小学五年级数学思维训练
五年级数学思维训练题及答案(课件)
五年级数学思维训练题及答案五年级数学思维训练100题及答案(一)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+…+9001)-(1+3+…+999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19998×19991999解:(19981998+1)×19998×19991999=19981998×19998×19991999+19991998=19998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)...文档交流仅供参考...=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
小学五年级数学思维训练题(共四套)
小学五年级数学思维训练题(共四套)1、一个直角梯形,其中一个底为5厘米。
如果将另一个底减少2厘米,这个梯形就变成了一个正方形。
求这个梯形的面积。
2、1.348的小数部分第30位是什么数字?3、一张长方形的纸对折3次,其中一份是这张纸的几分之一?4、求下图中阴影部分的面积。
5、在平行四边形旁边有一块三角形的地(如下图阴影部分,单位:米)准备出售,售价是每平方米4200元。
买这块地需要多少钱?6、一个用小正方体拼摆的立体图形,从上面和左面看到的图形分别如下。
拼摆这个立体图形至少要用多少个小正方体?7、一个直角梯形,其中一条底边长5厘米。
如果将另一条底边减少2厘米,这个梯形就变成一个正方形。
求这个梯形的面积。
8、任选一个图形,求出它的面积。
9、同时掷两个骰子,得到两个数,这两个数的和最大是多少?最小是多少?10、图中每个小方格表示1平方厘米。
比较阴影部分的面积,哪两个图相等?11、食品店要将2千克薯片分装成每袋0.1千克和每袋0.25千克的两种包装出售。
两种包装必须都有。
请设计3种不同的包装方案,每种方案分别需要多少袋?12、XXX为鼓励居民节约用水,对用水量采取按月分段计费的方法收取水费。
用水量在规定吨数以内的按基本标准收费,超过规定吨数的部分提高收费标准。
根据XXX家1-4月份用水量和缴纳水费情况,回答以下问题:每月用水量的规定吨数是多少吨?基本标准是每吨收费多少元?超过规定吨数部分的标准是每吨收费多少元?如果XXX家5月份用水20吨,应缴水费多少元?13、如右图,平行四边形的面积是18平方分米。
阴影部分两个三角形的面积之和是多少平方分米?14、一个直角三角形的三条边分别是6厘米、8厘米和10厘米。
这个三角形的面积是多少平方厘米?它斜边上的高是多少厘米?3、已知一个三角形与一个等底等高的平行四边形面积之和为40.8平方厘米,求该平行四边形的面积。
4、已知1÷A=0.0909……,2÷A=0.1818……,3÷A=0.2727,4÷A=0.3636……,求9÷A的商。
五年级数学思维训练100题及解答(全)
五年级数学思维训练100题及解答(全)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49. 有7个数,它们的平均数是18。
五年级数学思维训练题
小学五年级数学思维训练题(共四套)第一套1、一个直角梯形的一个底是5厘米,如果把它的另一个底减少2厘米,这个梯形就变成了一个正方形,这个梯形的面积是()平方厘米。
2、的小数部分第30位数字是()。
①1 ②3 ③4 ④81、把一张长方形的纸对折3次,其中一份是这张纸的()。
A、 B、 C、 D、2、求下列图中阴影部分的面积。
3、在平行四边行的地旁边有一块三角形的地(如下图阴影部分,单位:米)准备出售,售价是每平方米4200元,买这块地需要多少钱?1、一个用小正方体拼摆的立体图形,从上面、左面看到的图形分别如下:拼摆这个立体图形至少要用()个小正方体。
2、一个直角梯形的一条底边长5厘米,如果把另一条底边减少2厘米,这个梯形就变成一个正方形。
这个梯形的面积是()平方厘米。
3、任选一个图形,求出它的面积。
1、同时掷两个骰子,得到两个数,这两个数的和最大是(),最小是()。
2、图中每个小方格表示1平方厘米,比较阴影部分的面积,()图与()图相等。
3、食品店要将2千克薯片分装成每袋千克和每袋千克的两种包装出售,两种包装必须都有,可以怎么装,各是几袋?请你设计3种不同的包装方案。
方案一:千克/袋,装()袋,千克/袋,装()袋。
方案二:千克/袋,装()袋,千克/袋,装()袋。
方案三:千克/袋,装()袋,千克/袋,装()袋。
3、“水是生命之源”。
某市自来水公司为鼓励居民节约用水,对用水量采取按月分段计费的方法收取水费,用水量在规定吨数以内的按基本标准收费,超过规定吨数的部分提高收费标准。
下面是小明家1——4月份用水量和缴纳水费情况:月份1月2月3月4月用水量/吨8101215应缴水费/吨16202635根据表中提供的信息,回答下面的问题。
⑴每月用水量的规定吨数是()吨;⑵基本标准是每吨收费()元;⑶超过规定吨数部分的标准是每吨收费()元;⑷如果小明家5月份用水20吨,那么应缴水费多少元?第二套1、如右图,平行四边形的面积是18平方分米,阴影部分两个三角形的面积之和是()平方分米。
五年级思维训练精选试题
五年级思维训练第一讲小数简便计算例1: 0。
125X48 2。
5 X3。
2〔观察算式,对特殊数字的简便计算进行巧算,第一个算式可有多种方法〕练1: 0。
25 X 10。
8 12。
5 X 10。
8第一个算式口」有多种方法〕1025 X880。
125 X960。
25X40。
40。
25X12。
5 X3。
2例2: 20。
1X369。
9X 10。
23。
7X5。
6 +6。
3 X5。
6〔对接近整数或者能够凑成整数的算式特点,进行凑整简算的方法〕练2: 60。
1 X 1。
3 99。
9 X998 0。
32 X 8。
9 + 8。
9 X 0。
68例3: 199。
9X 19。
98 — 199。
8 X 19。
97〔根据乘法分配律的特点,“ +〞、“ -〞的两侧出现两次的特殊数字,或接近的数字,可以进行变形巧算〕练3: 26。
4 X25-2。
6 X250 3。
7 X 1。
8-0。
27 X 18例4: 0。
245 X 28+24。
5 X 3+2。
45 X 7。
2〔对特殊数字变换后,根据乘法分配律进行简算〕88。
8 X 8。
