2017九年级数学圆的切线的判定性质和画法.doc

合集下载

九年级数学圆的切线

九年级数学圆的切线
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
问:直线AB与圆有没有明确的公共点
C
O
A
辅助线:连接OB
只需再证:AB ⊥ OB
例2.如图A是⊙O外的一点,AO的延长线交
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
根据作图直线l是切线满足两个条件 1.经过半径的外端
O
D
l
几何语言
OD是⊙O的半径
OD⊥l于D
2.与半径垂直
切线的判定定理
经过半径的外端并且垂直于这条半径的直 线是圆的切线
l是⊙O的切线
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r
求证:直线l是⊙O的切线
问:圆与直线l有没有明确共同点
O.
辅助线: OA ⊥l
只需证OA是⊙O的半径
A
l
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r 求证:直线l是⊙O的切线
证明:过点O作OA ⊥l,A为垂足。
O.
OA=d=r
点A在⊙O上
A
l
OA是⊙O的半径 l是⊙O的切线
定理:当圆心到直线的距离等于圆的半径时,该直 线是这个圆的切线。
一 判断题
于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°, 求证:直线AB是⊙O的切线
B
证明:连接OBCO NhomakorabeaA
∠C=30° ° AB=BC
∠BOA=60 ∠A= ∠C=30 °
∠OBA=90 ° OB是半径
直线AB是⊙O的切线
练习二
1如图,AB是⊙O的直径,AT=AB,∠ABT=45º。

圆的切线性质与判定

圆的切线性质与判定
推论
圆的切线长等于圆外一点到圆心的距 离与圆的半径的差的平方根。
切点在圆上的位置关系
切点在圆周上,且切点与圆心的连线(即半径)与切线垂直 。
若两切线相交,则交点与圆心的连线平分两切线所夹的锐角 。
03
圆的切线判定方法
利用定义判定切线
切线的定义
直线与圆有唯一公共点,则该直线为 圆的切线。
判定方法
05
圆的切线性质与判定的应 用
在几何问题中的应用
切线与半径垂直
利用圆的切线性质,可以 解决与切线和半径垂直相 关的问题,如求角度、证 明线段相等或垂直等。
切线与弦的关系
通过判定切线与弦的位置 关系,可以解决与弦长、 弦心距等相关的几何问题 。
切线与割线的关系
根据切线与割线的性质, 可以推导出与割线长度、 割线与圆的交点等相关的 几何结论。
拓展相关应用领域
除了课堂学习外,我还将积极寻找和拓展圆的切线性质与判定在实际生活中的应用领域 ,如建筑设计、机械制造等。
加强跨学科学习
为了更好地理解和应用圆的切线性质与判定等知识点,我将加强跨学科学习,如数学、 物理、化学等学科的融合学习。这将有助于我形成更加完整和系统的知识体系。
感谢您的观看
THANKS
在实际问题中的应用
1 2 3
工程测量
在工程测量中,经常需要利用圆的切线性质来求 解距离、角度等问题,如道路设计、建筑物定位 等。
航海导航
在航海导航中,可以利用圆的切线性质来确定船 只的航向、距离等参数,实现安全、准确的航行 。
物理学中的应用
在物理学中,许多现象和问题可以通过圆的切线 性质进行建模和解决,如光的反射、折射等现象 。
帮助我更好地理解和掌握知识,但也存在一些不足,如缺乏主动性和创

