五年级奥数几何 长方体与立方体综合C级学生版
五年级奥数.几何.五大模型(C级).学生版
一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△(1)(2)知识框架五大模型(二)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DCBA梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A BCDO ba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCD AB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。
五年级奥数.几何.长方体与正方体表面积与体积(C级).学生版
一、立体图形的体积计算常用公式:立体图形示例表面积公式 体积公式相关要素 长方体S = 2(ab+bc+ac)V abh =V sh =三要素:a 、b 、h 二要素:s 、h正方体S = 6a23V a =V sh =一要素:a 二要素:s 、h二、立体几何相关数学方法:接法:与平面几何中的方法类似,将不规则的图形体积化作规则图形的体积进行加减计算.视图法:主要适用于求正方体积木塔建图形的表面积计算.以及染色问题或计数问题,从上、前、左(下、后、右)这几个基本视角,分析图形的表面.片法:适用于求具有穿孔结构或内部结构的立体图形的体积计算,将立体图形沿某个方向切成多片,化立体为平面.重点:长方体与正方体的表面积和体积的计算公式的理解性记忆与运用. 难点:三视图法、内孔结构重难点知识框架长方体和正方体的表面积和体积例题精讲【例 1】一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.【巩固】如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.【例 2】两个完全相同的长方体的长、宽、高分别为5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是________平方厘米。
【巩固】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【例 3】有一塔形几何体由若干个正方体构成,构成方式如下图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是________.【巩固】有n个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n为多少?【例 4】边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?【巩固】按照上题的堆法一直堆到N层(3N ),要想使总表面积恰好是一个完全平方数,则N的最小值是多少?【例 5】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)图1 图2 图3 图4 【巩固】如图所示,一个555⨯⨯的⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215孔,剩余部分的表面积为多少?【例 6】有一个棱长为5cm的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(右上图),求这个立体图形的内、外表面的总面积.【巩固】如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯⨯⨯的孔,在另一个方向上开有215的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【例 7】一个555⨯⨯的立方体,在三个方向上分别开有如图所示打通的孔,剩余部分的表面积为多少?【巩固】一个555⨯⨯的立方体,在三个方向上分别开有如图所示打通的孔,剩余部分的表面积为多少?【例 8】如图,底面积为100平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米。
五年级奥数之长方体和正方体的表面积
五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。
这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。
根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。
例2:一个零件形状大小如下图,求它的表面积。
由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。
长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。
例3:有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
求它的表面积。
(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。
长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。
例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
