发酵工程第8章发酵过程控制
发酵工程发酵过程控制
发酵工程发酵过程控制1. 引言发酵工程是利用微生物的生理代谢过程来生产有机化合物的一种工程技术。
而发酵过程控制则是在发酵工程中对发酵过程进行调控和监控,以确保发酵过程能够稳定进行,并获得高产率和良好的产品质量。
发酵过程控制通过对微生物与培养基、发酵设备和操作条件等方面进行控制,研究微生物的生长规律和代谢产物的生成规律,实现对发酵过程的调控,以实现最佳的发酵效果。
本文将介绍发酵工程发酵过程控制的主要内容和方法。
2. 发酵过程控制的目标发酵过程控制的主要目标是实现以下几个方面的调控:1.生物量的控制:调控微生物的生长速率和生物量,使其在适宜的培养基和环境条件下获得最佳生长,提高产酶或产物的产量;2.代谢产物的控制:调控微生物代谢过程中的关键反应步骤,实现选择性产物的生成,并提高产量;3.溶氧的控制:调控发酵过程中的溶氧浓度,提高氧传递效率,防止氧的限制性产物的堆积;4.pH的控制:调控发酵过程中的pH值,维持合适的酸碱环境,促进微生物的生长和代谢;5.温度的控制:调控发酵过程中的温度,提供适宜的环境条件,促进微生物的生长和代谢。
3. 发酵过程控制的方法发酵过程控制主要采用以下几种方法:3.1 反馈控制反馈控制是一种基于对发酵过程变量的测量和反馈,通过调节控制器输出量,实现对发酵过程的调控。
常见的反馈控制方法包括:•温度控制:通过测量发酵容器内的温度,控制加热或降温设备的输出,以维持适宜的温度;•pH控制:通过测量发酵液的pH值,控制酸碱调节器的输出,以维持适宜的酸碱环境;•溶氧控制:通过测量发酵液中的溶氧浓度,控制气体供应设备的输出,以维持适宜的溶氧浓度。
3.2 前馈控制前馈控制是一种基于对发酵过程中外部输入变量的预测,通过调节控制器输出量,实现对发酵过程的调控。
常见的前馈控制方法包括:•溶氧前馈控制:根据发酵微生物对溶氧需求的特性,通过对气体供应设备输出的调节,提前调整溶氧浓度,以满足微生物的需求;•pH前馈控制:根据发酵产物对酸碱环境的敏感性,通过对酸碱调节器输出的调节,提前调整pH值,以维持合适的酸碱环境。
发酵工程原理与技术_陈坚_思考题
发酵工程原理与技术_陈坚_思考题第一章的复习思考题1,发酵及发酵工程的定义2,发酵工程的特点3,发酵的分类4,发酵产品的类型5,微生物代谢产物的类型及其之间的关系6,发酵过程的组成7,发酵生产成立的条件8,发酵工业发展的阶段及大致年代9,和国际先进水平相比较,我国发酵工业的不足之处主要表现在哪些方面第二章的复习思考题1,微生物代谢调节和微生物代谢调控的概念2,为何要进行微生物的代谢调控3,微生物代谢调节的方式4,从本质上来说,微生物的代谢是通过哪两种方式来进行的5,酶合成调节的方式及其定义、机制6,酶活性调节的定义、方式7,有分支代谢途径的调节方式有哪些8,酶活性的调节机制可用什么理论来解释9,初级代谢的调节有哪几种方式10,次级代谢的调节方式11,提高初级和次级代谢产物产量的方法12,高浓度细胞培养的目的、原理、优点、方法及存在的问题第三章的复习思考题1,次级代谢和次级代谢产物的概念2,次级代谢产物的分类3,次级代谢产物的生物合成模式4,在微生物的氢代谢过程中,关键的酶是什么酶,它有哪些类型5,氢效应的概念及产生的原因6,二氧化碳固定的概念、方式、生理意义7,什么是卡尔文循环,它由哪几个部分组成第四章的复习思考题1,原料的定义及选择原则2,培养基设计的基本原则及如何进行培养基的设计3,为何要进行原料预处理及原料预处理的方法4,原料粉碎的目的和方法5,垂式粉碎机生产能力的计算6,干法粉碎和湿法粉碎工艺的比较7,原料输送的方法8,气流输送的原理、流程和优点9,颗粒在垂直管道和水平管道中悬浮输送的机理10,气流输送中常用除尘装置有哪几种11,淀粉原料水-热处理的定义及目的12,淀粉的膨胀、糊化和液化13,在淀粉的水-热处理过程中有哪些反应(变化)是我们所不希望的14,淀粉的酶法液化和糖化工艺常用到的酶有哪些及各自的作用专一性15,酶法液化的工艺有哪几种及各自的优缺点16,淀粉液化效果的标准17,淀粉糖化的定义和目的18,淀粉糖化的理论收率、实际收率和淀粉转化率的定义及计算19,DE值的定义20,淀粉糖化的工艺有哪几种,比较各自的优缺点21,糖蜜原料的来源、特点及常用的处理方法22,在发酵培养基中添加前提物质、抑制剂和促进剂为何能提高产物的产量第五章的复习思考题1,何谓培养基的灭菌,它和消毒有和区别2,常用的灭菌方法3,致死温度、微生物热阻的定义4,湿热灭菌的原理和优点5,从工程角度看,设计一个培养基的湿热灭菌过程首先要解决的问题是什么6,根据微生物的热死灭动力学方程和温度对微生物热死灭常熟(K)的影响,论述为什么采用高温短时间灭菌既有利于杀灭微生物又有利于减少营养物质的破坏7,间歇灭菌的成功的要素及注意事项8,常用的连续灭菌工艺有哪几种9,连续灭菌和间歇灭菌的比较10,影响灭菌的因素第六章的复习思考题1,何谓无菌空气,发酵工业对空气无菌程度的要求2,空气含菌量的测定方法3,空气除菌的方法有哪些、这些方法的原理和优缺点4,介质过滤除菌的定义,机理;过滤介质的类型5,常见的空气过滤除菌工艺流程的分析计算6,过滤效率、对数穿透律7,传统空气过滤除菌工艺中的主要设备有哪些8,新型的空气过滤器有哪些,有何优点9,空气贮罐的作用是什么,其大小如何确定第七章的复习思考题1,种子的扩大培养的定义。
