一角对应相等的两个三角形全等D .等腰三角形两底角不相等 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 二、填空题11.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.12.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.13.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).14.如图,在△ABC 中,6BC cm =,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为_____秒.15.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.16.如图,A 、B 、C 表示三位同学所站位置,C 同学在A 同学的北偏东50方向,在B 同学的北偏西60方向,那么C 同学看A 、B 两位同学的视角ACB ∠=______.17.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.18.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.19.如图,直线AB、CD相交于点O,OE平分∠AOC,OF⊥OE于点O,若∠AOD=70°,则∠AOF=______度.20.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.三、解答题21.已知AB∥CD,点C在点D的右侧,连接AD,BC,BE平分∠ABC,DE平分∠ADC,BE,DE相交于点E.(1)如图1,当点B在点A的左侧时,①若∠ABC=50º,∠ADC=70º,求∠BED的度数;②请直接写出∠BED与∠ABC,∠ADC的数量关系;(2)如图2,当点B在点A的右侧时,试猜想∠BED与∠ABC,∠ADC的数量关系,并说明理由.22.如图,AB∥CD.(1)如图1,∠A、∠E、∠C的数量关系为.(2)如图2,若∠A=50°,∠F=115°,求∠C﹣∠E的度数;(3)如图3,∠E=90°,AG,FG分别平分∠BAE,∠CFE,若GD∥FC,试探究∠AGF与∠GDC的数量关系,并说明理由.23.AB∥CD,点P为直线AB,CD所确定的平面内的一点.(1)如图1,写出∠APC、∠A、∠C之间的数量关系,并证明;(2)如图2,写出∠APC、∠A、∠C之间的数量关系,并证明;(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD 上,作∠BEG的平分线EH交PC于点H,若∠APC=30°,∠PAB=140°,求∠PEH的度数.∥,且直线AB、CD与AD、BC分别交于A、D和24.如图`,已知:直线AD BCB、C两点,点P在直线AB上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP25.如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF 平分∠ABC 交AD 于点F ,DG 平分∠ADC 交BC 于点G ,求∠AFB+∠CGD 的度数;(3)如图3,P 为线段AB 上一点,I 为线段BC 上一点,连接PI ,N 为∠IPB 的角平分线上一点,且∠NCD=12∠BCN ,则∠CIP 、∠IPN 、∠CNP 之间的数量关系是______. 26.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据图形平移的性质可得,平移后的图形与原图形大小、形状、开口相同,再根据抛物线的形状由二次项的系数a 决定的进行分析即可.解:由于抛物线的形状由二次项的系数a 决定,所以两个函数表达式中的a 要相同或互为相反数才可以通过平移变换、轴对称变换得到,A 、B 选项的二次项系数为2;C 选项的二次项系数为-2;D 选项的二次项系数为12,故D 不能由原函数平移而得到. 故选D . 2.A解析:A【分析】先根据∠CED=50°,DE ∥AF ,即可得到∠CAF=50°,即可得出∠CFA 的大小.【详解】解:∵DE ∥AF ,∠CED=50°,∴∠CAF=∠CED=50°,∴∠CFA=90°-50°=40°,故选:A .【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.3.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村 ∴()()2180125180752580∠=-∠+=-+=∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B .【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.4.C解析:C【分析】根据题意画出示意图,延长FP 交AB 于点Q ,根据折叠的性质和四边形的内角和进行分析解答.【详解】解:根据题意,延长FP 交AB 于点Q ,可画图如下:∵AB CD ∥∴CFQ PQE ∠=∠∵将射线EA 沿EP 折叠,射线FC 沿FP 折叠,∴,CFP PFM MEP PEQ ∠=∠∠=∠,∵,FPE PQE PEQ EM FM ∠=∠+∠⊥,如第一个图所示,在四边形FPEM 中,36090PFM MEP FPE ∠+∠+∠=︒-︒, 得:2270FPE ∠=︒,∴135FPE ∠=︒.如第二个图所示,在四边形FPEM 中,360(36090)90PFM MEP FPE ∠+∠+∠=︒-︒-︒=︒,得:290FPE ∠=︒,∴45FPE ∠=︒.故选:C .【点睛】本题考查的知识点是平行线的性质、折叠的性质、三角形的外角、四边形的内角和等知识.关键是利用平行线的性质以及四边形内角和进行解答.解析:A【详解】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,C CBFCD BDEDC BDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.6.B解析:B【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.详解:根据直线公理:两点确定一条直线,所以①正确;连接两点的线段的长度叫做两点的距离,所以②错误;两点之间,线段最短,所以③正确;有一个公共端点的两条射线组成的图形叫做角,所以④错误;若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.故选B.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.D解析:D【解析】试题分析:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;故选:D.8.C解析:C【解析】分类讨论:两个角的两边方向是否相同.若相同,则相等;否则互补.故选C. 9.C【分析】根据互为逆命题的关系,将四个选项的题设和结论互换,逐一验证,A是假命题,B是假命题,C是真命题,D是假命题.故答案为C.【详解】根据互为逆命题的关系,题设和结论互换,可知:A选项中,若a=b,则a2=b2的逆命题为:若a2=b2,则a=b,是假命题;B选项中,同位角相等的逆命题为:相等的角是同位角,是假命题;C选项中,两边和一角对应相等的两个三角形全等的逆命题是:全等三角形的对应边相等,对应角相等,是真命题;D选项中,等腰三角形的两底角不相等的逆命题为:两个角不相等的三角形是等腰三角形,是假命题.故选C.【点睛】此题主要考查互为逆命题的关系,三角形的性质定理,熟练掌握即可得解.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.二、填空题11.