最新全国各省市2020届初三中考数学一模联考真题试题 (10)

合集下载

2020中考一模考试《数学卷》附答案解析

2020中考一模考试《数学卷》附答案解析

2020年中考综合模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.-2020的相反数是( ) A .2020B .2020-C .12020D .12020-2.下列计算正确的是( )A .5B 2C .=D =3.如图所示的几何体,从正面看到的平面图形是( )A .B .C .D .4.下列说法正确的是( )A .“经过有交通信号的路口遇到红灯”是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C .投掷一枚硬币正面朝上是随机事件D .明天太阳从东方升起是随机事件5.下列方程中,有两个不相等的实数根的是( ) A .2542x x -=- B .2(1)(51)5x x x --= C .24510x x -+=D .2(4)0x -=6.一次函数23y x =-与y 轴的交点坐标为( ) A .(0,3)-B .(0,3)C .3(2,0)D .3(2-,0)第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应.....位置..上)7= . 8.某公益机构设立了网站接受爱心捐助,旨在推动社会和谐、发展公益慈善事业.据网站统计,目前已有大约2451000人献爱心.将“2451000”用科学记数法表示为 . 9.在32232()()xy x y =的运算过程中,依据是 . 10.分解因式:22369xy x y y --= .11.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是 (用数学概念作答)12.三角形两边长分别是2,4,第三边长为偶数,第三边长为 .13.如图,在平行四边形ABCD 中,2AB =,5BC =.BCD ∠的平分线交AD 于点F ,交BA 的延长线于点E ,则AE 的长为 .(第13题图)(第14题图)(第16题图)14.如图,已知ABC ∆中,90B ∠=︒,D ,E 分别为BC ,AC 的中点,连结DE ,过D 作AC 的平行线与CAB ∠的角平分线交于点F ,连结EF ,若EF DF ⊥,2AC =,则DEF ∠的正弦值为 .15.已知x ,y ,z 为实数,且满足257x y z +-=-,2x y z -+=,试比较22x y -与2z 的大小关系是 .16.如图,AB 为O e 的直径,点C 为AB 延长线上一点,过点C 作CD 切O e 于点D ,若6AB =,10AC =,则sin BCD ∠= .(第16题图)三、解答题(本大题共有10题,共102分。

2020年中考数学一模试题(含答案)

2020年中考数学一模试题(含答案)

2020年中考数学一模试题(含答案)一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分4.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.45.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A .14cmB .4cmC .15cmD .3cm6.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m >B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠7.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=08.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A .40B .30C .28D .209.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-10.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 . 15.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.16.已知62x =,那么222x x -的值是_____.17.计算:2cos45°﹣(π+1)0111()42-=______. 18.若a ,b 互为相反数,则22a b ab +=________.19.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.20.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A 、B 、C 、D 四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示. 表1:四种款式电脑的利润 电脑款式 A B C D 利润(元/台)160200240320表2:甲、乙两店电脑销售情况 电脑款式A B C D 甲店销售数量(台) 20 15 10 5 乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ; (2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.22.如图,AD 是ABC 的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.23.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.24.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.25.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.3.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C .对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D .矩形的对角线互相平分且相等,不一定垂直,故本选项错误; 故选B .考点:矩形的判定与性质.4.C解析:C 【解析】 【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项. 【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题; ②影响超市进货决策的主要统计量是众数,正确,是真命题; ③折线统计图反映一组数据的变化趋势,正确,是真命题; ④水中捞月是随机事件,故错误,是假命题, 真命题有3个, 故选C . 【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.5.A解析:A 【解析】运用直角三角形的勾股定理,设正方形D 的边长为x ,则22222(65)(5)10x +++=,x =(负值已舍),故选A6.B解析:B 【解析】 【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可.【详解】 解:根据题意得20m -≠, 30m -≥,(()214204m ∆=--⨯≥,解得m≤52且m≠2.故选B.7.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.8.D解析:D【解析】【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB==5,∴菱形的周长为4×5=20.故选D.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB的长是解题的关键.9.C解析:C【解析】【分析】【详解】∵A(﹣3,4),∴2234+,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.10.D解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.11.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠-【解析】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 15.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE 、BF 交于点H .∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE ,∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分.∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN .∵CD=10-2-2=6,∴MN=3,即G 的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.16.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】 将所给等式变形为26x =【详解】 ∵62x =, ∴26x -= ∴(2226x =, ∴22226x x -+=, ∴2224x x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.17.【解析】解:原式==故答案为:32.【解析】解:原式=121222⨯-++3232.18.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab(a+b),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab+= ab(a+b),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.19.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC 1长为5.故答案为5.考点:等边三角形的判定与性质.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43 【解析】 【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F Q 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =Q8BD ∴=又Q 8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)310(2)应对甲店作出暂停营业的决定 【解析】【分析】 (1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.【详解】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310; (2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元), 乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元),∵248>204, ∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.22.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆【解析】【分析】(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形;(2)根据面积公式解答即可.【详解】证明:∵AD 是△ABC 的中线,∴BD=CD ,∵AE ∥BC ,∴∠AEF=∠DBF ,在△AFE 和△DFB 中,AEF DBF AFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩,∴△AFE ≌△DFB (AAS ),∴AE=BD ,∴AE=CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形;(2)∵四边形ABCE 的面积为S ,∵BD=DC ,∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S ,∴面积是12S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.23.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.24.(1)200;(2)52;(3)840人;(4)16【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m 的值;(3)利用总人数乘以对应的频率即可; (4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人); (2)非常好的频数是:200×0.21=42(人), 一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21=126. 点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.。

2020届初三中考数学一诊联考试卷含参考答案 (山东)

2020届初三中考数学一诊联考试卷含参考答案 (山东)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6÷a2=a3D.2﹣3=﹣6⨯的网格中,A,B均为格点,以点A为圆心,以AB的长为半径3.如图,在33∠的值是()作弧,图中的点C是该弧与格线的交点,则sin BACA .12B .23CD 4.2018的倒数是( )A .2018B .12018C .12018-D .﹣20185.下列平面图形,是中心对称但不是轴对称图形的是( )A .B .C .D . 6.下列计算正确的是( )A .B .C .D .7.如图,直线y +1分别交x 轴、y 轴于点A 、C ,点B 是点A 关于y 的对称点,点D 是线段BC 上一点,把△ABD 沿AD 翻折使AB 落在射线AC 上,得△AB 'D ,则△ABC 与△AB 'D 重叠部分的面积为( )A B .12 C .3 D .36-8.3-的倒数是()A.-3 B.3 C.13-D.139.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°10.如果解关于x的分式方程233x ax x---=5时出现了增根,那么a的值是()A.﹣6B.﹣3C.6D.3二、填空题(共4题,每题4分,共16分)11.Rt△ABC中,∠C=90°,cos A=35,AC=6cm,那么BC等于_____.12.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.若12ADAC=,则AFFG=_____.13.菱形ABCD中,∠B=60°,AB=5,以AC为边长作正方形ACFE,则点D到EF的距离为_____.14.已知圆锥的侧面积是12π,母线长为4,则圆锥的底面圆半径为________.三、解答题(共6题,总分54分)15.如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数y=kx的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′与反比例函数y=kx的图象有公共点,直接写出a的取值范围.16.已知AM是△ABC的中线,点D在线段AM上[点D不与点A重合),过点D作DF∥AB交AC边于点F,过点C作CE∥AM交DF的延长线于点E,连接AE.(1)如图1,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与点M重合时,过点M作MG∥DE交EC于点G,连接BD、AG在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形.17.如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)18.已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.19.如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM = AN;(2)若⊙O的半径R = 3,PA = 9,求OM的长.20.在△ABN中,∠B=90°,点M是AB上的动点(不与A,B两点重合),点C 是BN延长线上的动点(不与点N重合),且AM=BC,CN=BM,连接CM与AN交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M,N运动的过程中,始终有∠APM小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:。

