2015年河南省周口市沈丘外语中学七年级(上)期中数学试卷与参考答案PDF

合集下载

沈丘外语中学2015~2016年七年级上第一次学情调查试题及答案

沈丘外语中学2015~2016年七年级上第一次学情调查试题及答案

沈丘外语中学 2015~2016学年度第一学期第一次学情调查七年级数学试卷(华师版1-2.11)2015.10.9一 、细心选一选(每题3分,共30分)1. 下列运算结果等于的是…………………………………………………………………………【 】 A. (1)(1)-+- B. (1)(1)--- C.(2)(2)-⨯- D.2.图中所画的数轴,正确的是………………………………………………………………………【 】-1A21543B-1210C210D3、下列说法正确的是…………………………………………………………………………………【 】 A .0是最小的非负数 B .有理数中存在最大的数C .整数包括正整数和负整数D .0是最小的整数4、下列各组数中,互为相反数的是…………………………………………………………………【 】A.B. )(7--与7 C. 511--与)(56-- D. )(1001--与 01.0-+ 5. 如果0)2(12=++-b a ,则2015()a b +的值是( )……………………………………【 】A .0B .-1C .1D .26.下列说法:①如果两个数的和为1,则这两个数互为倒数;②如果两数积为0,则至少有一个数为0;③绝对值是本身的有理数只有0;④倒数是本身的数是-1,0,1。

其中错误的个数是………… 【 】A.0个B.1个C.2个D.3个 7在下列各数中:,(﹣4)2,+(﹣3),﹣52,﹣|﹣2|,(﹣1)2016,0.其中是负数的个数有【 】A 、4个B 、3个C 、2个D 、1个8.下列计算:①0-(-5)=-5; ②(-3)+(-9)=-12; ③293342⎛⎫⨯-=- ⎪⎝⎭; ④(-36)÷(-9)=-4 其中正确的有 ………………………………………………… 【 】A .1个B .2个C .3个D .4个…………………密……………封……………线……………内……………不……………准……………答……………题……………………班 级____________ 姓 名____________ 考 号_____9、2015201520152016(0.125)8(1)(1)-⨯+-+-的值是…………………………………………… 【 】A .﹣2B .﹣1C .0D .110、在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是…………………………………… 【 】A .a b +>0B .a b -<0C .ab <0D .a >|b|二. 用心填一填:(每题3分,共30分)11、若+4表示“4年后”,则“-8”表示 .12. 23-的相反数是 .13、在数轴上到-2所表示的点的距离为3个单位长度的点表示的数是 .14.写出一个x 值,使22x x -=-你写出的x 值为 .15、把2411(1)(2)()()(3)3553---+--+++写成省略加号和的形式为 .16、有理数a 在数轴上对应的点如图所示,则a , a -,1的大小关系是 .17、比较大小:-65-76(填“>”、“<”或“=”)18. 绝对值不小于3又不大于5的所有整数之和为__________19. 如图,是一个简单的数值运算程序,当输入x 的值为﹣1时,则输出的数值为20、观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯ 三、解答题:(共6大题,60分)21.将下列各数填在相应的集合里。

数学-2015上-七年级-期中考试-答案-联考

数学-2015上-七年级-期中考试-答案-联考

2015学年第一学期七年级期中考试数学试卷答案一、填空题(每小题2分,共30分)1、 +11a b ; 2、14 ; 3、 -6a ; 4、-2.4×610 ;5、54-a; 6、194 ; 7、 +--+-2232415732z x x y x y x y ;8、12 ; 9、-+2269x xy y ; 10、-22259y x ;11、5813+m n;12、19=-k ; 13、1352 ; 14、20 ; 15、222+m n二、选择题(每小题2分,共8分)16、B 17、A 18、A 19、 D三、简答题(每小题5分,共35分)20、当23a =-时原式= 221323⎛⎫-+ ⎪⎝⎭- ( 1分) =41923+- (1分) == 13923-(1分)= 136-(2分)21、原式=22(35)b c a -- 2分=222(93025)b bc c a -+- 2分= 22293025b bc c a -+- 1分22、原式= )32(2c b a -+= 222494612a b c ab ac bc +++-- 5分(其他计算方法酌情给分)23、原式=2222112()36643xy y x x y -+-⋅ 2分=22222222112363636643xy x y y x y x x y -+-⋅ 1分=3324426924x y x y x y -+- 2分24、原式=()()222x a a x -+⎡⎤⎣⎦ 1分= ()2224x a - 2分 = 4224168x a x a -+ 2分25、原式=333244184227a b a b a a b ⋅-⋅ 2分 = 64644427a b a b - 2分 = 6410427a b - 1分 26、2222(4263)33x x x x x x x +----+>- 1分 2222426333x x x x x x x +--++->- 1分 2236433x x x x -+>- 1分34x ->- 1分43x < 1分四.解答题(本题共4题, 27、28题每题6分,29题7分,30题8分,共27分))27、 ∵ A -2B =13-x∴ 2B=A-(3x-1) 1分22231x x x =-+-+ 1分=2243x x -+ 1分∴B= 2322x x -+ 1分 ∴B+A= 2322x x -++222+-x x 1分 = 27332x x -+ 1分 28、()4222222m n -=⨯,()323333nm +=⨯ 1分 422222m n +-=,32333n m ++= 2分 4222m n =,3533n m += 1分4m=2n, 3n=m+5 1分解得m=1,n=2 1分29、(1)444a b a b += 1分()()2222a b = 2分22m n = 1分(2)623a a a = 2分mp = 1分30、( 1 ) S=()()34b t a a t b --- 1分 =334bt ab at ab --+ 1分 =()3b a t ab -+(结果写成3bt at ab -+也可以) 1分(2) 30b a -= 1分3a b = 1分(3)227xa yb ab ++=222921xb yb b ++=()2921x y b ++ 1分 〖 ()921x y ++应该是完全平方数,x 、y 是正整数。

【解析版】河南省周口市2014~2015年七年级上期中数学试卷

【解析版】河南省周口市2014~2015年七年级上期中数学试卷
6.一个两位数,十位数字是 x,个位数字是 y,把十位数字与个位数字对调后,所得到的两位数是 ()
A. xy B. yx C. 10x+y D. 10y+x
考点: 列代数式. 分析: 由题意得:十位数字是 y,个位数字是 x,根据计数方法得出答案即可. 解答: 解:把十位数字与个位数字对调后,所得到的两位数是 10y+x. 故选:D. 点评: 此题考查列代数式,理解题意,利用计数的方法列式即可.
3.在 0,﹣ 9,﹣ |﹣ 3|,﹣ (﹣ 5),5,6.8 中,正整数的个数是( ) A. 1 B. 2 C. 3 D. 4
考点: 有理数. 分析: 理数的分类进行判断即可.有理数包括:整数(正整数、0 和负整数)和分数(正分数和 负分数). 解答: 解:0,﹣ 9,﹣ |﹣ 3|,﹣ (﹣ 5),5,6.8 中,正整数有﹣ (﹣ 5),5 共 2 个, 故选 B. 点评: 本题考查了有理数的知识,解答本题的关键是认真掌握正数、负数、整数、分数、正有理 数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意 0 是整数,但不是正数.
7.已知代数式 x2+x+1 的值是 8,那么代数式 4x2+4x+1 的值是( ) A. 37 B. 25 C. 29 D. 0
考点: 代数式求值. 分析: 由代数式 x2+x+1 的值是 8,得出 x2+x=7,由此代入代数式 4x2+4x+1 求得数值即可. 解答: 解:∵x2+x+1=8, ∴x2+x=7 , ∴4x2+4x+1 =4(x2+x)+1 =4× 7+1 =29. 故选 C. 点评: 此题考查代数式求值,注意整体代入思想的渗透.

河南省周口市七年级数学上学期期中测试题(含答案)

河南省周口市七年级数学上学期期中测试题(含答案)
参考答案
1.B.2.A3.D4.B5.C6.C7.B8.A9.B
10.B11.A
12.B解析:设小长方形的长为a,宽为b,
上面的长方形周长:2(m﹣a+n﹣a),下面的长方形周长:2(m﹣2b+n﹣2b),
两式联立,总周长为:2(m﹣a+n﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),
26. (10分)小雨同学在用黑色的围棋进行摆放图案的游戏,现已摆放了如下的图案,请根据图中的信息完成下列的问题.
(1)填写下表:
图形编号





图中棋子的总数


(2)第50个图形中棋子为颗围棋;
(3)小雨同学如果继续摆放下去,那么第 个图案就要用颗围棋.
(4)如果小雨同学手上刚好有90颗围棋子,那么他按照这种规律从①个图案摆放下去,是否可以摆放成完整 图案后刚好90颗围棋子一颗不剩?如果可以,那么刚好摆放完成几个完整的图案?如果不行,那么最多可以摆放多少个完整图案,还剩余几颗围棋子?(只答结果,不说明理由)
3. 的相反数是( )
A. B. C. D.
4. 的绝对值是( )
A. B. C. D.
5. 下列各数中,最小的数是( )
A. B. C. D.
6.若一组数据2,4,7,x中,最大的数与最小的数的差是8,则x的值是( )
A.﹣1B.10C.﹣1或10D.无法确定
7.下列等式正确的是( )
A.43=34B.﹣53=(﹣5)3
A. B.
C. D.
11.代数式 的值为7,则代数式 的值为 ( )
A. 3B. 11C. 1D. 17

2015七年级(上)期中数学试卷附答案

2015七年级(上)期中数学试卷附答案

七年级(上)期中数学试卷一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=99.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=011.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6二、填空题(每题4分,共32分)13.平方得的数是,立方得﹣8的数是,倒数是﹣的数是,的相反数是.14.数轴上表示有理数﹣3.5与4.5两点的距离是.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=.16.38400万千米用科学记数表示为米.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:=24.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有项,其中﹣xy4的系数是.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?参考答案与试题解析一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(5的相反数)+5=0,则5的相反数是﹣5.故选:B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个考点:正数和负数.分析:先化简,再根据小于0的是负数即可求解.解答:解:在﹣(﹣6)=6,﹣(﹣6)2=﹣36,﹣|﹣6|=﹣6,(﹣6)2=36中,负数有﹣(﹣6)2,﹣|﹣6|,一共2个.故选C.点评:本题主要考查了正数和负数的意义,判断一个数是正数还是负数,关键是看它比0大还是比0小.3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a考点:列代数式.分析:根据数的表示,用数位上的数字乘以数位即可.解答:解:这个两位数是:10a+b.故选C.点评:本题考查了列代数式,比较简单,主要是数的表示方法.4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒考点:列代数式(分式).专题:应用题.分析:通过桥洞所需的时间为=(桥洞长+车长)÷车速.解答:解:它通过桥洞所需的时间为秒.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.注意此时路程应为桥洞长+车长.5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.考点:整式的加减.分析:此题可先列出所求代数式的两倍,然后再除以2即可.解答:解:依题意得[(a+2b)﹣(﹣2a+b)]÷2=.故选D.点评:整式的加减运算实际上就是去括号、合并同类项.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn考点:同类项.分析:同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项.并且与字母的顺序无关.解答:解:A、62与x2字母不同不是同类项;B、4ab与4abc字母不同不是同类项;C、0.2x2y与0.2xy2字母的指数不同不是同类项;D、nm和﹣mn是同类项.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=9考点:有理数的除法;有理数的减法;有理数的乘方.专题:计算题.分析:原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.解答:解:A、﹣12﹣8=﹣20,错误;B、(﹣)÷(﹣4)=﹣×(﹣)=,错误;C、﹣5﹣(﹣2)=﹣5+2=﹣3,正确;D、﹣32=﹣9,错误.故选C.点评:此题考查了有理数的除法,乘方,以及乘法,熟练掌握运算法则是解本题的关键.9.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y考点:整式的加减.分析:根据题意得出:(x3﹣3x2y)﹣(3x2y﹣3xy2),求出即可.解答:解:根据题意得:(x3﹣3x2y)﹣(3x2y﹣3xy2)=x3﹣3x2y﹣3x2y+3xy2=x3﹣6x2y+3xy2,故选C.点评:本题考查了整式的加减的应用,主要考查学生的计算能力.10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=0考点:单项式;代数式;列代数式;合并同类项.分析:分别利用单项式以及代数式和合并同类项法则分析得出即可.解答:解:A、单项式﹣πx3的系数是﹣π,故此选项错误;B、0和a都是代数式,此选项正确;C、数a的与这个数的和表示为+a,故此选项错误;D、合并同类项﹣n2﹣n2=﹣2n2,故此选项错误.故选:B.点评:此题主要考查了单项式、代数式以及合并同类项的定义,正确把握相关性定义是解题关键.11.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处考点:数轴.专题:计算题.分析:由题意知,可看作书店为原点,文具店在书店西边20米处,即﹣20米,玩具店位于书店东边100米处,即+100米,解答出即可.解答:解:根据题意得:文具店在书店西边20米处,玩具店位于书店东边100米处,∴书店看作原点时,玩具店为100米,文具店为﹣20米,∴小明的位置为:40﹣60=﹣20,∴小明的位置为:﹣20米,∴小明的位置在文具店.故答案为A.点评:本题考查了数轴,规定了原点、正方向、单位长度的直线叫做数轴,学生掌握数轴的定义,是解答本题的关键.12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,b+3=0,a﹣2=0,解得a=2,b=﹣3,所以,b a=(﹣3)2=9.故选B.点评:本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、填空题(每题4分,共32分)13.平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.考点:有理数的乘方;相反数;倒数.专题:计算题.分析:原式利用有理数的乘方,相反数,以及倒数的定义计算即可得到结果.解答:解:平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.故答案为:±;﹣2;﹣4;﹣1点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.14.数轴上表示有理数﹣3.5与4.5两点的距离是8.考点:数轴.专题:计算题.分析:有理数﹣3.5与4.5两点的距离实为两数差的绝对值.解答:解:由题意得:有理数﹣3.5与4.5两点的距离为|﹣3.5﹣4.5|=8.故答案为:8.点评:本题考查了数轴的知识,属于基础题,难度不大,注意两点之间的距离即是两数差的绝对值.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=7.考点:同类项.分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得m,n的值,代入求解即可.解答:解:∵3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,∴m﹣1=3,n﹣2=1,∴m=4,n=3,则m+n=7.故答案为:7.点评:本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.38400万千米用科学记数表示为 3.84×108米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300 670用科学记数法表示为3.84×108.故答案为3.84×108.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是x(15﹣x).考点:列代数式.分析:根据周长是30,一边是x,求出另一边是15﹣x,再根据长方形的面积公式即可求解.解答:解:∵周长是30,∴相邻两边的和是15,∵一边是x,∴另一边是15﹣x.∴面积是:x(15﹣x).故答案为:x(15﹣x).点评:本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:3×7+(4﹣1)=24.考点:有理数的混合运算.专题:计算题;开放型.分析:24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯一.解答:解:答案不唯一,如:3×7+(4﹣1)=24.点评:此题考查有理数混合运算的灵活程度,可以提高学生的学习兴趣.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.考点:整式的加减;多项式.分析:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,由此可确定多项式2x2y3﹣x3y﹣xy4﹣5x4y3的项数,根据单项式的系数的定义确定﹣xy4的系数.解答:解:代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.故答案为:四,﹣1.点评:本题考查了多项式的定义,多项式中每个单项式叫做多项式的项,单项式中的数字因数叫做单项式的系数.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是9.考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.考点:作图-三视图;由三视图判断几何体.分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.解答:解:如图所示:点评:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.考点:数轴.专题:计算题.分析:数轴上点的移动规律是“左减右加”.依据规律计算即可.解答:解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.点评:本题考查了数轴的知识,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).考点:有理数的混合运算.分析:(1)先化简,再分类计算;(2)先算乘方和括号里面的加法,再算除法,最后算减法;(3)先算乘方和除法,再算括号里面的减法,再算乘法,最后算加法;(4)利用乘法分配律简算.解答:解:(1)原式=﹣7+15+25=33;(2)原式=9﹣(﹣)÷=9﹣(﹣)×12=9+11=20;(3)原式=﹣1×(4﹣9)+3×(﹣)=﹣1×(﹣5)﹣4=5﹣4=1;(4)原式=﹣24×(﹣)+(﹣24)×﹣24×(﹣)=20﹣9+1=12.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)考点:整式的加减.分析:(1)(2)(3)直接合并整式中的同类项即可;(4)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:(1)3a+2a﹣7a=﹣2a;(2)﹣4x2y+8xy2﹣9x2y﹣21xy2=﹣13x2y﹣13xy2;(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn=m2n+4mn2+mn;(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)=a+b﹣4a+6b+3a﹣2b=5b.点评:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(3)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=3x﹣8x+2﹣3+2x=﹣3x﹣1,当x=﹣时,原式=1﹣1=0;(2)原式=10a2﹣14ab+18b2﹣42a2+6ab﹣9b2=﹣32a2﹣8ab+9b2,当a=,b=﹣时,原式=﹣18+4+4=﹣10;(3)原式=4x3+x2﹣2x3+x2=2x3+x2,当x=﹣3时,原式=﹣81+15=﹣66;(4)原式=5x2﹣2xy+xy+6﹣4x2=x2﹣xy+6,当x=﹣2,y=时,原式=4+1+6=11.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.考点:折线统计图;正数和负数;算术平均数.专题:应用题.分析:(1)根据上周日的收入依次加减即可解答;(2)根据平均数=总收入÷天数进行求解;(3)根据(2)的数据,可以作出折线图,然后分析即可.解答:解:(1)星期五该小店的收入情况为20+10﹣5﹣3+6﹣2=26(元);(2)星期一20+10=30元,星期二30﹣5=25元,25﹣3=22元,22+6=28元,28﹣2=26元,(30+25+22+28+26)÷5=26.2(元);(3)画折线统计图:正确结论例如:这五天中收入最高的是星期一为30元.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.熟练掌握对统计图的分析和平均数的计算.要理解极差的概念,能够根据计算的数据进行综合分析.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?考点:数轴.分析:(1)根据题目的叙述1个单位长度表示1千米,即可表示出;(2)根据(1)得到的数轴,得到表示小明家与小彬家的两点之间的距离,利用1个单位长度表示1千米,即可得到实际距离;(3)把三次所行路程相加即可,(4)路程是20千米,乘以0.5即可求得耗油量.解答:解:(1)如图所示:(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,(4)耗油量是:20×0.2=4升.答:小明家距小彬家7.5千米,这趟路货车共耗油4升.点评:本题考查了数轴,利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.。