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.12.30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.13.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.14.2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解析:2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解:分两种情况:(1)当点E在C的左边时,如图根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE,设AD=2tcm,则CE=tcm,依题意有2t+t=6,解得t=2.(2)当点E在C的右边时,如图根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE,设AD=2tcm,则CE=tcm,依题意有2t-t=6,解得t=6.故答案为2或6.【点睛】本题考查了平移的性质,解题的关键是理解平移的方向,由图形判断平移的方向和距离.注意分类讨论.15.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】【分析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥.16.【解析】【分析】根据平行线的性质:两直线平行,内错角相等,可得答案.【详解】如图,作,,,,故答案为:.【点睛】本题考查了方向角,利用平行线的性质两直线平行内错角相等是解题 解析:110【解析】【分析】根据平行线的性质:两直线平行,内错角相等,可得答案.【详解】如图,作CF //AD //BE ,FCA DAC 50∠∠∴==,BCF CBE 60∠∠==,ACB ACF FCB 5060110∠∠∠∴=+=+=,故答案为:110.【点睛】本题考查了方向角,利用平行线的性质两直线平行内错角相等是解题关键. 17.55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A =3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B=180解析:55或20【分析】根据平行线性质得出∠A+∠B =180°①,∠A =∠B②,求出∠A =3∠B ﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B =180°①,∠A =∠B②,∵∠A 比∠B 的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.18.①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长解析:①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长为定值,∴①正确;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;当P点移动时,∠APB发生变化,∴④错误;故选A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.19.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°, 故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.20.45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD=∠DAE=45°;当BC ∥AD 时,∠DAE=∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).三、解答题21.(1)①∠BED=60º;②∠BED=12∠ABC+12∠ADC;(2)∠BED=180º-1 2∠ABC+12∠ADC,理由见解析.【分析】(1)①过点E作EF∥AB,然后说明AB∥CD∥EF,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E作EF∥AB,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒,∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF=12∠ABC,∠EDC=∠DEF=12∠ADC;.∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC∴∠BED=12∠ABC+12∠ADC(2)如图2,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠EDC=∠DEF,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE.∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=12∠ABC,∠DEF=12∠ADC,∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC.【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.22.(1)∠AEC=∠C+∠A;(2)∠C﹣∠E=15°;(3)2∠AGF+∠GDC=90°.理由见解析.【分析】(1)过点E作EF∥AB,知AB∥CD∥EF,据此得∠A=∠AEF,∠C=∠CEF,根据∠AEC=∠AEF+∠CEF可得答案;(2)分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,知∠AEF=x+50°,∠MFC=115°-x,据此得∠C=180°-(115°-x)=x+65°,进一步计算可得答案;(3)分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,知∠GPE=y+z,从而得2x+2y+z=90°,∠C=180°-z,根据GD∥FC得∠D=z,由GH∥AB,AB∥CD知∠AGF=x+y,继而代入可得答案.【详解】(1)∠AEC=∠C+∠A,如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠AEF,∠C=∠CEF,则∠AEC=∠AEF+∠CEF=∠A+∠C,故答案为:∠AEC=∠C+∠A;(2)如图2,分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,则∠AEF=x+50°,∠MFC=115°﹣x,∴∠C=180°﹣(115°﹣x)=x+65°,∴∠C﹣∠E=x+65°﹣(x+50°)=15°;(3)如图3,分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,则∠GPE=y+z,∴2x+2y+z=90°,∠C=180°﹣z,∵GD∥FC,∴∠D=z,∵GH∥AB,AB∥CD,∴∠AGF=x+y,∴2∠AGF+∠GDC=90°.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行内错角相等的性质.23.(1)∠A+∠C+∠APC=360°,证明详见解析;(2)∠APC=∠A−∠C,证明详见解析;(3)55°.【分析】(1)首先过点P作PQ∥AB,结合题意得出AB∥PQ∥CD,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,结合题意得出AB∥PQ∥CD,根据“两直线平行,内错角相等”进一步分析即可证得∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,先利用平行线性质得出∠BEF=∠PQB=110°,然后进一步得出∠PEG=12∠FEG,∠GEH=12∠BEG,最后根据∠PEH=∠PEG−∠GEH即可得出答案.