2020年中考数学一模试卷【答案+解析】

2020年中考数学一模试卷【答案+解析】

2020年中考数学一模试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣64.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=25.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5 6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.67.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.68.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3 9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1y2.(填“>”,“<”或“=”)13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.16.(6分)计算:(+)÷.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c (1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选:B.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:D.4.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=2【分析】把方程的左边的式子进行分解,得出两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程可化为:(x﹣1)(x﹣2)=0∴x1=1,x2=2.故选:A.5.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5【分析】根据合并同类项,同底数幂的乘除法,幂的乘方,对各选项分析判断后利用排除法求解.【解答】解:A、x3与x2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、x3•x2=x5,原计算正确,故此选项符合题意;C、x6÷x2=x4,原计算错误,故此选项不符合题意;D、(x3)2=x6,原计算错误,故此选项不符合题意.故选:B.6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.6【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:根据该几何体的俯视图的面积为5,可知每个小正方体的棱长为1,从正面看有两层,底层是三个正方形,上层是一个正方形,所以这个几何体的主视图的面积为4.故选:B.7.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.6【分析】将点A、B的坐标分别代入函数解析式,列出方程组,通过解方程组求得k、m 的值即可.【解答】解:把点A(2,m),B(﹣1,6)分别代入,得.解得k=﹣6,m=﹣3.故选:A.8.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3【分析】抛物线y=x2的顶点坐标为(0,0),向左平移2个单位,再向上平移3个单位,所得的抛物线的顶点坐标为(﹣2,3),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是BD的线段垂直平分线,∴BE=ED,∵△ABE的周长=AB+AE+BE=AB+AE+ED=AB+AD=6cm.故选:C.10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8【分析】连接OA,由垂径定理得:AC=BC,根据勾股定理,可以求出AC的长,从而得AB的长.【解答】解:如图,连接OA,∵OC⊥AB于点C,∴AC=BC,∵⊙O的半径是5,∴OA=5,又OC=3,所以在Rt△AOC中,AC===4,所以AB=2AC=8.故选:D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为x=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=6x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1<y2.(填“>”,“<”或“=”)【分析】根据点P1、P2的横坐标结合二次函数图象上点的坐标特征,即可得出y1、y2的值,比较后即可得出结论.【解答】解:当x=﹣2时,y1=(﹣2+1)2﹣2=﹣1;当x=2时,y2=(2+1)2﹣2=7.∵﹣1<7,∴y1<y2.故答案为<.13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为6﹣2.【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【解答】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM=DE,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,∴x=(2﹣x),解得x=4﹣2,∴CM=4﹣2,由旋转的性质可知:CF=CE=4﹣2,∴BF=BC+CF=2+4﹣2=6﹣2.故答案为:6﹣2.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为100°.【分析】连接OD,根据圆周角定理求出∠BOD,根据切线的性质得到∠ABO=90°,∠ADO=90°,根据四边形内角和等于360°计算即可.【解答】解:连接OD,由圆周角定理得,∠BOD=2∠C=80°,∵BC是⊙O的直径,AB、AD是⊙O的切线,∴OB⊥AB,OD⊥AD,∴∠ABO=90°,∠ADO=90°,∴∠A=180°﹣∠BOD=100°,故答案为:100°.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.【分析】(1)本题涉及零指数幂、平方、特殊角的三角函数值、绝对值、二次根式化简5个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可得解.【解答】解:(1)2cos45°﹣|﹣|+()0﹣(﹣2)2=2×﹣+1﹣4=﹣+1﹣4=﹣3;(2),解不等式①得x>1.5;解不等式②得x≤3.故不等式组的解集为1.5<x≤3.16.(6分)计算:(+)÷.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)【分析】首先根据题意分析图形,本题涉及到两个直角三角形,进而求得BE、AE的大小,再利用AB=BE﹣AE可求出答案.【解答】解:作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【分析】(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.【分析】(1)先由一次函数y=kx+b(k<0)的图象经过点C(3,0),得出3k+b=0①,由于一次函数y=kx+b的图象与y轴的交点是(0,b),根据三角形的面积公式可求得b 的值,然后利用待定系数法即可求得函数解析式;(2)将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,得到E(﹣,0),解方程组得到B(6,﹣2),连接AE,BE,根据三角形的面积公式即可得到结论.【解答】解:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵k<0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k=﹣,则函数的解析式是y=﹣x+2.故这个函数的解析式为y=﹣x+2;把点A(a,4)代入y=﹣x+2得,4=﹣a+2,解得:a=﹣3,∴A(﹣3,4),∴m=﹣12,∴反比例函数的解析式为y=﹣;(2)∵将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,当y=0时,即0=﹣x﹣3,解得:x=﹣,∴E(﹣,0),解得,,,∴B(6,﹣2),连接AE,BE,∵AB∥DE,∴S△ADB=S△AEB=(3+)×4+(3+)×2=.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.【分析】(1)连接OC,OE,根据等腰三角形的性质得到∠E=∠OCE,求得∠E+∠ODE =90°,得到∠PCD=∠ODE,得到OC⊥PC,于是得到结论;(2)连接AC,BE,BC,根据相似三角形的性质得到=,推出CD•DE=AO2﹣OD2;由△ACP∽△CBP,得到,得到PD2=PD2+2PD•OD+OD2﹣OA2,于是得到结论;(3)由(2)知,CD•DE=AO2﹣OD2;把已知条件代入得到OD=1(负值舍去),求得AD=3,由(2)知,CD•DE=2OD•PD,于是得到结论.【解答】(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为﹣2.【分析】由点的坐标,利用一次函数图象上点的坐标特征可求出a﹣b的值,此题得解.【解答】解:∵直线y=ax+b经过点(﹣1,2),∴2=﹣a+b,∴a﹣b=﹣2.故答案为:﹣2.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.【分析】首先根据题意可求得,所有可能结果,然后解不等式组求得不等式组的解集得出符合要求的点的坐标,再利用概率公式即可求得答案.【解答】解:根据题意列出树状图得:则(a,b)的等可能结果有:(﹣2,﹣6),(﹣2,2),(﹣2,6),(﹣6,﹣2),(﹣6,2),(﹣6,6),(2,﹣2),(2,6),(2,﹣6),(6,﹣2),(6,2),(6,﹣6)共12种;,解①得:x<7,当a>0,解②得:x>,根据不等式组的解集中有且只有3个非负整数解,则3<x<7时符合要求,故=3,即b=6,a=2符合要求,当a<0,解②得:x<,根据不等式组的解集中有且只有3个非负整数解,则x<3时符合要求,故=3,即b=﹣6,a=﹣2符合要求,故所有组合中只有2种情况符合要求,故使关于x的不等式组的解集中有且只有3个非负整数解的概率为:=.故答案为:.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为1.【分析】设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入抛物线的解析式,两式相减,计算即可求得.【解答】解:设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入y=x2+mx﹣m得,①﹣②得2a=2am,解得m=1,故答案为1.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为2.【分析】如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.再根据矩形性质和勾股定理即可求出DG的长.【解答】解:如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.∵BC=AD=2,AB=CD=6,根据翻折可知:DE=EF=x,AF=AD=2,则CE=CD﹣DE=6﹣x,在Rt△ABF中,根据勾股定理,得BF==4,则BE=BF+EF=4+x,在Rt△BEC中,根据勾股定理,得(4+x)2=(6﹣x)2+(2)2,解得x=2.则DG的最大值为2.故答案为:2.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为3.【分析】根据双曲线的对称性得到BC=AD,设BC=AD=a,用a表示出点C和得D的坐标,根据梯形面积公式、三角形面积公式求出a、b的关系,根据反比例函数图象上点的坐标特征列出方程,解方程求出b.【解答】解:由题意点B的坐标为(0,b),点A的坐标为(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵=,∴=,整理得,12a2+17ab﹣14b2=0,解得,a1=b,a2=﹣b(舍去),则D(b,﹣b),∴b×(﹣b)=﹣4,解得,b1=3,b2=﹣3(舍去),∴b=3,故答案为:3.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯,列方程求解;(2)设再购进彩灯a盏,根据利润=售价﹣进价和货栈要想获得利润不低于15000元列出不等式并解答.【解答】解:(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,依题意得:=+100,解得x=75,经检验x=75是所列方程的根,则0.8x=0.8×75=60(元).答:该货栈实际购进每盏彩灯为60元;(2)设再购进彩灯a盏,由(1)知,实际购进30000÷60=500(盏),依题意得:(500+a)(1﹣20%)×60×50%+(500+a)×20%×[60×(1+50%)×0.5﹣60]≥15000,解得a≥.因为a取正整数,所以a=215.答:至少再购进彩灯215盏.27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.【分析】(1)由EB=EB1,EA=EA1,可得∠EBB1=∠EB1B,∠EAA1=∠EA1A,由∠BEB1=∠AEA1,可得∠EBB1=∠EB1B=∠EAA1=∠EA1A,由此即可证明;(2)连接BF,延长EB1交AA1于M.由△MFB1∽△MEA1,推出△MEF∽△MA1B1,推出∠MFE=∠MB1A1=90°,即EF⊥AA1,由EA=EA1,可得AF=F A1;(3)首先求出AE,由cos∠GBC=cos∠EAF===,在Rt△AEF中,根据AF=AE•cos∠EAF,计算即可;【解答】(1)证明:如图∵EB=EB1,EA=EA1,∴∠EBB1=∠EB1B,∠EAA1=∠EA1A,∵∠BEB1=∠AEA1,∴∠EBB1=∠EB1B=∠EAA1=∠EA1A,∴△AA1E∽△BB1E.(2)证明:连接BF,延长EB1交AA1于M.∵∠BB1B=∠FB1M=∠MA1E,∠FMB1=∠EMA1,∴△MFB1∽△MEA1,∴=,∴=,∵∠EMF=∠A1MB1,∴△MEF∽△MA1B1,∴∠MFE=∠MB1A1=90°,∴EF⊥AA1,∵EA=EA1,∴AF=F A1.(3)解:在Rt△ABE中,∵AB=4,BE=1,∴AE==,∵DG=GC,∴cos∠GBC=cos∠EAF===,在Rt△AEF中,AF=AE•cos∠EAF=•=.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.【分析】(1)先求出对称轴为x=4,进而求出AB=4,进而求出点A,B坐标,即可得出结论;(2)利用面积的和差建立方程求解,即可得出结论;(3)Ⅰ、当点Q在对称轴右侧时,先判断出点E,M,Q,P四点共圆,得出∠EMQ=90°,利用同角的余角相等判断出∠EMF=∠HGM,得出tan∠EMF==2,得出HG =HM=1,进而求出Q(8,6),得出结论;Ⅱ、当点Q在对称轴左侧时,先判断出△PDQ∽△EFP,得出,进而判断出DP=,PF=2QD,即可得出结论.【解答】解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.。

2020届初三中考数学一诊联考试卷含参考答案 (江西)

2020届初三中考数学一诊联考试卷含参考答案 (江西)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球2.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是().A.100元,100元B.100元,200元C.200元,100元D.200元,200元3.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°4.小张早晨去学校共用时15分,他跑了一段,走了一段,他跑步的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2900米,设他跑步的时间为x分,根据题意,可列出的方程是()A.250x+80(15﹣x)=2900 B.80x+250(15﹣x)=2900C.80x+250x=2900 D.250x+80(15+x)=29005.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.B.C.6D.6.如图,在一张长方形纸条上画一条截线AB,将纸条沿截线AB折叠,则△ABC一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形7.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.8.在△ABC中,点D、E分别在边AB和AC上,且DE∥BC,若AD:DB=1:1,则S△ADE:S四边形DBCE的值为()A.1:1B.1:2C.1:3D.1:49.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为( )A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90C .10x ﹣5(20﹣x)>90D .10x ﹣5(20﹣x)<9010.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有( )A .12个B .10个C .8个D .6个二、填空题(共4题,每题4分,共16分)11.在平面直角坐标系中,将二次函数y =﹣x 2+x +6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,将这个新函数的图象记为G (如图所示).当直线y =m 与图象G 有4个交点时,则m 的取值范围是_____.12.如图,在平行四边形ABCD 中,P 是AD 边上的一个点,连接PB ,PC ,M ,N 分别是PB ,PC 的中点;已知S ▱ABCD =16,则S △PMN =_____.13.某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要x 天,则根据题意,可列方程为__________.14.已知一个口袋中装有六个完全相同的小球,小球上分别标有﹣3,﹣2,﹣1,0,1,2六个数,搅均后一次从中摸出一个小球,将小球上的数用a 表示,则摸出小球上的a 值恰好使函数y =ax 的图象经过二、四象限,且使方程3311--=--x a x x ,有实数解的概率是_____. 三、解答题(共6题,总分54分)15.已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BCD =28°.(I )如图①,求∠ABD 的大小;(Ⅱ)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OCD 的大小.16.某校附近有一条笔直的公路l ,该路段车辆限速40千米/小时,数学实践活动小组设计了如下活动:在l 上确定A ,B 两点,并在AB 路段进行区间测速.在l 外取一点P ,作PC ⊥l ,垂足为点C .测得PC =30米,∠APC =71°,∠BPC =35°.上午9时测得一汽车从点A 到点B 用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)17.已知四边形ABCD 是正方形,AC 、BD 相交于点O ,过点A 作BAC ∠的平分线分别交BD 、BC 于点E 、F .(1)如图1,求证:2CF EO =;(2)如图2,连接CE ,在不添加其他字母和辅助线的条件下,直接写出图中所有的等腰三角形(等腰直角三角形除外).18.(1)求不等式组2151132523(2)x x x x -+⎧-≤⎪⎨⎪-<+⎩的整数解;(2)化简2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭ 19.为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如表:。

2020年中考初三数学一模试卷(含答案)