7 + 11。
2 X 9。
9-11。
2 X 1。
2〔利用乘法分配律进行简算〕练4: 22。
05 X 8。
2 — 20。
05 X 4。
5 —20。
4。
8 X 252-48X 12。
2-480 05 X 3。
76。
25 X 0。
16 + 3。
7 X 0。
84 +25。
5 X 0。
0841(1) 0。
25 X40。
4 +0。
125 X10。
8(2) 200。
3 X 20。
05 - 20。
03 X 200。
4972 X 37+ 197。
2 X 1。
9 — 986X 70。
38〔 根据一组数的特征进行简算,凑整,等差数列,等等 〕 练 5: 9。
8 + 99。
8+ 999。
8+ 9999。
8 45 + 4。
5+ 0。
45+ 0。
045单元小结例 5: 0。
9+ 9。
9+ 99。
9 + 999。
9 12 + 12。
1 +12。
小学五年级数学思维训练100题(附答案)
小学五年级数学思维训练100题(附解析及答案)1. 765×213÷27+765×327÷272.(9999+9997+...+9001)-(1+3+ (999)3.19981999×19991998-19981998×199919993.(873×477-198)÷(476×874+199)5.2000×1999-1999×1998+1998×1997-1997×1996+…+2×16.297+293+289+…+2097.计算:8.9.有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
问:第二组有多少个数?12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。
妈妈平均每星期去这两个商店几次?(用小数表示)14.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。
15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。
已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。
糊得最快的同学最多糊了多少个?51. 一副扑克牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?52. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
五年级数学思维训练100题
五年级数学思维训练100题以下是100道五年级数学思维训练题目:1.小明有5盒巧克力,小华比他多3盒,他们一共有多少盒巧克力?2.小红有8个苹果,小刚给了她2个后,小红的苹果数量是小刚的3倍,小刚原来有多少个苹果?3.小华买了一支钢笔和一本笔记本,一共花了12元。
如果笔记本的价格是钢笔的(1/2),那么钢笔和笔记本各是多少元?4.妈妈买了一桶油,用去了全部的(2/5),还剩下20千克。
这桶油原来有多少千克?5.小丽看一本故事书,第一天看了全书的(1/4),第二天看了余下的(1/3),还剩48页没看。
这本故事书一共有多少页?6.一列火车7小时行驶了532千米,一辆汽车5小时行驶了210千米。
火车的速度是每小时多少千米?7.一条裤子76元,一件上衣的价钱是它的12倍。
一件上衣多少元?8.一只白兔重4千克,一只熊猫的体重是它的9倍。
熊猫重多少千克?9.50辆军车排成一列,每辆车长4米,每辆车之间隔5米,这列车队共长多少米?10.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?11.一个等腰三角形两条边的长度分别是3和6,这个三角形的周长是多少?12.一个两位数,十位数字是个位数字的3倍,如果把这个两位数的个位数字与十位数字对调,所得到的新的两位数与原数之和是88,原来的两位数是多少?13.一个两位数,十位数字是个位数字的4倍,如果把这个两位数的个位数字与十位数字对调,所得到的新的两位数与原数之和是66,原来的两位数是多少?14.一个长方形的长和宽的比是7:3,如果长减少5厘米,宽增加5厘米,则面积增加100平方厘米,那么原来长方形周长是多少厘米?15.甲、乙两地相距450千米,一列火车从甲站出发行驶了全程的(3/5),离乙地还有多少千米?16.某班共有学生48人,其中男生有32人,男生占全班人数的几分之几?女生占全班人数的几分之几?17.有一桶油,第一次取出总数的(3/8),第二次取出总数的(1/4),两次共取出48千克。
小学五年级数学思维训练100题(附解析及答案)
小学五年级数学思维训练100题(附解析及答案),给孩子练一练?五年级数学思维训练100题1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)=765÷27×540=765×20=1530 02.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
五年级数学思维训练100题(附解析及答案)
1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000.6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49. 有7个数,它们的平均数是18.去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20.求去掉的两个数的乘积.解: 7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33.求第三个数.解:28×3+33×5-30×7=39.11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分.因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分).13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店.妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次).14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比.