【详解】(1)∠A+∠C+∠APC=360°,证明如下:如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,又∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A−∠C,证明如下:如图2所示,过点P作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ−∠CPQ,∴∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥PC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG−∠GEH=12∠FEG−12∠BEG=12∠BEF=55°.【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.24.(1)∠ADP+∠BCP=∠DPC,理由见解析;(2)∠ADP=∠DPC+∠BCP,理由见解析【分析】(1)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;(2)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP.过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键.25.(1)见解析;(2)225°;(3)3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a,利用平行线的性质即可解决问题;(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°-(2y+x),∠CGD=180°-(2x+y),推出∠AFB+∠CGD=360°-(3x+3y)即可解决问题;(3)分两种情形:①当点N在∠DCB内部时,②当点N′在直线CD的下方时,分别画出图形求解即可.【详解】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°-(2y+x),同理:∠CGD=180°-(2x+y),∴∠AFB+∠CGD=360°-(3x+3y),=360°-3×45°=225°.(3)解:如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI ,∵AB ∥CD ,∴∠NPE=∠CEN ,∠ABC=∠BCE ,∵∠NCE=12∠BCN , ∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC )=3∠CNP .当点N′在直线CD 的下方时,同理可知:∠CIP+∠CNP=3∠IPN ,综上所述:3∠CNP=∠CIP+∠IPN 或3∠IPN=∠CIP+∠CNP .【点睛】本题考查平行线的性质,对顶角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.。

七年级初一数学 数学第五章 相交线与平行线试题附解析

七年级初一数学 数学第五章 相交线与平行线试题附解析

七年级初一数学数学第五章相交线与平行线试题附解析一、选择题1.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°2.如图所示,已知 AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠43.已知:如图,直线a∥b,∠1=50°,∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°4.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是05.如图,下列能判断AB∥CD的条件有()①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A.1 B.2 C.3 D.46.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为( )A.4 cm B.5 cm C.小于2 cm D.不大于2 cm7.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A.、1个B.2个C.3个D.4个8.如图,AB∥CD,BF,DF 分别平分∠ABE 和∠CDE,BF∥DE,∠F 与∠ABE 互补,则∠F 的度数为A.30°B.35°C.36°D.45°9.两条平行线被第三条直线所截,则下列说法错误的是()A.一对邻补角的平分线互相垂直 B.一对同位角的平分线互相平行C.一对内错角的平分线互相平行 D.一对同旁内角的平分线互相平行10.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°二、填空题11.如图,已知AB、CD相交于点O,OE⊥AB于O,∠EOC=28°,则∠AOD=_____度;12.如图,△ABC中,∠C=90︒,AC=5cm,CB=12cm,AB=13cm,将△ABC沿直线CB向右平移3cm得到△DEF,DF交AB于点G,则点C到直线DE的距离为______cm.13.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)14.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM 的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.15.下列说法中正确的有_____________(填序号).①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AC=BC,则点C是线段AB的中点;⑤相等的角是对顶角;⑥180°角是补角;⑦65.5°=65.50′;⑧如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.16.若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.17.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=________°.18.如图,直线AB、CD相交于点O,OE平分∠AOC,OF⊥OE于点O,若∠AOD=70°,则∠AOF=______度.19.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l 格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.22.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.23.()1如图1,//,40,130AB CD AEP PFD ∠=︒∠=︒.求EPF ∠的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P 作//,PM AB140AEP ∴∠=∠=︒( )//,AB CD (已知)//,PM CD ∴( )2180PFD ∴∠+∠=.( )130,PFD ∠=︒218013050∴∠=︒-︒=.12405090∴∠+∠=︒+︒=.即90EPF ∠=.()2如图2,//,AB CD 点P 在,AB CD 外,问,,PEA PFC P ∠∠∠之间有何数量关系.请说明理由;()3如图3所示,在()2的条件下,已知,P a PEA ∠=∠的平分线和PFC ∠的平分线交于点,G 用含有a 的式子表示G ∠的度数是 ____.