2020年中考初三数学一模试卷(含答案)

2020年初三数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.-3的绝对值是 A .-13B .-3C .13D .32.函数中y =x2-x 自变量x 的取值范围是A .x ≥2B .x ≤2C .x ≠2D .x >23.在下列四个图形中,是中心对称图形的是A .B .C .D .4.下列运算正确的是 A .2a 2+a 2=3a 4B .(-2a 2)3=8a 6C .a 3÷a 2=aD .(a -b )2=a 2-b 25.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的 A .最高分B .方差C .中位数D .平均数6.下列图形中,主视图为①的是A .B C . D .7.已知a -b =2,则a 2-b 2-4b 的值为 A .2B .4C .6D .88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形9.如图,平面直角坐标系中,A (-8,0),B (-8,4),C (0,4),反比例函数y =kx 的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k = A .-20B .-16C .-12D .-810.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B ′DE ,若B ′D ,B ′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是 A .△ADF ≌△CGEB .△B ′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB ′F 的面积是一个定值二、填空题(本大题共8小题,每小题2分,共16分) 11.16的平方根是 .12.某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 . 13.若3m =5,3n =8,则32m +n= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 . 15.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB = . 16.如图,△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的O 和AB ,BC 均相切,则⊙O 的半径为 .17.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (-1,0),点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .18.如图,正方形ABCD 和Rt △AEF ,AB =5,AE =AF =4,连接BF ,DE .若△AEF 绕点A 旋转,当∠ABF 最大时,S △ADE = .三、解答题(共84分) 19.(本题满分8分)ABCDEF(第18题图)(第17题图)(第16题图)(第15题图)ABCDEFGB′O(第10题图)(第9题图)(第6题图①)(1)计算:(π-3)0+2sin 45°-⎝ ⎛⎭⎪⎫18-1(2)解不等式组:⎩⎪⎨⎪⎧1-2x <3x +13<220.(本题满分8分)解方程: (1)x 2-8x +1=0 (2)3x -2-1-x2-x=121.(本题满分8分)如图,□ABCD 中,E 为AD 的中点,直线BE ,CD 相交于点F .连接AF ,BD . (1)求证:AB =DF ;(2)若AB =BD ,求证:四边形ABDF 是菱形.22.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有________人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在________组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?调查测试成绩扇形统计图ADFEBC23.(本题满分8分)有甲,乙两把不同的锁和A ,B ,C 三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24.(本题满分8分)如图,△ABC 中,⊙O 经过A ,B 两点,且交AC 于点D ,连接BD ,∠DBC =∠BAC . (1)证明BC 与⊙O 相切;(2)若⊙O 的半径为6,∠BAC =30°,求图中阴影部分的面积.25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用. (1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w 最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p 元利润(p ≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x 增大而减小,直接写出p 的取值范围./千克)y26.(本题满分8分)如图,线段OB 放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA ,使tan ∠AOB 的值分别为1,2,3.27.(本题满分10分)已知,二次函数y =ax 2+2ax -3a (a >0)图象的顶点为C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),点C ,B 关于过点A 的直线l 对称,直线l 与y 轴交于D . (1)求A ,B 两点坐标及直线l 的解析式; (2)求二次函数解析式;(3)在第三象限抛物线上有一个动点E ,连接OE 交直线l 于点F ,求EFOF的最大值.BO图3B O图2B O图128.(本题满分10分)如图,矩形ABCD ,AB =2,BC =10,点E 为AD 上一点,且AE =AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰Rt △BFG ,以BG ,BF 为邻边作□BFHG ,连接AG .设点F 的运动时间为t 秒, (1)试说明:△ABG ∽△EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出HC 的最小值.图2AB CDE图1ABC DFEG H9.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF=∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠F AD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠F AD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OF AD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S,△OFG过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.17.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是﹣4≤x≤﹣1.【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.18.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=6.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.22.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有400人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在B组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?【分析】(1)根据E组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得B组和C组所占的百分比.根据本次调查的总人数和B组所占的百分比可以求得B组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.有甲、乙两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好都能打开的概率(请用“画树状图”或“列表”等方法给出分析过程)【分析】首先根据题意列表,得所有等可能的结果,可求得打开一把锁的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图:可能出现的等可能性结果有6种,分别是(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),只有1种情况(有先后顺序)恰好打开这两把锁P(恰好打开这两把锁)=.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.25.某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.【分析】本题是通过构建函数模型解答销售利润的问题.(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a,解得m即可(2)可先求出y与销售单价x之间的函数关系为:y=﹣5x+130,再根据销售利润=销售量×(售价﹣进价),列出销售利润w与销售价x之间的函数关系式,即可求最大利润(3)设扣除捐赠后利润为s,则s=﹣5x2+(5p+200)x﹣130(p+14),再根据对称轴的位置及增减性进行判断即可.【解答】解:(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a则a>0可解得:m≥14∴水果商要把水果售价至少定为14元/千克才不会亏本(2)由(1)可知,每千克水果的平均成本为14元得y与销售单价x之间的函数关系为:y=﹣5x+130由题意得:w=(x﹣14)y=(x﹣14)(﹣5x+130)=﹣5x2+200x﹣1820整理得w=﹣5(x﹣20)2+180∴当x=20时,w有最大值∴当销售单价定为20元时,每天获得的利润w最大,最大利润是180元.(3)设扣除捐赠后利润为s则s=(x﹣14﹣p)(﹣5x+130)=﹣5x2+(5p+200)x﹣130(p+14)∵抛物线的开口向下∴对称轴为直线x==∵销售价格大于每千克22元时,扣除捐赠后每天的利润s随x的增大而减小∴≤22解得p≤4故1≤p≤4【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.26.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..【点评】此题主要考查了应用与设计作图以及锐角三角函数关系、勾股定理等知识,正确构造直角三角形是解题关键.27.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B 左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD =BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.28.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.。

2020届初三中考数学一诊联考试卷含参考答案 (河南)

2020届初三中考数学一诊联考试卷含参考答案 (河南)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.方程组125x yx y-=⎧⎨+=⎩的解是()A.12xy=-⎧⎨=⎩B.21xy=⎧⎨=-⎩C.12xy=⎧⎨=⎩D.21xy=⎧⎨=⎩2.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A.6 B.8 C.9 D.103)A.32B.32-C.32±D.81164.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×1075.用反证法证明“在同面内,若a⊥c,b⊥c,则a∥b”时应假设()A.a不垂直于b B.a⊥bC.a与b相交D.a,b不垂直于c6.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC 边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.7.某种品牌自行车的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于5%,则至多可打的折数是()A.八折B.八四折C.八五折D.八八折8.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M 作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM为定值.其中一定成立的是A.①②③B.①②④C.②③④D.①②③④9.如图两个长方体如图放置,则该立方体图形的左视图是()A.B.C.D.10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母22个或螺栓16个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.则下面所列方程中正确的是()A .2×16x=22(27﹣x )B .16x=22(27﹣x )C .22x=16(27﹣x )D .2×22x=16(27﹣x )二、填空题(共4题,每题4分,共16分)11.在ABC △中,AB AC =,30A ∠=︒,E 为直线BC 上一点(点E 不与点B 、C 重合),ABC ∠与ACE ∠的平分线相交于点D ,则BDC ∠的度数为________.12.正比例函数的图像与反比例函数的图象相交于A 、B 两点,其中点A (2,n),且n>0,当时,的取值范围是___________________.13.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)14.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是_____.三、解答题(共6题,总分54分)15.图①、图②均是边长为1的小正方形组成的5X5的网格,每个小正方形的顶点称为格点线段AB 的端点均在格点上.(1)在图①中作正方形ABCD ,正方形ABCD 的面积为___(2)在图②中作Rt △ABM ,使点M 在格点上,且sin ∠.16.如图.在平面直角坐标系中.抛物线y=12x2+bx+c与x轴交于A两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣2).已知点E(m,0)是线段AB上的动点(点E不与点A,B重合).过点E作PE⊥x 轴交抛物线于点P.交BC于点F.(1)求该抛物线的表达式;(2)当线段EF,PF的长度比为1:2时,请求出m的值;(3)是否存在这样的m,使得△BEP与△ABC相似?若存在,求出此时m的值;若不存在,请说明理由.17.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.如图,在平面直角坐标系中,菱形ABDC的顶点D,C在反比例函数y=k x上(k>0,x>0),横坐标分别为12和2,对角线BC∥x轴,菱形ABDC的面积为9.(1)求k的值及直线CD的解析式;(2)连接OD,OC,求△OCD的面积.19.如图,经过正方形ABCD的顶点A在其外侧作直线AP,点B关于直线AP 的对称点为E,连接BE、DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=30°,求∠ADF的度数.(3)如图,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.20.如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.--------------参考答案,仅供参考使用-------------------一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要。

2020届初三中考数学一诊联考试卷含答案解析 (吉林)

2020届初三中考数学一诊联考试卷含答案解析 (吉林)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是( )A.1 B.2 C.3 D.42.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为A .a πB .2a πC .1a 2πD .3a π3.如图, AB 是⊙O 的直径,⊙O 的半径为5,⊙O 上有定点C 和动点P ,它们位于直径AB 的异侧, 过点C 作CP 的垂线,与PB 的延长线交于点Q,若tan ∠ABC=34,则线段CQ 的长度的最大值为( )A .10B .152C .403D .2034.“十一”国庆节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增力了两名同学,结果每个同学比原来少摊了3元钱车费.设参加旅游的同学共x 人,则所列方程为( )A .18018032x x -=+B .18018032x x -=+C .18018032x x -=-D .18018032x x-=- 5.下列四个立体图形中,从正面看到的图形与其他三个不同的是( ) A . B . C . D .6.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN,分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.87.如图1,在矩形ABCD中,E是AD上的一点,点P从点B沿折线BE﹣ED ﹣DC,运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度,如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,以下结论:①BC=10;②cos∠ABE=35;③当t=12时,△BPQ是等腰三角形;④当14≤t≤20时,y=110﹣5t,其中正确的有()A.1个B.2个C.3个D.4个8.若一组数据a1,a2,a3的平均数为4,方差为3,那么数据a1+2,a2+2,a3+2的平均数和方差分别是()A.4,3B.6,3C.3,4D.6,59.如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为,则a的值是()A.﹣B.﹣C.﹣2D.﹣210.如图所示,已知 AB∥CD,下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4二、填空题(共4题,每题4分,共16分)11.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为_____.12.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S甲=2.8,2S乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)13.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=2k x(x >0)的图象相交于点A B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,则△AOB 的面积是_____.14.2019年4月10日,人类首次看到黑洞,该黑洞的质量是太阳的65亿倍,距离地球大约55000000光年,将数据55000000用科学记数法表示为______.三、解答题(共6题,总分54分)15.“村村通公路政策,是近年来国家构建和谐社会,支持新农村建设的一项重大公共决策,是一项民心工程,惠民工程某镇政府准备向甲、乙两个工程队发包一段“村村通”工程建设项目,经调查:甲、乙两队单独完成该工程,乙队所需时间是甲队的2倍;甲、乙两队共同完成该工程需30天;若甲队每天所需劳务费用为2400元,乙队每天所需劳务费用为1500元,从节约资金的角度考虑,应选择哪个工程队更合算?16.如图,已知△ABC ,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC 的外接圆;(2)若△ABC 所在平面内有一点D ,满足∠CAB=∠CDB ,BC=BD ,求作点D .17.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=2 3 x2+bx+c经过点B,且顶点在直线x=52上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.。