2015七年级(上)期中数学试卷 附答案

2015七年级(上)期中数学试卷 附答案

七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.﹣3的相反数是()A.﹣B.C.﹣3 D.32.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010 B.4.5×109 C.4.5×108 D.0.45×1093.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是64.|3.14﹣π|的值为()A.0 B. 3.14﹣π C.π﹣3.14 D.0.145.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B. 1 C.﹣1 D.﹣26.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>07.计算(﹣2)11+(﹣2)10的值是()A.﹣2 B.(﹣2)21 C.0 D.﹣2108.减去﹣3x得x2﹣3x+6的式子为()A.x2+6 B.x2+3x+6 C.x2﹣6x D.x2﹣6x+69.若(a﹣1)2+|b+2|=0,则|a+b|的值是()A.3 B. 1 C. 2 D.﹣110.化简2a﹣[3b﹣5a﹣(2a﹣7b)]的结果是()A.﹣7a+10b B.5a+4b C.﹣a﹣4b D.9a﹣10b二、填空题(每题3分,共30分)11.单项式﹣的系数是,次数是.12.已知|x|=3,(y+1)2=4,且xy<0,则x﹣y的值是.13.观察一列数:,,,,,…根据规律,请你写出第10个数是.14.化简3x2﹣[7x﹣(4x﹣3)﹣2x2]的结果是.15.规定一种新运算:a△b=a•b﹣a﹣b+1,如3△4=3×4﹣3﹣4+1,则(﹣2)△5=.16.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,计算﹣2mn+﹣x2=.17.计算:﹣15﹣(﹣8)+(﹣11)﹣12=.18.汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作.19.已知多项式3x m﹣1+3x﹣1是关于x的四次三项式,那么m的值为.20.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三、解答题21.在数轴上表示下列各数,并把下列各数用“”号连接起来:﹣,﹣2,,﹣|﹣5|,﹣(﹣5)22.计算(1)|﹣|÷(﹣)﹣×(﹣2)2(2)﹣14+﹣(﹣4)×(﹣)23.先化简,再求值:(1)﹣(a2+2a)+3(a2﹣3a﹣),其中a=﹣1;(2)(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5).其中a=﹣2.24.已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长(2)当a=2,b=3时,求此三角形的周长(3)当a=2,三角形的周长为27时,求此三角形各边的长.25.有这样一道题“当a=2,b=﹣2时,求多项式﹣2b2+3的值”,马小虎做题时把a=2错抄成a=﹣2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.26.某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录结果如下表所示:售出件数(件)7 6 3 5 4 5售价(元)+3 +2 +1 0 ﹣1 ﹣2(1)该服装店在售完这30件连衣裙后,赚了多少钱?(2)平均每件连衣裙赚了多少钱?(精确到0.01)参考答案与试题解析一、选择题(每题3分,共30分)1.﹣3的相反数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是﹣(﹣3)=3.故选:D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010 B.4.5×109 C.4.5×108 D.0.45×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将450亿用科学记数法表示为:4.5×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是6考点:多项式;单项式.专题:常规题型.分析:根据单项式和多项式的概念及性质判断各个选项即可.解答:解:A、2x2﹣3xy﹣1是二次三项式,故本选项不符合题意;B、﹣x+1不是单项式,故本选项不符合题意;C、的系数是,故本选项不符合题意;D、﹣22xab2的次数是4,故本选项符合题意.故选D.点评:本题考查单项式及多项式的知识,注意对这两个基本概念的熟练掌握,属于基础题,比较容易解答.4.|3.14﹣π|的值为()A.0 B. 3.14﹣π C.π﹣3.14 D.0.14考点:实数的性质.专题:计算题.分析:首先判断3.14﹣π的正负情况,然后利用绝对值的定义即可求解|.解答:解:∵3.14﹣π<0,∴|3.14﹣π|=π﹣3.14.故选C.点评:此题主要考查了绝对值的定义,解题时先确定绝对值符号中代数式的正负再去绝对值符号.5.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B. 1 C.﹣1 D.﹣2考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m和n的值,继而代入可得出答案.解答:解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,解得:m=2,n=3,∴m﹣n=﹣1.故选C.点评:此题考查同类项的定义,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.6.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0考点:有理数的减法;数轴;有理数的加法.专题:常规题型.分析:先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.解答:解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.点评:本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.7.计算(﹣2)11+(﹣2)10的值是()A.﹣2 B.(﹣2)21 C.0 D.﹣210考点:有理数的乘方.分析:乘方的运算可以利用乘法的运算来进行,运用乘法的分配律简便计算.解答:解:原式=(﹣2)10×(﹣2+1)=(﹣2)10×(﹣1)=﹣210.故选D.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.本题运用乘法的分配律计算.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.8.减去﹣3x得x2﹣3x+6的式子为()A.x2+6 B.x2+3x+6 C.x2﹣6x D.x2﹣6x+6考点:整式的加减.分析:本题考查整式的加法运算,要先去括号,然后合并同类项.解答:解:﹣3x+(x2﹣3x+6)=﹣3x+x2﹣3x+6=x2﹣6x+6故选D.点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.9.若(a﹣1)2+|b+2|=0,则|a+b|的值是()A.3 B. 1 C. 2 D.﹣1考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:由题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,|a+b|=|1﹣2|=1.故选B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.化简2a﹣[3b﹣5a﹣(2a﹣7b)]的结果是()A.﹣7a+10b B.5a+4b C.﹣a﹣4b D.9a﹣10b考点:整式的加减.分析:先去小括号,再去中括号,进而求解.解答:解:2a﹣[3b﹣5a﹣(2a﹣7b)]=2a﹣[3b﹣5a﹣2a+7b]=2a﹣(10b﹣7a)=9a﹣10b,故选D.点评:能够化简一些简单的整式.注意去括号法则.二、填空题(每题3分,共30分)11.单项式﹣的系数是,次数是4.考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义,数字因数是系数,字母的指数和1+3=4,故次数为4.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.已知|x|=3,(y+1)2=4,且xy<0,则x﹣y的值是6或﹣4.考点:有理数的混合运算.专题:计算题.分析:根据题意,求出x与y的值,即可求出x﹣y的值.解答:解:∵|x|=3,(y+1)2=4,且xy<0,∴x=3或﹣3,y+1=2或y+1=﹣2,解得:x=3,y=﹣3;x=﹣3,y=1,则x﹣y=6或﹣4.故答案为:6或﹣4.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.观察一列数:,,,,,…根据规律,请你写出第10个数是.考点:规律型:数字的变化类.分析:仔细观察给出的一列数字,从而可发现,分子等于其项数,分母为其所处的项数的平方加1,根据规律解题即可.解答:解:,,,,,…根据规律可得第n个数是,∴第10个数是,故答案为;.点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.化简3x2﹣[7x﹣(4x﹣3)﹣2x2]的结果是5x2﹣3x﹣3.考点:整式的加减.分析:先去小括号,再去中括号,合并同类项即可.解答:解:原式=3x2﹣[7x﹣4x+3﹣2x2]=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3.故答案为:5x2﹣3x﹣3.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.15.规定一种新运算:a△b=a•b﹣a﹣b+1,如3△4=3×4﹣3﹣4+1,则(﹣2)△5=﹣12.考点:有理数的混合运算.专题:新定义.分析:根据题中的新定义计算即可得到结果.解答:解:根据题中的新定义得:(﹣2)△5=﹣10+2﹣5+1=﹣12.故答案为:﹣12点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,计算﹣2mn+﹣x2=﹣7.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用相反数,倒数,以及绝对值的代数意义求出a+b,mn,以及x的值,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,mn=1,x=2或﹣2,则原式=﹣3+0﹣4=﹣7.故答案为:﹣7点评:此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.17.计算:﹣15﹣(﹣8)+(﹣11)﹣12=﹣30.考点:有理数的加减混合运算.专题:计算题.分析:原式利用减法法则变形,计算即可得到结果.解答:解:原式=﹣15+8﹣11﹣12=﹣38+8=﹣30.故答案为:﹣30点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.18.汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作﹣5千米.考点:正数和负数.分析:根据正数和负数表示相反意义的量,向东记作正,可得向西记作负.解答:解:汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作﹣5千米,故答案为:﹣5千米.点评:本题考查了正数和负数,向东记作正,向西记作负.19.已知多项式3x m﹣1+3x﹣1是关于x的四次三项式,那么m的值为5.考点:多项式.专题:计算题.分析:利用多项式的项与次数的定义判断即可求出m的值.解答:解:∵多项式3x m﹣1+3x﹣1是关于x的四次三项式,∴m﹣1=4,解得:m=5,故答案为:5点评:此题考查了多项式,熟练掌握多项式的项与次数定义是解本题的关键.20.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.考点:代数式求值.专题:图表型.分析:观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.解答:解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.点评:解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.三、解答题21.在数轴上表示下列各数,并把下列各数用“”号连接起来:﹣,﹣2,,﹣|﹣5|,﹣(﹣5)考点:数轴.分析:先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.解答:解:如图所示,,由图可知,﹣|﹣5|<﹣2<﹣<<﹣(﹣5).点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.22.计算(1)|﹣|÷(﹣)﹣×(﹣2)2(2)﹣14+﹣(﹣4)×(﹣)考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=÷﹣×4=﹣=;(2)原式=﹣1++2﹣1=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.先化简,再求值:(1)﹣(a2+2a)+3(a2﹣3a﹣),其中a=﹣1;(2)(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5).其中a=﹣2.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a的值代入计算即可求出值.解答:解:(1)原式=﹣a2﹣2a+3a2﹣9a﹣1=2a2﹣11a﹣1,当a=﹣1时,原式=2+11﹣1=12;(2)原式=4a2﹣2a﹣6﹣4a2+4a+10=2a+4,当a=﹣2时,原式=﹣4+4=0.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长(2)当a=2,b=3时,求此三角形的周长(3)当a=2,三角形的周长为27时,求此三角形各边的长.考点:整式的加减;代数式求值.分析:(1)根据题意列出各边长的式子,再把各整式相加即可;(2)把a=2,b=3代入(1)中的式子即可;(3)把a=2代入(1)中的式子求出b的值,进而可得出结论.解答:解:(1)∵第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,∴第二条边长=(a+2b)﹣(b﹣2)=a+b+2;∵第三条边比第二条边短3厘米,∴第三条边长=a+b+2﹣3=a+b﹣1,∴该三角形的周长=(a+2b)+(a+b+2)+(a+b﹣1)=3a+4b+1;(2)∵由(1)知该三角形的周长=3a+4b+1,∴当a=2,b=3时,该三角形的周长=3×2+4×3+1=19;(3)∵当a=2时,三角形的周长为27,∴3×2+4b+1=27,解得b=5,∴第一条边长=a+2b=2+10=12;第二条边长=a+b+2=2+5+2=9;第三条边长=a+b﹣1=2+5﹣1=6.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.25.有这样一道题“当a=2,b=﹣2时,求多项式﹣2b2+3的值”,马小虎做题时把a=2错抄成a=﹣2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.考点:整式的加减.专题:应用题.分析:先通过去括号、合并同类项对多项式进行化简,然后代入a、b的值进行计算.解答:解:﹣2b2+3=(3﹣4+1)a3b3+(﹣++)a2b+(1﹣2)b2+b+3=b﹣b2+3.因为它不含有字母a,所以代数式的值与a的取值无关.点评:整式的加减运算实际上就是去括号、合并同类项;与某字母的取值无关,则是式子中不含该字母.26.某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录结果如下表所示:售出件数(件)7 6 3 5 4 5售价(元)+3 +2 +1 0 ﹣1 ﹣2(1)该服装店在售完这30件连衣裙后,赚了多少钱?(2)平均每件连衣裙赚了多少钱?(精确到0.01)考点:正数和负数.分析:(1)首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.(2)用赚的钱数÷30即可.解答:解:(1)7×(47+3)+6×(47+2)+3×(47+1)+5×47+4×(47﹣1)+5×(47﹣2)=350+294+144+235+184+225=1432,∵30×32=960,∴1432﹣960=472,∴售完这30件连衣裙后,赚了472元;(2)472÷30≈15.73(元).∴平均每件连衣裙赚了15.73元.点评:本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.。