(直接写出答案,不需要写出过程)24.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数. 小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.25.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 26.已知:∠1=∠2,EG 平分∠AEC .(1)如图1,∠MAE =50°,∠FEG =15°,∠NCE =80°.试判断 EF 与 CD 的位置关系,并说明理由.(2)如图2,∠MAE =135°,∠FEG =30°,当 AB ∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质2.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.4.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.5.C解析:C【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.6.D解析:D根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.7.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.8.C解析:C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F,∵BF平分∠ABE∴∠ABE=2∠ABF=4∠F,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.9.D解析:D【解析】试题分析:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;故选:D.10.D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.二、填空题11.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.12.【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 解析:7513【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.13.【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠解析:【解析】【详解】作IF ∥AB,GK ∥AB,JH ∥AB因为AB ∥CD所以,AB ∥CD ∥ IF ∥GK ∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.14.27°.【解析】【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°解析:27°.【解析】【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.15.①③【解析】根据直线公理,可知过两点有且只有一条直线,①正确;连接两点的线段的长度脚两点的距离,故②不正确;根据线段公理,两点之间线段最短,故③正确;若AC=BC,只有在一条直线上时,点C是线段A解析:①③【解析】根据直线公理,可知过两点有且只有一条直线,①正确;连接两点的线段的长度脚两点的距离,故②不正确;根据线段公理,两点之间线段最短,故③正确;若AC=BC,只有在一条直线上时,点C是线段AB的中点,④不正确;根据对顶角的定义,可知相等的角不一定是对顶角,⑤不正确;根据和为180°的两角互为补角,知⑥不正确.故答案为:①③.16.55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B 或∠A +∠B =180° ,注意分类讨论思想的应用.17.40【解析】根据平行线的性质,先求出∠BEF 和∠CEF 的度数,再求出它们的差就可以了. 解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=18解析:40【解析】根据平行线的性质,先求出∠BEF 和∠CEF 的度数,再求出它们的差就可以了. 解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF -∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.18.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.19.(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18解析:(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P1+∠2=2×180,∠1+∠P1+∠P2+∠2=3×180°,∠1+∠P1+∠P2+∠P3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P1+…+∠P n=(n+1)×180°.【详解】解:如图,分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,∵AB∥CD,∴AB∥P1E∥P2F∥P3G.由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°∴(1)∠1+∠2=180°,(2)∠1+∠P1+∠2=2×180,(3)∠1+∠P1+∠P2+∠2=3×180°,(4)∠1+∠P1+∠P2+∠P3+∠2=4×180°,∴∠1+∠2+∠P1+…+∠P n=(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.20.8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=12x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.【详解】解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,∴ A(−2,0),B(2,0),C(2,2),∴S△ABC=1AB BC=4 2;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=12×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(−2,0)、C(2,2)代入得:-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩,∴直线AC的解析式为y=12x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=12|t−1|•2+12|t−1|•2=4,解得t=3或−1,∴P点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.22.(1)∠BPC=65°;(2)∠BPC=155°;(3)∠BPC=155°【分析】(1)如图1,过点P作PE∥MN,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA252︒∠=∠=∠=,据此进一步求解即可;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=100°,再由角平分线和平行线的性质得∠BPE=130°,1PCA CPE DCA252︒∠=∠=∠=,据此进一步求解即可;(3)如图3,过点P作PE∥MN,根据角平分线性质得出∠DBP=∠PBA=40°,由此得出∠BPE=∠DBP=40°,然后根据题意得出1PCA DCA652︒∠=∠=,由此再利用平行线性质得出∠CPE度数,据此进一步求解即可.