发酵工程教案(打印)
发酵工程教案(打印)第一章:发酵工程的概述1.1 发酵工程的定义发酵工程的概念发酵工程的组成1.2 发酵工程的应用领域食品工业制药工业生物化工1.3 发酵工程的发展历程传统发酵技术现代发酵工程技术第二章:发酵过程的微生物学基础2.1 发酵微生物的分类与特性细菌真菌放线菌2.2 发酵微生物的培养与筛选培养基的选择与制备微生物的分离与纯化2.3 发酵微生物的代谢调控微生物的生长曲线微生物的代谢途径第三章:发酵设备的类型与选择3.1 发酵设备的类型大型发酵罐生物反应器膜分离设备3.2 发酵设备的选择原则生产规模产品特性经济效益3.3 发酵设备的运行与维护设备的启动与停止设备的清洗与消毒设备的故障处理第四章:发酵过程的控制与管理4.1 发酵过程的控制参数温度pH值溶氧量营养物质4.2 发酵过程的控制技术自动控制系统反馈控制系统计算机控制系统4.3 发酵过程的管理与优化生产计划的制定发酵条件的优化生产过程的质量控制第五章:发酵工程的案例分析5.1 乳酸菌发酵工程案例酸奶的生产泡菜的制作5.2 酵母菌发酵工程案例啤酒的生产葡萄酒的制作5.3 放线菌发酵工程案例抗生素的生产维生素的生产第六章:发酵工程的安全与环保6.1 发酵工程的安全问题微生物的危害生物安全措施发酵罐的安全操作6.2 发酵过程中的污染控制污染的来源污染的检测与控制清洁生产技术6.3 发酵工程的环保问题废水处理废气处理固体废弃物处理第七章:发酵工程的产业化应用7.1 发酵工程在食品工业的应用面包酵母的生产乳酸菌的产业化7.2 发酵工程在制药工业的应用抗生素的产业化维生素的产业化7.3 发酵工程在其他领域的应用生物燃料的生产生物材料的产业化第八章:发酵工程的研发与创新8.1 发酵工程的新技术发展重组DNA技术基因工程技术合成生物学技术8.2 发酵工程的新设备开发高通量筛选设备生物反应器的设计自动化控制系统8.3 发酵工程的产业化挑战与机遇产业化过程中的问题产业化发展的趋势产业化政策的分析第九章:发酵工程的实例分析与评价9.1 发酵工程案例分析某乳酸菌产品的生产某抗生素的生产9.2 发酵工程项目的评价技术与经济评价环境与社会影响评价风险评价9.3 发酵工程的发展前景与建议行业发展趋势技术创新方向政策与支持措施第十章:发酵工程的实验操作10.1 发酵实验的基本操作菌种的制备与保藏发酵液的制备发酵过程的监控10.2 发酵实验的设计与优化实验设计方法发酵条件的优化实验结果的分析10.3 发酵实验的操作技能培养实验操作的安全规范实验设备的操作与维护实验数据的准确记录与处理重点和难点解析重点环节一:发酵微生物的分类与特性重点掌握不同类型发酵微生物的分类、特点及应用领域。
发酵工程 8-4泡沫对发酵的影响与控制
2,氮源浓度
氮源有无机氮源和有机氮源两类,它们对菌 体代谢都能产生明显的影响. 迅速利用的氮源(氨基酸等)促进菌体生长, 但对某些产物(抗生素等)的合成产生调节 作用; 缓慢利用的氮源(黄豆饼粉,花生饼粉等) 对延长次生代谢产物的分泌期,提高产物的 产量有好处.
发酵培养基一般选用含有快速和慢速利 用的混合氮源. 如链霉素发酵采用硫酸铵和黄豆饼粉.
2,发酵过程中泡沫的消长规律
发酵过程中泡沫的多寡与通气搅拌的剧烈程度和 培养基的成分有关, 玉米浆, 蛋白胨, 花生饼粉, 培养基的成分有关 , 玉米浆 , 蛋白胨 , 花生饼粉 , 黄豆饼粉,酵母粉,糖蜜等是发泡的主要因素. 黄豆饼粉,酵母粉,糖蜜等是发泡的主要因素. 随着发酵过程中蛋白酶, 淀粉酶的增多及碳 , 氮 随着发酵过程中蛋白酶 , 淀粉酶的增多及碳, 源的利用, 起稳定泡沫作用的蛋白质的降解, 发 源的利用 , 起稳定泡沫作用的蛋白质的降解 , 酵液黏度的降低和表面张力的上升, 泡沫在减少. 酵液黏度的降低和表面张力的上升 , 泡沫在减少 . 在发酵后期菌体自溶, 可溶性蛋白增加, 在发酵后期菌体自溶 , 可溶性蛋白增加 , 又促进 泡沫的上升. 泡沫的上升.
CO2对细胞的作用是影响细胞膜的结构,溶 对细胞的作用是影响细胞膜的结构, 对细胞的作用是影响细胞膜的结构 主要作用于细胞膜的脂肪酸核心部位, 解CO2主要作用于细胞膜的脂肪酸核心部位, 主要作用于细胞膜的脂肪酸核心部位 而HCO3-则影响磷脂亲水头部带电荷表面及 则影响磷脂亲水头部带电荷表面及 细胞膜表面上的蛋白质. 细胞膜表面上的蛋白质.当细胞膜的脂质相 浓度达到一临界值时, 中CO2浓度达到一临界值时,膜的流动性及 浓度达到一临界值时 表面电荷密度发生变化, 表面电荷密度发生变化,导致膜对基质的运 输受阻,影响细胞膜的运输效率, 输受阻,影响细胞膜的运输效率,使细胞处 麻醉"状态,生长受抑制,形态异常. 于"麻醉"状态,生长受抑制,形态异常.