2020年中考数学一模试卷及答案

2020年中考数学一模试卷及答案

2020年中考数学一模试卷及答案题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.在实数|−3|,−2,0,π中,最小的数是()A. |−3|B. −2C. 0D. π2.如图,直线AD//BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A. 42°B. 50°C. 60°D. 68°3.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A. 2.147×102B. 0.2147×103C. 2.147×1010D. 0.2147×10114.下列计算正确的是()A. a3⋅a3=2a3B. a2+a2=a4C. a6÷a2=a3D. (−2a2)3=−8a65.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°6.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A. 2、40B. 42、38C. 40、42D. 42、407.下列命题是假命题的是()A. 平行四边形是轴对称图形B. 角平分线上的点到角两边的距离相等C. 正六边形的内角和是720°D. 不在同一直线上的三点确定一个圆8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A. 40°B. 50°C. 60°D. 80°9.在同一直角坐标系中,二次函数y=x2与反比例函数y=1(x>0)的图象如图所示,若两个函数图象上有三个不同的点xA(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为().A. 1B. mC. m2D. 1m 10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A. △ADF≌△CGEB. △B′FG的周长是一个定值C. 四边形FOEC的面积是一个定值D. 四边形的面积是一个定值第2页,共32页二、填空题(本大题共6小题,共18.0分)11. 在函数y =√x+2x中,自变量x 的取值范围是______.12. 方程组{x −y =2x +2y =5的解是______.13. 因式分解:8a 3−2ab 2=______.14. 如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是______.(结果保留π)15. 如图,已知点A 、B 分别在反比例函数y =1x(x >0),y =−4x (x >0)的图象上,且OA ⊥OB ,则OBOA 的值为______.16. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC =60°,AB =12BC =1,则下列结论:①∠CAD =30°;②BD =√7;③S 平行四边形ABCD =12AB ⋅AC ;④OP =14DO ;⑤S △APO =√1312,正确的有______.三、解答题(本大题共10小题,共110.0分)17.计算:√18+(−3)0−6cos45°+(12)−1.18.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF//BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.先化简,再求值:(x2x−2+42−x)÷x2+4x+4x,其中x是方程x2−3x+2=0的解.20.为了解某校九年级男生200米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:第4页,共32页(1)a=______,b=______,c=______;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为______度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生200米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.21.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?22.如图,△AOB的顶点A、B分别在x轴,y轴上,∠BAO=45°,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.23.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=k(k>0)的图象与边AC交于点E.x(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.第6页,共32页24.如图1,已知直线y=kx与抛物线y=−427x2+223交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴正半轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴正半轴于点N,连结MN,若OM=ON=2,试求tan∠QNM及点Q的坐标;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m取何值时,符合条件的E点的个数只有1个.25.问题发现.(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为______.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.第8页,共32页答案和解析1.【答案】B【解析】解:在实数|−3|,−2,0,π中,|−3|=3,则−2<0<|−3|<π,故最小的数是:−2.故选:B.直接利用利用绝对值的性质化简,进而比较大小得出答案.此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.【答案】C【解析】解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD//BC,∴∠2=∠ABC=60°,故选:C.依据三角形内角和定理,即可得到∠ABC=60°,再根据AD//BC,即可得出∠2=∠ABC= 60°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3.【答案】C【解析】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当第10页,共32页原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】【分析】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方运算法则.根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方逐一计算可得.【解答】解:A.a3⋅a3=a6,此选项错误;B.a2+a2=2a2,此选项错误;C.a6÷a2=a4,此选项错误;D.(−2a2)3=−8a6,此选项正确.故选D.5.【答案】C【解析】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°−20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.根据旋转的性质和三角形内角和解答即可.此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.6.【答案】D【解析】解:这组数据的众数和中位数分别42,40.故选:D.根据众数和中位数的定义求解.本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.7.【答案】A【解析】解:A、平行四边形不是轴对称图形,错误,是假命题;B、角平分线上的点到角两边的距离相等,正确,是真命题;C、正六边形的内角和是720°,正确,是真命题;D、不在同一直线上的三点确定一个圆,正确,是真命题,故选:A.利用平行四边形的对称性、角平分线的性质、正多边形的内角和定理及确定圆的条件分别判断后即可确定答案.考查了命题与定理的知识,解题的关键是了解平行四边形的对称性、角平分线的性质、正多边形的内角和定理,难度不大.第12页,共32页8.【答案】D【解析】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°−∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】D【解析】【分析】本题考查二次函数图象的轴对称性,二次函数图象上点纵坐标相同时,对应点关于抛物线对称轴对称.三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3= x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=1(x>0)的图象上.x因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,,则x3=1m.∴ω=x1+x2+x3=x3=1m故选D.10.【答案】D【解析】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO 平分,∴点O到AB 、的距离相等,∴点O 到、AC的距离相等,∴FO平分∠DFG,(∠FAD+∠ADF),∠DFO=∠OFG=12由折叠得:∠BDE=∠ODF=1(∠DAF+∠AFD),2∴∠OFD+∠ODF=1(∠FAD+∠ADF+∠DAF+∠AFD)=120°,2∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;第14页,共32页B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌≌△CGE,,的周长定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=13S△ABC(定值),故选项C正确;D、,过O作OH⊥AC于H,⋅FG⋅OH,∴S△OFG=12由于OH是定值,FG变化,故△OFG的面积变化,从而四边形的面积也变化,故选项D不一定正确;故选:D.A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF=∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=第16页,共32页 13S △ABC(定值),可作判断; D 、方法同C ,将,根据S △OFG =12⋅FG ⋅OH ,FG 变化,故△OFG 的面积变化,从而四边形的面积也变化,可作判断. 本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO 平分∠DFG 是本题的关键,11.【答案】x ≥−2且x ≠0【解析】解:由题意得,x +2≥0且x ≠0,解得x ≥−2且x ≠0.故答案为:x ≥−2且x ≠0.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【答案】{x =3y =1【解析】解:{x −y =2①x +2y =5②, ②−①,得:3y =3,解得:y =1,将y =1代入①,得:x −1=2,解得:x =3,所以方程组的解为{x =3y =1,故答案为:{x=3.y=1利用加减消元法求解可得.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.13.【答案】2a(2a+b)(2a−b)【解析】解:8a3−2ab2=2a(4a2−b2)=2a(2a+b)(2a−b).故答案为:2a(2a+b)(2a−b).首先提取公因式2a,再利用平方差公式分解因式得出答案.此题主要考查了提取公因式法分解因式以及公式法分解因式,正确应用公式是解题关键.14.【答案】65π【解析】解:由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π,故答案为:65π.从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥,由三视图可知圆锥的底面半径为5,高为12,故母线长为13,据此可以求得其侧面积.本题主要考查了由三视图确定几何体和求圆锥的侧面积.牢记公式是解题的关键,难度不大.15.【答案】12【解析】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A、B分别在反比例函数y=1x (x>0),y=−4x(x>0)的图象上,∴S△OAC=12×1=12,S△OBD=12×|−4|=2,∵OA⊥OB,∴∠AOB=90°∴∠AOC+∠BOD=90°,∴∠AOC=∠DBO,∴Rt△AOC∽Rt△OBD,∴S△AOCS△OBD =(OAOB)2=122,∴OAOB =12.故答案为12.作AC⊥y轴于C,BD⊥y轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到S△OAC=12,S△OBD=2,再证明Rt△AOC∽Rt△OBD,然后利用相似三角形的性质得到OAOB的值.本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.【答案】①②【解析】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,AD//BC,AO=CO,BO=DO,∴∠DAB=120°,且AE平分∠BAD,第18页,共32页∴∠BAE=∠DAE=60°=∠ABE,∴△ABE是等边三角形,∴AB=BE=AE,∵AB=12BC=1,∴AB=BE=AE=1,BC=2,∴EC=1=AE=BE,∴∠BAC=90°,∴∠CAD=∠BAD−∠BAC=30°,故①正确∵∠BAC=90°,∴S平行四边形ABCD=AB⋅AC,AC=√BC2−AB2=√4−1=√3,∴AO=√32,∴BO=√AB2+AO2=√1+34=√72,∴BD=√7故②正确,③错误∵AO=OC,BE=CE∴OE//AB,AB=2OE,∴ABOE=BPOP=2∴设OP=a,则BP=2a,OB=3a=OD,∴OP=13OD,∴S△APO=13S△ABO=13×12×1×√32=√312,故④⑤错误故答案为:①②由平行四边形的性质可得∠ABC=∠ADC=60°,AD//BC,AO=CO,BO=DO,可证△ABE是等边三角形,可得AB=BE=AE=1=EC,可得∠BAC=90°,即可判断①,由勾股定理可求OB的长,即可判断②,由平行四边形的面积公式可判断③,由三角形的中位线定理可判断④,由三角形的面积公式可判断⑤.本题考查了平行四边形的性质,勾股定理,三角形中位线定理,熟练运用平行四边形的性质是本题的关键.17.【答案】解:原式=3√2+1−6×√2+2=3√2+1−3√2+2=3.2【解析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【答案】证明:(1)∵DF//BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD//BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).【解析】(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.第20页,共32页(2)由△AFD≌△CEB,容易证明AD=BC且AD//BC,可根据一组对边平行且相等的四边形是平行四边形.此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.19.【答案】解:原式=x2−4x−2÷(x+2)2x=(x−2)(x+2)x−2⋅x(x+2)2=xx+2,解方程x2−3x+2=0得x=1或x=2(舍去),当x=1时,原式=11+2=13.【解析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.本题考查了分式的化简,熟练分解因式是解题的关键.20.【答案】(1)2;45;20(2)72(3)16【解析】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=1840×100=45,c=840×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)=212212=1616.(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:900x+5=1.5×500x,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y−500−900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.【解析】(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;第22页,共32页(2)设每套悠悠球的售价为y元,根据销售收入−成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.22.【答案】解:(1)在Rt△AOB中,∵∠BAO=45°,∴AO=BO,⋅OA⋅OB=8,∴12∴OA=OB=4,∴A(4,0),B(0,4).(2)①当等C在点A的左侧时,易知C(−4,0),B(0,4),A(4,0),,顶点为B(0,4),时抛物线解析式为y=ax2+4,(4,0)代入得到a=−14x2+4.∴抛物线的解析式为y=−14当C与O重合时,△ABC是等腰三角形,但此时不存在过A,B,C三点的拋物线.当点C在点A的右侧时,△ABC是以BC为腰的等腰三角形,这个显然不可能,此种情形不存在,综上所述,抛物线的解析式为y=−1x2+4.4②抛物线G向下平移4个单位后,经过原点(0,0)和(4,−4),设抛物线的解析式为y=mx2+nx,把(4,−4)代入得到n=−1−4m,∴抛物线的解析式为y=mx2+(−1−4m)x,,消去y得到mx2−4mx−4=0,由{y=−x+4y=mx2+(−1−4m)x由题意△=0,∴16m2+16m=0,∵m≠0,第24页,共32页∴m =−1,∴抛物线的解析式为y =−x 2+3x , 由{y =−x +4y =−x 2+3x ,解得{x =2y =2, ∴N(2,2).【解析】(1)首先证明OA =OB ,利用三角形的面积公式,列出方程即可求出OA 、OB ,由此即可解决问题;(2)①首先确定A 、B 、C 的坐标,再利用的待定系数法即可解决问题;②抛物线G 向下平移4个单位后,经过原点(0,0)和(4,−4),设抛物线的解析式为y =mx 2+nx ,把(4,−4)代入得到n =−1−4m ,可得抛物线的解析式为y =mx 2+(−1−4m)x ,由{y =−x +4y =mx 2+(−1−4m)x ,消去y 得到mx 2−4mx −4=0,由题意△=0,可得16m 2+16m =0,求出m 的值即可解决问题.本题考查抛物线与x 轴的交点、等腰三角形的性质、待定系数法、一元二次方程的判别式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.23.【答案】解:(1)∵OA =3,OB =4,∴B(4,0),C(4,3), ∵F 是BC 的中点, ∴F(4,32),∵F 在反比例y =kx 函数图象上, ∴k =4×32=6,∴反比例函数的解析式为y =6x , ∵E 点的坐标为3, ∴E(2,3);(2)∵F 点的横坐标为4,∴F(4,k4),∴CF =BC −BF =3−k 4=12−k4∵E 的纵坐标为3, ∴E(k3,3),∴CE =AC −AE =4−k 3=12−k 3,在Rt △CEF 中,tan ∠EFC =CECF =43,(3)如图,由(2)知,CF =12−k 4,CE =12−k 3,CE CF =43,过点E 作EH ⊥OB 于H ,∴EH =OA =3,∠EHG =∠GBF =90°, ∴∠EGH +∠HEG =90°,由折叠知,EG =CE ,FG =CF ,∠EGF =∠C =90°, ∴∠EGH +∠BGF =90°, ∴∠HEG =∠BGF , ∵∠EHG =∠GBF =90°, ∴△EHG ∽△GBF , ∴EHBG =EGFG =CECF , ∴3BG =43, ∴BG =94,在Rt △FBG 中,FG 2−BF 2=BG 2, ∴(12−k 4)2−(k 4)2=8116,∴k =218,∴反比例函数解析式为y =218x .【解析】(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CF,即可得出结论;(3)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.24.【答案】解:(1)把点A(3,6)代入y=kx得;∵6=3k∴k=2,∴y=2x.OA=√32+62=3√5.(2)如图1中,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.设Q(m,2m)①当QH与QM重合时,显然QG与QN重合,此时tan∠QNM=QHQG =2mm=2;②当QH与QM不重合时,∵QN⊥QM,QG⊥QH,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN,∴QMQN =QHQG=HMGN=2,∴tan∠QNM=QHQG =2mm=2;第26页,共32页∵OM=ON=2,∴HM=2−m,GN=2m−2,∵HM=2GN,∴2−m=2(2m−2),解得m=65,∴Q(65,125).(3)如答图2中,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R.∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=12OA=32√5∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴OFOC =AOOR=3√53=√5,∴OF=32√5×√5=152,∴点F(152,0),设点B(x,−427x2+223),过点B作BK⊥AR于点K,则△AKB∽△ARF,∴BKFR =AKAR,第28页,共32页即x−37.5−3=6−(−427x 2+223)6,解得x 1=6,x 2=3(舍去), ∴点B(6,2),∴BK =6−3=3,AK =6−2=4, ∴AB =5,(求AB 也可采用下面的方法)设直线AF 为y =kx +b(k ≠0)把点A(3,6),点F(152,0)代入得 k =−43,b =10,∴y =−43x +10,∴{y =−43x +10y =−427x 2+223, ∴{x =3y =6(舍去)或{x =6y =2, ∴B(6,2), ∴AB =5, 在△ABE 与△OED 中 ∵∠BAE =∠BED ,∴∠ABE +∠AEB =∠DEO +∠AEB , ∴∠ABE =∠DEO , ∵∠BAE =∠EOD , ∴△ABE ∽△OED ,设OE =a ,则AE =3√5−a(0<a <3√5), 由△ABE ∽△OED 得AEAB =ODOE , ∴3√5−a 5=ma ,∴m =15a(3√5−a)=−15a 2+3√55a(0<a <3√5),∴顶点为(32√5,94) 如答图3,当94时,OE =a =32√5,此时E 点有1个;当O <m <94时,任取一个m 的值都对应着两个a 值,此时E 点有2个. ∴当m =94时,E 点只有1个.【解析】(1)利用待定系数法即可解决问题;(2)如图1中,过点Q 作QG ⊥y 轴于点G ,QH ⊥x 轴于点H.设Q(m,2m).①当QH 与QM 重合时,显然QG 与QN 重合,此时tan ∠QNM =QH QG=2m m=2;②当QH 与QM 不重合时,由△QHM ∽△QGN ,即可解决问题;(3)如答图2中,延长AB 交x 轴于点F ,过点F 作FC ⊥OA 于点C ,过点A 作AR ⊥x 轴于点R.首先求出点F 坐标,AB 的长,再证明△ABE ∽△OED ,设OE =a ,则AE =3√5−a(0<a <3√5),由△ABE ∽△OED 得AEAB =ODOE ,可得3√5−a5=ma,推出m =15a(3√5−a)=−15a 2+3√55a(0<a <3√5),利用二次函数的性质解决问题即可;本题考查二次函数综合题、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会利用参数,构建方程解决问题,学会构建二次函数利用二次函数的性质解决问题,属于中考压轴题.25.【答案】(1)125;(2)9625;(3)存在.【解析】解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵12AC×BC=12AB×CD,∴CD=AC×BCAB =125,故答案为125;(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN= EN最小;∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴12BD×CF=12BC×CD,∴CF=BC×CDBD =125,由对称得,CE=2CF=245,在Rt△BCF中,cos∠BCF=CFBC =35,∴sin∠BCF=45,在Rt△CEN中,EN=CEsin∠BCE=245×45=9625;即:CM+MN的最小值为9625;(3)如图3,∵四边形ABCD是矩形,∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,∵AB=3,AE=2,第30页,共32页∴点F在BC上的任何位置时,点G始终在AC的下方,设点G到AC的距离为h,∵S四边形AGCD =S△ACD+S△ACG=12AD×CD+12AC×ℎ=12×4×3+12×5×ℎ=52ℎ+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC=BCAC =45,在Rt△AEH中,AE=2,sin∠BAC=EHAE =45,∴EH=45AE=85,∴ℎ=EH−EG=85−1=35,∴S四边形AGCD最小=52ℎ+6=52×35+6=152,过点F作FM⊥AC于M,∵EH⊥FG,EH⊥AC,∴四边形FGHM是矩形,∴FM=GH=35,∵∠FCM=∠ACB,∠CMF=CBA=90°,∴△CMF∽△CBA,∴CFAC =FMAB,∴CF5=353,∴CF=1∴BF=BC−CF=4−1=3.(1)根据点到直线的距离最小,再用三角形的面积即可得出结论;(2)先根据轴对称确定出点M和N的位置,再利用面积求出CF,进而求出CE,最后用三角函数即可求出CM+MN的最小值;(3)先确定出EG⊥AC时,四边形AGCD的面积最小,再用锐角三角函数求出点G到AC 的距离,最后用面积之和即可得出结论,再用相似三角形得出的比例式求出CF即可求出BF.此题是四边形综合题,主要考查了矩形的性质,点到直线的距离,轴对称,解本题的关键是确定出满足条件的点的位置,是一道很好的中考常考题.第32页,共32页。