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。

2015七年级(上)期中数学试卷 附答案

2015七年级(上)期中数学试卷 附答案

七年级(上)期中数学试卷一、选择题(每题2分,共18分)1.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A. 271×108 B. 2.71×109 C. 2.71×1010 D. 2.71×10112.如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元3.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣2<1 C.﹣2<﹣3<1 D. 1<﹣3<﹣24.下列四个实数中,是无理数的为()A. 0 B.﹣3 C.π D.5.实数a,b在数轴上的位置如图所示,以下说法正确的是()A. a+b=0 B. b<a C. ab>0 D. |b|<|a|6.下列各组是同类项的一组是()A. xy2与﹣x2y B. 3x2y与﹣4x2yz C. a3与b3 D.﹣2a3b与ba37.化简m﹣n﹣(m+n)的结果是()A. 0 B. 2m C.﹣2n D. 2m﹣2n8.已知﹣x+2y=6,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A. 84 B. 144 C. 72 D. 3609.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A. 2M﹣3N B. 2M﹣N C. 3M﹣2N D. 4M﹣N二、填空题(每题2分,共18分)10.计算:﹣2+3= .11.若a与﹣5互为相反数,则a= ;若b的绝对值是,则b= .12.一个圆柱形蓄水池,底面半径r,高为h,如果这个蓄水池蓄满水,可蓄水.13.一个长方形的宽为x厘米,长比宽的2倍多1厘米,则长方形的周长为厘米.14.将(a+b)看作一个整体,则5(a+b)﹣3(a+b)﹣7(a+b)= .15.减去﹣3m等于5m2﹣3m﹣5的式子是.16.若(a2﹣3a﹣1)+A=a2﹣a+4,则A= .17.如图,程序运算器中,当输入﹣1时,则输出的数是.18.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.三、解答题(第19题20分,第20题8分,共28分)19.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)﹣﹣+(3)9+5×(﹣3)﹣(﹣2)2+4(4)﹣5﹣[﹣1.5﹣(4.5﹣4)].20.计算(1)(﹣5)3×[2﹣(﹣6)]﹣300÷5(2)(﹣)÷(﹣)+(﹣2)2×(﹣14)四、解答题(第21题16分,第22题6分,共22分)21.化简或先化简求值(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b(3)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.22.(1)根据要求列出代数式:①m的3倍与n的一半的和;②m与3的积减去n.(2)比较所列两个代数式的大小(直接写出结果)五、解答题(第23题6分,第24-25题每题4分,共14分)23.有3张如图所示的卡片,用它们可以拼成各种形状不同的四边形.(1)画出所有可能拼成的四边形;(2)计算其中两个所拼四边形的周长和与周长差.24.阅读下列解题过程:为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+...+2100=2101﹣1,仿照以上方法计算1+3+32+33+ (32014)25.阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”规定,运算符号“+、﹣、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规划进行,最后运动到竖线下方的“○”中,将a、b、c、d、e 连接起来,构成一个算式.如,“+”号根据规则就应该沿减号方向运动,最后向下进入“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式a÷b×c﹣d+e.解决问题:(1)根据图2所示的“天梯”写出算式,并计算当a=﹣6,b=﹣1.52,c=﹣2,d=,c=﹣时所写算式的值;(2)添加1条横线,使图2中最后结果的“﹣”、“+”位置互换;(3)在图3中设计出一种“天梯”,使列出的算式为a×b÷c+d﹣e.参考答案与试题解析一、选择题(每题2分,共18分)1.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A. 271×108 B. 2.71×109 C. 2.71×1010 D. 2.71×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将27100000000用科学记数法表示为:2.71×1010.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选:B.点评:此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣2<1 C.﹣2<﹣3<1 D. 1<﹣3<﹣2考点:有理数大小比较.分析:本题是对有理数的大小比较,根据有理数性质即可得出答案.解答:解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.点评:本题主要考查了有理数大小的判定,难度较小,熟知两个负数,绝对值大的其值反而小是解答此题的关键.4.下列四个实数中,是无理数的为()A. 0 B.﹣3 C.π D.考点:无理数.分析:根据无理数是无限不循小数,可得答案.解答:解:A、是有理数,故A错误;B、是有理数,故B错误;C、是无理数,故C正确;D、是有理数,故D错误;故选:C.点评:本题考查了无理数,无理数是无限不循环小数.5.实数a,b在数轴上的位置如图所示,以下说法正确的是()A. a+b=0 B. b<a C. ab>0 D. |b|<|a|考点:实数与数轴.专题:常规题型.分析:根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.解答:解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.点评:此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.6.下列各组是同类项的一组是()A. xy2与﹣x2y B. 3x2y与﹣4x2yz C. a3与b3 D.﹣2a3b与ba3考点:同类项.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.解答:解:A、未知数指数不同;B、C组中未知数不同,所以错误;D、﹣2a3b与ba3符合同类项的条件.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.7.化简m﹣n﹣(m+n)的结果是()A. 0 B. 2m C.﹣2n D. 2m﹣2n考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.解答:解:原式=m﹣n﹣m﹣n=﹣2n.故选C.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.8.已知﹣x+2y=6,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A. 84 B. 144 C. 72 D. 360考点:代数式求值.专题:整体思想.分析:因为﹣x+2y=6,所以x﹣2y=﹣6,可直接代入3(x﹣2y)2﹣5(x﹣2y)+6解答.解答:解:因为﹣x+2y=6,所以x﹣2y=﹣6.则3(x﹣2y)2﹣5(x﹣2y)+6=3×(﹣6)2﹣5×(﹣6)+6=144故选B.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x﹣2y=﹣6的值,然后利用“整体代入法”求代数式的值.9.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A. 2M﹣3N B. 2M﹣N C. 3M﹣2N D. 4M﹣N考点:整式的加减.分析:本题涉及去括号法则、合并同类项两个考点,解答时根据每个考点作出回答.根据已知条件逐项算出各项的值判断即可.解答: A、原式=﹣6x2﹣19xy﹣5y2;B、原式=2x2﹣9xy﹣7y2;C、原式=x2﹣16xy﹣10y2;D、原式=8x2﹣13xy﹣15y2.故选D.点评:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.合并同类项的时候,字母应平移下来,只对系数相加减.二、填空题(每题2分,共18分)10.计算:﹣2+3= 1 .考点:有理数的加法.分析:根据有理数的加法法则,从而得出结果.解答:解:﹣2+3=1.故答案为:1.点评:此题主要考查了有理数的加法运算,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.11.若a与﹣5互为相反数,则a= 5 ;若b的绝对值是,则b= .考点:绝对值;相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣5的相反数是5,如果a与﹣5互为相反数,那么a=5;||=,所以b=.故答案为:5;点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.一个圆柱形蓄水池,底面半径r,高为h,如果这个蓄水池蓄满水,可蓄水πr2h .考点:列代数式.分析:根据圆柱的体积=底面积×高列出代数式即可.解答:解:水池可畜水:πr2h.故答案是:πr2h.点评:本题考查了列代数式及圆柱体积的求法,熟记圆柱的体积公式是解题的关键.13.一个长方形的宽为x厘米,长比宽的2倍多1厘米,则长方形的周长为(6x+2)厘米.考点:整式的加减.专题:计算题.分析:由于一个长方形的宽为x厘米,长比宽的2倍多1厘米,则一个长方形的长为(2x+1)厘米,再根据长方形的周长的定义得到长方形的周长=2(x+2x+1),然后去括号,合并同类项即可.解答:解:∵一个长方形的宽为x厘米,长比宽的2倍多1厘米,∴一个长方形的长为(2x+1)厘米,∴长方形的周长=2(x+2x+1)=2x+4x+2=6x+2(厘米).故答案为(6x+2).点评:本题考查了整式的加减:整式的加减运算就是合并同类项.14.将(a+b)看作一个整体,则5(a+b)﹣3(a+b)﹣7(a+b)= ﹣5(a+b).考点:合并同类项.分析:根据合并同类项,系数相加字母部分不变,可得答案.解答:解:原式=(5﹣3﹣7)(a+b)=﹣5(a+b),故答案为:﹣5(a+b).点评:本题考查了合并同类项,把(a+b)看作一个整体是解题关键.15.减去﹣3m等于5m2﹣3m﹣5的式子是5m2﹣6m﹣5 .考点:整式的加减.分析:此题只需设这个式子为A,则A﹣(﹣3m)=5m2﹣3m﹣5,求得A的值即可.解答:解:由题意得,设这个式子为A,则A﹣(﹣3m)=5m2﹣3m﹣5,A=5m2﹣3m﹣5﹣3m=5m2﹣6m﹣5.故答案为:5m2﹣6m﹣5.点评:本题考查了整式的加减,比较简单,容易掌握.熟练掌握运算法则是解本题的关键.16.若(a2﹣3a﹣1)+A=a2﹣a+4,则A= 2a+5 .考点:整式的加减.分析:先把括号里面的整式移到等号右边,然后按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:A=a2﹣a+4﹣(a2﹣3a﹣1)=a2﹣a+4﹣a2+3a+1=2a+5.故答案为;2a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.17.如图,程序运算器中,当输入﹣1时,则输出的数是7 .考点:有理数的混合运算.专题:图表型.分析:首先理解清题意,知道此题分两种情况,且只有运算的数值大于3时才能输出结果.解答:解:(﹣1+4)×(﹣2)+(﹣3)=3×(﹣2)+(﹣3)=﹣6﹣3=﹣9<3(﹣9+4)×(﹣2)+(﹣3)=(﹣5)×(﹣2)+(﹣3)=10﹣3=7>3.故答案为:7.点评:此题的关键是知道计算顺序,明白当运算的结果小于3时要再重新计算,直到结果大于3,输出结果为止.18.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.三、解答题(第19题20分,第20题8分,共28分)19.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)﹣﹣+(3)9+5×(﹣3)﹣(﹣2)2+4(4)﹣5﹣[﹣1.5﹣(4.5﹣4)].考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式去括号,计算即可得到结果.解答:解:(1)原式=﹣﹣+2=﹣1+2=1;(2)原式=﹣+﹣=﹣+=﹣;(3)原式=9﹣15﹣1=﹣7;(4)原式=﹣5+1.5+4.5﹣4=﹣10.5+6=﹣4.5.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.计算(1)(﹣5)3×[2﹣(﹣6)]﹣300÷5(2)(﹣)÷(﹣)+(﹣2)2×(﹣14)考点:有理数的混合运算.专题:计算题.分析:(1)首先算括号里的,利用有理数的减法法则;减去一个数等于加上它的相反数,2﹣(﹣6)=2+6;再算乘方,(﹣5)3表示3个﹣5相乘得﹣125,再算乘除,两数相乘(或相除),同号得正,异号得负,首先确定好符号,然后把绝对值相乘(或相除);最后再算加减即可以得到答案.(2)首先算括号里的﹣=;再算乘方,(﹣2)2表示2个﹣2相乘得4,再算乘除,两数相乘(或相除),同号得正,异号得负,首先确定好符号,然后把绝对值相乘(或相除);最后再算加减即可以得到答案.解答:解:(1)原式=(﹣5)3×(2+6)﹣300÷5,=(﹣5)3×8﹣300÷5,=﹣125×8﹣300÷5,=﹣1000﹣60,=﹣1060.(2)原式=÷(﹣)+4×(﹣14),=﹣1+(﹣56),=﹣57.点评:此题主要考查了有理数的加减,乘除,乘方的混合运算,计算时要把握两个关键:①计算顺序,②符号的确定.四、解答题(第21题16分,第22题6分,共22分)21.化简或先化简求值(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b(3)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.考点:整式的加减;整式的加减—化简求值.分析:(1)(2)先去括号,然后合并同类项即可;(3)(4)先去括号、合并同类项,然后再代入求值即可.解答:解:(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)=3x2y3﹣4x2y3+x2y3=0;(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b=ab﹣3a2b+4a2b+ab+4a2b+3a2b=ab+8a2b;(3)m﹣(m﹣1)+3(4﹣m),=m﹣m+1+12﹣3m,=﹣4m+13,当m=﹣3时,原式=﹣4×(﹣3)+13=12+13=25;(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y,=2x﹣2y,当x=﹣2,y=2时,原式=2×(﹣2)﹣2×2=﹣4﹣4=﹣8.点评:此题考查的知识点是整式的混合运算﹣化简求值,关键是先去括号、合并同类项进行化简,然后代入求值.22.(1)根据要求列出代数式:①m的3倍与n的一半的和;②m与3的积减去n.(2)比较所列两个代数式的大小(直接写出结果)考点:列代数式;整式的加减.分析:(1)①m的3倍即3m,n的一半即n,二者相加即可.②m与3的积表示为3m,然后减去n.(2)利用作差法比较它们的大小.解答:解:①依题意得 3m+n;②依题意得 3m﹣n;(2)∵(3m+n)﹣(3m﹣n)=n.∴当n>0时,3m+n>3m﹣n;当n<0时,3m+n<3m﹣n;当n=0时,3m+n=3m﹣n.点评:此题考查的知识点是列代数式,关键是能够正确运用数学语言,即代数式来表示题意.五、解答题(第23题6分,第24-25题每题4分,共14分)23.有3张如图所示的卡片,用它们可以拼成各种形状不同的四边形.(1)画出所有可能拼成的四边形;(2)计算其中两个所拼四边形的周长和与周长差.考点:整式的加减;列代数式;图形的剪拼.分析:(1)拼成各种形状不同的四边形,需让相等的边重合,可先从常见的图形等腰梯形入手,然后进行一定转换;(2)根据作出的图形求出周长,然后求出周长差.解答:解:(1)所作图形如图所示:(2)第一个四边形的周长为:4a+2b,第二个四边形的周长为:2a+4b,则周长差为:(4a+2b)﹣(2a+4b)=2a﹣2b.点评:本题考查了整式的加减,着重考察了学生的动手操作能力,让相等的边重合,构造四边形即可.24.阅读下列解题过程:为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+...+2100=2101﹣1,仿照以上方法计算1+3+32+33+ (32014)考点:有理数的乘方.专题:阅读型.分析:利用题中的方法求出原式的值即可.解答:解:设M=1+3+32+33+…+32014,①①式两边都乘以3,得3M=3+32+33+…+32015,②②﹣①得:2M=32015﹣1,即M=,则原式=.点评:此题考查了有理数的乘方,弄清题中的方法是解本题的关键.25.阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”规定,运算符号“+、﹣、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规划进行,最后运动到竖线下方的“○”中,将a、b、c、d、e连接起来,构成一个算式.如,“+”号根据规则就应该沿减号方向运动,最后向下进入“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式a÷b×c﹣d+e.解决问题:(1)根据图2所示的“天梯”写出算式,并计算当a=﹣6,b=﹣1.52,c=﹣2,d=,c=﹣时所写算式的值;(2)添加1条横线,使图2中最后结果的“﹣”、“+”位置互换;(3)在图3中设计出一种“天梯”,使列出的算式为a×b÷c+d﹣e.考点:有理数的混合运算.专题:阅读型.分析:(1)根据题意确定出图2所示的“天梯”表示的算式,把a,b,c,d,e代入计算即可求出值;(2)根据题意画出粗线,如图所示;(3)如图3所示,设计出一种“天梯”满足题意即可.解答:解:(1)由题意得:ab﹣c+d+e,当a=﹣6,b=﹣1.52=﹣2.25,c=﹣2,d=,e=﹣时,原式=﹣6×(﹣2.25)﹣(﹣2)÷+(﹣)=;(2)加的横线见图2中的粗线部分,该横线应该在第二栏的第二座“桥”附近,可以添加在第二座“桥”的上方或下方,但不能超过第二座“桥”相邻的其他“桥”,这样就可以使图2中最后结果的“﹣”、“+”位置互换;(3)如图3所示.点评:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.。