发酵过程优化与控制(原理部分)
16
大型发酵罐 搅拌装置
17
现代发酵工程的主要研究内容
1.发酵过程的优化控制技术 2.生化过程的模型化 3.高密度培养技术 4.代谢工程和代谢网络控制 5.新型生化反应器的研究和开发 6.新型发酵和产品分离技术
18
第一章
绪论
一. 发酵过程优化在生化工程中的地位 二. 发酵过程优化的目标和研究内容 三. 发酵过程优化的研究进展 四. 流加发酵过程的优化控制
19
一. 发酵过程优化在生化工程中的地位
现代生物技术不仅能在生产新型食品、饲料添加剂、 药物的过程中发挥重要的作用,还能经济、清洁地 生产传统生物技术或一般化学方法很难生产的特殊 化学品,在解决人类面临的人口、粮食、健康、环 境等重大问题的过程中必将发挥积极的作用 如何才能更好地发挥现代生物技术的作用? 以工业微生物为例,选育或构建一株优良菌株仅仅是 一个开始,要使优良菌株的潜力充分发挥出来,还必 须优化其发酵过程,以获得较高的产物浓度(便于下 游处理)、较高的底物转化率(降低原料成本)和较高 的生产强度(缩短发酵周期) 20
养或半连续发酵,是指在分批发酵过程
中间歇或连续地补加新鲜培养基的发酵
方法
36
流加发酵的研究进展
在20世纪70年代以前流加发酵的理论研究 几乎是个空白,流加过程控制仅仅以经验为 主,流加方式也仅仅局限于间歇或恒速流加
1973年日本学者Yoshida等人首次提出了 “Fed-Batch Fermentation”这个术语,并从理 论上建立了第一个数学模型,流加发酵的研究 才开始进入理论研究阶段
11
基于碳氢化合物的经济转变为基于 碳水化合物的经济
将工业革命世纪转变到生物技术世纪 只有工业微生物才能将来源于太阳能的可再
发酵工程教案(打印
发酵工程教案(打印)第一章:发酵工程的概述1.1 发酵的定义和意义1.2 发酵工程的起源和发展1.3 发酵工程的研究内容和应用领域第二章:发酵过程的基本原理2.1 微生物的生长与代谢2.2 发酵条件的控制2.3 发酵过程中的物质变化第三章:发酵设备及其设计3.1 发酵罐的设计与选择3.2 发酵过程的自动化控制3.3 发酵设备的清洗与消毒第四章:发酵条件的优化与控制4.1 发酵条件的优化方法4.2 发酵过程的监控与控制4.3 发酵过程中的问题与解决方法第五章:发酵工程的应用实例5.1 微生物肥料的生产与应用5.2 生物农药的发酵生产5.3 食品工业中的发酵应用第六章:发酵工程在药品生产中的应用6.1 抗生素的发酵生产6.2 维生素的发酵生产6.3 重组蛋白的发酵生产第七章:生物化工领域的发酵工程7.1 氨基酸的发酵生产7.2 有机酸的发酵生产7.3 生物酶的发酵生产第八章:发酵工程在环保领域的应用8.1 生物滤池技术8.2 生物脱硫技术8.3 生物降解技术第九章:发酵工程的产业化与发展9.1 发酵工程的产业化流程9.2 发酵工程的技术创新与挑战9.3 我国发酵工程产业的发展现状与趋势第十章:发酵工程的可持续发展10.1 发酵工程与资源利用10.2 发酵工程与环境保护10.3 发酵工程的循环经济模式第十一章:发酵工程在生物制药中的应用11.1 重组蛋白药物的发酵生产11.2 疫苗的发酵生产11.3 基因治疗的发酵工程应用第十二章:发酵工程技术在农业中的应用12.1 微生物肥料的发酵生产12.2 生物农药的发酵生产12.3 动物疫苗和生物兽药的发酵生产第十三章:发酵工程在生物能源中的应用13.1 燃料酒精的发酵生产13.2 生物柴油的发酵生产13.3 生物气体的发酵生产第十四章:发酵工程在生物材料中的应用14.1 发酵生产生物塑料14.2 发酵生产生物纤维14.3 发酵生产生物复合材料第十五章:发酵工程的案例分析与实践操作15.1 发酵工程案例分析15.2 发酵工程的实践操作技巧15.3 发酵工程的实验设计与数据分析重点和难点解析本文教案涵盖了发酵工程的概述、基本原理、设备设计、条件优化与控制、应用实例、药品生产、生物化工、环保领域应用、产业化发展、技术创新、可持续发展以及案例分析和实践操作等多个方面。
发酵工程_韩北忠_第八章发酵中试的比拟放大
三 比拟放大和它的基本方法
• 首先必须找出表征着此系统的各种参数, 首先必须找出表征着此系统的各种参数, 将它们组成几个具有一定物理含义的无 因次数,并建立它们间的函数式, 因次数,并建立它们间的函数式,然后 用实验的方法在试验设备中求得此函数 式中所包含的常数和指数, 式中所包含的常数和指数,则此关系式 在一定条件下便可用作为比似放大的依 据。比拟放大是化工过程研究和生产中 常用的基本方法之一。 常用的基本方法之一。
• (一)恒周线速度 丝状菌发酵受剪率、特别是搅拌叶轮尖端 线速度的影响较为明显。如果仅仅保持kLa相 等或Po/V相等,可能会导致严重的失误。在 P /V Po/V相等的条件下,D/T比越小,造成的剪率 越大,也有利于菌丝团的破碎和气泡的分散, 这对于产物抑制的发酵有重要意义。所以,对 于这类发酵体系,搅拌涡轮周线速度也被认为 是比拟放大的基准之一。
其他的比拟放大方法
其他的比拟放大方法
• (二)恒混合时间 混合时间的定义是把少许具有与搅拌 罐内的液体相同物性的液体注入搅拌罐内,两 者达到分子水平的均匀混合所需要的时间。 混合时间主要与发酵液的粘度有关,通常, 低粘度的液体混合时间要少于高粘度的液体。 另外,放大罐的体积越大,混合时间就越长。
其他的比拟放大方法
以kLa为基准的比拟放大法
• 有的菌种在深层发酵时耗氧速率很快, 因此溶氧速率能否与之平衡就可能成为 生产的限制性因素。耗氧速率可以用实 验法测定。在小型试验发酵罐里进行发 酵过程,用适当的仪器记录发酵液中的 溶氧浓度。
Hale Waihona Puke • 例: 某厂试验车间用枯草杆菌在100升 罐中进行生产。—淀粉酶试验, 获得良 好成绩。放大至20立方米罐。
按照计算p来计算发酵罐的放大原则三四恒定剪切力恒定叶端速度放大剪切力与搅拌桨叶端速度成正比在恒定体积功率放大时一般维持n不变n为搅拌桨转速d为搅拌桨直径五恒定的混合时间t放大另外还有人主张考虑nre及动量因子来放大等这里就不一一介绍了
发酵重点1-8