首先可以将这个立体图形分解为一个长方体和两个正方体。
长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。
正方体的边长为5,表面积为6×(5×5)=150平方厘米。
因此这个立体图形的表面积为300+150+150=600平方厘米。
例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。
著名机构五年级数学下册同步讲义长方体和正方体综合运用(学生版)
长方体和正方体综合运用学生姓名年级学科授课教师日期时段核心内容长方体、正方体拼切问题,表面积、体积综合练习课型一对一教学目标1、巩固复习长方体、正方体的表面积体积计算,2、能熟练解决有关体积的等体积变换和拼切的应用题;3、提高综合运用公式解决复杂问题;重、难点重点:教学目标1、2 难点:教学目标3课首沟通1、了解学生对长方体、正方体的特征认识,以及表面积、体积计算的公式熟练程度;2、了解学生能否对常用的面积单位进行换算;知识导图课首小测1.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是( )立方分米2.加工一个长方体铁皮油桶,长2.5分米,宽1.6分米,高3分米,至少要用多少平方分米铁皮?3.学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,需要多少立方米的黄沙才能填满?导学一:长方体、正方体的拼切问题知识点讲解 1:表面积体积拼切综合应用例 1.(2012年荔湾区期末测试题) 一根长方体形状的木料,把它截成两段后,正好是两个完全一样的立方体,表面积增加了32平方分米,这根长方体木料的体积是多少?例 2. (2013年广外附设测试题) 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。
这个长方体的体积和表面积各是多少?我爱展示1.把一根长6米的方木(底面是正方形)锯成三段,表面积增加了20平方分米,原来这根方木的体积是多少立方分米?2.一种油箱,从里面量,底面正方形的面积是25平方分米,高是10分米,按每升汽油重0.68千克计算,现有150千克这种汽油,这个油箱能装得下吗?知识点讲解 2:拼切后表面积的变化例 1. 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?例 2. 一个正方体木头,棱长是6厘米,在6个面的中央各挖一个长、宽、高都是2厘米的洞孔,这时它的表面积、体积各是多少?例 3. 一个长方体,如果高增加3厘米,就成为一个正方体。
五年级下册数学奥数试题 -- 长方体与正方体 全国通用 含答案
长方体与正方体一、走进来:大科学家伽里略说:“大自然用数学语言讲话。
这个语言的字母是:圆、三角形还有长方体及其它各种形体。
”圆、三角形等是平面图形;长方体、正方体等是立体图形平面图形是研究同一个平面内的各数量之间的关系;而立体图形研究的是若干个面内的数量和数量之间的关系。
长方体和正方体是我们最熟悉的几何体。
我国国家游泳中心就是一个巨大的长方体,它的长、宽、高分别为 177米、 177米、30米,又被称为“水立方”,2008年奥运会主要的游泳赛事将在这个巨大的长方体建筑内举行!本章我们将进一步认识长方体、正方体及其组合而成的立体图形的特征,学习其体积和表面积的计算方法和技巧。
提高作图能力、观察能力、计算能力和空间想象力。
二、一起做:【例1】有一个长6厘米,宽4厘米,高8厘米的长方体木块,表面被刷上了红油漆,把它截成棱长是2厘米的若干个小正方体教具,然后把各个小正方体教具中没有刷上红油漆面也刷上红油漆,问还要刷多少平方厘米的红油漆?提示:先画出图形,然后借助图形观察分析,弄清没有刷上红油漆的面处在大正方体的何位置。
【例2】老师为了考核同学们的空间想象能力,用若干个棱长为1cm的小正方体摆成如图所示的立体图形。
你能计算出这个立方体的体积和表面积吗?提示:求体积关键是数一数小正方体的个数,注意数正方体时要讲究顺序性。
数一数相对的面,看看你有什么发现?【例3】有一个六个面都涂满巧克力的长方体的大蛋糕,长4分米,宽4分米,高6分米,把它切成棱长是1分米的若干个小正方体蛋糕分给幼儿园的小朋友,问:(1)没有吃到巧克力的小朋友共有多少人?(2)吃到三个面、两个面、一个面涂有巧克力蛋糕的小朋友各有多少人?提示:动手画一画图,看看三面、二面、一面涂巧克力及没有涂巧克力的小正方各在长方体的什么位置。
相信你一定能发现其中的规律!【例4】在一个棱长为9厘米的正方体的钢坯上、下底面正中间打一个对穿孔,制成一个机器零件。
已知这个对穿孔是底面边长为2厘米的正方形,这个机器零件的体积和表面积各是多少?如果在前、后、左、右面正中间也各打一个同样的对穿孔,你能算出这个零件的体积和表面积吗?提示:你能画出相应的图形吗?体积的计算可采用相减的办法,当打三个对穿孔时需注意如何处理三个孔的交汇处的立方体。
(完整版)五年级奥数-立体图形问题
课程五立体图形问题1。
长方体、正方体表面积的计算2.长方体、正方体的切割问题3.长方体、正方体的体积4.不规则物体的体积计算长方体和正方体的表面积应注意的问题(1)找出必备条件(长、宽、高或棱长),如题中没有直接给出,则先求出必备条件,再求表面积(有盖还是无盖)。
(2)统一计量单位,单位不统一的,一般要通过化、聚,使单位统一后再计算。
(3)求所需用的面积材料时,一般用“进一法“取近似值。
(4)用同样多的立体拼图,由于拼法不同,重叠的次数不同,表面积就会发生变化,每重叠一次,就减少两个面;每切一刀,就增加两个面。