解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7.15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个.已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个.糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人).因此糊得最快的同学最多糊了74×6-70×5=94(个).16. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进.问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短.甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜.17. 轮船从A城到B城需行3天,而从B城到A城需行4天.从A城放一个无动力的木筏,它漂到B城需多少天?解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍.所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天.18. 小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同.也就是说,小强第二次比第一次少走4分.由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米).19. 小明和小军分别从甲、乙两地同时出发,相向而行.若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇.甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离.所以甲、乙两地相距6×4=24(千米)20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇.设甲原来每秒跑x米,则相遇后每秒跑(x+2)米.因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米.21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24.解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站.乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24.22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为1123. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙.问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米.24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米.问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度25. 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明.已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?解:设车速为a,小光的速度为b,则小明骑车的速度为3b.根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍.小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车.26. 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间.所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步).27. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒).28. 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达.求甲、乙两地的距离.29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天.问:甲、乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天)30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完.如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3.这本书共有多少页?解:开始读了3/7 后来总共读了5/833/(5/8-3/7)=33/(11/56)=56*3=168页32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成.如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成.33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件.这批零件共有多少个?解:甲和乙的工作时间比为4:5,所以工作效率比是5:4工作量的比也5:4,把甲做的看作5份,乙做的看作4份那么甲比乙多1份,就是20个.因此9份就是180个所以这批零件共180个34.挖一条水渠,甲、乙两队合挖要6天完成.甲队先挖3天,乙队接着解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙单独挖需要10天.甲单独挖需要1/(1/6-1/10)=15天.35. 修一段公路,甲队独做要用40天,乙队独做要用24天.现在两队同时从两端开工,结果在距中点750米处相遇.这段公路长多少米?36. 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成.