1、发酵工程的基本定义?发酵工程:是利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系,是生物工程与生物技术学科的重要组成部分。
发酵工程也称作微生物工程,该技术体系主要包括菌株选育与保藏、菌种的扩大生产、微生物代谢产物的发酵生产和分离纯化制备,同时也包括微生物生理功能的工业化利用。
2、提出研发一个发酵新产品的可能路线发酵生产工艺流程除某些转化过程外,典型的发酵工艺过程大致可以划分为以下6个基本过程①用作种子扩大培养及发酵生产的各种培养基的配制;②培养基、发酵罐及其附属设备的灭菌;③扩大培养有活性的适量纯种,以一定比例将菌种接入发酵罐中;④控制最适的发酵条件使微生物生长并形成大量的代谢产物;⑤将产物提取并精制,以得到合格的产品;⑥ 回收或处理发酵过程中所产生的三废物质。
3、发酵工业的特点①常温常压下进行的生物化学反应,条件较温和②较廉价的原料生产较高价值的产品③通过生物体的自适应调节来完成,反应专一性强,可以得到较为单一的代谢产物④可以产生比较复杂的高分子化合物⑤不受地理、气候、季节等自然条件的限制,可以根据订单安排通用发酵设备来生产多种多样的发酵产品1、为什么需要进行微生物菌种改良?①提高目标产物的产量生产效率和效益!②提高目标产物的纯度,减少副产物可有效降低产物分离成本。
③改良菌种性状,改善发酵过程改变和扩大菌种所利用的原料范围、提高菌种生长速率、保持菌株生产性状稳定、提高斜面孢子产量、改善对氧的摄取条件并降低需氧量及能耗、增强耐不良环境的能力(如耐高温、耐酸碱、耐自身所积累的过量代谢产物)、改善细胞透性以提高产物的分泌能力等。
④改变生物合成途径,以获得高产的新产品2、你认为菌种筛选过程中最关键的环节是什么?筛选方法(1)平皿快速检测法肉眼可观察的变化。
显色法、变色圈法、透明圈法、生长圈法和抑制圈法…(2)形态变异的利用(3)高通量筛选(high throughput screening)3、如果尽量保持菌种不发生退化?(1)控制传代次数基因的变化往往发生在复制和繁殖过程中,繁殖越颇繁,复制的次数越多,基因发生变化的机会也就越多。
发酵生产的过程及控制
死亡期
2、补料分批培养
在分批培养过程中补入新鲜的料液,以克服营养不足而导致 的发酵过早结束的缺点。 在此过程中只有料液的加入没有料液的取出,所以发酵结束 时发酵液体积比发酵开始时有所增加。在工厂的实际生产中 采用这种方法很多。
简单的过程,培养基中接入菌种以后,没有物料的加入和取出, 除了空气的通入和排气。整个过程中菌的浓度、营养成分的浓 度和产物浓度等参数都随时间变化。
优点: 操作简单,周期短,染菌机会少,生产过程和产品质量 容易掌握 缺点: 产率低,不适于测定动力学数据
分批培养中微生物的生长
迟滞期 对数生长期
稳 定期
发酵级数确定的依据
级数受发酵规模、菌体生长特性、接种量的影响。
级数大,难控制、易染菌、易变异,管理困难,一 般2-4级。
在发酵产品的放大中,反应级数的确定是非常重要 的一个方面。
3、接种量的确定
移入种子的体积 接种量= —————————
接种后培养液的体积
过大过小都不好,最终以实践定,如大多数抗生素为7-15%。 但是一般认为大一点好。
7 种子的质量标准
• 菌丝形态、菌体浓度和培养基外观(色素、颗粒等); • pH; • 糖氮代谢速度; • 其它参数,如接种前的抗生素含量、某种酶活等。
8 影响种子质量的因素:
1)原材料的质量:
一般选择一些有利于孢子发芽和菌丝生长的培养基,在营养 上容易被菌体直接吸收利用,营养成分要适当地丰富和完全, 氮源和维生素含量较高,这样可以使菌丝粗壮,并且具有较 强的活力。
另一方面,种子培养基中的营养成分要尽可能和发酵培养基 接近以适合发酵的需要,这样的种子移入发酵罐后能比较容 易适应发酵罐的培养条件如微量元素Mg、Ca、Ba能刺激孢子 的生长。 2)、培养温度:过低?过高?
发酵过程中与微生物相关工艺参数的调控方法资料
9、黏度 10、浊度 11、料液流量 12、产物的浓度 13、氧化还原电位 14、废气中的氧含量 15、废气中的CO 2含量 16、菌丝形态 17、菌体浓度
2.1 pH 值的控制
2.1.1 pH值对发酵的影响
1.影响培养基某些组分和中间产物的离解
2.影响酶的活性
3.影响微生物细胞膜所带电荷的状态,改变细胞膜 的通透性
2.1.1 pH值对发酵的影响
4.pH不同,往往引起菌体代谢过程不同,使代 谢产物的质量和比例发生改变。
例如:黑曲霉在pH2~3时发酵产生柠檬酸,在 pH近中性时,则产生草酸。
2.1.2发酵过程pH值的变化
pH值
培养过程中 培养液pH值 的大致变化 趋势
培养时间
在发酵过程中,随着菌种对培养基种碳、氮 源的利用,随着有机酸和氨基酸的积累,会 使pH值产生一定的变化。
生物热:产生菌在生长繁殖过程中,释放的大量热量。 搅拌热:由于搅拌器的转动引起液体的摩擦产生的热量。 蒸发热:发酵液蒸发水分带走的热量。 显热:发酵排气散发带走的热量。
辐射热:由于罐内外的温差,辐射带走的热量。
2.2.2影响发酵温度变化的因素
发酵热(Q发酵)是发酵温度变化的主要因素。
Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射-Q显
酵母菌发酵制造啤酒、果酒、工业酒精 乳酸菌发酵制造奶酪和酸牛奶 利用真菌生产青霉素 利用微生物发酵生产药品,如人的胰岛素、
干扰素和生长激素
2.发酵工程的主要的控制参数
1、pH值(酸碱度) 2、温度 3、溶解氧浓度 4、基质含量 5、空气流量 6、压力 7、搅拌转速 8、搅拌功率
发酵过程中与微生物 相关工艺参数的调控方法
目录
1.发酵工程的定义及应用
发酵工程_8发酵过程控制
5. 最适温度的选择与控制
定义:最适温度是指在该温度下最适于菌的生长或产 物的生成,它是一种相对概念,是在一定条件下测得 的结果。 二阶段发酵 e.g.青霉素发酵:菌体生长期,30 ℃ 青霉素合成分泌期, 20 ℃
最适温度的选择还要参考其它发酵条件灵活掌握
通气条件较差情况下,最适发酵温度可能比正常良好
3. 最适pH的选择
选择pH准则:获得最大比生产速率和合适的菌体量, 以获得最高产量。