1.长方体和正方体的体积概念及其计算公式(1)长方体体积=长×宽×高V 长方体=abc(2) 正方体体积=棱长×棱长×棱长V 正方体=a 32.求不规则物体的体积水中物体的体积=容器的底面积×水上升或下降的高度。
水上升或下降的高度=水中物体的体积÷容器的底面积容器的底面积=水中物体的体积÷水上升或下降的高度例1有一个长15厘米,宽10厘米,高8厘米的长方体,现在要在这个长方体中挖去一个棱长为5厘米的小正方体,那么剩下部分的表面积是多少?(1) (2) (3)分析与解法根据长方体的特征我们可以知道,挖去小正方体的位置有3种情况,可能是在面上,如图(1),可能在顶点上,如图(2),可能在棱上,如图(3)。
在面上时,可以用长方体的表面积+小正方体4个面的面积;在角上时,正好等于长方体的表面积;在棱上时,要用长方体的表面积+小正方体2个面的面积。
学习目标 重 点 总 结解:原长方体表面积为:(15×10+15×8+10×8) ×2=700(平方厘米)在角上时,剩下部分的表面积是700(平方厘米);在面上时,剩下部分的表面积是:700+5×5×4=800(平方厘米)在棱上时,剩下部分的表面积是:700+5×5×2=750(平方厘米)所以剩下部分的表面积是700平方厘米,或800平方厘米,或750平方厘米.说明:本题也是要考虑可能出现的各种情况,要做到不重不漏。
小学奥数 长方体与正方体(二)
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形的体积计算常用公式:立体图形示例 体积公式 相关要素长方体V abh = V Sh =三要素:a 、b 、h 二要素:S 、h正方体3V a =V Sh =一要素:a 二要素:S 、h不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 ③先补后去法 ④实际操作法 ⑤画图建模法【例 1】 一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于 立方厘米。
例题精讲长方体与正方体(二)【考点】长方体与正方体【难度】2星【题型】填空【例 2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【例 3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【例 4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
五年级奥数.几何.正方体与长方体表面积
长方体与正方体表面积知识框架一、基础知识本讲内容从我们熟悉的平面扩展到了三维立体空间,教学目标是培养学生的空间想象能力,对于长方体和正方体的表面积和体积的计算我们在学校的课本上都已经学习过,都是相对比较简单的,今天我们一起将这部分内容进行拓展和研究.我们主要研究的对象是复杂的立方体的体积和表面积计算方法.同学生要记住知识是有限的,但想象力是无限的.①长方体表面积:若长方体的长、宽、高分别为a、b、c,那么可得:长方体的表面积:S长方体=2(ab+bc+ac);如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).②正方体的表面积:我们也可以称其为立方体,它是一种特殊的长方体,它的六个面都是正方形.如果它的棱长为a,那么可得:正方体的表面积:S正方体=6a2;如右图,正方体共有六个面(每个面都是全等的正方形),八个顶点,十二条棱.二、立体图形的表面积计算常用公式:立体图形示例表面积公式相关要素长方体S = 2(ab+bc+ac)三要素:a、b、c正方体S = 6a2 一要素:a重难点重点:长方体与正方体的表面积和体积的计算公式的理解性记忆与运用难点:三视图法求表面积例题精讲【例1】如果一个边长为2厘米的正方体的表面积增加192平方厘米后仍是正方体,则边长增加______厘米.错误!未找到引用源。
【巩固】一小桶油漆恰好可以漆一个边长为0.5米的正方体,要漆一个边长为一米的立方体,则需要______小桶同样油漆.【例2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【巩固】如图,有一个边长是10的立方体,如果它的左上方截去一个边分别是10,5,3的长方体,那么它的表面积减少了百分之几?【例4】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【巩固】如图,在一个棱长为8厘米的正方体上放一个棱长为5厘米的小正方体,求这个立体图形的表面积.【例5】如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?【巩固】如图,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起,则所得到的立体图形的表面积是_ 平方厘米.【例6】如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的倍.【巩固】有三个大小一样的正方体,将接触的面用胶粘接在一起成图示的形状,表面积比原来减少了16平方厘米.求所成形体的体积.【例7】小华用相同的若干个小正方体摆成一个立体(如图2).从上体上面看这个立方体,看到的图形是图①~③中的____ .(填序号)③①②【巩固】用一些棱长是1的小正方体码放成一个立体如下图,请画出从上面和正面看到的图形【例8】由六个棱长为1的小正方体拼成如图所示立体,它的表面积是.