【详解】(1)如图1,过点P作PE∥MN.∵PB平分∠DBA,∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA252︒∠=∠=∠=,∴∠BPC=40°+25°=65°;(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE ∥GH ,∴∠EPC=∠PCA=25°,∴∠BPC =130°+25°=155°;(3)如图3,过点P 作PE ∥MN .∵BP 平分∠DBA .∴∠DBP =∠PBA=40°,∵PE ∥MN ,∴∠BPE =∠DBP =40°,∵CP 平分∠DCA ,∠DCA =180°−∠DCG =130°, ∴1PCA DCA 652︒∠=∠=, ∵PE ∥MN ,MN ∥GH ,∴PE ∥GH , ∴∠CPE =180°−∠PCA =115°,∴∠BPC =40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键.23.(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补;(2),PFC PEA P ∠=∠+∠理由见解析;(3)1.2G α∠=【分析】(1)根据平行线的性质与判断,即可解答.(2)过P 点作PN//AB ,则PN//CD ,根据平行线的性质得出∠PEA=∠NPE ,进而得到∠FPN=∠PFC ;(3)令AB 与PF 交点为O ,连接EF EF 如图3,在△GFE 中,利用三角形内角和定理进行计算,由(2)知∠PFC=∠PEA+∠P ,得到∠PEA=∠PFC −α,即可解答.【详解】解:(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补(2)PFC PEA P ∠=∠+∠理由如下:过点P 作//PN AB ,则//PN CD∴PEA NPE ∠=∠∵FPN NPE FPE ∠=∠+∠∴FPN ∠=PEA FPE ∠+∠∵//PN CD∴F FPN P C ∠=∠∴PFC PEA FPE ∠=∠+∠即PFC PEA P ∠=∠+∠.(3)令AB 与PF 交点为O ,连接EF 如图3,在GFE 中,180()G GFE GEF ∠=︒-∠+∠, ∵12GEF PEA OEF ∠=∠+∠,12GFE PFC OFE ∠=∠+∠, ∴1122GEF GFE PEA PFC OEF OFE ∠+∠=∠+∠+∠+∠, ∵由(2)知PFC PEA P ∠=∠+∠,∴C PEA PF α=∠-∠,而180180OF PF E OEF F E C O ∠+∠=-︒-∠∠=︒, ∴11()22GEF GFE PFC PFC α∠+∠=∠-+∠+11801802PFC α︒-∠=︒-, ∴11180()18018022G GEF GFE αα∠=︒-∠+∠=︒-︒+=. 故答案为:12G α∠=【点睛】 此题考查平行线的性质的运用,三角形内角和定理,解决问题的关键是作辅助线构造同旁内角以及内错角,依据平行线的性质进行推导计算.24.(1)∠CPD=∠α+∠β,理由见解析;(2)①当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;②当点P 在B 、O 两点之间时,∠CPD=∠α−∠β【分析】(1)过点P 作PE ∥AD 交CD 于点E ,根据题意得出AD ∥PE ∥BC ,从而利用平行线性质可知α∠=∠DPE ,β∠=∠CPE ,据此进一步证明即可;(2)根据题意分当点P 在A 、M 两点之间时以及当点P 在B 、O 两点之间时两种情况逐一分析讨论即可.【详解】(1)∠CPD=αβ∠+∠,理由如下:如图3,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE +∠CPE=αβ∠+∠;(2)①当点P 在A 、M 两点之间时,∠CPD=βα∠-∠,理由如下:如图4,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠EPD ,β∠=∠CPE ,∴∠CPD=∠CPE −∠EPD=βα∠-∠;②当点P 在B 、O 两点之间时,∠CPD=αβ∠-∠,理由如下:如图5,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE −∠CPE=αβ∠-∠,综上所述,当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;当点P 在B 、O 两点之间时,∠CPD=∠α−∠β.【点睛】本题主要考查了在平行线性质及判定的综合运用,熟练掌握相关概念是解题关键.25.(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠; (3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G ∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//AD l ∠则5D ∠=.6y ∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.26.(1)//EF CD ,证明见解析 (2)75° (3)2FEG NCE MAE +=∠∠∠,证明见解析【分析】(1)根据12∠=∠可得//MB EF ,根据角的和差关系和角平分线的性质可得80CEF NCE ==︒∠∠,从而得证//EF CD ;(2)根据12∠=∠可得//MB EF ,根据平行线的性质以及角平分线的性质可得18075NCE GEC FEG =︒--=︒∠∠∠;(3)根据12∠=∠可得//MB EF ,根据平行线的性质可得180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠,再根据角平分线的性质可得1802FEC MAE FEG =︒-+∠∠∠,再根据平行线的性质即可得2FEG NCE MAE +=∠∠∠.【详解】(1)//EF CD∵12∠=∠∴//MB EF∴50AEF MAE ==︒∠∠∴501565AEG AEF FEG =+=︒+︒=︒∠∠∠∵EG 平分∠AEC∴65CEG AEG ==︒∠∠∴651580CEF CEG FEG =+=︒+︒=︒∠∠∠∴80CEF NCE ==︒∠∠∴//EF CD ;(2)∵12∠=∠∴//MB EF∵∠MAE =135°∴18045AEF MAE =︒-=︒∠∠∵∠FEG =30°∴75AEG AEF FEG =+=︒∠∠∠∵EG 平分∠AEC∴75GEC =︒∠∵//AB CD∴18075NCE GEC FEG =︒--=︒∠∠∠;(3)2FEG NCE MAE +=∠∠∠∵12∠=∠∴//MB EF∴180MAE FEA +=︒∠∠∴180FEA MAE =︒-∠∠∴180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠∵EG 平分∠AEC∴GEC AEG =∠∠∴FEC GEC FEG =+∠∠∠∴180FEC MAE FEG FEG =︒-++∠∠∠∠∴1802FEC MAE FEG =︒-+∠∠∠∵//,//AB CD AB EF∴//EF CD∴180FEC NCE +=︒∠∠∴1802180MAE FEG NCE ︒-++=︒∠∠∠∴2FEG NCE MAE +=∠∠∠.【点睛】本题考查了平行线的综合问题,掌握平行线的性质以及判定定理、角平分线的性质、角的和差关系是解题的关键.。

人教版七年级数学下册第五章相交线与平行线单元测试(含答案解析)

人教版七年级数学下册第五章相交线与平行线单元测试(含答案解析)
(3)从火车站到河流怎样走最近?画图并说明理由.