配制不同初始pH的 培养基,摇瓶考察 发酵情况
pH对产海藻酸裂解酶的影响
4. 发酵过程中pH的调节与控制
(1)pH调节方法
配制合适的培养基,有很好的缓冲能力; 发酵过程中加入非营养基质的酸碱调节剂 (NaOH、HCl、CaCO3); 发酵过程中加入生理酸性或碱性基质,通过代谢调节pH; 酸性基质:铵盐、糖、油脂、玉米浆(脱NH4+) 碱性基质:NO3-盐、有机酸盐、有机氮、氨水、尿素 原则: ①残糖高时,不用糖调pH ②残N高时,不用生理盐调pH
谷氨酸发酵:pH7.0~8.0,谷氨酸;pH5.0~5.8, 谷酰胺 和N-乙酰谷酰胺
pH对青霉素发酵的影响: 在不同pH范围内加糖,青霉素产量和糖耗不一样。 pH范围 糖耗 残糖 青霉素相对单位 pH6.0~6.3加糖 10% 0.5% 较高 pH6.6~6.9加糖 7% 0.2% 高 pH7.3~7.6 加糖 7% >0.5% 低 pH6.8控制加糖 <7% <0.2% 最高 速率恒定(0.055%/h) *采用pH控制补糖速率的意义
2. 发酵过程控制的一般步骤
确定能反映过程变化的各种理化参数及其检测方法 研究这些参数的变化对发酵生产水平的影响及其机制, 获取最适水平或最佳范围 建立数学模型定量描述各参数之间随时间变化的关系 通过计算机实施在线自动检测和控制,验证各种控制 模型的可行性及其适用范围,实现发酵过程最优控制
微生物发酵工程课件第8章 连续发酵
塔式发酵罐、装有隔 板的管道发酵器(菌
体部分重复使用)
管道发酵器 (菌体100% 重复使用)
塔式发酵罐、装 有隔板的管道发 酵器(菌体100%
重复使用)
三. 罐式连续发酵 发酵设备与分批发酵设备无根本区别.根据所用罐数又可
分为单罐连续发酵和多罐连续发酵。 1. 单罐连续发酵 通常先要进行一段时间的分批发酵.当反应器中的细胞
平推流是理想状态下在流动方向上完全没有返混,而在垂直于流动方向的平面上达到最大程度的混合。 返混是不同停留时间的粒子的混合。 混合是不同空间位置的粒子的混合。停留时间指的是年龄,所谓年龄就 是说从物料进入平推流反应器开始,未出平推流的情况下,在反应器中停留的时间。平推流中的物料在径向 截面上物质参数均相同,浓度、温度与轴向距离有关系。
第八章 连续发酵(Continuous Fermentation)
一. 连续发酵的概念 二. 连续发酵的分类及其特点 三. 罐式连续发酵 四. 管式连续发酵 五. 几个连续发酵的例子
全混流是理想流完全混合,以致物 系参数均一。全混流流是返混程度最在的一种流动。该模型的基本假定是设备内物料的浓度均一,且等于设 备出口处的浓度。
封闭式连续发酵系统是在连续发酵系统中运用某种方法使细胞一直保持在培养器内,并使其数量不 断增加。这种条件下,某些限制因素在培养器中也发生变化,最后导致大部分细胞死亡。因此在这种系 统中,不可能维持稳定状态。封闭式连续发酵可以通过改装开放式连续发酵设备,使全部菌体循环使用, 也可以采用各种固定化载体,使菌体在上面生长而不随发酵液流出而流失。
在连续培养中菌体的物料平衡关系为:
V(dX/dt) = FX0 + xV - FX (净增加量) (输入量) (生长量) (输出量)
发酵工程第八章
pH对细胞形态的影响 pH对细胞形态的影响 这实际上是pH值对细胞生长和代 这实际上是pH值对细胞生长和代 谢途径影响的外部(宏观)表现, 在GA发酵过程中,pH值不同, GA发酵过程中,pH值不同, 代谢途径不同,菌体形态不同。 在青霉素发酵过程中,pH≧6.0时, 在青霉素发酵过程中,pH≧6.0时, 菌丝体缩短,而pH≧7.0时,膨 菌丝体缩短,而pH≧7.0时,膨 胀的菌丝体明显的增加。
一、氧对发酵的影响
影响了菌系的酶活性 氧的存在影响了代谢途径
二、氧传递动力学:
氧传递的双膜理论 1溶氧过程存在一个界面,这个界面 的厚度可以忽略不计。在这个界面上, 气相中氧的分压与溶于液相中氧的浓 度呈平衡关系,既Pi与Ci呈平衡关系, 度呈平衡关系,既Pi与Ci呈平衡关系, 符合亨利定律:Ci= 符合亨利定律:Ci= K *Pi 2传质过程是一个稳定的过程,各点 氧的浓度不是时间的函数。 3气膜、液膜都以层流状态存在。
三、提高氧传递效率的途径
提高kLa 提高kLa 搅拌 打碎气流,形成小气泡,增加气液接触 面积. 面积. 使液体形成涡流,增加气泡在液体中的 滞留时间 增加液体的湍流程度,减少气泡周围的 液膜阻力k3液膜阻力k3-1,减少氧在液体主流中的 传递阻力k4传递阻力k4-1 对于真菌、食用菌等易结团现象,降低 细胞膜的表面阻力,降低细胞周围代谢 物的浓度
提高(c* c),即氧传递动力 提高(c* - c),即氧传递动力
c*,受到体系的温度、发酵液的 c*,受到体系的温度、发酵液的 浓度、粘度、pH值等因素的影响, 浓度、粘度、pH值等因素的影响, 改变c*是没有太大的余地的。因 改变c*是没有太大的余地的。因 为,发酵温度、浓度等严格的受 到菌体生长和发酵工艺的限制。
发酵过程控制
发酵过程控制和优化技术的有关知识发酵的生产水平高低除了取决于生产菌种本身的性能外,还要受到发酵条件、工艺的影响。
只有深入了解生产菌种在生长和合成产物的过程中的代谢和调控机制以及可能的代谢途径,弄清生产菌种对环境条件的要求,掌握菌种在发酵过程中的代谢变化规律,有效控制各种工艺条件和参数,使生产菌种始终处于生长和产物合成的优化环境中,从而最大限度地发挥生产菌种的生产能力,取得最大的经济效益。
一.发酵过程进行优化控制的意义随着生物和基因工程技术在各工业行业中的应用,发酵产品生产规模和品种不断增加,对发酵过程进行控制和优化也显得越来越重要。
作为发酵中游技术的发酵过程控制和优化技术,既关系到能否发挥菌种的最大生产能力,又会影响到下游处理的难易程度,在整个发酵过程中是一项承上启下的关键技术。
与物理和化学反应过程不同,生物过程的反应速率比较慢,目的产物的浓度、生产强度、反应物质(底物或基质)向目的产物的转化率也比较底。
工业微生物学从两个方面解决上述问题,一方面通过菌种选育和改良获得高产的发酵菌种;另一方面,通过控制培养条件使微生物最大限度地生产目标产物。