现在只能增加2个人,那么完成这项工程需要多少天?解:将1人1天完成的工作量称为1份.调来3人与调来8人相比,10天少完成(8-3)×10=50(份).这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份).调来2人需100÷(2+2)=25(天).37.解:三角形AOB和三角形DOC的面积和为长方形的50%所以三角形AOB占32%16÷32%=5038.解:1/2*1/3=1/6所以三角形ABC的面积是三角形AED面积的6倍.39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等.问:哪几个图中的阴影部分与图(1)阴影部分面积相等?解:(2)(4)(7)(8)(9)40. 观察下列各串数的规律,在括号中填入适当的数2,5,11,23,47,(),……解:括号内填95规律:数列里地每一项都等于它前面一项的2倍减141. 在下面的数表中,上、下两行都是等差数列.上、下对应的两个数字中,大数减小数的差最小是几?解:1000-1=999997-995=992每次减少7,999/7=142 (5)所以下面减上面最小是51333-1=1332 1332/7=190 (2)所以上面减下面最小是2因此这个差最小是2.42.如果四位数6□□8能被73整除,那么商是多少?解:估计这个商的十位应该是8,看个位可以知道是6因此这个商是86.43. 求各位数字都是 7,并能被63整除的最小自然数.解:63=7*9所以至少要9个7才行(因为各位数字之和必须是9的倍数)44. 1×2×3×…×15能否被 9009整除?解:能.将9009分解质因数9009=3*3*7*11*1345. 能否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?解:不能.因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成.46. 有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数.解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商.最大的约数与第二大47.100以内约数个数最多的自然数有五个,它们分别是几?解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数.所以100以内约数最多的自然数是60,72,84,90和96.48. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质.解:6,10,1549. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?解:42份;每份有苹果8个,桔子6个,梨5个.50. 三个连续自然数的最小公倍数是168,求这三个数.解:6,7,8. 提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积.而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半.51. 一副扑克牌共54张,最上面的一张是红桃K.如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况.又因为每次移动12张牌,所以至少移动108÷12=9(次).52. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍.”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁.提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的.(60岁)53. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来.解:11,13,17,23,37,47.54. 在放暑假的8月份,小明有五天是在姥姥家过的.这五天的日期除一天是合数外,其它四天的日期都是质数.这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1.问:小明是哪几天在姥姥家住的?解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1).因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31.经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日.55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数.解:3,74;18,37.提示:三个数字相同的三位数必有因数111.因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数.56. 在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开.问:长度是1厘米的短木棍有多少根?解:因为100能被5整除,所以可以看做都是自左向右染色.因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现.一个周期的情况如下图所示:由上图知道,一个周期内有2根1厘米的木棍.所以三个周期即90厘米有6根,最后10厘米有1根,共7根.57. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元.问:商品的购入价是多少元?解:8000元.按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元.58. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%.乙、丙两桶哪桶水多?解:乙桶多.59. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人.如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15) -25 -2×1=11(人),只做对一道题的人数为25-11-1=13(人).60. 