【巩固】将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开.涂上红色的部分,面积是()平方厘米【例9】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【例10】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色(底面不涂).求被涂成红色的表面积.【巩固】边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?课堂检测1.一个正方体的棱长为3厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.2.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.3.下图是用若干个棱长为1的小正方体铁块焊接成的几何体,请画出从正面,侧面,上面看到的视图家庭作业1.右图是一个边长为5厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)2.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?3.有八个大小一样的正方体,用胶粘接成如下的大正方体,表面积比原来减少了24平方厘米.求所成形体的表面积..4.把五块相同的立方体木块拼成如图所示的形体,表面积比原来减少了96平方厘米.所成形体的表面积是_______平方厘米.5.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?6.将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开.涂上红色的部分,面积是()平方厘米教学反馈学生对本次课的评价Page 11 of 11○特别满意○满意○一般家长意见及建议家长签字:。
五年级下册数学奥数试题 -- 长方体与正方体 全国通用 含答案
长方体与正方体一、走进来:大科学家伽里略说:“大自然用数学语言讲话。
这个语言的字母是:圆、三角形还有长方体及其它各种形体。
”圆、三角形等是平面图形;长方体、正方体等是立体图形平面图形是研究同一个平面内的各数量之间的关系;而立体图形研究的是若干个面内的数量和数量之间的关系。
长方体和正方体是我们最熟悉的几何体。
我国国家游泳中心就是一个巨大的长方体,它的长、宽、高分别为 177米、 177米、30米,又被称为“水立方”,2008年奥运会主要的游泳赛事将在这个巨大的长方体建筑内举行!本章我们将进一步认识长方体、正方体及其组合而成的立体图形的特征,学习其体积和表面积的计算方法和技巧。
提高作图能力、观察能力、计算能力和空间想象力。
二、一起做:【例1】有一个长6厘米,宽4厘米,高8厘米的长方体木块,表面被刷上了红油漆,把它截成棱长是2厘米的若干个小正方体教具,然后把各个小正方体教具中没有刷上红油漆面也刷上红油漆,问还要刷多少平方厘米的红油漆?提示:先画出图形,然后借助图形观察分析,弄清没有刷上红油漆的面处在大正方体的何位置。
【例2】老师为了考核同学们的空间想象能力,用若干个棱长为1cm的小正方体摆成如图所示的立体图形。
你能计算出这个立方体的体积和表面积吗?提示:求体积关键是数一数小正方体的个数,注意数正方体时要讲究顺序性。
数一数相对的面,看看你有什么发现?【例3】有一个六个面都涂满巧克力的长方体的大蛋糕,长4分米,宽4分米,高6分米,把它切成棱长是1分米的若干个小正方体蛋糕分给幼儿园的小朋友,问:(1)没有吃到巧克力的小朋友共有多少人?(2)吃到三个面、两个面、一个面涂有巧克力蛋糕的小朋友各有多少人?提示:动手画一画图,看看三面、二面、一面涂巧克力及没有涂巧克力的小正方各在长方体的什么位置。
相信你一定能发现其中的规律!【例4】在一个棱长为9厘米的正方体的钢坯上、下底面正中间打一个对穿孔,制成一个机器零件。
已知这个对穿孔是底面边长为2厘米的正方形,这个机器零件的体积和表面积各是多少?如果在前、后、左、右面正中间也各打一个同样的对穿孔,你能算出这个零件的体积和表面积吗?提示:你能画出相应的图形吗?体积的计算可采用相减的办法,当打三个对穿孔时需注意如何处理三个孔的交汇处的立方体。
五年级奥数.几何.长方体与正方体综合(C级).学生版
如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.
c
b
a H
G
F
E
D
C
B
A
①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.
③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.
长方体与正方体的体积
不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 ③先补后去法 ④实际操作法 ⑤画图建模法
知识框架
长方体与正方体综合
【例 1】有一个3×4×5的长方体,先把其中相邻的两个面染红,再把它切成60个1×1×1的小正方体,
请问:这些小正方体中最多有多少个是恰有一个面被染红的?
【巩固】 有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某些面染上红色,使得有
的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体最多有多少个?