相对来讲,通过发酵过程控制和优化,将生物过程准确地控制在最优的环境或操作条件下,是提高整体生产水平的一个捷径或者说是一种更容易的方法,其重要性也绝不亚于利用分子生物学和基因工程进行菌种改良的方法。
二.生化过程的特征与物理和化学反应过程相比,生化反应过程有以下不同特征:①动力学模型高度非线性;②动力学模型参数的时变性;③除简单的物理和化学状态变量(温度、pH、压力、气体分压、DO 外,绝大多数生物状态变量(生物量、营养物浓度、代谢产物浓度、生物活性等)很难在线测量;④过程参数的滞后性,一个生物过程可能涉及成千上万个小的物理和化学反应,其相互间的作用和影响造成了生物过程的响应速率慢。
生物过程的控制和优化还具有以下特点:①不需要太高的控制精度;②各状态变量之间存在一定的连带关系;③由于没有合适的定量的数学模型可循,其控制与优化操作还必须完全依靠操作人员的经验和知识来进行。
发酵工程(1-13章)
《发酵工程》Fermentation engineering 授课教师:张书祥(Email:zhangshux578@)第一章绪论第一节发酵工程的定义、特点、内容第二节发酵工程的发展历史第三节发酵工业的应用第四节发酵工程的发展趋势第一节发酵工程的定义、特点、内容1、定义1.1发酵工程:利用微生物的性状和机能,通过现代化工程技术,生产人们所需要产品的过程。
如抗生素、酒类、有机酸、基因工程药物等的生产。
发酵过程是以微生物反应为核心的,因此,发酵工程又被称为微生物工程。
1.2生物工程:生命科学应用于产业方面,称为生物工程学。
也就是利用生物体(生物作用剂:微生物、动物细胞、植物细胞等)的机能,通过现代化工程技术,生产人们所需要产品的过程。
生物工程包括:发酵工程、酶工程、基因工程、细胞工程。
发酵工程与生物工程的关系发酵工程是生物工程的重要组成部分,在生物工程中处于中心地位。
无论是从微生物得到酶或用基因工程菌获得产品都必须依赖发酵工程技术。
发酵工程的发展直接影响生物工程的进一步发展。
2、发酵工业的一般特点:2.1生产所用原料通常以淀粉、糖蜜等碳水化合物(可再生资源)为主,辅料包括一定的无机或有机氮源和少量无机盐。
2.2微生物生化反应过程能通过单一微生物代谢活动完成,因而产品在发酵设备中一次合成。
2.3微生物能利用简单的物质合成复杂的高分子化合物。
2.4由于生命体特有的反应机制,微生物能高度选择地在复杂化合物的特定部位进行氧化、还原、官能团导入等转化反应,从而获得某些具有一定经济价值的物质。
发酵工程与化学工程、生化工程的比较工业发酵的过程是依靠微生物细胞生命活动获得目的产物的过程,从根本上区别于化学合成工业和生化工业。
在工业化学过程中没有生物活性物质参与催化。
工业生化过程属于由酶催化的体外酶反应过程,酶具有生物活性。
当酶失活、辅酶耗尽,过程就停止了。
第三节、发酵工业的应用:发酵工程技术已给人类社会生产力的发展带来了巨大的潜力,解决了人类所面临的食品与营养、健康与环境、资源与能源等重大问题。
第八章 发酵工艺的控制
发酵工艺过程,不同于化学反应过程,它既涉及生物细胞的生长、生理和繁殖等生命过程,又涉及生物细胞分泌的各种酶所催化的生化反应过程。
发酵工程是生物应用工程学科,是微生物学在工业生产领域的大规模应用,是化学工程在生物技术领域的延伸,是生物、化学和工程等学科的综合利用。
8.1发酵过程的主要控制参数1. 物理参数(1)温度(℃)直接影响发酵过程的酶反应速率,氧的溶解度和传递速率,菌体生长速率和合成速率。
(2)压力(Pa)影响发酵过程氧和CO2的溶解度,正压防止外界杂菌污染。
罐压一般控制在0.2×105~0.5×105 Pa。
(3)搅拌速度(r/min)搅拌器在发酵过程中的转动速度。
其大小影响发酵过程氧的传递速率,受醪液的流变学性质影响,还受发酵罐的容积限制(见下表)(4)搅拌功率(kW)搅拌器搅拌时所消耗的功率(kW/m3),在发酵过程中的转动速度。
其大小与液相体积氧传递系数有关。
(5)空气流量(m3空气/(m3发酵液·min))单位时间内单位体积发酵液里通入空气的体积,一般控制在0.5~1.0(m3空气/(m3发酵液·min))(6)粘度(Pa·s)细胞生长或细胞形态的一种标志,反映发酵罐中的菌丝分裂情况,表示菌体的浓度。
(7)浊度(%)反映应单细胞生长情况(8)料液流量(L/min)进料参数(6)粘度(Pa·s)细胞生长或细Array胞形态的一种标志,反映发酵罐中的菌丝分裂情况,表示菌体的浓度。
(7)浊度(%)反映应单细胞生长情况(8)料液流量(L/min)进料参数(3)溶解氧浓度(ppm或饱和度,%)溶解氧是好氧发酵的必备条件,是生化产能反应的最终电子受体,也是细胞及产物重要的组分。
通常用饱和百分度表示。
(4)氧化还原电位(mV)培养基的氧化还原电位是影响微生物生长及生化活性的因素之一。
在某些限氧发酵(如氨基酸),氧电极以不能精确使用,氧化还原电位参数控制较为理想。
简述发酵工程的基本过程
简述发酵工程的基本过程
发酵工程的基本过程包括以下几个步骤:
1. 选择发酵微生物:根据工艺要求和产品特性,选择合适的发酵微生物(如细菌、酵母、真菌等)作为发酵的生物体。
2. 培养种子:用适当的培养基和条件,培养发酵微生物的种子菌株,使其达到一定的生长状态。
3. 发酵罐设计:设计合适的发酵罐,包括容量、搅拌、通气、温度和pH控制等,以提供最佳的生长环境。
4. 发酵培养基准备:根据微生物的生长需求,配制合适的发酵培养基,包括碳源、氮源、无机盐和其他必要的添加剂。
5. 接种发酵:将培养好的种子菌株接种到发酵罐中的发酵培养基中,使其开始生长和繁殖。
6. 发酵过程控制:通过监测和调控发酵罐中的温度、pH、搅
拌速度、通气速率等参数,控制发酵过程中的生物学反应,以实现最佳的生长和代谢活动。
7. 产物收集和分离:在发酵结束后,收集发酵液中的目标产品,根据需要进行进一步的分离、提纯和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、最适pH的选择
各种微生物适应的pH范围不同:
细菌6.5-7.5;
霉菌4.0-5.8;
酶母菌3.8-6.0;
放线菌6.5-8.0.