圆的切线性质定理#

圆的切线性质定理#

圆的切线的判定与性质【知识点精析】1. 直线与圆有三种位置关系,其中直线与圆只有唯一的公共点,叫直线与圆相切,这个公共点叫切点。

这条直线叫圆的切线。

2. 圆的切线的判定与性质:(1)判定:经过半径外端并且垂直于这条半径的直线是圆的切线。

判定一条直线是圆的切线需要满足以下两个条件:①经过半径外端②垂直于半径(2)圆的切线的性质:圆的切线垂直于过切点的半径。

注意:应用圆的切线性质时,需指出切线和切点,才可推出垂直的结论。

例如:已知如图,PO是∠APB的平分线,以O为圆心的圆与PA相切于点C。

3. 切线长定理:(1)切线长定义:从圆外一点向圆作切线,这点与切点的线段长叫切线长。

圆外一点向圆只能做两条切线,因此有两条切线长。

(2)切线长性质从圆外一点向圆所引的两条切线长相等,并且这点与圆心的连线平分两条切线所夹的角。

例如:从圆外一点引圆的两条切线,若两切线的夹角为60°,两切点的距离为12求圆半径(3)三角形的内切圆:对比三角形的外接圆来学习三角形的内切圆三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆三角形外接圆的圆心叫三角形的外心三角形的外心到三角形三个顶点的距离相等三角形的外心是三角形三边中垂线的交点三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆三角形内切圆的圆心叫三角形的内心三角形的内心到三角形三边的距离相等三角形的内心是三角形三角平分线的交点【解题方法指导】一切线长定理的计算例1. 已知如图:在Rt△ABC中,∠C=90°,点C在AC上,CD为⊙O直径,⊙O切AB于E,若BC=5,AC=12,求⊙O的半径BC2 在△ABC中,若∠C=90°,∠A=30°,AC=3,则内切圆半径为____________。

二等腰三角形在证明切线中的巧用例3、如图7-53,AB为⊙O的直径,C为⊙O上一点,AD和过C点切线互相垂直,垂足为D.word.word.求证:AC 平分∠DAB .4已知:AB 为⊙O 的直径,AC 为弦,D 为AB 上一点,过D 点作AB 的垂线DE 交AC 于F ,EF=EC 。

3.2.2 圆的切线的判定、性质和画法

3.2.2 圆的切线的判定、性质和画法
本节内容 本课内容 3.2
点、直线与圆的位置关系, 直线与圆的位置关系, 圆的切线
——3.2.2 圆的切线的判定、 圆的切线的判定、 性质和画法
观察
工人用砂轮磨一把锉刀, 工人用砂轮磨一把锉刀,火花是顺着 什么方向飞出去的? 什么方向飞出去的?
探究
画一个圆O和一条半径 , 画一个圆 和一条半径OA, 和一条半径 过点A作直线 与 垂直 如图3-32. 垂直, 过点 作直线l与OA垂直,如图 作直线
如图3-36,直线 是圆 的切线,切 是圆O的切线 例3 如图 ,直线l是圆 的切线, 点为A, 点为 ,∠OBA=40°,求∠AOB. 由于线段OA是过切点的半径 是过切点的半径, 解 由于线段 是过切点的半径, 因此OA⊥ , 因此 ⊥l, 从而∠OAB=90°, 从而∠ 于是 ∠AOB= 90°-∠OBA = 90°-40° = 50°.


图3-36
求证:经过直径两端点的切线互相平行. 例4 求证:经过直径两端点的切线互相平行 已知:如图3-37,AB是圆 的直径,l1, 是圆O的直径 已知:如图 , 是圆 的直径, l2 分别是经过点 ,B的切线. 分别是经过点A, 的切线 的切线. l1 ∥ l2 求证: . 求证: 因为OA是圆 的半径, 是圆O的半径 证明 因为 是圆 的半径, l1是过点 的切线, 是过点A的切线 的切线, 所以 l1 ⊥ OA.( 切线性质定理) ( 同理 l2 ⊥ OB. , 从而 l1 ⊥ AB,且l2 ⊥ AB. 因此 l1 ∥ l2 .( 在同一平面内, ( 在同一平面内, 垂直于同一条直线的两条直线平行)
直线l是圆 的 直线 是圆O的 是圆
切 线.
结论
切线的判定定理
经过半径的外端并且垂直于 这条半径的直线是圆的切线. 这条半径的直线是圆的切线