【例 2】将16个相同的小正方形拼成一个体积为16平方厘米的长方体,将表面涂漆,然后分开,结果,
其中2面涂漆的小正方体有8个,那么3面涂漆的小正方体有__________个,4面涂漆的小正方体有__________个。
例题精讲。
五年级《长方体与正方体的体积》奥数教案
(五年级)备课教员:第九讲长方体与正方体的体积一、教学目标:知识目标1. 知道长方体、正方体体积公式的推导过程。
2. 学会解决实际生活中有关长方体和正方体体积的计算问题。
能力目标1. 经历长方体、正方体体积计算公式的探究过程。
2. 通过实验操作、讨论归纳等活动发展学生的空间观念。
情感目标在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
二、教学重点:正确、熟练地运用长方体和正方体的体积公式。
三、教学难点:理解体积公式,正确计算长方体与正方体的体积。
四、教学准备:PPT、1立方厘米的小正方体木块若干五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过学生自己动手操作,理解体积的概念,了解长方体与正方体的体积计算公式。
】师:同学们,大家已经认识了体积和体积单位。
现在请大家看屏幕上的这个长方体,(出示PPT)它是用1立方厘米的小正方体木块摆成的,你们能数出它的体积吗?生:……师:是的,我们换一种方法试试看。
大家看,一行有几个木块?生:……师:有几行呢?生:……师:大家用每行的个数乘行数,得出是多少?生:……师:那么一共有几层呢?大家再用刚刚求出的积乘层数,看看得出的是多少?生:……师:是的,与我们刚刚数出来的答案是一样的。
现在四个人为一组,大家手上都有正方体小木块,自己动手摆出一个长5厘米,宽3厘米,高4厘米的长方体,然后告诉老师它的体积是多少。
生:……师:你是怎么求出它的体积的?生1:数出了的。
生2:用长乘宽乘高。
师:是的,这就是我们刚才用每行的个数×行数×层数求出的结果。
那么同学们再来做一做这个练习,求出它们的体积。
(PPT出示题目)生:……师:大家仔细观察一下刚刚小正方体的数量与长、宽、高有什么关系?生:……师:每行的个数就是长,行数就是宽,层数就是高。
长方体的体积=长×宽×高。
(PPT上出示图示)或者我们用a表示长,b表示宽,h表示高,V表示长方体的体积,那么也可以表示为V=a×b×h(或V=abh)。
(最新)五年级奥数分册第15周 长方体和正方体(三)
第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。
五年级奥数分册第15周 长方体和正方体(三)-精选本
第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。
人教版五年级下册奥数专讲:长方体与正方体的表面积教案
重点:长方体与正方体表面积计算公式的理解和应用。
难点:空间想象力不足导致对表面积概念的理解困难,以及在实际问题中运用表面积公式时的策略选择。
解决办法及突破策略:
1.通过直观教具和三维模型展示,增强学生的空间感知,帮助他们建立起长方体和正方体的直观形象。
2.设计阶梯式问题,从简单到复杂,逐步引导学生理解和掌握表面积计算公式,并在每个阶段提供反馈和纠正。
过程:
选择几个典型的案例,如包装设计、房屋装修中等涉及表面积计算的问题。
详细介绍每个案例的背景、特点以及如何应用表面积知识解决实际问题。
引导学生思考这些案例对实际生活的影响,并探讨如何优化解决方案。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与长方体和正方体表面积相关的实际问题进行讨论。
教学方法:
1.讲授法:通过生动的语言和形象的比喻,对长方体与正方体的表面积计算公式进行深入讲解,确保学生对概念的理解准确无误。
2.讨论法:组织学生进行小组讨论,鼓励他们提出问题、分享思路,解决在表面积计算过程中遇到的难题,促进知识的内化。
3.实验法:设计动手操作活动,如让学生制作长方体和正方体模型,通过折叠、剪裁等实验活动,直观感受表面积的形成和计算。
小组内讨论问题的现状、挑战以及可能的解决方案。
每组选出一名代表,准备向全班展示讨论成果。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对长方体和正方体表面积的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括问题的现状、挑战及解决方案。
其他学生和教师对展示内容进行提问和点评,促进互动交流。
五年级奥数-第13讲 长方体和正方体(一)
第13讲长方体和正方体(一)一、知识要点在数学竞赛中,有许多有关长方体、正方体的问题。
解答稍复杂的立体图形问题要注意几点:1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3.求一些不规则的物体体积时,可以通过变形的方法来解决。
二、精讲精练【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习1:1.一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如下左图),剩下部分的表面积和体积各是多少?2.有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如上右图),求切掉正方体后的表面积和体积各是多少?【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习2:1.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