19.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
20.如图,一块三角形土地ABC,D是AB上一点,现要求过点D割出一块小的三角形ADE,使DE∥BC,请作出DE.
21.已知,如图,BD平分∠ABC,∠1=25°,∠2=50°.试判断ED与BC的位置关系并说明理由.
5.下列说法正确的是( )
A.证实命题正确与否的推理过程叫做证明
B.定理是命题,但不是真命题
C.“对顶角相等”是命题,但不是定理
D.要证明一个命题是真命题只要举出一个反例即可
6.下列说法正确的是()
A.同一平面内不相交的两线段必平行
B.同一平面内不相交的两射线必平行
C.同一平面内不相交的一条线段与一条直线必平行
考点:点到直线的距离.
5.A
【分析】
公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,这种推理的过程称为证明.经过证明的真命题称为定理.由此可得答案.
【详解】
解:公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,这种推理的过程称为证明.经过证明的真命题称为定理.
D.同一平面内不相交的两条直线必平行
7.如图,CM, CD,ON,OB被AO所截,则下列结论正确的是( )
A.∠1和∠4是同旁内角
B.∠2和∠4是内错角
C.∠ACD和∠AOB是同位角
D.∠1和∠3是同位角
8.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()
A.46°B.44°C.36°D.22°
22.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级初一数学第五章相交线与平行线单元测试附解析一、选择题1.下列命题是假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60°2.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°3.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DE交AC于点G,BE=2,三角形CEG的面积为13.5,下列结论:①三角形ABC平移的距离是4;②EG=4.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是A.①②B.②③C.③④D.②④5.如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A .50B .60C .70D .806.如图,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 、F ,FG 平分∠EFD ,EG ⊥FG 于点G ,若∠CFN =110°,则∠BEG =( )A .20°B .25°C .35°D .40° 7.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .1558.已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .69.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°10.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行二、填空题11.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;12.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).13.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.14.如图,已知AD //BC ,BD 平分∠ABC ,∠A =112°,且BD ⊥CD ,则∠ADC =_____.15.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .16.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.17.如图,在△ABC 中,6BC cm =,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为_____秒.18.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .19.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l 格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.22.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)23.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数. 小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.24.如图1,AB//CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.25.课题学习:平行线的“等角转化”功能. 阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)26.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.(1)如图1,当点P 在A 、B 两点之间时(点P 不与点A 、B 重合),探究ADP 、DPC ∠、BCP ∠之间的关系,并说明理由.(2)若点P 不在A 、B 两点之间,在备用图中画出图形,直接写出ADP 、DPC ∠、BCP ∠之间的关系,不需说理.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A.【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.2.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质3.B解析:B【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选B.考点:平行线的性质4.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC的长和△CEG的面积求EG;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B,E是对应点,且BE=2,所以△ABC平行的距离是2,则①错误;②根据题意得,13.5×2=(8-2)EG,解得EG=4.5,则②正确;③因为A,D是对应点,C,F是对应点,所以AD∥CF,则③正确;④平行四边形ADFC的面积为AB·CF=AB·BE=6×2=12,则④错误.故选B.点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.5.D解析:D【分析】利用角平分线和平行的性质即可求出.【详解】∵AB∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=100°,∴∠BDC=180°-∠ABD=80°,∴∠2=∠BDC=80°.故选D.【点睛】本题考查的是平行,熟练掌握平行的性质和角平分线的性质是解题的关键.6.C解析:C【分析】已知∠CFN=110°,根据对顶角相等可得∠DFE=∠CFN=110°,因为FG平分∠EFD,由角平分线的定义可得∠EFG=12∠EFD=55°;再由EG⊥FG,可得∠G=90°,即可求得∠GEF=35°;又因AB∥CD,∠EFD=110°,根据平行线的性质可得∠BEF=70°,即可得∠BEG=∠BEF﹣∠GEF=35°.