学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项.根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品.问:最多有几人获奖?最少有几人获奖?解:共有13人次获奖,故最多有13人获奖.又每人最多参加两项,即最多获两项奖,因此最少有7人获奖.61. 在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36).所求自然数共有 1000-(31+10)+3=962(个).62. 用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?解:4*5*5=100个63. 要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?解:6*6*6=216种64. 已知15120=24×33×5×7,问:15120共有多少个不同的约数?解: 15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4, 2, 2种,所以共有约数5×4×2×2=80(个).65. 大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种.所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种).66. 在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法.)解:80种.提示:从A到B共有10条不同的路线,每条路线长5个线段.每次走一个或两个线段,每条路线有8种走法,所以不同走法共有8×10=80(种).67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?解:5*4*3=60种68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?解:5*4*3=60种69. 恰有两位数字相同的三位数共有多少个?解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个).70. 从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数?解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法.共有3×3×4!=216(个).71. 左下图中有多少个锐角?解:C(11,2)=55个72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?解:c(10,2)-10=35种73. 一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周,或供23头牛吃9周.那么可供21头牛吃几周?解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份).21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周).74.有一水池,池底有泉水不断涌出.要想把水池的水抽干, 10台抽水机需抽 8时,8台抽水机需抽12时.如果用6台抽水机,那么需抽多少小时?解:将1台抽水机1时抽的水当做1份.泉水每时涌出量为(8×12-10×8)÷(12-8)=4(份).水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时).75.规定a*b=(b+a)×b,求(2*3)*5.解:2*3=(3+2)*3=1515*5=(15+5)*5=10076.1!+2!+3!+…+99!的个位数字是多少?解:1!+2!+3!+4!=1+2+6+24=33从5!开始,以后每一项的个位数字都是0所以1!+2!+3!+…+99!的个位数字是3.77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.在200个信号中至少有多少个信号完全相同?解:4*4*4=64200÷64=3 (8)所以至少有4个信号完全相同.77.(2)在今年入学的一年级新生中有 370多人是在同一年出生的.试说明:他们中至少有2个人是在同一天出生的.解:因为一年最多有366天,看做366个抽屉因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的.78.从前11个自然数中任意取出6个,求证:其中必有2个数互质.证明:把前11个自然数分成如下5组(1,2,3)(4,5)(6,7)(8,9)(10,11)6个数放入5组必然有2个数在同一组,那么这两个数必然互质.79.小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时.小明往返一趟共行了多少千米?80.长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米.如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?解:800千米. 提示:从A到B与从B到A的速度比是5∶4,从A到B用81. 请在下式中插入一个数码,使之成为等式:1×11×111= 111111解答:91*11*111=11111182.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?解:设乙数是x,那么甲数就是5x+1丙数是5(5x+1)+1=25x+6因此x+5x+1+25x+6=10031x=93 x=3所以乙数是383.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方解:12345654321=111111的平方1+2+3+4+5+6+5+4+3+2+1=36=6的平方所以原式=666666的平方.84.某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位.问:这个剧院一共有多少个座位?