2020届初三中考数学一诊联考试卷含参考答案 (黑龙江)

2020届初三中考数学一诊联考试卷含参考答案 (黑龙江)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.我们规定:a*b=,则下列等式中对于任意实数 a、b、c 都成立的是()①a+(b*c)=(a+b)*(a+c)②a*(b+c)=(a+b)*c③a*(b+c)=(a*b)+(a*c)④(a*b)+c= +(b*2c)A.①②③B.①②④C.①③④D.②④2.火灾猛于虎!据应急管理部统计,2018年全国共接报火灾23.7万起,死亡1407人,伤798人,直接财产损失36.75亿元,其中36.75亿元用科学记数法表示正确的是()A.3.675×109元B.0.3675×1010元C.3.675×108元D.36.75×108元3.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为()A.5050 B.﹣5050 C.0 D.﹣14.若方程x2﹣7x+12=0的两个实数根恰好是直角△ABC的两边的长,则△ABC 的周长为()A.12 B.C.12或D.115.下列命题为真命题的是()A.有两边及一角对应相等的两个三角形全等B.方程x2﹣x+2=0有两个不相等的实数根C.面积之比为1:4的两个相似三角形的周长之比是1:4D.顺次连接任意四边形各边中点得到的四边形是平行四边形6.如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G 分别为BC、DE的中点,若ED=10,则FG的长为()A.BC.8D.97.设A,B,C表示三种不同的物体,现用天平称了两次,情况如上图所示,那么A,B,C这三种物体按质量从大到小的顺序排应为( )A .A,B,CB .C,B,AC .B,A,CD .B,C,A8.已知二次函数()20y ax bx c a =++≠的图象如图所示,现有下列结论:①0abc >;②240b ac -<;③420a b c -+<;④2b a =-.则其中结论正确的是( )A .①③B .③④C .②③D .①④9.重庆市南岸区2018年全区总人口约为713000人,把数713000用科学计数法表示,正确的是( )A .57.1310⨯B .371310⨯C .471.310⨯D .47.1310⨯ 10.方程23x +=11x -的解是( ) A .x=53 B .x=5 C .x=4 D .x=﹣5二、填空题(共4题,每题4分,共16分)11.如图,在△ABC 中,∠ACB=90°.按以下步骤作图,分别以点A 和点B 为圆心,大于1AB 2的长为半径作圆弧,两弧交于点E 和点F ;作直线EF 交AB 于点D ;连结CD ,若AC=8,BC=6,则CD 的长为_____.12.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)13.如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为_____.14.在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色,从袋中随机摸出个,则摸到的是蓝色小球的概率为______三、解答题(共6题,总分54分)15.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC 左侧).(1)求证:AB 是⊙O 的切线;(2)连接CD ,若AC =23AD ,求tan ∠D 的值; (3)在(2)的条件下,若⊙O 的半径为5,求AB 的长.16.()2020191(1)|2cos452π-︒⎛⎫-+-- ⎪⎝⎭ 17.如图,在矩形ABCD 中,点E 是BC 边上的一个动点,沿着AE 翻折矩形,使点B 落在点F 处若AB =3,BC ,解答下列问题:(1)在点E 从点B 运动到点C 的过程中,求点F 运动的路径长;(2)当点E 是BC 的中点时,试判断FC 与AE 的位置关系,并说明你的理由; (3)当点F 在矩形ABCD 内部且DF =CD 时,求BE 的长.18.如图1是某品牌订书机,其截面示意图如图2所示.订书钉放置在轨槽CD 内的MD 处,由连接弹簧的推动器MN 推紧,连杆EP 一端固定在压柄CF 上的点E 处,另一端P 在DM 上移动.当点P 与点M 重合后,拉动压柄CF 会带动推动器MN 向点C 移动.使用时,压柄CF 的端点F 与出钉口D 重合,纸张放置在底座AB 的合适位置下压完成装订(即点D 与点H 重合).已知CA ⊥AB ,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.(1)求轨槽CD的长(结果精确到0.1);(2)装入订书钉需打开压柄FC,拉动推动器MN向点C移动,当∠FCD=53°时,能否在ND处装入一段长为2.5cm,,sin53°≈0.80,cos53°≈0.60)19.在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)20.如图,某高速公路设计中需要测量某条江的宽度AB,测量人员使用无人机测量,在C处测得,A B两点的俯角分别为45和30,若无人机离地面的高度A B D在同一条水平直线上,求这条江的宽度AB长(结CD为1200米,且点,,果保留根号).。