【详解】∵∠CFN=110°,∴∠DFE=∠CFN=110°,∵FG平分∠EFD,∴∠EFG=12∠EFD=55°,又EG⊥FG,即∠G=90°,∴∠GEF =35°,∵AB ∥CD ,∠EFD =110°,∴∠BEF =70°,∴∠BEG =∠BEF ﹣∠GEF =35°.故选C.【点睛】本题考查了平行线的性质,垂直的定义以及角平分线的性质.熟练运用相关知识是解决问题的关键.7.C解析:C【分析】先求出∠BOC ,再由邻补角关系求出∠COD 的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键.8.B解析:B【分析】利用平行线间的距离相等可知ABC 与ACD △的高相等,底边之比等于面积之比,设ACE △的面积为x ,建立方程即可求解.【详解】∵//AB CD∴ABC 与ACD △的高相等∵2CD AB =∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.9.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.二、填空题11.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.12.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.13.30°【分析】先由AB//CD 得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键. 14.124°【分析】先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD 即可求得∠ADC.【详解】解:∵AD//BC∴∠AB解析:124°【分析】先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD即可求得∠ADC.【详解】解:∵AD//BC∴∠ABC=180°-∠A=180°-112°=68°,∵BD平分∠ABC,∴∠DBC=12∠ABC=34°∵AD//BC∴∠ADB=∠DBC=34°∵BD⊥CD,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=90°+34°=124°.故答案为124°.【点睛】本题考查了平行线的性质、角平分线的性质、垂直的性质,其中掌握平行线的性质是解答本题的关键.15.【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD、CD,作CH⊥DE于H,依题意可得AD=BE=3cm,∵梯形ACED解析:75 13【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD、CD,作CH⊥DE于H,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.16.68°【分析】如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E 即可解决问题.【详解】解:如图,延长DC 交BG 于M .由题意解析:68°【分析】如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x ,∠CGE=∠MGE=y .构建方程组证明∠GMC=2∠E 即可解决问题.【详解】解:如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x ,∠CGE=∠MGE=y .则有22x y GMC x y E =+∠⎧⎨=+∠⎩①②, ①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.17.2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解析:2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解:分两种情况:(1)当点E在C的左边时,如图根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE,设AD=2tcm,则CE=tcm,依题意有2t+t=6,解得t=2.(2)当点E在C的右边时,如图根据图形可得:线段BE 和AD 的长度即是平移的距离,则AD=BE ,设AD=2tcm ,则CE=tcm ,依题意有2t-t=6,解得t=6.故答案为2或6.【点睛】本题考查了平移的性质,解题的关键是理解平移的方向,由图形判断平移的方向和距离.注意分类讨论.18.3或2+【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG 是等腰直角三角形,重合部分为△HDG,则重合面积=DG2=4,解得DG=,而DC <,故这种情况不成立;②如图解析:3或2+【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG 是等腰直角三角形,重合部分为△HDG ,则重合面积=12DG 2=4,解得DG =DC <,故这种情况不成立; ②如图2,由平移的性质得到△HDG 、△CGI 是等腰直角三角形,重合部分为梯形HDCI ,则重合面积=S △HDG -S △CGI ,把各部分面积表示出来,解方程即可;③如图3,由平移的性质得到△CGI 是等腰直角三角形,重合部分为梯形EFCI ,则重合面积=S △EFG -S △CGI ,把各部分面积表示出来,解方程即可.详解:分三种情况讨论:①如图1.∵△EFG 是等腰直角三角形,∴△HDG 是等腰直角三角形,重合部分为△HDG ,则重合面积=12DG 2=4,解得:DG =,而DC =2<,故这种情况不成立;②如图2.∵△EFG 是等腰直角三角形,∴△HDG 、△CGI 是等腰直角三角形,重合部分为梯形HDCI ,则重合面积=S △HDG -S △CGI =12DG 2-12CG 2=4,即:12DG 2-12(DG -2)2=4,解得:DG =3;③如图3.∵△EFG 是等腰直角三角形,∴△CGI 是等腰直角三角形,重合部分为梯形EFCI ,则重合面积=S △EFG -S △CGI =12EF 2-12CG 2=4,即:12×42-12(DG -2)2=4,解得:DG =2+ 或2-故答案为:3或222+.点睛:本题主要考查了平移的性质以及等腰三角形的知识,解题的关键是分三种情况作出图形,并表示出重合部分的面积.19.70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:,∴∠解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.20.8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)证明见解析;(2)45IGJ ∠=︒.【分析】(1)根据平行线的性质可得180DEF BFE ∠+∠=︒,再利用角平分线的定义即可得证; (2)过点G 作//GK AB ,则////AB GK CD ,根据平行线的性质可得DEG EGK ∠=∠,KGF GFB ∠=∠,再结合(1)的结论易得90EGK KGF ∠+∠=︒,利用角平分线的定义及垂线的定义即可求解.【详解】(1)证明:∵//AB CD ,∴180DEF BFE ∠+∠=︒.∵EG 平分DEF ∠,FG 平分BFE ∠,∴22DEF GEF DEG ∠=∠=∠,22BFE EFG GFB ∠=∠=∠,∴22180GEF EFG ∠+∠=︒,∴90EFG GEF ∠+∠=︒.(2)解:过点G 作//GK AB .