解:第一排有70-24*2=22个座位所以总座位数是(22+70)*25/2 =115085. 某城市举行小学生数学竞赛,试卷共有20道题.评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分.问:所有参赛学生的得分总和是奇数还是偶数?为什么?解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数.每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数.86. 可以分解为三个质数之积的最小的三位数是几?解:102=2*3*1787. 两个质数的和是39,求这两个质数的积.解:注意到奇偶性可以知道这2个质数分别是2和37它们的乘积是2*37=7488. 有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张.甲说:“我的三张牌的积是48.”乙说:“我的三张牌的和是15.”丙说:“我的三张牌的积是63.”问:他们各拿了哪三张牌?解:63=7*1*9 所以丙拿的1,7,948=2*3*8 所以甲拿的2,3,84+5+6=15 因此乙拿的是4,5,689. 四个连续自然数的积是3024,求这四个数.解:考虑末尾数字,1*2*3*4末尾是46*7*8*9末尾也是4其他情况下末尾都是011*12*13*14=24024太大6*7*8*9=3024刚好所以这4个数是6,7,8,990. 证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除.解:该数形如ABCABC=ABC*10011001=7*11*13所以这个六位数一定能被7,11,13整除.91.在1~100中,所有的只有3个约数的自然数的和是多少?解:4+9+25+49=8792. 有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯.如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?解:[60,9]=180180/60=3下次是下午3点钟.93. 有一个数除以3余2,除以4余1.问:此数除以12余几?解:除以3余2的数是2,5,8,11,14......除以4余1的数是1,5,9,......所以此数除以12余594. 把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?解:16=3+3+3+3+2+2乘积是3*3*3*3*2*2=32495. 小明按1~ 3报数,小红按1~ 4报数.两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?解:每12次作为一个周期1 2 3 1 2 3 1 2 3 1 2 31 2 3 4 1 2 3 4 1 2 3 4每个周期两人有3次报的数一样100=12*8+4所以两个人有8*3+3=27次报的数相同.96. 某自然数加10或减10皆为平方数,求这个自然数.解:设这个数是xx+10=m^2x-10=n^2m^2-n^2=20 (m+n)(m-n)=20m=6,n=4所以x=6^2-10=2697. 已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.解:120秒行驶的距离是桥长+车长80秒行驶的距离是桥长-车长所以80(1000+车长)=120(1000-车长)车长=200米火车的速度是10米/秒98. 甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙?解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟99. 甲、乙比赛乒乓球,五局三胜.已知甲胜了第一局,并最终获胜.问:各局的胜负情况有多少种可能?解:甲甲甲甲甲乙甲甲甲乙乙甲甲乙甲甲甲乙甲乙甲甲乙乙甲甲经枚举发现共有6种可能.100. 甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?解:甲乙二人一小时共可加工零件27个设甲每小时加工x个,那么乙每小时加工27-x个根据条件得3x=4(27-x)+47x=112 x=16答:甲每小时加工零件16个.。
五年级数学思维训练60题
五年级数学思维训练60题1、一条水渠共6400米;前三个月平均每月修1200米;余下的要在2个月内完成;平均每月至少要完成多少米?2、王老师和李老师买同样的图书。
王老师花了256元买到8本;李老师花了192元;王老师比李老师多买了多少本图书?3、农具厂原计划每月生产农具400件;技术革新后;9个月生产量就超过全年计划780件;现在平均每月生产多少件?4、姐姐和妹妹沿环形跑道同方向跑步;姐姐每分钟跑212米;妹妹每分钟跑187米;他们从同一地点出发;16分钟后;姐姐第一次追上妹妹;求跑道的长度。
5、甲乙两人同时从A、B两地相向而行;第一次相遇在离A地70千米的地方;两人仍以原速行进;各自到底后立即返回;又在离B地15千米的地方第二次相遇;两地相距多少千米?6、甲乙两艘军舰不停地往返于两个军事基地之间巡逻。
甲舰时速12千米;乙舰时速9千米;两舰从两个基地同时相向出发;第一次相遇时恰巧用了6小时。
这两个军事基地之间有多少千米?7、一列火车上午8 时从A地出发开往B地;上午10时距A 地180千米;已知AB 两地相距540千米;行完全程共要几小时?8、苹果有50筐;比梨的筐数的2倍少2筐。
苹果和梨共有多少筐?9、一批布原计划做服装1800套;由于每套节约用布0.2米;结果多做了100套;现在每套用布多少米?10、甲乙两位工人共同加工一批零件;20天完成了任务。
已知甲每天比乙多做3个;而乙在中途请假5天;于是乙所完成的零件数恰好是甲的一半;求这批零件的总数是多少个?12、某机器厂计划30天里完成10800台机床;由于改进技术;每天比原计划多制造180台;这样可以提前几天完成任务?13、有甲乙两袋大米;甲袋大米的重量是乙袋的1.2倍;如果往乙袋中再加入5千克;两袋大米就一样多了。
原来甲乙两袋大米各有多少千克?14、一桶油连桶重45千克;倒出一半后连桶还剩23千克。
如果这种油每千克卖4.5元;一桶油可以卖多少元?15、一个圆形跑道;财长700米。
五年级数学思维训练题20道
1.同一罐汽水的价格是3元,一共买了6罐,消费了几元?