[精品]2014-2015学年河南省周口市七年级(上)数学期中试卷及参考答案

[精品]2014-2015学年河南省周口市七年级(上)数学期中试卷及参考答案

2014-2015学年河南省周口市七年级(上)期中数学试卷一、选择题:(每题3分,共30分)1.(3分)﹣(﹣3)的绝对值是()A.﹣3 B.+3 C.0 D.42.(3分)若a的相反数是5,则a的倒数是()A.﹣ B.﹣5 C.D.53.(3分)在0,﹣9,﹣|﹣3|,﹣(﹣5),5,6.8中,正整数的个数是()A.1 B.2 C.3 D.44.(3分)下列说法:①绝对值最小的数是0;②最小的自然数是1;③平方等于本身的数是0和1;④倒数是本身的数是﹣1,0,1;⑤相反数等于本身的数是0;⑥既不是正数也不是负数的数是0;其中正确的个数是()A.2个 B.3个 C.4个 D.5个5.(3分)电影院共有n行座位,每行座位比行数少12.则电影院共有座位()A.12n B.n(n﹣12)C.12(n+12)D.6.(3分)一个两位数,十位数字是x,个位数字是y,把十位数字与个位数字对调后,所得到的两位数是()A.xy B.yx C.10x+y D.10y+x7.(3分)已知代数式x2+x+1的值是8,那么代数式4x2+4x+1的值是()A.37 B.25 C.29 D.08.(3分)在代数式,﹣abc,0,﹣5,x﹣y,,,中,单项式有()A.3个 B.4个 C.5个 D.6个9.(3分)下列说法正确的是()A.单项式是整式,整式也是单项式B.单项式m的系数是1,次数是0C.单项式πx3y的系数是π,次数是4D.+2是一次二项式10.(3分)一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元二、填空题(每题3分,共24分)11.(3分)近似数3.0×104精确到位.12.(3分)绝对值小于π的整数有个,它们的和等于,它们的积等于.13.(3分)已知a是最小的正整数,b是最大的负整数,c没有倒数,d的绝对值是2,那么a﹣b+c﹣d=.14.(3分)若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为.15.(3分)定义一种运算(a*b)=2ab﹣a﹣b,则﹣3*5=.16.(3分)单项式﹣的系数是,次数是.17.(3分)下列说法:①互为相反数的两个数相加为0;②符号不同绝对值相等的两个数互为相反数;③如果两个数的绝对值相等,那么这两个数也相等;④已知:a+b<0,|a|>|b|,那么a<0;⑤若ab>0,那么a与b符号相同;⑥立方等于本身的数是0,1,﹣1;正确的个数是个.18.(3分)把多项式﹣2xy+3x2y2﹣4x3y﹣1按x的降幂排列,结果是.三、计算:(20分)19.计算:(要求写出必要的步骤)(1)(﹣15)+(﹣25)﹣35﹣(﹣45);(2)(﹣+﹣)×(﹣48);(3)﹣22﹣(1﹣0.5×)÷(3﹣32);(4)1﹣2+3﹣4+…+2013﹣2014.四、解答题(共46分)20.(6分)已知:a与b互为相反数,c与d互为倒数,m的绝对值是2013,求+cd﹣m的值.21.(8分)已知:a=3,b=﹣5,求下列各式的值:(1)a2﹣2ab+b2;(2)(a+b)2.22.(8分)按下图中的方式用火柴棒搭正方形:(1)搭1个正方形需要根火柴棒;(2)搭2个正方形需要根火柴棒,搭3个正方形需要根火柴棒;(3)搭10个这样的正方形需要根火柴棒;(4)如果用n表示所搭正方形的个数,那么搭n个正方形需要根火柴棒.23.(8分)已知|a﹣1|+|ab﹣2|=0,求代数式+++…+的值.24.(8分)先阅读材料,再根据所学方法解答下列问题:我们在求1+2+3+…+99+100的值时,可以用下面的方法;我们设S=1+2+3+…+99+100 ①,那么,S=100+99+98+…+3+2+1 ②;然后,我们把①+②得:2S=(100+1)+(99+2)+(98+3)+…+(99+2)+(100+1),共100个101.2S=101+101+101+…+101=100×101;S=100×101÷2=5050.亲爱的同学们,根据以上所学方法,聪明的你能解下面的题吗?当然,你会用其它方法解答也是正确的呀!请写出必要的步骤,否则不给分呀!(1)1+3+5+…+97+99;(2)5+10+15+…+195+200.25.(8分)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下:(单位:千米)+18,﹣9,+17,﹣14,﹣5,+12,﹣6,﹣7,+8,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶一千米耗油量为0.22升,求这次养护小组的汽车从开始到回到出发点共耗油多少升?2014-2015学年河南省周口市七年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.(3分)﹣(﹣3)的绝对值是()A.﹣3 B.+3 C.0 D.4【解答】解:﹣(﹣3)=3,3的绝对值是3.故选:B.2.(3分)若a的相反数是5,则a的倒数是()A.﹣ B.﹣5 C.D.5【解答】解:a的相反数是5,a=﹣5,a的倒数是﹣,故选:A.3.(3分)在0,﹣9,﹣|﹣3|,﹣(﹣5),5,6.8中,正整数的个数是()A.1 B.2 C.3 D.4【解答】解:0,﹣9,﹣|﹣3|,﹣(﹣5),5,6.8中,正整数有﹣(﹣5),5共2个,故选:B.4.(3分)下列说法:①绝对值最小的数是0;②最小的自然数是1;③平方等于本身的数是0和1;④倒数是本身的数是﹣1,0,1;⑤相反数等于本身的数是0;⑥既不是正数也不是负数的数是0;其中正确的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:①绝对值最小的数是0,故①说法正确;②最小的自然数是0,故②说法错误;③平方等于它本身的数是0或1,故③说法正确;④倒数等于它本身的数是1,﹣1,故④说法错误;⑤0的相反数是0,故⑤说法正确;⑥0既不是正数也不是负数,故⑥说法正确;故选:C.5.(3分)电影院共有n行座位,每行座位比行数少12.则电影院共有座位()A.12n B.n(n﹣12)C.12(n+12)D.【解答】解:∵电影院共有n行座位,每行座位比行数少12,∴每行座位数为:n﹣12,∴总座位数为:n(n﹣12),故选:B.6.(3分)一个两位数,十位数字是x,个位数字是y,把十位数字与个位数字对调后,所得到的两位数是()A.xy B.yx C.10x+y D.10y+x【解答】解:把十位数字与个位数字对调后,所得到的两位数是10y+x.故选:D.7.(3分)已知代数式x2+x+1的值是8,那么代数式4x2+4x+1的值是()A.37 B.25 C.29 D.0【解答】解:∵x2+x+1=8,∴x2+x=7,∴4x2+4x+1=4(x2+x)+1=4×7+1=29.故选:C.8.(3分)在代数式,﹣abc,0,﹣5,x﹣y,,,中,单项式有()A.3个 B.4个 C.5个 D.6个【解答】解:单项式有:,﹣abc,0,﹣5,,共5个,故选:C.9.(3分)下列说法正确的是()A.单项式是整式,整式也是单项式B.单项式m的系数是1,次数是0C.单项式πx3y的系数是π,次数是4D.+2是一次二项式【解答】解:A、单项式是整式,整式不一定是单项式,故A错误;B、单项式m的系数是1,次数是1,故B错误;C、单项式πx3y的系数是π,次数是4,故C正确;D、+2是分式,故D错误;故选:C.10.(3分)一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元【解答】解:设这件衣服的进价为x元,则132×0.9=x+10%x解得:x=108故选:D.二、填空题(每题3分,共24分)11.(3分)近似数3.0×104精确到千位.【解答】解:近似数3.0×104中的3位于万位,则0位于千位,即精确到了千位.12.(3分)绝对值小于π的整数有7个,它们的和等于0,它们的积等于0.【解答】解:绝对值小于π的整数为0,±1,±2,±3,共7个.和为0,积为0.故答案为:7,0,0.13.(3分)已知a是最小的正整数,b是最大的负整数,c没有倒数,d的绝对值是2,那么a﹣b+c﹣d=0或4.【解答】解:根据题意得:a=1,b=﹣1,c=0,d=2或﹣2,当d=2时,原式=1+1+0﹣2=0;当d=﹣2时,原式=1+1+0+2=4,故答案为:0或414.(3分)若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为0.【解答】解:由题意得:a+b=0且a≠0、b≠0,∴原式=﹣1×0=0.15.(3分)定义一种运算(a*b)=2ab﹣a﹣b,则﹣3*5=﹣32.【解答】解:根据题中的新定义得:﹣3*5=﹣30+3﹣5=﹣32.故答案为:﹣3216.(3分)单项式﹣的系数是﹣,次数是2.【解答】解:单项式﹣的系数是﹣,次数是2,故答案为:﹣,2.17.(3分)下列说法:①互为相反数的两个数相加为0;②符号不同绝对值相等的两个数互为相反数;③如果两个数的绝对值相等,那么这两个数也相等;④已知:a+b<0,|a|>|b|,那么a<0;⑤若ab>0,那么a与b符号相同;⑥立方等于本身的数是0,1,﹣1;正确的个数是5个.【解答】解:①互为相反数的两个数相加为0;正确,②符号不同绝对值相等的两个数互为相反数;正确,③如果两个数的绝对值相等,那么这两个数也相等;相反数不相等,故错误,④已知:a+b<0,|a|>|b|,那么a<0;正确,⑤若ab>0,那么a与b符号相同;正确,⑥立方等于本身的数是0,1,﹣1;正确.正确的个数是5个.故答案为:5.18.(3分)把多项式﹣2xy+3x2y2﹣4x3y﹣1按x的降幂排列,结果是﹣4x3y+3x2y2﹣2xy﹣1.【解答】解:多项式﹣2xy+3x2y2﹣4x3y﹣1按x的降幂排列为:﹣4x3y+3x2y2﹣2xy ﹣1.故答案为:﹣4x3y+3x2y2﹣2xy﹣1.三、计算:(20分)19.计算:(要求写出必要的步骤)(1)(﹣15)+(﹣25)﹣35﹣(﹣45);(2)(﹣+﹣)×(﹣48);(3)﹣22﹣(1﹣0.5×)÷(3﹣32);(4)1﹣2+3﹣4+…+2013﹣2014.【解答】解:(1)原式=﹣15﹣25﹣35+45=﹣30;(2)原式=6﹣32+40=14;(3)原式=﹣4﹣×(﹣)=﹣4+=﹣3;(4)原式=(1﹣2)+(3﹣4)+…+(2013﹣2014)=﹣1﹣1﹣1…﹣1=1007.四、解答题(共46分)20.(6分)已知:a与b互为相反数,c与d互为倒数,m的绝对值是2013,求+cd﹣m的值.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2013,∴a+b=0、cd=1,m=±2013,当m=2013时,+cd﹣m=1﹣2013=﹣2012,当m=﹣2013时,+cd﹣m=1+2013=2014.21.(8分)已知:a=3,b=﹣5,求下列各式的值:(1)a2﹣2ab+b2;(2)(a+b)2.【解答】解:(1)a2﹣2ab+b2=(a﹣b)2=(3+5)2=82=64;(2)(a+b)2=[3+(﹣5)]2=(﹣2)2=4.22.(8分)按下图中的方式用火柴棒搭正方形:(1)搭1个正方形需要4根火柴棒;(2)搭2个正方形需要7根火柴棒,搭3个正方形需要10根火柴棒;(3)搭10个这样的正方形需要31根火柴棒;(4)如果用n表示所搭正方形的个数,那么搭n个正方形需要3n+1根火柴棒.【解答】解:(1)搭1个正方形需要4根火柴棒;(2)搭2个正方形需要7根火柴棒.搭3个正方形需要10根火柴棒.(3)搭10个这样的正方形需要3×10+1=31根火柴棒;(4)搭n个这样的正方形需要3n+1根火柴棒,故答案为:4,7,10,31,3n+1.23.(8分)已知|a﹣1|+|ab﹣2|=0,求代数式+++…+的值.【解答】解:∵|a﹣1|+|ab﹣2|=0,∴a=1,ab=2.∴b=2,∴+++…+=++…+=1﹣+﹣+…+﹣=1﹣=.24.(8分)先阅读材料,再根据所学方法解答下列问题:我们在求1+2+3+…+99+100的值时,可以用下面的方法;我们设S=1+2+3+…+99+100 ①,那么,S=100+99+98+…+3+2+1 ②;然后,我们把①+②得:2S=(100+1)+(99+2)+(98+3)+…+(99+2)+(100+1),共100个101.2S=101+101+101+…+101=100×101;S=100×101÷2=5050.亲爱的同学们,根据以上所学方法,聪明的你能解下面的题吗?当然,你会用其它方法解答也是正确的呀!请写出必要的步骤,否则不给分呀!(1)1+3+5+…+97+99;(2)5+10+15+…+195+200.【解答】解:(1)设S=1+3+5+…+97+99①,那么S=99+97+…+5+3+1②,①+②得:2S=(1+99)+(3+97)+…+(97+3)+(99+1),共50个100.2S=100+100+…+100=50×100,所以:S=2500,即1+3+5+…+97+99=2500;(2)设S=5+10+15+…+195+200①,那么S=200+195+…+15+10+5②,①+②得:2S=(5+200)+(10+195)+(15+190)+…+(195+10)+(200+5),共40个205,2S=205+205+…+205=205×40,所以S=4100.25.(8分)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下:(单位:千米)+18,﹣9,+17,﹣14,﹣5,+12,﹣6,﹣7,+8,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶一千米耗油量为0.22升,求这次养护小组的汽车从开始到回到出发点共耗油多少升?【解答】解:(1)(+18)+(﹣9)+(+17)+(﹣14)+(﹣5)+(+12)+(﹣6)++(﹣7)+(+8)+(+15)=[﹣9+(﹣14)+(﹣5)+(﹣6)+(﹣7)]+(18+17+12+8+15)=﹣41+70=29.答:养护小组最后到达的地方在出发点的东方,距出发点29千米;(2)总行程为:|+18|+|﹣9|+|+17|+|﹣14|+|﹣5|+|+12|+|﹣6|+|﹣7|+|+8|+|+15| =18+9+17+14+12+5+6+8+7+15=111.∵每千米耗油0.22升,∴总耗油为111×0.22=24.42升.答:这次养护小组的汽车共耗油24.42升.。

2015年七年级上册期中数学试卷及答案

2015年七年级上册期中数学试卷及答案

七年级第一学期数学期中考试 2015.11 一、选择题(每小题2分,共20分)1.-3的绝对值 ( ▲ ) A. -3 B. 31-C. 3D. 312.下列各式最符合代数式书写规范的是 ( ▲ ) A .n 212B .a bC .13-x 个D .3⨯a3.下列各式中,正确的是 ( ▲ )A.y x y x y x 2222-=-B.ab b a 532=+ C .437=-ab ab D .523a a a =+4.用代数式表示“m 的2倍与n 平方的差”,正确的是 ( ▲ )A . 2)2(n m -B .2)(2n m -C . 22n m -D . 2)2(n m -5.下列各组代数式中,不是同类项的一组是( ▲ ) A .5x 2y 和−yx 2 B .−32和3 C .x 2y 和2xy 2D .3xy 和− xy 26. 已知22a b -=,则4+2a-4b 的值是 ( ▲ )A .0B .2C .4D .87. 实数a 、b 在数轴上的位置如图所示,则化简a b a --的结果为( ▲ )A 2a+b B.b - C. b D. b-2a 8.如图,从边长为(a +4)的正方形纸片中剪去一个边长为(a +1)的正方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为 --------------------------------------------( ▲ )A .2a +5B .2a +8C .2a +3D .2a +29.现有四种说法:①a -表示负数; ②若x x -=,则x <0; ③几个有理数相乘,当负因数有奇数个时,积为负; ④y x 22103⨯是5次单项式;其中正确个数 ( ▲ )A .3个B .2个C .1个D .0个10.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24, 第2次输出的结果为12,……第2013次输出的结果为 ( ▲ )A . 3B . 6C . 4D .1二、填空题(每空2分,共计26分) 11.52-的倒数是 ▲ ,相反数是 ▲ . 12.钓鱼岛是中国领土一部分.钓鱼诸岛总面积约5平方公里,岛屿周围的海域面积约170000平方公里.170000用科学计数法表示为 ▲ . 13.用“>”或“<”号填空:-34 ▲ - 45.14. 到原点距离小于4的非负整数点有 ▲ 个. 15.代数式— 2a 3bc 25系数为 ▲ ;多项式23322xy x y -+是 ▲ 次三项式,最高次项为▲ ; 16.数轴上有A 、B 两点,A 、B 两点间的距离为3,其中点A 表示数-1,则点B 表示的数是 ▲ .17.若2|2|(3)0x y -++=,则2014()x y +=______▲_____18.如果方程3x a-2+8=0是关于x 的一元一次方程,则a = ▲ ; 19.若关于a 、b 的多项式(a 2+2a b -b 2)-(a 2+mab +2b 2) 中不含ab 项,则m = ▲ . 20.一动点P 从数轴上的原点出发,按下列规则运动:(1)沿数轴的正方向先前进5个单位,然后后退3个单位,如此反复进行;(2)已知点P 每秒只能..前进或后退.....1.个单位....设x n 表示第n 秒点P 在数轴上的位置所对应的数,则x 2015为__________▲___________. 三:解答题 21.(本题共4小题,每小题3分,共12分) ⑴ )9()11()4()3(--+--+- ⑵ 8―23÷(―4)×(―7+5)⑶(12-59+712)×(-36) ⑷ 2611522⎛⎫---+⨯- ⎪⎝⎭22. 化简(本题共2小题,每小题3分,共6分)⑴543a b a b --+ ⑵ 4a 3-(7ab -1)+2(3ab -2a 3) 23.(本题4分)把下列各数分别填入相应的集合里88.1,2012,14.3,722,0,34,4+---,121121112.1-……,2π (1)正数集合:{ …};(2)负数集合:{ …}; (3)整数集合:{ …}; (4)无理数集合:{ …}.24.(本题7分)(1)先化简再求值:求)2()(22222xy y x xy y x +-+的值,其中2,2=-=y x . (2)已知A 21x ax =+-,B 2241bx x =--,且多项式2A B +的值与字母x 的取值无关,求,a b 的值.25.(本题5分) “囧”(jiong )是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y . (1)用含有x 、y 的代数式表示右图中“囧”的面积; (2)当421==x y 时,求此时“囧”的面积.26.(本题7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边.正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2.方法一: ▲ ; 方法二: ▲ ; (2)观察图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系;(3)利用(...2.)的结论....计算992+198+1的值.(1)这天仓库的原料比原来增加了还是减少?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适. 例:若某户月用电量400度,则需交电费为210×0.52+(350—210)×(0.52+0.05)+(400—350)×(0.52+0.30)=230(元).(1)依此请你计算:小华家5月份的用电量为340度,请你求出小华家5月份的电费为_______元; (2)依此请你回答:若小华家5月份的的用电量为x 度(210350x ≤≤),则小华家该月电费为_______________元(用x 的代数式表示);(3)依此请你回答:由于今年遭受前所未有的酷热,小华家的空调一直不停的运行,导致8月份的电量大幅飙升,若8月份的用电量x 度(350x >),则8月份的电费是_______________元.(用x 的代数式表示)①七年级第一学期数学期中考试答题纸 2015.11一、 选择题(每题2分,共20分)二、 填空题(每空2分,共26分)11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 三、 解答题21.(本题共4小题,每小题3分,共12分) ⑴ )9()11()4()3(--+--+- ⑵ 8―23÷(―4)×(―7+5)⑶(12-59+712)×(-36) ⑷ 2611522⎛⎫---+⨯- ⎪⎝⎭22. 化简(本题共2小题,每小题3分,共6分)⑴543a b a b --+ ⑵ 4a 3-(7ab -1)+2(3ab -2a 3) 23.(本题4分)把下列各数分别填入相应的集合里88.1,2012,14.3,722,0,34,4+---,121121112.1-……,2π (1)正数集合:{ …};(2)负数集合:{ …}; (3)整数集合:{ …}; (4)无理数集合:{ …}.24.(本题7分)(1)先化简再求值:求)2()(22222xy y x xy y x +-+的值,其中2,2=-=y x . (2)已知A 21x ax =+-,B 2241bx x =--,且多项式2A B +的值与字母x 的取值无关,求,a b的值.25.(本题5分) “囧”(jiong )是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y . (1)用含有x 、y 的代数式表示右图中“囧”的面积; (2)当421==x y 时,求此时“囧”的面积.26.(本题7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边.正方形的边长分别是a 、b .……………………………………………………………装……………订……………线…………………………………………………………(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积:方法一: ; 方法二: ; (2)观察图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系;(3)利用(...2.)的结论....计算992+198+1的值.(1)这天仓库的原料比原来增加了还是减少?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适. ——350)×(0.52+0.30)=230(元).(1)依此请你计算:小华家5月份的用电量为340度,请你求出小华家5月份的电费为_______元; (2)依此请你回答:若小华家5月份的的用电量为x 度(210350x ≤≤),则小华家该月电费为_______________元(用x 的代数式表示);(3)依此请你回答:由于今年遭受前所未有的酷热,小华家的空调一直不停的运行,导致8月份的电量大幅飙升,若8月份的用电量x 度(350x >),则8月份的电费是_______________元.(用x 的代数式表示)①。