第1题第2题第3题2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?3.如果把上题中挖下的小正方体粘在另一个面上(如图),那么得到的物体的体积和表面积各是多少?【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?1.把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?2.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?【例题4】把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积。
暑假5升6奥数专题:长方体和正方体综合(试题)-小学数学五年级下册人教版_39877036
暑假5升6奥数专题:长方体和正方体综合(试题)-小学数学五年级下册人教版一、选择题1.把3个相同的小长方体拼成了1个15cm高的大长方体,表面积减少了248cm,那么原来1个小长方体的体积是()3cm。
A.180B.120C.602.一个长方体表面积是130平方厘米,底面积是20平方厘米,底面周长是18厘米那么这个长方体的体积是()立方厘米。
A.100B.110C.180D.3603.莆田木雕是传统艺术。
如图,一块长方体木料沿高截去2厘米,变成一个正方体,表面积减少48平方厘米,原来长方体的体积是()。
5.如图,在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退。
开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能是下列数中的()。
A.5B.4C.3D.16.用棱长1cm的小正方体拼成如右图的大正方体,并把它的表面涂上颜色。
在这个拼成的大正方体中,没有涂色的小正方体有多少块?()A.1块B.2块C.3块D.4块二、填空题7.一根长方体木料,长2m,宽0.5m,厚2dm,把它锯成4段,表面积最少增加( )dm2。
8.一个底面是正方形的长方体,如果高增加1厘米,它的表面积就增加8平方厘米,如果这个长方体的高是15厘米,原来这个长方体的体积是( )立方厘米。
9.用一根铁丝围一个长12cm、宽10cm、高5cm的长方体框架,至少需要铁丝( )cm,这个长方体的体积是( )cm3。
如果将这根铁丝改围成一个正方体框架,这个正方体框架的表面积是( )cm2。
10.将一个表面涂色的大正方体每条棱长都平均分成4份,在沿线将它切开,一面涂色的小正方体有( )个,没有涂色的小正方体有( )个。
11.一个长方体,如果长减少3cm,刚好变成了一个正方体,表面积比原来减少了120cm2,原来这个长方体的体积是( ),表面积是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体与正方体综合
知识框架
,八个顶点,十二条棱.如右图,长方体共有六个面(每个面都是长方形)GHEFCDcbAaB在六个面中,两个对面是全等的,即三组对面两两全等.①) (叠放在一起能够完全重合的两个图形称为全等图形.②长方体的表面积和体积的计算公式是:)?bc?caS?2(ab;长方体的表面积:长方体abcV?长方体的体积:.长方体正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.③
长方体与正方体的体积
32,,那么:如果它的棱长为.aV6a?S?a正方体正方体
相关要一要素、
不规则形体的体积常用方法:
①化虚为实法
②切片转化法
③先补后去法
④实际操作法
⑤画图建模法
例题精讲
的小正方体,×11×1603×4×5的长方体,先把其中相邻的两个面染红,再把它切成个】【例1有一个请问:这些小正方体中最多有多少个是恰有一个面被染红的?
厘米的长方体,把它们的某些面染上红色,使得有5厘米、4厘米、【巩固】有6个相同的棱长分别是3个面是红色3个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有的长方体只有1个面65个面是红色的,还有一个长方体的,有的长方体恰有4个面是红色的,有的长方体恰有厘米的小正方体.分割完毕后,恰有一面是红1都是红色的,染色后把所有长方体分割成棱长为色的小正方体最多有多少个?
平方厘米的长方体,将表面涂漆,然后分开,结果,个相同的小正方形拼成一个体积为162】将16【例
面涂漆的小正方4面涂漆的小正方体有3__________个,其中2面涂漆的小正方体有8个,那么个。
体有__________
一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面把【巩固】
100块,那么至少要把这个大长方体分割成多少个小正方体?涂上红色的小正方体恰好是
厘米的小正方1然后将其切割成棱长是(】3棱长是厘米为整数)的正方体的若干面涂上红色,【例mm的最,此时体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12m?
小值是多少
【巩固】把一个大长方体木块表面上涂满红色后,分割成若干个棱长为1的小正方体,其中恰有两个面涂上红色的小正方体恰好是2005块。
大长方体体积的最小值是。
【例4】把正方体的六个表面都划分成4个相等的正方形.用红色去染这些小正方形,要求有公共边的正方形不能同时染上红色,那么,用红色染的正方形最多有多少个?