2.小明有10本书,又买了7本,一共有几本书?
3.在一个两位数的数字中,个位数是3,十位数是几?
4.苹果2.5元一斤,小凌买了6斤苹果,花了几元钱?
5.小李给小花买了4件衣服,每件衣服是45元,小李花了多少钱?
6.5+6=___
7.狗的眼睛有几只?
8.10-5=___
9.小红一共有9张钱,每张2元,小红有多少钱?
10.苹果3元一斤,小红买了7斤苹果,花了几元钱?
11.小明有8本书,又买了4本,一共有几本书?
12.25-14=___
13.猴子有几只手?
14.一个两位数的数字中,个位数是7,十位数是几?
15.小李给小花买了6件衣服,每件衣服都是55元,小李花了多少钱?
16.5+7=___
17.熊有几只眼睛?
18.10-8=___
19.小明一共有10张钱,每张2元,小明有多少钱?
20.橘子3.5元一斤,小荣买了8斤橘子,花了几元钱?。
五年级数学思维训练100题及解答(全)
五年级数学思维训练100题及解答(全)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49. 有7个数,它们的平均数是18。
小学五年级数学思维练习题100道及答案
小学五年级数学思维练习题100道及答案1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49. 有7个数,它们的平均数是18。
(全)小学五年级数学思维训练50题(附解析及答案)
小学五年级数学思维训练50题(附解析及答案)1. 一副扑克牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K 才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)。
2. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)3. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
解:11,13,17,23,37,47。
4. 在放暑假的8月份,小明有五天是在姥姥家过的。
这五天的日期除一天是合数外,其它四天的日期都是质数。
这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。
问:小明是哪几天在姥姥家住的?7. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。
问:商品的购入价是多少元?解:8000元。
按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。
8. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。
乙、丙两桶哪桶水多?解:乙桶多。
9. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A 题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25 -2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
小学数学——五年级数学思维训练100题及解答(全)
小学数学——五年级数学思维训练100题及解答(全)1.计算表达式:765×213÷27+765×327÷27.先将除法运算先行,得到765×7+765×12=765×19=.2.计算表达式:(9999+9997+…+9001)-(1+3+…+999)。
根据等差数列求和公式,可得原式=500×(9999+9001)/2-500×(1+999)/2=xxxxxxx。
3.计算表达式:xxxxxxxx×xxxxxxxx-xxxxxxxx×xxxxxxxx。
根据差平方公式,可得原式=(xxxxxxxx-xxxxxxxx)×(xxxxxxxx-xxxxxxxx)+xxxxxxxx=.4.计算表达式:(873×477-198)÷(476×874+199)。
根据题意可得873×477-198=476×874+199,因此原式等于(476×874+199)/(476×874+199)=1.5.计算表达式:2000×1999-1999×1998+1998×1997-1997×1996+…+2×1.根据加减法的交换律和结合律,可以将原式改写为(2000×1999-1999×1998)+(1998×1997-1997×1996)+。