[精品]2015-2016学年河南省七年级(上)数学期中试卷及参考答案

[精品]2015-2016学年河南省七年级(上)数学期中试卷及参考答案

2015-2016学年河南省七年级(上)期中数学试卷一、选择题(每小题3分,共24分你)1.(3分)的倒数是()A.﹣3 B.C.3 D.2.(3分)甲乙丙三地海拔高度分别为20米,﹣15米,﹣10米,那么最高的地方比最低的地方高()A.10米B.25米C.35米D.5米3.(3分)现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.4.(3分)下列各组数中,数值相等的是()A.32和23B.﹣|23|和﹣|﹣2|3C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×225.(3分)下列说法中正确的是()A.7x2、﹣mn、0、a四个式子中有三个是单项式B.单项式2πx3y的系数是2C.式子x2y是三次二项式D.﹣和9y3x2是同类项6.(3分)计算(﹣2)10+(﹣2)11所得的结果是()A.210B.﹣1 C.﹣2 D.﹣2107.(3分)若7x3y2和﹣11x3m y2的和是单项式,则式子12m﹣24的值是()A.﹣3 B.﹣4 C.﹣5 D.﹣128.(3分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为.10.(3分)比较下列两对数的大小:﹣﹣.﹣(﹣)﹣|﹣|11.(3分)一批零件共m个,乙先加工n个零件后(m>n),余下的任务由甲再做3天完成,则甲平均每天加工的零件数用代数式表示为.12.(3分)代数式x2+2x+7的值是6,则代数式的值是.13.(3分)a2﹣ab+b2=a2﹣(),2x﹣3(y﹣z)=.14.(3分)已知|x|=4,|y|=,且xy<0,则的值等于.15.(3分)用四舍五入法,将6.5047精确到0.01,6.5047≈.三、解答题(本大题共9小题,满分75分)16.(20分)计算:(1)(﹣3.8)﹣(﹣2.2)﹣1.8+(﹣2.7)(2)(3)﹣12﹣[2﹣(﹣3)2]+(﹣1)0(4)﹣22÷(﹣)2.17.(10分)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)18.(6分)先化简再求值:(mn+3m2)﹣2n2﹣5mn﹣2(m2﹣2mn),其中m=1,n=﹣2.19.(6分)已知A=x2y﹣7xy2+2,B=﹣2x2y+4xy2﹣1,求2A+B.20.(6分)有理数a、b、c的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.21.(6分)有20筐苹果,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如下:(1)20筐苹果中,最重的一筐比最轻的一筐要重多少千克?(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若苹果每千克售价5元,则出售这20筐白菜可卖多少元?22.(7分)如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数;当t=3时,OP=.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?23.(7分)某游泳馆普通票价20元/张,暑期为了促销,新推出了两种优惠卡:A卡:售价300元/张,每次凭卡另收5元;B卡:售价150元/张,每次凭卡另收10元.(1)若暑假游泳x次,请你分别写出普通票正常出售、办A卡、办B卡三种方式所需总费用;(2)小明假期打算游泳健身,估计游泳次数为40次,你认为采用哪种方式较为合算?24.(7分)观察如图有※组成的图案和下面的算式,解答问题:1=1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+29=;(2)请猜想1+3+5+7+9+…+(2n﹣1)=;(3)请用上述规律计算:41+43+45+…+97+99.2015-2016学年河南省七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分你)1.(3分)的倒数是()A.﹣3 B.C.3 D.【解答】解:根据题意得:﹣×(﹣3)=1,可得﹣的倒数为﹣3.故选:A.2.(3分)甲乙丙三地海拔高度分别为20米,﹣15米,﹣10米,那么最高的地方比最低的地方高()A.10米B.25米C.35米D.5米【解答】解:最高的是甲地,最低的是乙地.20﹣(﹣15)=35米.故选:C.3.(3分)现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.【解答】解:※3==,故选:A.4.(3分)下列各组数中,数值相等的是()A.32和23B.﹣|23|和﹣|﹣2|3C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×22【解答】解:A、32=9,23=8,不相等,故错误;B、﹣|23|=﹣8,﹣|﹣2|3=﹣8,相等,正确;C、﹣32=﹣9,(﹣3)2=9,不相等,故错误;D、﹣(3×2)2=﹣36,﹣3×22=﹣12,不相等,故错误;故选:B.5.(3分)下列说法中正确的是()A.7x2、﹣mn、0、a四个式子中有三个是单项式B.单项式2πx3y的系数是2C.式子x2y是三次二项式D.﹣和9y3x2是同类项【解答】解:A、7x2、﹣mn、0、a四个式子中有四个是单项式,故此选项错误;B、单项式2πx3y的系数是:2π,故此选项错误;C、式子x2y不是多项式,故此选项错误;D、﹣和9y3x2是同类项,正确.故选:D.6.(3分)计算(﹣2)10+(﹣2)11所得的结果是()A.210B.﹣1 C.﹣2 D.﹣210【解答】解:(﹣2)10+(﹣2)11=(﹣2)10×(1﹣2)=210×(﹣1)=﹣210故选:D.7.(3分)若7x3y2和﹣11x3m y2的和是单项式,则式子12m﹣24的值是()A.﹣3 B.﹣4 C.﹣5 D.﹣12【解答】解:由题意得,7x3y2和﹣11x3m y2是同类项,则3m=3,解得:m=1,则12m﹣24=12﹣24=﹣12.故选:D.8.(3分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72【解答】解:第①个图形一共有2个五角星,第②个图形一共有:2+(3×2)=8个五角星,第③个图形一共有8+(5×2)=18个五角星,…第n个图形一共有:1×2+3×2+5×2+7×2+…+2(2n﹣1)=2[1+3+5+…+(2n﹣1)],=[1+(2n﹣1)]×n=2n2,则第(6)个图形一共有:2×62=72个五角星;故选:D.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为5×1010.【解答】解:500亿=5×1010.故答案为:5×1010.10.(3分)比较下列两对数的大小:﹣>﹣.﹣(﹣)>﹣|﹣|【解答】解:,,所以可得:﹣>﹣;﹣(﹣)=>﹣|﹣|=﹣,故答案为:>;>11.(3分)一批零件共m个,乙先加工n个零件后(m>n),余下的任务由甲再做3天完成,则甲平均每天加工的零件数用代数式表示为.【解答】解:(m﹣n)÷3=个答:甲平均每天加工零件个.故答案为:.12.(3分)代数式x2+2x+7的值是6,则代数式的值是﹣5.【解答】解:∵x2+2x+7=6,即x2+2x=﹣1,∴原式=(x2+2x)﹣5=﹣5.故答案为:﹣513.(3分)a2﹣ab+b2=a2﹣(ab﹣b2),2x﹣3(y﹣z)=2x﹣3y+3z.【解答】解:a2﹣ab+b2=a2﹣(ab﹣b2),2x﹣3(y﹣z)=2x﹣3y+3z.故答案为:ab﹣b2,2x﹣3y+3z.14.(3分)已知|x|=4,|y|=,且xy<0,则的值等于﹣8.【解答】解:∵|x|=4,|y|=,∴x=±4,y=±;又∵xy<0,∴x=4,y=﹣或x=﹣4,y=,则=﹣8.故答案为:﹣8.15.(3分)用四舍五入法,将6.5047精确到0.01,6.5047≈ 6.50.【解答】解:6.5047≈6.50(精确到0.01).故答案为6.50.三、解答题(本大题共9小题,满分75分)16.(20分)计算:(1)(﹣3.8)﹣(﹣2.2)﹣1.8+(﹣2.7)(2)(3)﹣12﹣[2﹣(﹣3)2]+(﹣1)0(4)﹣22÷(﹣)2.【解答】解:(1)(﹣3.8)﹣(﹣2.2)﹣1.8+(﹣2.7)=﹣3.8+2.2﹣1.8﹣2.7=﹣8.3+2.2=﹣6.1;(2)=×16﹣×﹣×=14﹣1﹣=12;(3)﹣12﹣[2﹣(﹣3)2]+(﹣1)0=﹣1﹣[2﹣9]+1=﹣1﹣(﹣7)+1=﹣1++1=;(4)﹣22÷(﹣)2.=﹣4÷=﹣4.17.(10分)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.18.(6分)先化简再求值:(mn+3m2)﹣2n2﹣5mn﹣2(m2﹣2mn),其中m=1,n=﹣2.【解答】解:原式=mn+3m2﹣2n2﹣5mn﹣2m2+4mn=m2﹣2n2,当m=1,n=﹣2时,原式=1﹣8=﹣7.19.(6分)已知A=x2y﹣7xy2+2,B=﹣2x2y+4xy2﹣1,求2A+B.【解答】解:2A+B=2(x2y﹣7xy2+2)+(﹣2x2y+4xy2﹣1)=2x2y﹣14xy2+4﹣2x2y+4xy2﹣1=﹣10xy2+3.20.(6分)有理数a、b、c的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.【解答】解:由数轴可得a<0<c<b,所以|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)=2b﹣a﹣b+a=b.21.(6分)有20筐苹果,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如下:(1)20筐苹果中,最重的一筐比最轻的一筐要重多少千克?(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若苹果每千克售价5元,则出售这20筐白菜可卖多少元?【解答】解:(1)2.5﹣(﹣3)=5.5(千克).答:20筐白菜中,最重的一筐比最轻的一筐要重5.5千克;(2)﹣3+(﹣2)×4+(﹣1.5)×4+0×4+1×3+2.5×4=﹣4(千克).答:与标准质量比较,20筐白菜总计不足4千克;(3)(30×20﹣4)×5=2980(元).答:若白菜每千克售价5元,则出售这20筐白菜可卖2980元.22.(7分)如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数﹣4;当t=3时,OP=18.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?【解答】解:(1)数轴上点B所表示的数6﹣10=﹣4;当t=3时,OP=3t=18;(2)由题意得:8t﹣6t=4解得:t=2答:若点P,R同时出发,点R运动2秒时追上点P.23.(7分)某游泳馆普通票价20元/张,暑期为了促销,新推出了两种优惠卡:A卡:售价300元/张,每次凭卡另收5元;B卡:售价150元/张,每次凭卡另收10元.(1)若暑假游泳x次,请你分别写出普通票正常出售、办A卡、办B卡三种方式所需总费用;(2)小明假期打算游泳健身,估计游泳次数为40次,你认为采用哪种方式较为合算?【解答】解:(1)普通票需总费用:20x元;办A卡所需总费用:300+5x元;办B卡所需总费用:150+10x元;(2)当x=40时,普通票需总费用:20×40=800元;办A卡所需总费用:300+5×40=500元;办B卡所需总费用:150+10×40=550元;500<550<800,所以办A卡较为合算.24.(7分)观察如图有※组成的图案和下面的算式,解答问题:1=1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+29=152;(2)请猜想1+3+5+7+9+…+(2n﹣1)=n2;(3)请用上述规律计算:41+43+45+…+97+99.【解答】解:(1)∵1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52∴1+3+5+7+9+…+29=152=100;(2)1+3+5+7+9+…+(2n﹣1)=n2;(3)41+43+45+…+97+99=(1+3+5+…+97+99)﹣(1+3+5+…+37+39)=502﹣202=2500﹣400=2100.故答案为:152;n2.。

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A 2B 3C 6D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π=,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分)(1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=- (3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+23+;35-+-)()35-+-;05+-()5+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分) 1.对任意有理数,,,a b c d ,规定一种新运算:bc ad dc b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>== (2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max 100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。

2015年秋人教版七年级上期中数学试卷及答案

2015年秋人教版七年级上期中数学试卷及答案
A. -2 B. 0.5 C. 0 D. -
10
8.下列各对数中,数值相等的是( )
A. 32 与 22 B. 23 与 (2)3
C. 32 与 (3) 2 D. 3 22 与 (3 2) 2
9. 下 列 各 组 中 , 不 是 同 类 项 的 是 ( )
C 如果两个数的绝对值相等,那么这两个数相等 D. 互为相反数的两个数的绝对值相等
12.如图,数轴上两点 A,B 表示的有理数分别是 a 和 b,那么下列结论正确的是
( ).
A. ab>0 B. b-a>0
a A 0 B
1
17.化简: 4xy 3( xy 2x) (6 分)
3
18.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是-13℃,小红此时在
山脚测得温度是 5℃。已知该地区高度每增加 1000 米,气温大约降低 6℃。问这座山
C. 绝 对 值 等 于 3 的 数 是 -3 D. 绝 对 值 不 大 于 2 的 数 是 ± 2, ± 1, 0
14. 已知 m 3 (n 2)2 0 ,则 m 2n 的值为( )
A. 4 B. 1 C. 0 D. 4
1
7.在-2 、0.5、 0 、- 这四个有理数中,最小的数是( )
10
1
C. >0 D. ab2>0 (第 12 题)
b
13. 下 列 说 法 中 正 确 的 是 ( )
A. 一 个 数 的 绝 对 值 一 定 大 于 这 个 数 的 相 反 数 B. 若 |a|=-a, 则 a≤ 0
C. 7ab-3ab=4 D. a 3 a 2 a 5