2020年度中考初三数学一模试卷(含答案解析)

2020年度中考初三数学一模试卷(含答案解析)

2020年初三数学一模试卷、选择题(本大题共10小题,每小题3分,共30分) 1 . —3的绝对值是1A.—-3x2.函数中y=三自变量%的取值范围是7.已知a —b = 2,贝U a2—b2—4b的值为C . 6D . 88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形13名参加决赛,其中一名同学已经知道自己A.最高分B.方差C.中位数 D .平均数C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形B. x <24 .下列运算正确的是A . 2a2+ a2= 3 a4B . (—2a2)3= 8a5 6C . a3+a2= aD . (a —b)2= a2—b2B.对角线互相垂直平分的四边形是菱形A. x >2是中心对称图形的是C.k9 .如图,平面直角坐标系中, A (- 8 , 0), B (- 8 , 4), C (0, 4),反比例函数 y = 一的图象分别X与线段AB , BC 交于点D , E ,连接DE .若点B 关于DE 的对称点恰好在 OA 上,则k = A . - 20B . - 16C . - 12D . - 810 .如图,等边三角形 ABC 边长是定值,点 0是它的外心,过点 0任意作一条直线分别交 AB , BC 于 点D , E .将ABDE 沿直线DE 折叠,得到△ BDE ,若B'D , B'E 分别交AC 于点F , G ,连接OF , 0G , 则下列判断错误的是 B.A B FG 的周长是一个定值11 . 16的平方根是 ____________12 .某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为表示应为 ___________ .13 .若 3m = 5 , 3n = 8,贝H 32m + n = _________________14 .用一个圆心角为120 °,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 ___________________ . 15 .如图,四边形 ABCD 内接于O O , OC //AD ,/DAB = 60 °,A DC = 106 °,^UQCB = __________________ 16 .如图,A ABC 中,/C = 90 °,AC = 3, AB = 5 , D 为BC 边的中点,以 AD 上一点O 为圆心的 O 和AB , BC 均相切,则O O 的半径为A . △ADF 也/CGEC •四边形FOEC 的面积是一个定值D •四边形OGB 'F 的面积是一个定值(第6题图①)、填空题(本大题共8小题,每小题2分,共16分)12400,将12400用科学记数法17.如图,二次函数y= (x+ 2)1 2+ m的图象与y轴交于点C,与x轴的一个交点为A (- 1, 0),点B在抛物线上,且与点C关于抛物线的对称轴对称•已知一次函数y= kx + b的图象经过A, B两点,根据图象,则满足不等式(x + 2)2+ m <kx + b的x的取值范围是______________ .18 .如图,正方形ABCD和Rt△AEF, AB = 5 , AE= AF= 4,连接BF, DE.若△AEF绕点A旋转,当/ABF 最大时,S ZADE = ____________1求证:AB = DF;2若AB = BD,求证:四边形ABDF是菱形.三、解答题(共84分)19 .(本题满分8分)1(1 )计算:(n—3)°+ 2sin45 °-一81 - 2x v 3(2)解不等式组:x + 1v 2320 .(本题满分8分)解方程:(1) x2- 8x + 1 = 0(2)3x-221 .(本题满分8分)如图, □ABCD中,E为AD的中点,直线BE, CD相交于点F.连接AF, BD.22 .(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学 生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90 <x <100 ;B 组:80 <x v 90 ;C 组:70 <x v 80 ;D 组:60 V 70 ;E 组:x V 60 ),通过对测试成绩的分析, 得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1 )抽取的学生共有 _________ ,请将两幅统计图补充完整; (2 )抽取的测试成绩的中位数落在 __________ 内;(3 )本次测试成绩在 80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?23 .(本题满分8分)有甲,乙两把不同的锁和 A , B , C 三把不同的钥匙•其中两把钥匙分别能打开这两把锁,第三把钥匙 不能打开这两把锁•随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或 “列表”等方法给出分析过程)B C调查测试成绩扇形统计图调查测试成绩条形统计图(分)24.(本题满分8分)如图,△ ABC中,O O经过A, B两点,且交AC于点D,连接BD,/DBC = /BAC .(1)证明BC与O O相切;25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1 )商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p》1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.26.(本题满分8分)如图,线段0B放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA,使tan ZAOB的值分别为1,2,3.27 .(本题满分10分)已知,二次函数y = ax2+ 2ax —3a (a> 0)图象的顶点为C,与x轴交于A, B两点(点A在点B的左侧),点C, B关于过点A的直线I对称,直线l与y轴交于D .(1 )求A, B两点坐标及直线I的解析式;(2)求二次函数解析式;EF(3)在第三象限抛物线上有一个动点E,连接OE交直线I于点F,求OF的最大值.28 .(本题满分10 分)如图,矩形ABCD , AB = 2 , BC = 10 ,点E 为AD 上一点,且AE = AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰 Rt 壬FG ,以BG , BF 为邻边作CBFHG ,连接AG •设点F 的运动时间为t 秒,(1)试说明:△ ABG S /EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出 HC 的最小值.图1图29 .如图,平面直角坐标系中, A (- 8 , 0), B (- 8 , 4), C (0, 4),反比例函数y =鱼的图象分别与线段AB,BC交于点D,E,连接DE •若点B关于DE的对称点恰好在OA上,贝U k =( )形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG丄OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则ABDE^zFDE,•••BD = FD, BE= FE,Z DFE=Z DBE= 90A . - 20 B. - 16 C.- 12 D . - 8【分析】根据A (- 8 , 0), B (- 8 , 4 ), C (0 , 4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角易证△ADF S £FE•丄厂•丽五,•••AF : EG = BD : BE ,••A (- 8 , 0), B (- 8 , 4), C (0 , 4), .•.AB = 0C = EG = 4 , OA = BC = 8 , •••D 、E 在反比例函数y =上的图象上,x•••E 出,4)、D (- 8,上)4 8•••OG = EC = , AD =-—,48•••BD = 4+二,BE = 8+-84•••AF =丄二二在Rt A ADF 中,由勾股定理: AD 2+AF 2 = DF 2 即:(-丄)2+2 2=( 4+丄)2解得:k =- 12 故选:C .10 •如图,等边三角形 ABC 边长是定值,点 O 是它的外心,过点 O 任意作一条直线分别交 AB , BC 于点D ,巳将厶BDE 沿直线DE 折叠,得到△ B'DE ,若B'D , B'E 分别交AC 于点F , G ,连接OF , OG , 则下列判断错误的是(* *” ----- —*甘 E 〜A .△ADF 也zCGEB .△B'FG的周长是一个定值C •四边形FOEC的面积是一个定值D •四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分/BAC,根据角平分线的定理和逆定理得:FO平分Z DFG,由外角的性质可证明/ DOF = 60。

2020年中考初三数学一模试卷(含答案)

2020年中考初三数学一模试卷(含答案)