九年级数学圆切线知识点

九年级数学圆切线知识点

九年级数学圆切线知识点在九年级数学学习中,圆切线是一个重要的知识点。

本文将介绍圆的切线的定义、性质以及相关的定理。

一、圆切线的定义和性质圆是一个平面上的闭合曲线,它的每个点到圆心的距离都相等。

圆周上的任意一条线段称为弦,连接圆周上两个点的最短线段称为弦。

如果在圆上有一条线段,且这条线段的每一个端点都在圆上,那么这条线段就是圆的切线。

根据圆的定义和性质,圆的切线有一些重要的性质:1. 切线与半径垂直:圆的切线与半径的形成的角是直角。

2. 唯一性:一个圆上的任意点只有唯一一条切线与之相切。

3. 切线长度:当切线与半径形成的角不等于90度时,切线与圆心的距离是半径的长度。

4. 相交性质:如果两个圆相交,那么它们的切线会相交于相交点。

二、圆切线的定理除了基本的定义和性质外,还有一些与圆切线相关的定理。

下面将介绍一些常见的定理:1. 切线定理:如果一条直线与一个圆相切,那么这条直线与半径的形成的角是直角。

2. 弦切定理:如果一条弦与一个切线相交,那么切线与弦间的角等于弦上对应的圆心角。

3. 切线长定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线的长度的乘积等于这两条切线分别与圆心连线长度的平方。

4. 切线角定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线所对应的圆心角相等。

三、习题练习现在我们来做一些练习题,以加深对圆切线知识点的理解。

1. 在圆 O 上,切线 AB,C 是正切点。

若弧 AC 的度数是120度,求角 BAC 的度数。

解答:由弧与切线的性质可得,角 BAC 的度数等于弧 AC 的度数的一半,即 120/2 = 60 度。

2. 已知圆心角 ADC 的度数是135度,弦 AC 与切线 AB 相交于点 E,求角 BDE 的度数。

解答:根据弦切定理可知,角 BDE 等于弦 AC 对应的圆心角ADC 的度数减去切线 AB 与弦 AC 间夹角的度数,即 135 - 90 = 45 度。

通过以上的练习题,我们可以灵活运用圆切线的性质和定理来解决问题。

圆的切线的定义和判定定理

圆的切线的定义和判定定理

圆的切线的定义和判定定理圆的切线可以通过以下两种方式进行定义和判定定理的解释:
定义:
1. 切线的几何定义,对于圆上的任意一点,通过该点且与圆相切的直线称为圆的切线。