[精品]2014-2015学年河南省周口市沈丘外语中学七年级(上)数学期中试卷及参考答案

[精品]2014-2015学年河南省周口市沈丘外语中学七年级(上)数学期中试卷及参考答案

2014-2015学年河南省周口市沈丘外语中学七年级(上)期中数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)的倒数是()A.B.C.D.2.(3分)我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A.0.21×108B.2.1×106C.2.1×107D.21×1063.(3分)下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是34.(3分)如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.淮D.南5.(3分)如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条小道.这些同学这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.两点之间直线最短6.(3分)下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1 D.2m2n﹣2mn2=07.(3分)下面的说法正确的是()A.相等的角是对顶角B.同旁内角互补C.若|a|=﹣a,则a<0D.垂直于同一直线的两条直线平行8.(3分)如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A. B.C.D.二、填空题(本题共7个小题,每小题3分,共21分)9.(3分)如果“节约10%”记作+10%,那么“浪费6%”记作:.10.(3分)将多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:.11.(3分)已知∠1与∠2互补,若∠1=99°40′,则∠2=.12.(3分)如图,将一副30°和45°的直角三角板的两个直角叠放在一起,使直角顶点重合于点O,若∠AOD=70°,则∠BOC=°.13.(3分)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有人(用含有m的代数式表示)14.(3分)每一个多边形都可以按如图的方法分割成若干个三角形,那么按这种方式,n边形能分割成个三角形.15.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=4cm,AB=13cm,那么BC=cm.三、解答题(本大题共75分)16.(18分)计算:(1)(+﹣)×(﹣12)(2)﹣12014﹣6÷(﹣2)×|﹣|(3)[2﹣(1﹣0.5×)]×[7+(﹣1)3].17.(6分)合并同类项:5x2﹣7xy+3x2﹣(4x2﹣6xy)18.(8分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.19.(8分)当代数式x3+3x+1的值为0时,求代数式2x3+6x﹣3的值.20.(7分)如图,点A、B、C都在方格图的格点上,画图并回答问题:(1)画射线AC,画直线AB;(2)过点C画直线AB的垂线,垂足为D;(3)点C到直线AB的距离是线段的长度.21.(8分)如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F ()∴AD∥BF(),∴∠D=∠DCF()∵∠B=∠D ()∴∠B=∠DCF ()∴AB∥DC()22.(10分)从2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户2013年7月份的用水量为35吨,按三级计算则应交水费为:20×1.65+10×2.48+(35﹣20﹣10)×3.30=74.3(元)(1)如果小白家2013年6月份的用水量为10吨,则需缴交水费元;(2)如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)23.(10分)如图,点A、O、B在同一直线上,OD是∠AOC的平分线,OD⊥OE,且∠AOC=120°.(1)试求∠BOE的度数;(2)直接写出图中所有与∠AOD互余的角.2014-2015学年河南省周口市沈丘外语中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)的倒数是()A.B.C.D.【解答】解:﹣1=﹣,∵(﹣)×(﹣)=1,∴﹣1的倒数是﹣.故选:C.2.(3分)我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A.0.21×108B.2.1×106C.2.1×107D.21×106【解答】解:2 100 000=2.1×106.故选:B.3.(3分)下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是3【解答】解:单项式﹣的系数是:﹣,次数是3.故选:D.4.(3分)如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.淮D.南【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“美”与“淮”是相对面,“建”与“南”是相对面.故选:D.5.(3分)如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条小道.这些同学这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.两点之间直线最短【解答】解:∵两点之间线段最短,∴同学为了省时间图方便,在花圃中踩出了一条小道.故选:B.6.(3分)下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1 D.2m2n﹣2mn2=0【解答】解:A、2a2+3a2=5a2,正确;B、2a2+3a2=5a2,错误;C、4xy﹣3xy=xy,错误;D、原式不能合并,错误,故选:A.7.(3分)下面的说法正确的是()A.相等的角是对顶角B.同旁内角互补C.若|a|=﹣a,则a<0D.垂直于同一直线的两条直线平行【解答】解:A、相等的角是对顶角,说法错误;B、同旁内角互补,说法错误;C、若|a|=﹣a,则a<0,说法错误;D、垂直于同一直线的两条直线平行,说法正确;故选:D.8.(3分)如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A. B.C.D.【解答】解:根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选:B.二、填空题(本题共7个小题,每小题3分,共21分)9.(3分)如果“节约10%”记作+10%,那么“浪费6%”记作:﹣6%.【解答】解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为:﹣6%.10.(3分)将多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:﹣3x2﹣6y+2xy2+5x3y3.【解答】解:多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:﹣3x2﹣6y+2xy2+5x3y3;故答案为:﹣3x2﹣6y+2xy2+5x3y3.11.(3分)已知∠1与∠2互补,若∠1=99°40′,则∠2=80°20′.【解答】解:∵∠1与∠2互补,∠1=99°40′,∴∠2=180°﹣99°40′=80°20′.故答案为:80°20′.12.(3分)如图,将一副30°和45°的直角三角板的两个直角叠放在一起,使直角顶点重合于点O,若∠AOD=70°,则∠BOC=70°.【解答】解:由题意得,∠AOC=∠BOD=90°,∴∠AOD+∠DOC=∠DOC+∠BOC=90°,∴∠AOD=∠BOC,∵∠AOD=70°,∴∠BOC=70°.故答案为:70.13.(3分)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有(2m+3)人(用含有m的代数式表示)【解答】解:∵设会弹古筝的有m人,则会弹钢琴的人数为:m+10,∴该班同学共有:m+m+10﹣7=2m+3,故答案为:(2m+3).14.(3分)每一个多边形都可以按如图的方法分割成若干个三角形,那么按这种方式,n边形能分割成(n﹣2)个三角形.【解答】解:按如图所示的方法,n边形能分割成(n﹣2)个三角形.故答案为:(n﹣2).15.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=4cm,AB=13cm,那么BC=5cm.【解答】解:点D是AC的中点,如果CD=4cm,AC=2CD=2×4=8(cm),CD=AB﹣AC=13﹣8=5(cm),故答案为;5.三、解答题(本大题共75分)16.(18分)计算:(1)(+﹣)×(﹣12)(2)﹣12014﹣6÷(﹣2)×|﹣|(3)[2﹣(1﹣0.5×)]×[7+(﹣1)3].【解答】解:(1)原式=﹣3﹣2+6=1;(2)原式=﹣1+6××=﹣1+1=0;(3)原式=(2﹣)×6=12﹣4=8.17.(6分)合并同类项:5x2﹣7xy+3x2﹣(4x2﹣6xy)【解答】原式=5x2﹣7xy+3x2﹣4x2+6xy=(5x2+3x2﹣4x2)+(﹣7xy+6xy)=4x2﹣xy.18.(8分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.19.(8分)当代数式x3+3x+1的值为0时,求代数式2x3+6x﹣3的值.【解答】解:∵x3+3x+1=0,∴x3+3x=﹣1.∴原式=2(x3+3x)﹣3=﹣2﹣3=﹣5.20.(7分)如图,点A、B、C都在方格图的格点上,画图并回答问题:(1)画射线AC,画直线AB;(2)过点C画直线AB的垂线,垂足为D;(3)点C到直线AB的距离是线段CD的长度.【解答】解:(1)如图所示:(2)如图所示:(3)点C到直线AB的距离是线段CD的长度.故答案为:CD.21.(8分)如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F (已知)∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等)∵∠B=∠D (已知)∴∠B=∠DCF (等量代换)∴AB∥DC(同位角相等,两直线平行)【解答】解:∠DAF=∠F (已知),∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等),∵∠B=∠D (已知),∴∠B=∠DCF (等量代换),∴AB∥DC(同位角相等,两直线平行).22.(10分)从2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户2013年7月份的用水量为35吨,按三级计算则应交水费为:20×1.65+10×2.48+(35﹣20﹣10)×3.30=74.3(元)(1)如果小白家2013年6月份的用水量为10吨,则需缴交水费16.5元;(2)如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)【解答】解:(1)根据题意得:1.65×10=16.5(元),答:需缴交水费16.5元;故答案为:16.5;(2)根据题意得:20×1.65+(a﹣20)×2.48=33+2.48a﹣49.6=2.48a﹣16.6(元).答:小明家该月应缴交水费(2.48a﹣16.6)元.23.(10分)如图,点A、O、B在同一直线上,OD是∠AOC的平分线,OD⊥OE,且∠AOC=120°.(1)试求∠BOE的度数;(2)直接写出图中所有与∠AOD互余的角.【解答】解:(1)∵OD平分∠AOC,∠AOC=120°,∴∠AOD=∠COD=∠AOC=60°,∵OD⊥OE,∴∠DOE=90°,∴∠AOE=∠AOD+∠DOE=150°,∵∠AOE+∠EOB=180°,∴∠BOE=30°;(2)∠COE与∠BOE.。

河南省沈丘外语中学七年级数学上学期第一次月考试题 华东师大版

河南省沈丘外语中学七年级数学上学期第一次月考试题 华东师大版

河南沈丘外语中学 2012~2013学年度第一学期第一次月考 七年级数学试卷(1-2章) 一 、细心选一选(每题3分,共30分) 1.下列四个数中,在-2到0之间的数是 ( ) A .-1 B . 1 C .-3 D .3 2.图中所画的数轴,正确的是 ( ) -1-2A 21543B -1210C 210D 3、超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( ) kg A. 0.2 B. 0.4 C. 25.2 D. 50.4 4、下列各对数中互为相反数的是 ( ) A .-()+3和 +()-3 B .-()-3和+()-3 C .-()-3和 +||―3 D .+()-3和―||―3 5.一个数是8,另一个数比8的相反数小2,这两个数的和是 ( ) A 、+2 B 、14 C 、-2 D 、18 6下列说法错误的( ) A.相反数等于本身的数只有0 B .平方后等于本身的数只有0、1 C .立方后等于本身的数是1,0,1- D .绝对值等于本身的数只有1 7在-||―2,||―()-2,-()+2,⎪⎭⎫ ⎝⎛--21,+()-2,2)3(--,22-中,负数有 ( ) A .2个 B .3个 C .4个 D .5个 8. 计算)12()4131211(-⨯++-,运用哪种运算律可避免通分( ) (A)加法交换律 (B) 加法结合律(C)乘法交换律 (D) 分配律9填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )…………………密……………封……………线……………内……………不……………准……………答……………题……………………班 级____________ 姓 名____________ 考 号_____A .74B .66C .52D .3810、如果两个数的积为负数,和也为负数,那么这两个数( ) A.都是负数 B .都是正数C.一正一负,且负数的绝对值大D. 一正一负,且正数的绝对值大 二. 用心填一填:(共30分,每题3分)11、若公元2006年记作+2006年,那么—20年表示 . 12.在数轴上到-3的距离为3个单位长度的点表示的数是 . 13、在0、-2、1、12这四个数中,最大数与最小数的和.........是 . 14、把)1()31()51()54()32(+-+--+--+写成省略家好喝的形式为 .15、如果a b 、互为倒数,c d 、互为相反数,那么5d ab c -+= 。

河南省周口市沈丘外语中学2015-2016学年七年级数学上学期第一次月考试题(含解析) 新人教版

河南省周口市沈丘外语中学2015-2016学年七年级数学上学期第一次月考试题(含解析) 新人教版

河南省周口市沈丘外语中学2015-2016学年七年级数学上学期第一次月考试题一、细心选一选1.下列运算结果等于1的是()A.(﹣1)+(﹣1)B.(﹣1)﹣(﹣1) C.(﹣2)×(﹣2) D.(﹣3)÷(﹣3)2.图中所画的数轴,正确的是()A.B.C.D.3.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数4.下列各组数中,互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣(﹣7)与7C.﹣|﹣1|与﹣(﹣)D.﹣(﹣)与+|﹣0.01|5.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是()A.0 B.﹣1 C.1 D.26.下列说法:①如果两个数的和为1,则这两个数互为倒数;②如果两个数积为0,则至少有一个数为0;③绝对值是本身的有理数只有0;④倒数是本身的数是﹣1,0,1.其中错误的个数是()A.0个B.1个C.2个D.3个7.在下列各数中:﹣,(﹣4)2,+(﹣3),﹣52,﹣|﹣2|,(﹣1)2016,0.其中是负数的有()个.A.2个B.3个C.4个D.5个8.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的有()A.1个B.2个C.3个D.4个9.(﹣0.125)2015×82015+(﹣1)2015+(﹣1)2016的值是()A.﹣2 B.﹣1 C.0 D.110.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A .a+b >0B .a ﹣b <0C .ab <0D .|a|>|b|二.用心填一填:11.若+4表示“4年后”,则“﹣8”表示 .12.的相反数是 .13.在数轴上到﹣2所表示的点的距离为3个单位长度的点表示的数是 .14.写出一个x 值,使|x ﹣2|=x ﹣2,你写出的x 值为 .15.把(﹣1)﹣(﹣2)+(﹣)﹣(+)+(+3)写成省略加号和的形式为 .16.有理数a 在数轴上对应的点如图所示,则a ,﹣a ,1的大小关系 .17.比较大小:﹣ ﹣18.绝对值不小于3又不大于5的所有整数之和为 .19.如图,是一个简单的数值运算程序,当输入x 的值为﹣1时,则输出的数值为 .20.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空: × + =502.三、解答题:(共6大题,60分)21.将下列各数填在相应的集合里.﹣3.8,﹣20%,4.3,﹣|﹣|,(﹣2)2,0,﹣(﹣),﹣32整数集合:{ …};分数集合:{ …};正数集合:{ …};负数集合:{ …}.在以上已知的数据中,最大的有理数是,最小的有理数是.22.先化简,再在数轴上表示下列各数,并用“<”号连接.50%,﹣(﹣3),0,﹣12,﹣|﹣3.5|,﹣(+2)23.直接写出结果(1)﹣﹣= ;(2)5.4﹣(﹣3.6)= ;(3)﹣=(4)÷(﹣5)= ;(5)(﹣8)×(﹣0.5)= ;(6)(﹣1)2014﹣|﹣1|= .24.计算(1)﹣20﹣(+14)+(﹣18)﹣(﹣13);(2)﹣3﹣2.4﹣(﹣)+(﹣2);(3)18﹣6÷(﹣)×(﹣);(4)﹣48÷(﹣2)3×(﹣1)2016﹣22(5)[2﹣5×(﹣)2]÷(﹣);(6)﹣32﹣×[(﹣5)2×(﹣)﹣240÷(﹣4)×].25.(1)如果|a|=6,|b|=5且a<b,求b﹣a的值;(2)已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则+(a+b)m﹣|m|的值是多少?(3)已知|a﹣2|+(+b)2=0,求ab的值.26.“五•一”黄金周期期间,遮阳山风景区在7天假期中每天游客的人数变化如下表(正数表示比日,最少的是日,它们相差万人;(2)如果最多一天有游客3万人,那么9月30日游客有万人.27.如图,奥运福娃在5×5的方格1.下列运算结果等于1的是()A.(﹣1)+(﹣1)B.(﹣1)﹣(﹣1) C.(﹣2)×(﹣2) D.(﹣3)÷(﹣3)【考点】有理数的除法;有理数的加法;有理数的减法;有理数的乘法.【分析】根据同号两数相加的法则、减法法则、同号两数相乘的法则、同号两数相除的法则分别进行计算,即可得出答案.【解答】解:∵(﹣1)+(﹣1)=﹣2(﹣1)﹣(﹣1)=0;(﹣2)×(﹣2)=4;(﹣3)÷(﹣3)=1,∴运算结果等于1的是D.故选D.【点评】此题考查了有理数的加、减、乘、除运算,熟练掌握运算法则是解本题的关键.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选 D.【点评】此题考查数轴的画法,属基础题.3.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数【考点】有理数.【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).【解答】解:A、整数包括正整数、0、负整数,负整数小于0,且没有最小值,故A错误;B、有理数没有最大值,故B错误;C、整数包括正整数、0、负整数,故C错误;D、正确.故选D.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.4.下列各组数中,互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣(﹣7)与7C.﹣|﹣1|与﹣(﹣)D.﹣(﹣)与+|﹣0.01|【考点】相反数.【分析】根据相反数的定义和绝对值的性质对各选项化简,然后进行判断即可.【解答】解:A 、﹣(+7)=﹣7,+(﹣7)=﹣7,不是互为相反数,故本选项错误;B 、﹣(﹣7)=7,与7相等,不是互为相反数,故本选项错误;C 、﹣|﹣1|=﹣,﹣(﹣)=,是互为相反数,故本选项正确;D 、﹣(﹣)=,+|﹣0.01|=0.01,相等,不是互为相反数,故本选项错误.故选C .【点评】本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念与性质是解题的关键.5.如果|a ﹣1|+(b+2)2=0,则(a+b )2015的值是( )A .0B .﹣1C .1D .2【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】利用绝对值和偶次方的性质求出a ,b 的值,再利用有理数的乘方运算法则求出即可.【解答】解:∵|a﹣1|+(b+2)2=0,∴a﹣1=0,b+2=0,解得:a=1,b=﹣2,则(a+b )2015=(﹣2+1)2015=﹣1.故选:B .【点评】此题主要考查了绝对值和偶次方的性质,得出a ,b 的值是解题关键.6.下列说法:①如果两个数的和为1,则这两个数互为倒数;②如果两个数积为0,则至少有一个数为0;③绝对值是本身的有理数只有0;④倒数是本身的数是﹣1,0,1.其中错误的个数是( )A .0个B .1个C .2个D .3个【考点】倒数;绝对值;有理数的乘法.【分析】根据绝对值的性质,相反数的定义,倒数的定义,有理数乘法的定义对各项分析判断即可得解.【解答】解:①如果两个数的积为1,则这两个数互为倒数,故本项错误;②相如果两个数积为0,则至少有一个数为0,正确;③绝对值等于其本身的有理数是零和正数,故本项错误;④倒数等于其本身的有理数是1和﹣1,故本项错误;错误的有①③④,共3个.故选D .【点评】本题考查了倒数的定义,有理数的乘法,相反数的定义,绝对值的性质,是基础概念题,熟记概念是解题的关键.7.在下列各数中:﹣,(﹣4)2,+(﹣3),﹣52,﹣|﹣2|,(﹣1)2016,0.其中是负数的有( )个.A .2个B .3个C .4个D .5个【考点】正数和负数.【分析】先把数化简,再确定负数的个数,即可解答.【解答】解:﹣,(﹣4)2=16,+(﹣3)=﹣3,﹣52,=﹣25,﹣|﹣2|=﹣2,(﹣1)2016=1,0.负数有:数中:﹣,+(﹣3),﹣52,﹣|﹣2|.共4个,故选:C.【点评】本题考查了正数和负数,解决本题的关键是先把各数进行化简.8.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的有()A.1个B.2个C.3个D.4个【考点】有理数的混合运算.【专题】计算题.【分析】直接根据有理数的运算法则进行各选项的判断即可得出答案.【解答】解:①0﹣(﹣5)=0+5=5,故错误;②(﹣3)+(﹣9)=﹣3﹣9=﹣12,故正确;③×(﹣)=﹣,故正确;④(﹣36)÷(﹣9)=36÷9=4,故错误;综上可得②③正确.故选B.【点评】本题考查有理数的混合运算,比较简单,注意在掌握有理数的运算法则细心运算.9.(﹣0.125)2015×82015+(﹣1)2015+(﹣1)2016的值是()A.﹣2 B.﹣1 C.0 D.1【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:原式=(﹣0.125×8)2015+(﹣1)2015[1+(﹣1)]=(﹣1)2015+(﹣1)×0=﹣1,故选:B.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方法则.10.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|【考点】数轴.【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【解答】解:由图可知,b<0<a,且|b|>|a|.A、b+a<0,此选项错误;B、a﹣b>0,此选项错误;C、ab<0,此选项正确;D、|b|>|a|,此选项错误.故选:C.【点评】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.二.用心填一填:11.若+4表示“4年后”,则“﹣8”表示8年前.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵+4表示“4年后”,∴“﹣8”表示8年前.故答案为:8年前.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.的相反数是.【考点】相反数.【分析】由a的相反数是﹣a,可知求一个数的相反数只需在它的前面添上负号.【解答】解:的相反数是﹣()=.【点评】要掌握相反数的概念.相反数的定义:只有符号相反的两个数互为相反数.13.在数轴上到﹣2所表示的点的距离为3个单位长度的点表示的数是﹣5或1 .【考点】数轴.【分析】注意考虑两种情况:要求的点在已知点的左侧或右侧【解答】解:根据绝对值的意义得:在数轴上到﹣2所表示的点的距离为3个单位长度的点表示的数是﹣2+3=1或﹣2﹣3=﹣5.故答案为:1或﹣5.【点评】此题主要考查了数轴的意义,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.14.写出一个x值,使|x﹣2|=x﹣2,你写出的x值为3(只要大于或等于2即可).【考点】绝对值.【专题】计算题.【分析】利用绝对值的代数意义判断即可.【解答】解:∵|x﹣2|=x﹣2,∴x﹣2≥0,即x≥2,则x的值为3(只要大于或等于2即可).故答案为:3(只要大于或等于2即可).【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.15.把(﹣1)﹣(﹣2)+(﹣)﹣(+)+(+3)写成省略加号和的形式为﹣1+2﹣﹣+3 .【考点】有理数的加减混合运算.【分析】根据去括号的法则省略括号和加号即可得出答案.【解答】解:把(﹣1)﹣(﹣2)+(﹣)﹣(+)+(+3)写成省略加号和的形式为﹣1+2﹣﹣+3.故答案为:﹣1+2﹣﹣+3.【点评】此题考查了有理数的加减混合运算,括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“﹣”号时,将括号连同它前边的“﹣”去掉,括号内各项都要变号.16.有理数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系a<1<﹣a .【考点】有理数大小比较;数轴.【分析】根据数轴上各点的位置进行解答即可.【解答】解:∵a在原点的左侧,∴a<0,∵a到原点的距离大于1到原点的距离,∴|a|>1,即﹣a>1,∴a<1<﹣a.故答案为:a<1<﹣a.【点评】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.17.比较大小:﹣>﹣【考点】有理数大小比较.【专题】计算题.【分析】负有理数:绝对值大的反而小,据此即可比较大小.【解答】解:∵|﹣|=,|﹣|=,∴<,∴﹣>﹣.【点评】本题考查了有理数比较大小的方法.法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.绝对值不小于3又不大于5的所有整数之和为0 .【考点】有理数的加法;绝对值.【专题】计算题.【分析】找出绝对值不小于3又不大于5的所有整数,求出之和即可.【解答】解:绝对值不小于3又不大于5的所有整数有﹣5,﹣4,﹣3,3,4,5,之和为0,故答案为:0【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.19.如图,是一个简单的数值运算程序,当输入x的值为﹣1时,则输出的数值为1 .【考点】代数式求值.【专题】图表型.【分析】由题意知,计算过程可以表示为:﹣3x﹣2,然后代入x的值计算.【解答】解:根据程序,计算过程可以表示为:﹣3x﹣2,∴当x=﹣1时,原式=3﹣2=1.故答案为:1.【点评】此类题一定要能正确表示出代数式,然后代入具体值计算.20.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:48 ×52 + 4 =502.【考点】规律型:数字的变化类.【分析】根据数字变化规律得出第n个算式为;n(n+4)+4=(n+2)2,进而得出答案.【解答】解:∵1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,∴第n个算式为;n(n+4)+4=(n+2)2,∴48×52+4=502.故答案为:48×52+4.【点评】此题主要考查了数字变化规律,根据数字变化得出数字规律是解题关键.三、解答题:(共6大题,60分)21.将下列各数填在相应的集合里.﹣3.8,﹣20%,4.3,﹣|﹣|,(﹣2)2,0,﹣(﹣),﹣32整数集合:{ …};分数集合:{ …};正数集合:{ …};负数集合:{ …}.在以上已知的数据中,最大的有理数是 4.3 ,最小的有理数是﹣32.【考点】有理数.【分析】有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数和负分数,根据以上内容判断即可.【解答】解:整数集合:{(﹣2)2,0,﹣32,…};分数集合:{﹣3.8,﹣20%,4.3,﹣|﹣|,﹣(﹣),…};正数集合:{ 4.3,(﹣2)2,﹣(﹣),…};负数集合:{﹣3.8,﹣20%,﹣|﹣|,﹣32,…}.在已知的数据中,最大的数是4.3,最小的数是﹣32.故答案为:4.3,﹣32.【点评】本题考查了有理数的定义和有理数的大小比较法则的应用,能理解有理数的定义是解此题的关键,注意:有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数和负分数.22.先化简,再在数轴上表示下列各数,并用“<”号连接.50%,﹣(﹣3),0,﹣12,﹣|﹣3.5|,﹣(+2)【考点】有理数大小比较;数轴.【分析】先把各数进行化简,再在数轴上表示出各数,从左到右用“<”连接起来即可.【解答】解:化简:50%=0.5﹣(﹣3)=3,﹣12=﹣1,﹣|﹣3.5|=﹣3.5,﹣(+2)=﹣2.在数轴上表示为:用“<”号连接为:﹣|﹣3.5|<﹣(+2)<﹣12<0<50%<﹣(﹣3).【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.23.直接写出结果(1)﹣﹣= ﹣1 ;(2)5.4﹣(﹣3.6)= 9 ;(3)﹣= ﹣(4)÷(﹣5)= ﹣;(5)(﹣8)×(﹣0.5)= 4 ;(6)(﹣1)2014﹣|﹣1|= 0 .【考点】有理数的混合运算.【分析】(1)(2)根据有理数的减法进行计算即可;(3)先通分,再把分子相加减即可;(4)根据有理数的除法法则进行计算即可;(5)根据有理数的乘法法则进行计算即可;(6)先根据乘方的法则及绝对值的性质计算出各数,再根据有理数的加减法则进行计算即可.【解答】解:(1)原式=﹣1.故答案为:﹣1;(2)原式=5.4+3.6=9.故答案为:9;(3)原式=﹣=﹣.故答案为:﹣;(4)原式=×(﹣)=﹣.故答案为:﹣;(5)原式=8×0.5=4.故答案为:4;(6)原式=1﹣1=0.故答案为:0.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.24.计算(1)﹣20﹣(+14)+(﹣18)﹣(﹣13);(2)﹣3﹣2.4﹣(﹣)+(﹣2);(3)18﹣6÷(﹣)×(﹣);(4)﹣48÷(﹣2)3×(﹣1)2016﹣22(5)[2﹣5×(﹣)2]÷(﹣);(6)﹣32﹣×[(﹣5)2×(﹣)﹣240÷(﹣4)×].【考点】有理数的混合运算.【分析】(1)(2)先化简,再分类计算;(3)先算乘除,再算减法;(4)先算乘方,再算乘除,最后算减法;(5)先算乘方,再算乘法,再算减法,最后算除法;(6)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=﹣20﹣14﹣18+13=﹣39;(2)原式=﹣﹣+﹣=﹣;(3)原式=18﹣6××=18﹣5=13;(4)原式=﹣48÷(﹣8)×1﹣4=6﹣4=2;(5)原式=[2﹣5×]÷(﹣)=÷(﹣)=﹣3;(6)原式=﹣9﹣×[25×(﹣)﹣240×(﹣)×].=﹣9﹣×(﹣15+15)=﹣9.【点评】此题考查有理数的混合运算,掌握运算顺序与计算方法,正确判定运算符号是解决问题的关键.25.(1)如果|a|=6,|b|=5且a<b,求b﹣a的值;(2)已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则+(a+b)m﹣|m|的值是多少?(3)已知|a﹣2|+(+b)2=0,求ab的值.【考点】代数式求值;相反数;非负数的性质:绝对值;倒数;非负数的性质:偶次方.【分析】(1)利用绝对值的性质分别得出a,b可能的值,进而得出答案;(2)直接利用相反数以及倒数的定义求出即可;(3)利用偶次方的性质以及绝对值的性质得出a,b的值进而求出答案.【解答】解:(1)由|a|=6,解得:a=±6,由|b|=5,解得:b=±5,∵a<b,∴①a=﹣6时,b=5,此时b﹣a=5﹣(﹣6)=5+6=11,②a=﹣6时,b=﹣5,此时b﹣a=﹣5﹣(﹣6)=﹣5+6=1,因此b﹣a的值为11或1;(2)∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵m的倒数等于它本身,∴m=±1,∴m=1时, +(a+b)m﹣|m|=1+0﹣1=0,m=﹣1时, +(a+b)m﹣|m|=﹣1+0﹣1=﹣2,因此+(a+b)m﹣|m|的值为0或﹣2;(3)∵|a﹣2|+(+b)2=0,∴a﹣2=0且+b=0,∴a=且b=﹣,∴ab=×(﹣)=﹣2,因此ab的值为﹣2.【点评】此题主要考查了代数式求值以及偶次方的性质以及倒数、相反数的定义等知识,正确掌握相关性质是解题关键.26.“五•一”黄金周期期间,遮阳山风景区在7天假期中每天游客的人数变化如下表(正数表示比)请判断七天内游客人数最多的是 3 日,最少的是7 日,它们相差 2.2 万人;(2)如果最多一天有游客3万人,那么9月30日游客有0.2 万人.【考点】有理数的加法.【专题】应用题;图表型.【分析】(1)分别计算出游客相对于4月30日的人数即可求解;(2)根据(1)的计算结果就可求得.【解答】解:(1)1日:+1.6;2日:1.6+0.8=+2.4;3日:+2.4+0.4=+2.8;4日:+2.8﹣0.4=+2.4;5日:+2.4﹣0.8=+1.6;6日:+1.6+0.2=+1.8;7日:+1.8﹣1.2=+0.6,故七天内游客人数最多的是3日,最少的是7日,它们相差2.8﹣0.6=2.2万人;(2)3﹣2.8=0.2(万人).【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,计算出每天相对于4月30日的人数是解决本题的关键.27.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B→D(+3 ,﹣2 ),C→ A (﹣3,﹣4);(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程.【考点】有理数的加减混合运算;绝对值.【分析】(1)根据运动法则可得出B到D先向右,再向下运动;从C向左再向下,即可得出是点A;(2)从A→B→C→D,向上走4,向右走1,再向右走2,向下走2,再向右走1,从而得出贝贝走过的路程.【解答】解:(1)B→D(+3,﹣2),C→A(﹣3,﹣4);(2)若贝贝的行走路线为A→B→C→D,则贝贝走过的路程;|+1|+|+4|+|+2|+|0|+|+1|+|﹣2|=10(米),因此贝贝走过的路程为10米.故答案为+3,﹣2,A.【点评】本题考查了有理数的加减混合运算以及绝对值,是基础知识要熟练掌握.。