【巩固】把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?
【例5】用若干个棱长为1的小正方体铁块焊接成的几何体,从正面,侧面,上面看到的视图均为2×2的正方形,那么这个几何体至少由个小正方体铁块焊接而成。
【巩固】用棱长为1的小立方体粘合而成的立体,从正面、侧面、上面看到的视图均如下图所
示,那么粘成这个立体最多需要块小立方体.
个北京的选手们用10日在潮州举行,2004年5月届华罗庚金杯少年数学邀请赛总决赛于【例6】第9N最.问:的模型(如图)大小相同的小正方体木块粘贴成了一个从正面看是2004,从左面看是9N?
大为多少?最小为多少N
,从正面的小正方体码放成一个立体图形,从上向下看这个立体图形,如下图一些棱长是1【巩固】用a ________.看这个立体图形,如下图,则这个立体图形的表面积最多是b
ba
【例7】用6个如图甲所示的小长方体拼成一个如图乙所示的大长方体,已知小长方体的体积是8立方厘米,则大长方体的表面积是平方厘米。
【巩固】用九个如图甲所示的小长方体拼成一个如图乙所示的大长方体,已知小长方体的体积是750立方厘米,则大长方体的表面积是平方厘米。
甲乙
【例8】现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?
焊上
焊上1010焊上焊上353020
【巩固】如图,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).这个多面体的面数、顶点数和棱数的总和是多少?
【例9】图中是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?
黄绿111
【巩固】如图是一个四棱锥的展开图,该展开图由正三角形和正方形构成,其中正方形的面积为8平方厘米,那么该四棱锥的体积为多少?
如图左边为某个容器的展开图,右边的正六边形是该容器的盖子,该容器所有表面都是正多边10】【例
,那么该容器的容积为多少?),其中正方形的面积为18正方形、正三角形、正六边形形
(
【巩固】图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?
图⑴图⑵
课堂检测
的小正方体,其中恰有两个面】把一个大长方体木块表面上涂满红色后,分割成若干个棱长为1【随练1块。
大长方体体积的最小值是。
涂上红色的小正方体恰好是2005
分别写在正方体六面上,使正方体中对面数字的和相等。
正方体如图放置64,5,,2【随练】将1,2,3_______.
点时,在正方体右面的数字是在A格上,沿格子滚动到B B23A1
的大正方体,个,27拼成一个棱长是3】有很多白色或黑色的棱长是的小正方体.取其中的【随练3cm1cm个黑色的小正方体拼成了相同的图案。
见例图.例图中正方体的每一面的图案每一面都各用2个黑色小正方体就可拼成这样的大正方体.除例图的图案之外,还98都相同,因此,用个或可以拼成每面的图案都相同的大正方体.问⑴:在下图的①~⑦中找出可以拼成每面都相同的图案.问⑵:在问⑴中,可以按要求拼成的大正方体各用几个黑色小正方体?最多的用几
个?最少的用几个?
①②③④⑤⑥⑦例图
倍,⑺⑻⑼⑽右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2【随练4】是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的倍.体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的
⑺⑻⑸⑹⑾⑶⑵⑴⑼⑽⑷
家庭作业
厘米,每个长方体相交于一个顶点的三条棱长恰是三个完全一样的长方体,棱长总和是2881【作业】三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三厘米的小正方体,只有一个面涂色的小正方体最少有多少个?个长方体都切成棱长为1
5侧面、从正面、上面看到的视图均如图的小正方体铁框架焊接成的几何体,若干个棱长为 2【作业】用1 个小正方体铁框架焊接而成。
所示。
那么这个几何体至少是
【作业3】选项中有4个立方体,其中是用左边图形折成的是( ).
DCBA
3,则大长方11块相同的长方体的砖拼成如图所示的大长方体,已知每块砖的体积是4】把【作业288cm体的表面积为多少?
【作业5】如图是一个正三角形和三个等腰直角三角形,直角边边长为1,则沿正三角形三边折叠所成的封闭形体体积是多少?
厘米的正方形,②③④⑤是同样大图是个有底无盖的容器的平面展开图,其中①是边长为18】右【作业6 的等腰直角三角形,⑥⑦⑧⑨是同样大的等边三角形.那么,这个容器的容积是___毫升.⑥②③⑦①⑨④⑤⑧
教学反馈。