微生物生长阶段和产物合成阶段的最适pH值往往 也不一样。这与菌种的特性有关,也取决于产物的化 学性质。
四、PH的调控策略
1、配制合适的培养基,调节培养基初始PH至合适范围并 使其有很好的缓冲能力。
2、培养过程中加入非营养基质的酸碱调节剂,如CaCO3 等防治PH过度下降。 3、培养过程中加入基质性酸碱调节剂,如氨水等。 4、加生理酸性或碱性盐基质,通过代谢调节PH。
5、将PH控制与代谢调节结合起来,通过补料来控制PH。
泡沫对发酵的影响及控制
泡沫
由于培养基中有蛋白类表面活性剂存在,在通气条件下, 培养液中就出现了泡沫。
泡沫是气体被分散在少量液体中的胶体体系,气液之间被 一层液膜隔开,彼此不相连通。
两种类型:机械性泡沫和流态泡沫 基质中的有机氮源(黄豆饼粉等)的种类与浓度是影响起泡
的主要原因
本节内容:
泡沫对发酵的影响 发酵过程中泡沫的变化 泡沫的控制
用吐温-80制成的乳剂,用于庆大霉素发酵,效力提高1~2倍。
在生产过程中,消泡的效果除了与消泡剂的种类、性质、 分子量大小、消泡剂亲油亲水基团等密切相关外,还与消 泡剂使用时加入方法、使用浓度、温度等有很大关系,应 结合生产简单的检测是定时在发酵罐视孔上观察泡沫产生情况, 发现泡沫持续上升时,开启消泡剂贮罐的阀门,流加少 量消泡剂,使泡沫消失即可。
物理消泡方法,利用机械强烈振动或压力变化而使泡沫破裂。 罐内消泡——靠罐内消泡桨转动打碎泡沫。 罐外消泡——将泡沫引出罐外,通过喷嘴的加速作用或离心力 来消除泡沫
优点:节省原料,减少染菌机会。 缺点:消泡效果不理想,仅可作为消泡的辅助方法。
2. 消泡剂消泡
A.消泡剂的作用: ① 降低泡沫液膜的机械强度; ② 降低液膜的表面黏度; ③ 兼有两者的作用,达到破裂泡沫的目的。
① μ和Qp的最适pH值都在一个相似的较宽的适宜范围内(a), 这种发酵过程易于控制;
② Qp (或μ)的最适pH值范围窄,而μ(或Qp)的范围较宽(b);
③ μ和Qp对pH值都很敏感,它们的最适pH值又是相同的(c), 第二、第三种情况的发酵pH值应严格控制;
④ μ和Qp有各自的最适pH值(d),应分别严格控制各自的最适 pH值,才能优化发酵过程。
如噻纳霉素的发酵中,
pH值在6.7-7.5之间时,抗生素的产量相近,产品 稳定性未受影响,半衰期也无变化,
但当pH大于7.5时,抗生素半衰期缩短,稳定性 下降,发酵产量也减少。
四环素
5)pH在微生物培养的不同阶段有不同的影响
X
生长 合 成
pH pH对菌体生长影响比产物合成影响小 例 青霉素:菌体生长最适pH3.5~6.0,产物合成最适 pH7.2~7.4
B.作为生物工业理想的消泡剂,应具备下列条件
① 应该在气-液界面上具有足够大的铺展系数,才能迅速发挥消 泡作用,这就要求消泡剂有一定的亲水性;
② 应该在低浓度时具有消泡活性; ③ 应该具有持久的消泡或抑泡性能,以防止形成新的泡沫; ④ 应该对微生物、人类和动物无毒性; ⑤ 应该对产物的提取不产生影响; ⑥ 不会在使用、运输中引起任何危害; ⑦ 来源方便,成本低; ⑧ 应该对氧传递不产生影响; ⑨ 能耐高温灭菌。
控
制 方
当补料与调pH发生矛盾时, 加酸碱调pH
式
选择合适的pH调节剂
发酵的不同阶段采取不同的 pH值
思考题
7.12 发酵过程中pH会不会发生变化为什么? 7.13 pH对发酵的影响表现在哪些方面? 7.14 为了确定发酵的最佳pH,我们该如何实验? 7.15 发酵过程的pH控制可以采取哪些措施?