河南省沈丘外语中学七年级数学第一学期期中试题(无答案) 华东师大版

河南省沈丘外语中学七年级数学第一学期期中试题(无答案) 华东师大版

沈丘外语中学 2013~2014学年度第一学期第二次学情调查七年级数学试卷题号 一二三总 分 21 22 23 24 25 26 得分一 、细心选一选(每题3分,共30分)1. 无论x 取何值,下列代数式的值中,一定是正数的是………………………………【 】A. 2(1)x + B. 1x + C. 2()1x -+ D. 21x -+2. 下列说法正确的是………………………………………………………………………【 】 A 、0是最小的整数 B 、0是最小的非负数 C 、整数包括正整数和负整数 D 、有理数中存在最大的数3.对于由四舍五入法得到的近似数4.601万,下列说法正确的是……………………【 】 A.它精确到千分位 B. 它精确到0.01 C. 它精确到万位 D.它精确到十位 4、下列说法正确的是………………………………………………………………………【 】 A .23与23是同类项 B .1x与2是同类项 C .32与223是同类项 D .5与2是同类项5. 化简-2a-(2a-1)的结果是( )……………………………………………………【 】 A 、41a --B 、1C . -4a+1D .1-6.计算:3562+-a a 与1252-+a a 的差,结果正确的是…………………………【 】 A.432+-a a B.232+-a a C.272+-a a D.472+-a a 7下列算式中,结果与43相等的是………………………………………………………【 】 A .3+3+3+3 B .3×3×3×3 C .4×4×4 D .3×4 8. 一种商品每件成本p 元,按成本增加25%定出价格,则该商品每件售价……………【 】 A .(0.25+p )元 B .0.25p 元 C .0.75p 元 D .1.25p 元 9、下列等式成的是……………………………………………………………………… 【 】A. 232322--=--x x x x )( B. 157157++=++b a b a )(C. 4747--=+-n m n m )(D. 11)(-+-=-+--ab b a ab b a )(…………………密……………封……………线……………内……………不……………准……………答……………题……………………班 级____________ 姓 名____________ 考 号_____10、如图1,边长为)3(+a 的正方形纸片剪出一个边长为a 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是……………………………… 【 】 A .32+a B .62+a C .3+aD .6+a二. 用心填一填:(共30分,每题3分)11、( )×(-0.2)=1..12.nmx y -是关于x ,y 的一个单项式,且系数是3,次数是4,则m+n=______. 13、多项式x 2y ﹣12xy+8是 次 项式.14.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,那么:=++c b a . 15、单项式﹣2a 2b m与单项式3a nb 是同类项,则m n = ,16、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元.17.一个数用科学计数法可表示为6.3×104,则其原数为__________________ 18. 代数式42m -m 2+的值是7,则46m -3m 2-的值是____________19. 观察下列单项式:x , 4x 2, 9x 3, 16x 4,…………,根据你发现的规律,第8个式子是 64x 8。