2020年初三数学一模试卷、选择题(本大题共10小题,每小题3分,共30 分)1. —3的绝对值是1B . —3C. 32.函数中y = 自变量x的取值范围是2 —Xk9.如图,平面直角坐标系中, A (—8, 0), B (—8, 4), C (0, 4),反比例函数y= x的图象分别与线段AB, BC交于点D, E,连接DE .若点B关于DE的对称点恰好在OA上,贝U k=A . —20B . —16C . —12D . —810 .如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB, BC于点D , E .将厶BDE沿直线DE折叠,得到△ B DE,若B'D, B E分别交AC于点F , G,连接OF , OG , 则下列判断错误的是D . x> 24.下列运算正确的是22^4 2 3 (6)A . 2a + a = 3aB . (—2a ) = 8a2 2 2D . (a—b) = a —5.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的A.最高分 B .方差C.中位数 D .平均数A . 2&下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形C .对角线相等的四边形是矩形C . 6D . 8B .对角线互相垂直平分的四边形是菱形D .对角线互相平分的四边形是平行四边形A . △ ADF CGEC .四边形FOEC的面积是一个定值B. △ B E G的周长是一个定值D.四边形OGB E的面积是一个定值A . x>2B . x<26.下列图形中,主视图为①的是B . 417. 如图,二次函数y = (x + 2)2+ m 的图象与y 轴交于点C ,与x 轴的一个交点为 A (- 1, 0),点B 在抛物线上,且与点 C 关于抛物线的对称轴对称•已知一次函数y = kx + b 的图象经过A , B 两点,根据图象,则满足不等式(x + 2)2+ m < kx + b 的x 的取值范围是 __________ .18. 如图,正方形 ABCD 和Rt △ AEF , AB = 5, AE = AF = 4,连接BF , DE .若厶AEF 绕点A 旋转,当/ABF 最大时,S ^ADE = ____________三、解答题(共84分) 19. (本题满分8分)(第6题图①)、填空题(本大题共8小题,每小题2分,共16 分) 11. ______________________ 16的平方根是 .12. 某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 __________ . 13.若 3m= 5, 3n= 8,则 32m+n = ____________________14. 用一个圆心角为120°半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 ____________________ . 15. 如图,四边形 ABCD 内接于O O , OC // AD ,/ DAB = 60° / ADC = 106° 则/ OCB = _____________ 16. 如图,△ ABC 中,/ C = 90°, AC = 3, AB = 5, D 为BC 边的中点,以AD 上一点 O 为圆心的 O 和AB ,BC 均相切,则O O 的半径为B'21. (本题满分8分)如图,口ABCD 中,E 为AD 的中点,直线 BE , CD 相交于点F .连接AF , BD . (1) 求证:AB = DF ;(2) 若AB = BD ,求证:四边形 ABDF 是菱形.22. (本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学 生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90W x < 100;B 组:80W x v 90;C 组:70W x v 80;D 组:60< x v 70;E 组:x v 60),通过对测试成绩的分析,得 到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1 )抽取的学生共有 _________ 人,请将两幅统计图补充完整; (2 )抽取的测试成绩的中位数落在 ___________ 组内;(3)本次测试成绩在 80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?c 1 — 1(1)计算:n 3)°+ 2sin45°—-820.(本题满分8分)解方程:2(1) x — 8x + 1 = 01 — 2x v 3(2)解不等式组:X±J v 23(2)3 1—xx — 2—2—调查测试成绩扇形统计图调查测试成绩条形统计图23. (本题满分8分)有甲,乙两把不同的锁和A, B, C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24. (本题满分8分)如图,△ ABC中,O O经过A, B两点,且交AC于点D,连接BD,/ DBC = Z BAC .(1)证明BC与O O相切;25. (本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1 )商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y (千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p> 1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.26. (本题满分8分) 如图,线段0B 放置在正方形网格中, 现请你分别在图 1图2,图3添画(工具只能用直尺)射线OA , 使tan / AOB 的值分别为1, 2, 3.27. (本题满分10分)已知,二次函数 y = ax 2 + 2ax — 3a (a > 0)图象的顶点为 C ,与x 轴交于A , B 两点(点A 在点B 的左 侧),点C , B 关于过点A 的直线I 对称,直线I 与y 轴交于D . (1 )求A , B 两点坐标及直线I 的解析式; (2) 求二次函数解析式;(3) 在第三象限抛物线上有一个动点 E ,连接OE 交直线I 于点F ,求OF 的最大值.j o [II 1 j :丨\B图1【=:0\ iy |ll Al ■■■ J J 1IB ■ ■Ii I \...i图228. (本题满分10 分)如图,矩形ABCD , AB= 2, BC = 10,点E为AD上一点,且AE = AB,点F从点E出发,向终点 D 运动,速度为1 cm/s,以BF为斜边在BF上方作等腰Rt△ BFG,以BG,BF为邻边作口BFHG,连接AG .设点F的运动时间为t秒,(1) 试说明:△ ABGEBF ;(2) 当点H落在直线CD上时,求t的值;(3) 点F从E运动到D的过程中,直接写出HC的最小值.1-图1图2C ( 0, 4),可得矩形的长和宽,易知点D 的横坐标,E 的纵 k 的代数式表示出点 D 的纵坐标和点E 的横坐标,由三角形相似和对称,可求出 AF 的长,然后把问题转化到三角形 A DF 中,由勾股定理建立方程求出k 的值.【解答】 解:过点E 作EG 丄0A ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图 所示:则厶 BDEFDE ,••• BD = FD , BE = FE ,/ DFE = Z DBE = 90°易证△ ADF GFE• AF DF•丽冠,AF : EG = BD : BE ,A (- 8, C),B (-8, 4), C ( 0, 4),AB = OC = EG= =4 , OA =BC = 8 ,D 、E 在反 比例函数y = 上■的图象上, E 哼 ,4) 、D(-8 ,A) s 'OG = EC = k ,AD =- _ k_T8BD = 4+— BE = 8+—s44屮BD 「81 DF AF•三.•-AF = ,9.如图,平面直角坐标系中, A (- 8, 0), B (- 8, 4), C (0, 4),反比例函数y 亠的图象分别与线 B 关于DE 的对称点恰好在0A 上,则k =()B . - 16C .— 12D .- 8【分析】根据A (- 8, 0), B (- 8, 4), 坐标,由反比例函数的关系式,可用含有 A . - 20E ,连接DE .若点2 2 2在Rt △ ADF 中,由勾股定理: AD +AF = DF 即:(-丄)2+22=( 4+二)2 解得:k =- 12 故选:C .10.如图,等边三角形 ABC 边长是定值,点 O 是它的外心,过点 O 任意作一条直线分别交 AB , BC 于点 D ,E -将厶BDE 沿直线DE 折叠,得到△ B ' DE ,若B ' D , B ' E 分别交AC 于点F , G ,连接OF , OG ,则下列判断错误的是()A . △ ADF CGEB . △ B ' FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB'F 的面积是一个定值【分析】A 、根据等边三角形 ABC 的内心的性质可知:AO 平分/ BAC ,根据角平分线的定理和逆定理得:FO 平分/ DFG ,由外角的性质可证明/ DOF = 60°,同理可得/ EOG = 60°,/ FOG = 60°=/DOF = / EOG ,可证明厶 DOF ◎△ GOF ◎△ GOE ,^ OAD ◎△ OCG , △ OAF ◎△ OCE ,可得 AD = CG , AF = CE ,从而得厶 ADF ◎△ CGE ;B 、 根据△ DOF 也厶 GOFGOE ,得 DF = GF = GE ,所以△ ADFB'GFCGE ,可得结论;C 、 根据S 四边形FOEC = S ^OCF + S ^ OCE ,依次换成面积相等的三角形,可得结论为: S A A OC =丄二,.「一(定 值),可作判断;变化,从而四边形 OGB'F 的面积也变化,可作判断. 【解答】解:A 、连接OA 、OC ,•••点0是等边三角形 ABC 的内心, ••• A0 平分/ BAC ,=(4+二)8D 、方法同 C ,将 S 四边形 OGB'F = S\OAC - S A OF G ,根据 S A OFG?FG?OH , FG 变化,故△ OFG 的面积•••点0到AB、AC的距离相等,由折叠得:DO平分/ BDB',•••点0到AB、DB'的距离相等,•••点0到DB'、AC的距离相等,• F0 平分/ DFG ,/ DF0 = Z 0FG = — (/ FAD + Z ADF ),2由折叠得:Z BDE = Z 0DF =_ (Z DAF+Z AFD ),•Z 0FD + Z 0DF =—(Z FAD + Z ADF+Z DAF+Z AFD )= 120°,2•Z D0F = 60°,同理可得Z EOG = 60 ° ,•Z F0G = 60°=Z D0F = Z E0G ,•••△ D0F 也厶G0F ◎△ G0E ,• 0D = 0G , 0E= 0F,Z 0GF = Z 0DF = Z 0DB , Z 0FG =Z 0EG = Z 0EB,•△ 0AD◎△ 0CG , △ 0AF◎△ 0CE ,• AD = CG , AF = CE ,•△ ADF ◎△ CGE ,故选项A正确;B、•••△ D0F 也厶G0FG0E ,• DF = GF = GE ,•△ ADF ◎△ B'GF◎△ CGE ,• B'G = AD ,•△ B'FG 的周长=FG + B'F+B'G = FG +AF +CG = AC (定值),故选项B正确;故选项C正确;D、S 四边形OGB'F = S A OFG+S A B'GF = S A OFD+S A ADF= S 四边形OFAD = S\OAD+S A OAF= S A OCG+S A OAF=S A OAC-SC 、S 四边形 FOEC =也OCF &OCE ’ S GF +S A OAF= S A A 。

【真题】2020届初中初三中考数学一诊模拟测试卷附参考答案 (山东)

【真题】2020届初中初三中考数学一诊模拟测试卷附参考答案 (山东)

2020届初三中考模拟一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.2018年某县GDP总量为1000亿元,计划到2020年全县GDP总量实现1440亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.10% C.20% D.21%2.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A.90°B.100°C.108°D.110°3.如图,P为平行四边形ABCD的边AD上的任意一点,E,F分别为PB,PC的中点,四边形BCFE,△PDC,△PAB的面积分别为S,S1,S2,若S=12,则S1+S2的值为()A.12 B.14 C.16 D.184101的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≠0且k≥﹣1 B.k≥﹣1 C.k≠0且k≤﹣1 D.k≠0或k≥﹣1 6.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°7.若将抛物线y=x2+2先向右平移2个单位长度,再向下平移2个单位长度,则所得到的抛物线的顶点坐标是()A.(4,0)B.(2,0)C.(0,2)D.(0,4)8.直线a∥b,直角三角形如图放置,若∠1+∠A=65°,则∠2的度数为()A.15°B.20°C.25°D.30°9.在△ABC中,点D、E分别在边AB和AC上,且DE∥BC,若AD:DB=1:1,则S△ADE:S四边形DBCE的值为()A.1:1B.1:2C.1:3D.1:410.数学与我们的日常生活息息相关.汽车雨刮器摆动的轨迹是以点O为圆心的扇形.如图所示,已知雨刮器摆动的角度为120°,雨刮器的总长为1,雨刮器上有橡胶的部分(即线段AC的长)为35,则单个雨刮器在车窗上从AC转动到BD,扫过的面积为()A.725πB.1675πC.325πD.475π二、填空题(共4题,每题4分,共16分)11.2018年,全年国内生产总值达到900300亿元,将这个数据用科学记数法表示为_____元.12.如图,将平行四边形ABCD绕点D逆时针旋转150,得到平行四边形DEFG,这时点C、E、G恰好在同一直线上,延长AD交CG于点H.若2AD=,75A∠=,则HG=__________.13.如图,在扇形OAB中,∠AOB=90°,点C为OB的中点,CD⊥OB交弧AB于点D.若OA=2,则阴影部分的面积为_____.14.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=25,反比例函数y=kx的图象经过点B,则k的值为.三、解答题(共6题,总分54分)15.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E,连接AD,BC,CO(1)当∠BCO =25°时,求∠A 的度数;(2)若CD =42,BE =4,求⊙O 的半径.16.如图,在平行四边形ABCD 中,点E 、F 分别在AB 、CD 上,且ED ⊥DB ,FB ⊥BD .(1)求证:△AED ≌△CFB ;(2)若∠A =30°,∠DEB =45°,求证:DA =DF .17.红星公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的日销售量y 1(件)与时间t (天)的关系如图所示;未来40天内,每天的价格y 2(元/件)与时间t (天)的函数关系式为:y 2=1t 25(1t 20)41t 40(21t 40)2⎧+⎪⎪⎨⎪-+⎪⎩(t 为整数); (1)求日销售量y 1(件)与时间t (天)的函数关系式;(2)请预测未来40天中哪一天的销售利润最大,最大日销售利润是多少? (3)在实际销售的前20天中该公司决定销售一件商品就捐赠a 元(a 为定值)利润给希望工程.公司通过销售记录发现,前20天中,第18天的时候,扣除捐赠后日销售利润为这20天中的最大值,求a 的值.。