少量泡沫的作用:
一定数量的泡沫是正常现象,可以增加气液接触面积,导 致氧传递速率增加;
大量的泡沫引起许多负作用:
发酵罐的装料系数减少、氧传递系统减小; 增加了菌群的非均一性; 造成大量逃液,增加染菌机会; 严重时通气搅拌无法进行,菌体呼吸受到阻碍,导致代谢 异常或菌体自溶; 消泡剂的添加将给提取工序带来困难。
① 调整培养基中的成分(如少加或缓加易起泡的原料)或 改变某些物理化学参数(如pH值、温度、通气和搅拌) 或者改变发酵工艺(如采用分次投料)来控制,以减少 泡沫形成的机会。
② 采用菌种选育的方法,筛选不产生流态泡沫的菌种,来 消除起泡的内在因素。
③ 采用机械消泡或消泡剂来消除已形成的泡沫。
1. 机械消泡
选择最适发酵PH的准则:
获得最大比生产速率和合适的菌体量,以获得最 高产量。 最适pH值是根据实验结果来确定的。
配制不同初始pH的培养基,摇瓶考察发酵情 况
pH对产海藻酸裂解酶的影响
在各种类型的发酵过程中,实验所得的最适pH值、菌体 的比生长速率(μ)和产物比生成速率(Qp)等3个参数的相互关 系有四种情况:
C.常用的消泡剂有4大类:
① 天然油脂类
♣豆油、玉米油、棉籽油、菜籽油和猪油等。 ♣油不仅用作消泡剂,还可作为碳源和发酵控制的手段。 ♣在发酵中,要控制油的质量、新鲜程度,并要进行发酵试验检验。
② 脂肪酸和酯类 ③ 聚醚类 ④ 硅酮类 以天然油脂类和聚醚类在生物发酵中最为常用。
♣聚醚类消泡剂品种很多,它们是氧化丙稀或氧化丙稀和环氧乙烷与甘油聚合 而成的聚合物。 ♣聚氧丙稀甘油(GP型)——氧化丙稀和甘油聚合;亲水性差,在发泡介质 中的溶解度小,所以用于稀薄发酵液中要比用于粘稠发酵液中的效果好;抑 泡性能比消泡性能好,适宜用于基础培养基中,以抑制泡沫的产生。 ♣聚氧乙烯氧丙稀甘油(GPE型,泡敌)——氧化丙稀、环氧乙烷与甘油聚合; 亲水性好,在发泡介质中易铺展,消泡能力强,作用快,溶解度大,消泡活 性维持时间短,用于粘稠发酵液的效果比用于稀薄的好。
发酵15小时左右,pH值可以从消后的6.5左右下降到5.3, 调节这一段的pH值至7.0左右,以后自控pH,可提高发酵 单位。
例:培养基初始pH值对漆酶分泌的影响 pH在4~7范围内产酶最高
二、pH对发酵的影响
1)影响酶活性继而影响微生物的生长繁殖。
石油吃蜡酵母(解脂假丝酵母和热带假丝酵母) 在 pH 3.5-5.0 范围内生长良好且不易染菌;高于5时, 形态变小,发酵液变黑,发酵过程中容易被细菌污染 ;pH低于3时,生长受到严重的抑制,细胞极不齐整, 且出现细胞自溶的情况。
也可在罐内顶部装液位仪与控制仪表连结,用以控制消 泡贮率阀门的开启。当泡沫上升接触探头顶端时产生的 信号,通过控制装置,指令打开泵开关或阀门,自动加 入消泡剂,泡沫消失,信号也随之消失,阀门关闭。
高密度发酵及过程控制
1. 高密度发酵 2.高密度发酵策略 3.高密度发酵技术 4.高密度发酵存在的问题
发酵过程泡沫的变化
三、影响泡沫稳定的因素
❖ 通气与搅拌的强度 ❖ 培养基的配比及原材料组成 ❖ 培养基的破坏程度 ❖ 接种量的大小 ❖ 培养液本身性质的变化 ❖ 培养基灭菌的方法和操作 ❖ 染菌
不同搅拌速度和通气量对泡沫影响
不同浓度蛋白质原科的起泡作用
灭菌时间对泡沫稳定性的影响
四、泡沫的消除
应急措施: 改变搅拌转速或通气量,以改变溶解氧浓度,
控制有机酸的积累量及其代谢速度; 改变温度,以控制微生物代谢速度; 改变罐压及通气量,降低CO2的溶解量; 改变加油或加糖量等,调节有机酸的积累量;
总结
pH控制是一项非常细致的工作,不仅 考虑最佳pH值,而且要根据生长阶段 考察对pH的要求。在pH控制中还要采 用合适的调节方法。
一、发酵过程中的pH变化及其原因 二、pH对发酵的影响 三、最适pH的选择 四、PH的调控策略
一、发酵过程中的pH变化及其原因
1.1发酵过程中pH值的变化一般规律
1.在微生物细胞的生长阶段:
初期:接种后到孢子萌发,因碳氮源代谢水平比较低, pH一般 可维持不变,或者由于添加了CaCO3而略有上升。
使pH下降。糖缺乏,pH上升,是补料的标志之一 氮代谢 当氨基酸中的-NH2被利用后pH会下降;尿素被
分解成NH3,pH上升,NH3利用后pH下降,当碳源不 足时氮源当碳源利用pH上升。 •生理酸碱性物质
被微生物利用后会导致环境pH下降(上升)的 物质称为生理酸性(碱性)物质。
2、产物形成
某些产物本身呈酸性或碱性,使发酵液pH 变化。如有机酸类产生使pH下降,红霉素、洁 霉素、螺旋霉素等抗生素呈碱性,使pH上升。
快速生长期:pH值变化较大,因菌种及培养基不同而上升或 下降。
2.在生产阶段,一般发酵液的pH值趋于稳定,维持在适合产物形 成的pH范围。
3.在微生物细胞自溶阶段,养分的耗尽,菌体蛋白酶的活跃,培 养液中氨基氮增加,致使pH又上升。
1.2 引起发酵过程pH变化的原因
1、基质代谢 糖代谢 特别是快速利用的糖,分解成小分子酸、醇,
小
结
变化原因
发酵过程pH会发生变化 基质代谢 产物形成 菌体自溶
对发酵的影响
pH pH影响酶的活性 pH值影响微生物细胞膜所带电荷的 改变
pH值影响培养基某些成分和中间代 谢物的解离
pH影响代谢方向
pH在微生物培养的不同阶段有不同的影响
基础培养基调节pH
在基础料中加入维持pH的
pH 物质
的
通过补料调节pH
3、菌体自溶 发酵后期,pH上升,可做为终止发酵的指示。
例 :pH对林可霉素发酵的影响
林可霉素发酵开始,葡萄糖转化为有机酸类中间产物,发 酵液pH下降,待有机酸被生产菌利用,pH上升。若不及 时补糖、(NH4)2SO4或酸,发酵液pH可迅速升到8.0以上, 阻碍或抑制某些酶系,使林可霉素增长缓慢,甚至停止。 对照罐发酵66小时pH达7.93,以后维持在8.0以上至115小 时,菌丝浓度降低,NH2-N升高,发酵不再继续。