【解析版】沈丘外语中学~年七年级上期中数学试卷

【解析版】沈丘外语中学~年七年级上期中数学试卷

河南省周口市沈丘外语中学2014~2015学年度七年级上学期期中数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.的倒数是()A.B.C.D.2.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A.0.21×108 B.2.1×106 C.2.1×107 D.21×1063.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是34.如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.淮D.南5.如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条小道.这些同学这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.两点之间直线最短6.下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2 B.2a2+3a2=6a2 C.4xy﹣3xy=1 D.2m2n﹣2mn2=07.下面的说法正确的是()A.相等的角是对顶角B.同旁内角互补C.若|a|=﹣a,则a<0D.垂直于同一直线的两条直线平行8.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.二、填空题(本题共7个小题,每小题3分,共21分)9.如果“节约10%”记作+10%,那么“浪费6%”记作:.10.将多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:.11.已知∠1与∠2互补,若∠1=99°40′,则∠2=.12.如图,将一副30°和45°的直角三角板的两个直角叠放在一起,使直角顶点重合于点O,若∠AOD=70°,则∠BOC=°.13.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有人(用含有m的代数式表示)14.每一个多边形都可以按如图的方法分割成若干个三角形,那么按这种方式,n边形能分割成个三角形.15.如图,点C在线段AB上,点D是AC的中点,如果CD=4cm,AB=13cm,那么BC=cm.三、解答题(本大题共75分)16.计算:(1)(+﹣)×(﹣12)﹣12014﹣6÷(﹣2)×|﹣|(3)[2﹣(1﹣0.5×)]×[7+(﹣1)3].17.合并同类项:5x2﹣7xy+3x2﹣(4x2﹣6xy)18.先化简,再求值:5x2﹣[3x﹣2+7x2],其中.19.当代数式x3+3x+1的值为0时,求代数式2x3+6x﹣3的值.20.如图,点A、B、C都在方格图的格点上,画图并回答问题:(1)画射线AC,画直线AB;过点C画直线AB的垂线,垂足为D;(3)点C到直线AB的距离是线段的长度.21.如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F ()∴AD∥BF(),∴∠D=∠DCF()∵∠B=∠D ()∴∠B=∠DCF ()∴AB∥DC()22.从2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):月用水量水价(元/吨)第1级20吨以下(含20吨) 1.65第2级20吨﹣30吨(含30吨) 2.48第3级30吨以上3.30例:若某用户2013年7月份的用水量为35吨,按三级计算则应交水费为:20×1.65+10×2.48+(35﹣20﹣10)×3.30=74.3(元)(1)如果小白家2013年6月份的用水量为10吨,则需缴交水费元;如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)23.如图,点A、O、B在同一直线上,OD是∠AOC的平分线,OD⊥OE,且∠AOC=120°.(1)试求∠BOE的度数;直接写出图中所有与∠AOD互余的角.河南省周口市沈丘外语中学2014~2015学年度七年级上学期期中数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.的倒数是()A.B.C.D.考点:倒数.分析:先化为假分数,再根据乘积是1的两个数互为倒数解答.解答:解:﹣1=﹣,∵(﹣)×(﹣)=1,∴﹣1的倒数是﹣.故选C.点评:本题考查了互为倒数的定义,是概念题,注意先把带分数化为假分数.2.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A.0.21×108 B.2.1×106 C.2.1×107 D.21×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2100000有7位,所以可以确定n=7﹣1=6.解答:解:2 100 000=2.1×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是3考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式﹣的系数是:﹣,次数是3.故选D.点评:本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.淮D.南考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“美”与“淮”是相对面,“建”与“南”是相对面.故选D.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条小道.这些同学这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.两点之间直线最短考点:线段的性质:两点之间线段最短.专题:应用题.分析:直接根据线段的性质进行解答即可.解答:解:∵两点之间线段最短,∴同学为了省时间图方便,在花圃中踩出了一条小道.故选B.点评:本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.6.下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2 B.2a2+3a2=6a2 C.4xy﹣3xy=1 D.2m2n﹣2mn2=0考点:合并同类项.专题:计算题.分析:原式各项合并得到结果,即可做出判断.解答:解:A、2a2+3a2=5a2,正确;B、2a2+3a2=5a2,错误;C、4xy﹣3xy=xy,错误;D、原式不能合并,错误,故选A点评:此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.7.下面的说法正确的是()A.相等的角是对顶角B.同旁内角互补C.若|a|=﹣a,则a<0D.垂直于同一直线的两条直线平行考点:对顶角、邻补角;绝对值;同位角、内错角、同旁内角;平行公理及推论.分析:根据对顶角相等可得A错误;根据两直线平行,同旁内角互补可得B错误;根据非正数的绝对值等于它本身可得C错误;根据同位角相等两直线平行可得D正确.解答:解:A、相等的角是对顶角,说法错误;B、同旁内角互补,说法错误;C、若|a|=﹣a,则a<0,说法错误;D、垂直于同一直线的两条直线平行,说法正确;故选:D.点评:此题主要考查了对顶角、绝对值、平行线的性质,关键是熟练掌握各知识点.8.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.考点:由三视图判断几何体.专题:压轴题.分析:本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.解答:解:根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选:B.点评:本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.二、填空题(本题共7个小题,每小题3分,共21分)9.如果“节约10%”记作+10%,那么“浪费6%”记作:﹣6%.考点:正数和负数.分析:明确“正”和“负”所表示的意义:节约用+号表示,则浪费一定用﹣表示,据此即可解决.解答:解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为:﹣6%.点评:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.将多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:﹣3x2﹣6y+2xy2+5x3y3.考点:多项式.分析:先分清多项式的各项,然后按多项式升幂排列的定义排列.解答:解:多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:﹣3x2﹣6y+2xy2+5x3y3;故答案为:﹣3x2﹣6y+2xy2+5x3y3.点评:此题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.11.已知∠1与∠2互补,若∠1=99°40′,则∠2=80°20′.考点:余角和补角;度分秒的换算.分析:根据互为补角的和等于180°列式进行计算即可求解.解答:解:∵∠1与∠2互补,∠1=99°40′,∴∠2=180°﹣99°40′=80°20′.故答案为:80°20′.点评:本题考查了互为补角的和等于180°的性质,是基础题,比较简单.12.如图,将一副30°和45°的直角三角板的两个直角叠放在一起,使直角顶点重合于点O,若∠AOD=70°,则∠BOC= 70°.考点:余角和补角.分析:根据两个三角板都为直角三角板,可得∠AOC=∠BOD=90°,然后根据∠AOD=70°,即可求出∠BOC的度数.解答:解:由题意得,∠AOC=∠BOD=90°,∴∠AOD+∠DOC=∠DOC+∠BOC=90°,∴∠AOD=∠BOC,∵∠AOD=70°,∴∠BOC=70°.故答案为:70.点评:本题考查了余角和补角的知识,解答本题的关键是掌握同角的余角相等.13.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有人(用含有m的代数式表示)考点:列代数式.分析:根据会弹钢琴的人数比会弹古筝的人数多10人,表示出会弹钢琴的人数为:m+10人,再利用两种都会的有7人得出该班同学共有:(m+m+10﹣7)人,整理得出答案即可.解答:解:∵设会弹古筝的有m人,则会弹钢琴的人数为:m+10,∴该班同学共有:m+m+10﹣7=2m+3,故答案为:2m+3.点评:此题主要考查了列代数式,根据已知表示出会弹钢琴的人数与会弹古筝的人数是解题关键.14.每一个多边形都可以按如图的方法分割成若干个三角形,那么按这种方式,n边形能分割成(n﹣2)个三角形.考点:规律型:图形的变化类.分析:过n边形的同一个顶点作对角线,可以把n边形分成(n﹣2)个三角形.解答:解:按如图所示的方法,n边形能分割成(n﹣2)个三角形.故答案为:(n﹣2).点评:此题主要考查了图形变化类,熟记过n边形的同一个顶点作对角线,可以做(n﹣3)条对角线,可以把n边形分成(n﹣2)个三角形.15.如图,点C在线段AB上,点D是AC的中点,如果CD=4cm,AB=13cm,那么BC=5cm.考点:两点间的距离.分析:根据线段中点的性质,可得AC与CD的关系,根据线段的和差,可得CB的长.解答:解:点D是AC的中点,如果CD=4cm,AC=2CD=2×4=8(cm),CD=AB﹣AC=13﹣8=5(cm),故答案为;5.点评:本题考查了两点间的距离,线段重点的性质解题关键.三、解答题(本大题共75分)16.计算:(1)(+﹣)×(﹣12)﹣12014﹣6÷(﹣2)×|﹣|(3)[2﹣(1﹣0.5×)]×[7+(﹣1)3].考点:有理数的混合运算.专题:计算题.分析:(1)原式利用乘法分配律计算即可得到结果;原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣3﹣2+6=1;原式=﹣1+6××=﹣1+1=0;(3)原式=×6=12﹣4=8.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.合并同类项:5x2﹣7xy+3x2﹣(4x2﹣6xy)考点:合并同类项;去括号与添括号.分析:这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.解答:原式=5x2﹣7xy+3x2﹣4x2+6xy=(5x2+3x2﹣4x2)+(﹣7xy+6xy)=4x2﹣xy.点评:本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变,去括号时要变号.18.先化简,再求值:5x2﹣[3x﹣2+7x2],其中.考点:整式的加减—化简求值.专题:计算题.分析:先去括号,再合并,最后再把x的值代入计算即可.解答:解:原式=5x2﹣3x+2﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.点评:本题考查了整式的化简求值,解题的关键是去括号、合并同类项.19.当代数式x3+3x+1的值为0时,求代数式2x3+6x﹣3的值.考点:代数式求值.专题:计算题.分析:由题意确定出x3+3x的值,原式变形后代入计算即可求出值.解答:解:∵x3+3x+1=0,∴x3+3x=﹣1.∴原式=2(x3+3x)﹣3=﹣2﹣3=﹣5.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.20.如图,点A、B、C都在方格图的格点上,画图并回答问题:(1)画射线AC,画直线AB;过点C画直线AB的垂线,垂足为D;(3)点C到直线AB的距离是线段CD的长度.考点:作图—基本作图;点到直线的距离.分析:(1)连接AC并向AC方向无限延长,连接AB并向两个方向无限延长;根据正方形的性质,取线段AB的中点D,连接CD,即可得到AB的垂线CD;(3)根据点到直线的距离的概念可得点C到直线AB的距离是线段CD的长度.解答:解:(1)如图所示:如图所示:(3)点C到直线AB的距离是线段CD的长度.故答案为:CD.点评:此题考查的是在网格中作射线、直线、线段的中点、垂线等,要灵活运用网格的特点,难度中等.21.如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F (已知)∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等)∵∠B=∠D (已知)∴∠B=∠DCF (等量代换)∴AB∥DC(同位角相等,两直线平行)考点:平行线的判定与性质.专题:推理填空题.分析:此题首先根据已知,应用内错角相等,两直线平行,证得AD∥BF;利用两直线平行,内错角相等,证得∠D=∠DCF,又由已知,利用等量代换,证得∠B=∠DCF,根据同位角相等,两直线平行,证得AB∥DC.解答:解:∠DAF=∠F (已知),∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等),∵∠B=∠D (已知),∴∠B=∠DCF (等量代换),∴AB∥DC(同位角相等,两直线平行).点评:此题考查了平行线的性质与判定.解答此题的关键是注意平行线的性质和判定定理的综合运用.22.从2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):月用水量水价(元/吨)第1级20吨以下(含20吨) 1.65第2级20吨﹣30吨(含30吨) 2.48第3级30吨以上3.30例:若某用户2013年7月份的用水量为35吨,按三级计算则应交水费为:20×1.65+10×2.48+(35﹣20﹣10)×3.30=74.3(元)(1)如果小白家2013年6月份的用水量为10吨,则需缴交水费16.5元;如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)考点:列代数式;有理数的混合运算.分析:(1)根据第1级的水价和用水量列式计算即可;根据水价要按两级计算,用每一级的价格乘以每一级的用水量,再把所得的结果相加,最后进行化简即可.解答:解:(1)根据题意得:1.65×10=16.5(元),答:需缴交水费16.5元;故答案为:16.5;根据题意得:20×1.65+(a﹣20)×2.48=33+2.48a﹣49.6=2.48a﹣16.6(元).答:小明家该月应缴交水费元.点评:此题考查了列代数式,关键是根据图表中的数量关系,列出算式,注意把列出的代数式进行化简.23.如图,点A、O、B在同一直线上,OD是∠AOC的平分线,OD⊥OE,且∠AOC=120°.(1)试求∠BOE的度数;直接写出图中所有与∠AOD互余的角.考点:余角和补角;角平分线的定义.分析:(1)利用OD是∠AOC的平分线,得出∠AOD=∠COD=∠AOC,求出∠AOE,再利用平角的意义求得问题;利用互余两角的和是90°直接写出即可.解答:解:(1)∵OD平分∠AOC,∠AOC=120°,∴∠AOD=∠COD=∠AOC=60°,∵OD⊥OE,∴∠DOE=90°,∴∠AOE=∠AOD+∠DOE=150°,∵∠AOE+∠EOB=180°,∴∠BOE=30°;∠COE与∠BOE.点评:此题考查两角互余的关系、角平分线的意义、平角的意义,以及角的和与差等知识点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年河南省周口市沈丘外语中学七年级(上)期中数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)的倒数是()A.B.C.D.2.(3分)我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A.0.21×108B.2.1×106C.2.1×107D.21×1063.(3分)下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是34.(3分)如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.淮D.南5.(3分)如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条小道.这些同学这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.两点之间直线最短6.(3分)下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1 D.2m2n﹣2mn2=07.(3分)下面的说法正确的是()A.相等的角是对顶角B.同旁内角互补C.若|a|=﹣a,则a<0D.垂直于同一直线的两条直线平行8.(3分)如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A. B.C.D.二、填空题(本题共7个小题,每小题3分,共21分)9.(3分)如果“节约10%”记作+10%,那么“浪费6%”记作:.10.(3分)将多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:.11.(3分)已知∠1与∠2互补,若∠1=99°40′,则∠2=.12.(3分)如图,将一副30°和45°的直角三角板的两个直角叠放在一起,使直角顶点重合于点O,若∠AOD=70°,则∠BOC=°.13.(3分)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有人(用含有m的代数式表示)14.(3分)每一个多边形都可以按如图的方法分割成若干个三角形,那么按这种方式,n边形能分割成个三角形.15.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=4cm,AB=13cm,那么BC=cm.三、解答题(本大题共75分)16.(18分)计算:(1)(+﹣)×(﹣12)(2)﹣12014﹣6÷(﹣2)×|﹣|(3)[2﹣(1﹣0.5×)]×[7+(﹣1)3].17.(6分)合并同类项:5x2﹣7xy+3x2﹣(4x2﹣6xy)18.(8分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.19.(8分)当代数式x3+3x+1的值为0时,求代数式2x3+6x﹣3的值.20.(7分)如图,点A、B、C都在方格图的格点上,画图并回答问题:(1)画射线AC,画直线AB;(2)过点C画直线AB的垂线,垂足为D;(3)点C到直线AB的距离是线段的长度.21.(8分)如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F ()∴AD∥BF(),∴∠D=∠DCF()∵∠B=∠D ()∴∠B=∠DCF ()∴AB∥DC()22.(10分)从2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户2013年7月份的用水量为35吨,按三级计算则应交水费为:20×1.65+10×2.48+(35﹣20﹣10)×3.30=74.3(元)(1)如果小白家2013年6月份的用水量为10吨,则需缴交水费元;(2)如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)23.(10分)如图,点A、O、B在同一直线上,OD是∠AOC的平分线,OD⊥OE,且∠AOC=120°.(1)试求∠BOE的度数;(2)直接写出图中所有与∠AOD互余的角.2014-2015学年河南省周口市沈丘外语中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)的倒数是()A.B.C.D.【解答】解:﹣1=﹣,∵(﹣)×(﹣)=1,∴﹣1的倒数是﹣.故选:C.2.(3分)我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A.0.21×108B.2.1×106C.2.1×107D.21×106【解答】解:2 100 000=2.1×106.故选:B.3.(3分)下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是3【解答】解:单项式﹣的系数是:﹣,次数是3.故选:D.4.(3分)如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.淮D.南【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“美”与“淮”是相对面,“建”与“南”是相对面.故选:D.5.(3分)如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条小道.这些同学这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.两点之间直线最短【解答】解:∵两点之间线段最短,∴同学为了省时间图方便,在花圃中踩出了一条小道.故选:B.6.(3分)下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1 D.2m2n﹣2mn2=0【解答】解:A、2a2+3a2=5a2,正确;B、2a2+3a2=5a2,错误;C、4xy﹣3xy=xy,错误;D、原式不能合并,错误,故选:A.7.(3分)下面的说法正确的是()A.相等的角是对顶角B.同旁内角互补C.若|a|=﹣a,则a<0D.垂直于同一直线的两条直线平行【解答】解:A、相等的角是对顶角,说法错误;B、同旁内角互补,说法错误;C、若|a|=﹣a,则a<0,说法错误;D、垂直于同一直线的两条直线平行,说法正确;故选:D.8.(3分)如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A. B.C.D.【解答】解:根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选:B.二、填空题(本题共7个小题,每小题3分,共21分)9.(3分)如果“节约10%”记作+10%,那么“浪费6%”记作:﹣6%.【解答】解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为:﹣6%.10.(3分)将多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:﹣3x2﹣6y+2xy2+5x3y3.【解答】解:多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:﹣3x2﹣6y+2xy2+5x3y3;故答案为:﹣3x2﹣6y+2xy2+5x3y3.11.(3分)已知∠1与∠2互补,若∠1=99°40′,则∠2=80°20′.【解答】解:∵∠1与∠2互补,∠1=99°40′,∴∠2=180°﹣99°40′=80°20′.故答案为:80°20′.12.(3分)如图,将一副30°和45°的直角三角板的两个直角叠放在一起,使直角顶点重合于点O,若∠AOD=70°,则∠BOC=70°.【解答】解:由题意得,∠AOC=∠BOD=90°,∴∠AOD+∠DOC=∠DOC+∠BOC=90°,∴∠AOD=∠BOC,∵∠AOD=70°,∴∠BOC=70°.故答案为:70.13.(3分)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有(2m+3)人(用含有m的代数式表示)【解答】解:∵设会弹古筝的有m人,则会弹钢琴的人数为:m+10,∴该班同学共有:m+m+10﹣7=2m+3,故答案为:(2m+3).14.(3分)每一个多边形都可以按如图的方法分割成若干个三角形,那么按这种方式,n边形能分割成(n﹣2)个三角形.【解答】解:按如图所示的方法,n边形能分割成(n﹣2)个三角形.故答案为:(n﹣2).15.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=4cm,AB=13cm,那么BC=5cm.【解答】解:点D是AC的中点,如果CD=4cm,AC=2CD=2×4=8(cm),CD=AB﹣AC=13﹣8=5(cm),故答案为;5.三、解答题(本大题共75分)16.(18分)计算:(1)(+﹣)×(﹣12)(2)﹣12014﹣6÷(﹣2)×|﹣|(3)[2﹣(1﹣0.5×)]×[7+(﹣1)3].【解答】解:(1)原式=﹣3﹣2+6=1;(2)原式=﹣1+6××=﹣1+1=0;(3)原式=(2﹣)×6=12﹣4=8.17.(6分)合并同类项:5x2﹣7xy+3x2﹣(4x2﹣6xy)【解答】原式=5x2﹣7xy+3x2﹣4x2+6xy=(5x2+3x2﹣4x2)+(﹣7xy+6xy)=4x2﹣xy.18.(8分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.19.(8分)当代数式x3+3x+1的值为0时,求代数式2x3+6x﹣3的值.【解答】解:∵x3+3x+1=0,∴x3+3x=﹣1.∴原式=2(x3+3x)﹣3=﹣2﹣3=﹣5.20.(7分)如图,点A、B、C都在方格图的格点上,画图并回答问题:(1)画射线AC,画直线AB;(2)过点C画直线AB的垂线,垂足为D;(3)点C到直线AB的距离是线段CD的长度.【解答】解:(1)如图所示:(2)如图所示:(3)点C到直线AB的距离是线段CD的长度.故答案为:CD.21.(8分)如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F (已知)∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等)∵∠B=∠D (已知)∴∠B=∠DCF (等量代换)∴AB∥DC(同位角相等,两直线平行)【解答】解:∠DAF=∠F (已知),∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等),∵∠B=∠D (已知),∴∠B=∠DCF (等量代换),∴AB∥DC(同位角相等,两直线平行).22.(10分)从2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户2013年7月份的用水量为35吨,按三级计算则应交水费为:20×1.65+10×2.48+(35﹣20﹣10)×3.30=74.3(元)(1)如果小白家2013年6月份的用水量为10吨,则需缴交水费16.5元;(2)如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)【解答】解:(1)根据题意得:1.65×10=16.5(元),答:需缴交水费16.5元;故答案为:16.5;(2)根据题意得:20×1.65+(a﹣20)×2.48=33+2.48a﹣49.6=2.48a﹣16.6(元).答:小明家该月应缴交水费(2.48a﹣16.6)元.23.(10分)如图,点A、O、B在同一直线上,OD是∠AOC的平分线,OD⊥OE,且∠AOC=120°.(1)试求∠BOE的度数;(2)直接写出图中所有与∠AOD互余的角.【解答】解:(1)∵OD平分∠AOC,∠AOC=120°,∴∠AOD=∠COD=∠AOC=60°,∵OD⊥OE,∴∠DOE=90°,∴∠AOE=∠AOD+∠DOE=150°,∵∠AOE+∠EOB=180°,∴∠BOE=30°;(2)∠COE与∠BOE.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

相关文档
最新文档