∵//AB CD ,∴////AB GK CD ,∴DEG EGK ∠=∠,KGF GFB ∠=∠.由(1)得90DEG GFB ∠+∠=︒,∴90EGK KGF ∠+∠=︒.∵GH AB ⊥,∴GH KG ⊥,即90KGH KGF HGF ∠=∠+∠=︒,∴EGK HGF ∠=∠.∵GJ 平分EGH ∠,∴EGJ HGJ ∠=∠.又KGJ EGJ EGK ∠=∠-∠,FGJ HGJ HGF ∠=∠-∠,∴KGJ FGJ ∠=∠,∴2KGF FGJ ∠=∠.∵GI 平分HGF ∠,∴2HGF FGI ∠=∠,∴2290FGJ FGI ∠+∠=︒,即45FGJ FGI ∠+∠=︒,∴45IGJ FGJ FGI ∠=∠+∠=︒.【点睛】本题考查平行线的性质、角平分线的定义等内容,掌握平行线的性质是解题的关键.22.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠【分析】(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.【详解】(1)过点F 作//FN AB ,如图:∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°∴55,905535NFG EFN ∠=︒∠=︒-︒=︒∴180145BEF EFN ∠=︒-∠=︒(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒∴35AEF EHL ∠=∠=︒又∵90EHM M ∠=∠+︒,设M x ∠=︒∴90EHM x ∠=︒+︒∴903555MHL x x ∠=︒+︒-︒=︒+︒∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:设SNP x ∠=︒ ,则NPI x ∠=︒设IPG y ∠=︒ ,则PGT y ∠=︒又∵125FGD ∠=︒∴125PGN y ∠=︒-︒∴2125PGN SNP NPG ∠+∠-︒=∠【点睛】本题考查平行线的性质综合,转化相关的角度是解题关键.23.(1)∠CPD=∠α+∠β,理由见解析;(2)①当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;②当点P 在B 、O 两点之间时,∠CPD=∠α−∠β【分析】(1)过点P 作PE ∥AD 交CD 于点E ,根据题意得出AD ∥PE ∥BC ,从而利用平行线性质可知α∠=∠DPE ,β∠=∠CPE ,据此进一步证明即可;(2)根据题意分当点P 在A 、M 两点之间时以及当点P 在B 、O 两点之间时两种情况逐一分析讨论即可.【详解】(1)∠CPD=αβ∠+∠,理由如下:如图3,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE +∠CPE=αβ∠+∠;(2)①当点P 在A 、M 两点之间时,∠CPD=βα∠-∠,理由如下:如图4,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠EPD ,β∠=∠CPE ,∴∠CPD=∠CPE −∠EPD=βα∠-∠;②当点P 在B 、O 两点之间时,∠CPD=αβ∠-∠,理由如下:如图5,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE −∠CPE=αβ∠-∠,综上所述,当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;当点P 在B 、O 两点之间时,∠CPD=∠α−∠β.【点睛】本题主要考查了在平行线性质及判定的综合运用,熟练掌握相关概念是解题关键.24.(1)见解析;(2)∠EPF +2∠EQF =360°;(3)∠P +3∠Q =360°.【分析】(1)首先过点P 作PG ∥AB ,然后根据AB ∥CD ,PG ∥CD ,可得∠AEP =∠1,∠CFP =∠2,据此判断出∠AEP +∠CFP =∠EPF 即可.(2)首先由(1),可得∠EPF =∠AEP +CFP ,∠EQF =∠BEQ +∠DFQ ;然后根据∠BEP 的平分线与∠DFP 的平分线相交于点Q ,推得∠EQF =1(360)2EPF ⨯︒-∠,即可判断出∠EPF +2∠EQF =360°.(3)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=1 3∠BEP,∠DFQ=13∠DFP,推得∠Q=13×(360°﹣∠P),即可判断出∠P+3∠Q=360°.【详解】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=12(∠BEP+∠DFP)=1[360()] 2AEP CFP︒-∠+∠=1(360)2EPF⨯︒-∠,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P =∠AEP +CFP ,∠Q =∠BEQ +∠DFQ ,∵∠BEQ =13∠BEP ,∠DFQ =13∠DFP , ∴∠Q =∠BEQ +∠DFQ =13(∠BEP +∠DFP ) =13[360°﹣(∠AEP +∠CFP )] =13×(360°﹣∠P ), ∴∠P +3∠Q =360°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.25.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; ②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n°. 【详解】(1)过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=∠DAC .EAB BAC DAC ∠+∠+∠180=︒180B BAC C ∴∠+∠+∠=︒故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;(2)如图2,过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D+∠FCD=180°,∵CF ∥AB ,∴∠B =∠BCF ,∵BCD ∠=∠FCD+∠BCF ,∴D BCD B ∠+∠-∠=180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒;(3)①如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°, ∴∠BED =∠BEF +∠DEF =30°+35°=65°; 故答案为:65;②如图4,过点E 作EF ∥AB ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n°,∠ADC =70°∴∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35° ∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°, ∴∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n °. 故答案为:215°−12n .【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.26.(1)∠ADP+∠BCP=∠DPC,理由见解析;(2)∠ADP=∠DPC+∠BCP,理由见解析【分析】(1)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;(2)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP.过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键.。

相关文档
最新文档