最新2020届初三中考数学一模联考真题试题含参考答案 (10)

最新2020届初三中考数学一模联考真题试题含参考答案 (10)
(1)判断 CM 与⊙O 的位置关系,并说明理由; (2)若∠ECF=2∠A,CM=6,CF=4,求 MF 的长.
17.某校九年级有 1200 名学生,在体育考试前随机抽取部分学生进行跳绳测 试,根据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
(Ⅰ)本次参加跳绳测试的学生人数为___________,图①中 m 的值为 ___________; (Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数; (Ⅲ)根据样本数据,估计该校九年级跳绳测试中得 3 分的学生约有多少人? 18.如图,菱形 ABCD 中,E 是对角线 BD 上的一点,连接 EA、EC,求证:∠ BAE=∠BCE.
又∵4a+2b+c>0 4a+2(a+c)+c>0 即 2a+c>0① ∵a<0, ∴c>0 则 c﹣2a>0② 由①②知(c+2a)(c﹣2a)>0, 所以 b2﹣2ac﹣5a2>0, 即 b2﹣5a2>2ac,所以④正确. 故选:B. 【小结】 本题考查了二次函数图象与系数的关系,掌握二次函数的性质、一元二次方程 根的个数和图象的位置之间的关系、不等式的性质是解题的关键. 2.C 解析:C 【解析】 【详解】 A、圆锥的俯视图是圆和圆心,故此选项错误; B、圆柱的俯视图是圆,故此选项错误; C、三棱柱的俯视图是三角形,故此选项正确; D、正方形的俯视图是正方形,故此选项错误. 故选:C
A.50°
B.60°
C.65°
D.70°
8.如图,矩形 ABCD 中, AB = 2 , BC = 2 ,以 B 为圆心, BC 为半径画弧,
交 AD 于 E ,则图中阴影部分的周长是( ).
A. 2 + 2
B. 2 + 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--------------参考答案,仅供参考使用-------------------
一、单选题(共 10 题,每题 3 分,共 30 分,四个选项中只有一项符合题目要 求)
1.D 解析:D 【解析】
【点拨】 根据圆心角、弧、弦的关系定理得到∠AOB= 1 ∠AOC,再根据圆周角定理即
2 可解答. 【详解】 连接 OB, ∵点 B 是弧 AC 的中点, ∴∠AOB= 1 ∠AOC=60°,
∴所有满足条件的整数 a 的值之和为:-4+0+2+4=2,
故选 C.
【小结】 本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、 一元一次不等式组的一般步骤是解题的关键. 二、填空题(共 4 题,每题 4 分,共 16 分)
1 3
(a1+2+a2+2+a3+2)的值;再由方差为 3 可得出数据 a1+2,a2+2,a3+2 的方
差.
【详解】
∵数据 a1,a2,a3 的平均数为 4,

1 3
(a1+a2+a3)=4,

1 3
(a1+2+a2+2+a3+2)
=
1 3
(a1+a2+a3)+2=4+2=6,
∴数据 a1+2,a2+2,a3+2 的平均数是 6;
是正方形,曲线 y = k 在第一象限经过点 D,则 k=_______. x
13.如图,将直线 y=x 向下平移 b 个单位长度后得到直线 l,l 与反比例函数 y = 5 (x>0)的图象相交于点 A,与 x 轴相交于点 B,则 OA2﹣OB2 的值为
x _____.
14.若 x2﹣9=(x﹣3)(x+a),则 a=_____.
A.24
B.30
C.48
D.60
6.数学课上,小明进行了如下的尺规作图(如图所示):
(1)在△AOB(OA<OB)边 OA、OB 上分别截取 OD、OE,使得 OD=OE;
(2)分别以点 D、E 为圆心,以大于 1 DE 为半径作弧,两弧交于△AOB 内的一 2
点 C;
(3)作射线 OC 交 AB 边于点 P.
C.2
D. 1 2
3.把图 1 中的正方体的一角切下后摆在图 2 所示的位置,则图 2 中的几何体的
主视图为( )
A.
B.
C.
D.
4.某校团委组织“阳光助残”献爱心捐款活动,九年级(2)班学生捐款如 表:
捐款金额
5 (元)
10
15
20
人数(人) 13
16
17
10
学生捐款的中位数和众数是( ) A.10 元,15 元 B.15 元,15 元 C.10 元,20 元 D.16 元,17 元 5.如图 6, 已知圆锥的高为 8,底面圆的直径为 12,则此圆锥的侧面积是
整理得,x= 4 − a ,
2
由题意得, 4 − a 是非负整数,且 4 − a ≠3,
2
2
解得:a≤4 且 a≠-2 且 a 为偶数;
解不等式组
y +3 y +1 23
得,-7<y≤a,
2( y − 2) 3y − (4 + a)
∵不等式组至少有 3 个整数解,
∴a≥-4,
则-4≤a≤4 且 a≠-2 且 a 为偶数,
一、单选题(共 10 题,每题 3 分,共 30 分,四个选项中只有一项符合题目要 求) 1.如图,点 A、B、C、D 在⊙O 上,∠AOC=120°,点 B 是弧 AC 的中点, 则∠D 的度数是( )
A.60°
B.35°
C.30.5°
D.30°
2.﹣2 的绝对值是( )
A.﹣2
B. − 1 2
2
从图表中可得知,出现次数最多的数据为 15,所以学生捐款的众数为:15 (元). 故答案为:A. 【小结】 本题主要考查中位数和众数的定义,需要注意的是:求中位数要将一组数据按 大小顺序排序,排序时从大到小从小到大都可以;当数据个数为奇数时,中位 数是这组数据中的一个数据;当数据个数为偶数时,中位数是最中间两个数据 的平均数。众数是一组数据中出现次数最多的数据,是一组数据中的原始数 据,而不是对应的次数. 5.D 解析:D 【解析】 由图可知,圆锥半径为 6,高为 8,∴母线长为 10,∴圆锥的侧面积是= rl = 6 10 = 60 ,故选 D 6.C 解析:C 【解析】 分析:利用基本作图可判定射线平分∠AOB,从而可判断 OP 为△ABC 的角平分 线. 详解:利用作法可判断 OC 平分∠AOB, 所以 OP 为△AOB 的角平分线. 故选 C.
那么小明所求作的线段 OP 是△AOB 的( )
A.一条中线
B.一条高
C.一条角平分线 D.不确定
7.若一组数据 a1,a2,a3 的平均数为 4,方差为 3,那么数据 a1+2,a2+2,
a3+2 的平均数和方差分别是( )
A.4,3
B.6,3
C.3,4
D.6,5
8.下列命题的逆命题成立的是( )
点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作 图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟
悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作
图,逐步操作.
7.B
解析:B
【解析】
【点拨】
根据数据
a1,a2,a3
的平均数为
4
可知
1 3
(a1+a2+a3)=4,据此可得出
题,难度不大.
9.B
解析:B
【解析】
【详解】
由方程
得,

,∴周长是

故选 B.
10.B
解析:B 【点拨】
解出分式方程,根据题意确定 a 的范围,解不等式组,根据题意确定 a 的范 围,根据分式不为 0 的条件得到 a≠-2,根据题意计算即可. 【解析】
1 − x+a =1, x−3 x−3 方程两边同乘(x-3),得 1-(x+a)=x-3,
发,以每秒 1cm 的速度沿 BC 方向匀速运动到 CD 为止;点 M 沿线段 DA 以每秒
1cm 的速度由点 D 向点 A 匀速运动,到点 A 为止,直线 1 与点 M 同时出发,
设运动时间为 t 秒(t>0).
(1)线段 CN=

(2)连接 PM 和 QN,当四边形 MPQN 为平行四边形时,求 t 的值;
(3)在整个运动过程中,当 t 为何值时△PMN 的面积取得最大值,最大值是多
少?
18.如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大 厦 AB 的高度,小明在他家所在的公寓楼顶 C 处测得大厦顶部 A 处的仰角为 45°,底部 B 处的俯角为 30°.已知公寓高为 40m,请你帮助小明计算公寓楼 与矿业大厦间的水平距离 BD 的长度及矿业大厦 AB 的高度.(结果保留根 号)
等式组
y
+3 2
y +1 3
至少有 3 个整数解,则符合条件的所有整数 a 的和
2( y − 2) 3y − (4 + a)
为( )
A.0
B.2
C.4
D.6
二、填空题(共 4 题,每题 4 分,共 16 分)
11.已知点 P(a,b)在反比例函数 y= 2 的图象上,则 ab=_____. x
12.如图,直线 y=-2x+2 与 x 轴、y 轴分别相交于 A、B 两点,四边形 ABCD
2020 届中考Байду номын сангаас学考试同步资料
2020 届全国各省市中考复习
数学
一模联考卷
为更好的快速提升学生成绩,总结答题思路并查漏补缺,根据最新各省市中考 考前模拟卷梳理总结考点要点 ,剖析考点,探究重难点,加深考生对重点及基础 知识的理解,力求打造高效优质备考资料,让您能够快速提升学生成绩。最后由于 水平有限,难免有错,敬请查阅后下载使用!
系式; (2)将图 1 中的△DEF 向左平移(点 A、D 不重合),使边 FD、FE 分别交 AC、BC 于点 M、N 设 AM=t,如图 3. ①判断△BEN 是什么三角形?并用含 t 的代数式表示边 BE 和 BN;②连接 MN, 求面积 S△MCN 关于 t 的函数关系式; (3)在旋转△DEF 的过程中,试探求 AC 上是否存在点 P,使得 S△PCQ 等于平移 所得 S△MCN 的最大值?说明你的理由. 20.有一块三角形的地,现要平均分给四农户种植(即四等分三角形面积).请 你在图上作出分法.(不写作法,保留作图痕迹)
A.对顶角相等
B.全等三角形的对应角相等
C.如果两个数相等,那么它们的绝对值相等
D.两直线平行,同位角相等
9.三角形的两边长分别为 3 和 6,第三边长是方程 x2-6x+8=0 的根,则这个三
角形的周长是( )
A.11
B.13
C.11 或 13
D.11 和 13
10.若数 a 使关于 x 的分式方程 1 − x + a = 1 解为非负整数,且使关于 y 的不 x−3 x−3
∵数据 a1,a2,a3 的方差为 3,

1 3
[(a1﹣4)2+(a2﹣4)2+(a3﹣4)2]=3,
∴a1+2,a2+2,a3+2
的方差为:
1 3
[(a1+2﹣6)2+(a2+2﹣6)2+(a3+2﹣6)
相关文档
最新文档