+(4×3-3×2)+2×1,即每两项之间的差为1999-1998=1,共有1000/2=500对差,因此原式等于500×1+2×1=500+2=502.6.计算表达式:297+293+289+…+209.根据等差数列求和公式,可得原式=(209+297)×23/2=5819.7.计算表达式:(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)。
五年级数学经典思维训练题
五年级数学经典思维训练题6套思维训练11、如右图,平行四边形的面积是18平方分米,阴影部分两个三角形的面积之和是()平方分米。
2、一个直角三角形的三条边分别是6厘米,8厘米和10厘米,这个三角形的面积是()平方厘米,它斜边上的高是()厘米。
3、一个三角形与一个平行四边行等底等高,它们的面积之和是40.8平方厘米,那么这个平行四边形的面积是()平方厘米。
4、已知1÷A=0.0909……;2÷A=0.1818……;3÷A=0.2727;4÷A=0.3636……;那么9÷A的商是()。
5、妈妈带小乐到新建的游乐场玩,游乐场实行了新的收费标准,她们出来后按收费标准交了停车费8.5,你知道她们在游乐场最多玩了多长时间吗?6、盒子里有5个黄球,1个红球和3个白球,如果从中任意模出1个球,要使摸出黄球的可能性为1/3,那么还要放入()个红球。
7、把一个小数的小数点向右移动一位后,比原数多3.24,原数是多少?8、浩浩计划到书店买一些相同的作文书分给小伙伴们一起阅读,妈妈说你只买6本作文书的话就得剩下13.4元,爸爸说如果要买9本就还差2.5元,浩浩手里原来有多少钱?9、苗苗在做除法计算时,把一个有两位小数的除数的小数点漏掉了,8除以它后,商是0.32,问正确的除法算式中除数是多少?正确的商是多少?10、小午去水果店买水果,原计划买4千克梨和5千克苹果,需付45.8元,结果他买了4千克梨和6千克苹果,实际付了51.8元。
求每千克梨多少元?11、浩浩同学参加学校跳远比赛,前6次平均成绩跳了1.8m,又跳2次,前后8次平均成绩1.9m。
问最后两次平均跳了多少米?12、一个布袋里装有形状、大小相同的红、黄、黑、白四种颜色的乒乓球各一个。
①任取一个乒乓球,摸到红色的可能性是()。
②任取两个乒乓球,摸到红白两种颜色的可能性是()。
③任取三个乒乓球,摸到红、黄、蓝三种颜色的可能性是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级数学思维训练( 图形问题)
一、知识要点
“画图”是解决图形问题的重要策略之一。
通过对图形的分割……,能使问题变得更加明朗,解答起来就更容易了。
二、知识运用典型例题。
例1:如图,用四个相同的长方形拼成一个面积为100平方厘米的大正方形,每个长方形的周长是多少厘米?
例2、如图,有大、小两个长方形,对应边的距离均为1厘米,已知两个长方形之间部分的面积是16平方厘米,且小长方形的长是宽的2倍,求大长方形的面积。
例3、如图,一块长方形纸片,在长边剪去5厘米,宽边剪去2厘米后,得到的正方形面积比原长方形面积少31
例4、两个正方形的面积相差9平方厘米,边长相差1厘米,求两个正方形的面积和。
例5、一个长方形被两条直线分成四个长方形(如图),其中三个的面积分别是12平方米、8平方米、20平方米,求另一个(图中阴影部分)长方形的面积。
例6、如图,在长方形ABCD 中,EFGH 是正方形,已知AF=10厘米,HC=7厘米,求长方形ABCD 的周长。
例7、长方形ABCD的周长是20米,在它的每条边上各画一个以该边为边长的正方形,(如图),已知这四个正方形的面积和是104平方米,求长方形ABCD的面积。
例8、如图,一个长方形被分割成5个正方形,已知每个大正方形比每个小正方形面积大5平方厘米,求原长方形的面积。
三、知识运用课堂训练
1、用四个一样的长方形和一个小正方形拼成一个大正方形(如图),大、小正
方形的面积分别为64平方厘米和9平方厘米,问:长方形的长和宽各是多
少?
2、
2、如图,将一个大正方形划分成21个相同的小长方形,已知每个小长方形的周
长恰好是100厘米,求大正方形的面积。
3、如图,长方形被分割成6个正方形,已知中央小正方形的面积为1平方厘米,
求原长方形的面积。
4、如图,用两个长方形纸片和一块正方形纸片拼成一个大正方形,长方形纸片面积分别为44平方厘米与28平方厘米,原正方形纸片面积是多少平方厘米?。