2. 切线的代数定义,如果直线的方程和圆的方程联立成方程组有且只有一个解,且该解恰好是圆上的一点,则该直线即为圆的切线。

判定定理:
1. 切线判定定理一,直线与圆相切的充分必要条件是直线与圆的切点处的切线垂直于半径。

2. 切线判定定理二,直线与圆相切的充分必要条件是直线与圆的切点处的切线的斜率等于圆的半径的斜率的负倒数。

通过这些定义和判定定理,我们可以清晰地理解圆的切线的概念及其性质。

希望这些解释对你有所帮助。

圆的切线:切线的定义、性质和求解方法

圆的切线:切线的定义、性质和求解方法

圆的切线:切线的定义、性质和求解方法切线是与圆相切于一点且只与圆的该点相交一次的直线。

切线与半径垂直,也就是与半径所在的直径形成直角。

切线的定义给定一个圆,如果通过圆上的一点作两条直线,其中一条与半径垂直且只与该点相交一次,那么称这条直线为这个圆的一条切线。

切线的性质1. 切线与圆相切于一点,且只与圆的该点相交一次。

2. 切线与半径垂直,即与半径所在的直径形成直角。

3. 以切点为端点的切线被称为切线段。

4. 圆心到切点的线段被称为切线的斜率。

切线的求解方法求解圆的切线可以根据以下步骤进行:1. 给定一个圆和切点P,连接圆心O与切点P,得到半径OP。

2. 利用切线性质,使切线与半径OP垂直,得到直角三角形。

3. 根据已知条件,计算切线的长度。

切线的长度可以通过利用勾股定理或几何构造法进行计算。

勾股定理法求切线长度1. 已知圆的半径r和切点与圆心的连线OP的长度d。

2. 根据勾股定理,有切线长度s的平方等于d的平方减去圆的半径r的平方,即s^2 = d^2 - r^2。

3. 取根号可以得到切线的长度s。

几何构造法求切线长度1. 已知圆的半径r和切点与圆心的连线OP的长度d。

2. 以切点为圆心,作一条半径为r的圆。

3. 连接圆心与新圆上与切点P相对应的点Q,得到直角三角形OPQ。

4. 根据直角三角形OPQ中的三边关系,可以计算出切线的长度s。

这是圆的切线的定义、性质和求解方法的简要介绍。

掌握这些基本概念和求解方法,可以帮助我们更好地理解和应用切线在几何学中的重要性。

圆系列之切线的判定

圆系列之切线的判定

切线的判定1.切线的性质:垂直于过切点的半径.(连半径,得垂直)l2.切线的判定:(1)定义法:和圆只有一个交点的直线是圆的切线;(2)距离法:到圆心距离等于半径的直线是圆的切线;l证明d=r即可,常用于已知数据的计算,比如动圆相切问题.(3)判定定理:经过半径外端且垂直于这条半径的直线是圆的切线.换个说法:⎧⎨⎩有交点:连半径,证垂直无交点:作垂直,证半径,多用于几何证明.多为有交点,重点考虑如何证垂直:①证明和已知垂线平行;②证明夹角为直角.3.常见相切图(1)角分+等腰得平行:点C在以AB为直径的圆O上,AH⊥CH,且AC平分∠HAB.连接OC,则OC=OA,∴∠OCA=∠OAC,又∠OAC=∠HAC,∴∠OCA=∠HAC,∴OC∥AH,∴OC⊥CH,∴CH是圆O的切线.(2)证明和已知直角相等.证明△PCO≌△P AO,可得∠PCO=∠P AO=90°.B(3)证明夹角为直角.(弦切角定理)如图,若∠BAC=∠D,则AB是圆O切线.B如图,连接AO并延长交圆O于点P,则∠P=∠D=∠BAC,∵∠P+∠P AC=90°,∴∠BAC+∠P AC=90°,即AB⊥AP,∴AB是圆O的切线.B1.(2018·滨州)如图,AB 为O 的直径,点C 在O 上,AD CD ⊥于点D ,且AC 平分DAB ∠,求证:(1)直线DC 是O 的切线;(2)22AC AD AO =⋅.【分析】(1)连接OC ,∵OA =OC ,∴∠OAC =∠OCA ,又AC 平分∠DAB ,∴∠DAC =∠OAC , ∴∠OCA =∠DAC ,∴AD ∥OC , ∵AD ⊥CD ,∴OC ⊥CD , ∴DC 是圆O 的切线.(2)连接BC ,过点C 作CH ⊥AN 交AB 于H 点,则2AC AH AB =⋅,∵AH =AD ,AB =2AO , ∴22AC AD AO =⋅.2.(2018·泰州)如图,AB 为O 的直径,C 为O 上一点,ABC ∠的平分线交O 于点D ,DE BC ⊥于点E .(1)试判断DE 与O 的位置关系,并说明理由;(2)过点D 作DF AB ⊥于点F,若BE =3DF =,求图中阴影部分的面积.B【分析】 (1)相切.连接OD ,∵BD 平分∠ABE ,∴∠ABD =∠EBD , ∵OB =OD ,∴∠OBD =∠ODB , ∴∠EBD =∠ODB ,∴OD ∥BE , ∵DE ⊥BE ,∴OD ⊥DE , ∴DE 与圆O 相切.(2)易证△BED ≌△BFD,∴BF =BE =DF =3,∴∠ABD =30°,连接OD ,则∠AOD =60°,易证OD =∴(2113262S ππ=⋅-=, 故阴影部分面积为2π-.【角分+等腰得平行】3.(2018·锦州)如图,在ABC∆中,90C∠=︒,AE平分BAC∠交BC于点E,O是AB 上一点,经过A,E两点的O交AB于点D,连接DE,作DEA∠的平分线EF交O 于点F,连接AF.(1)求证:BC是O的切线.(2)若4sin5EFA∠=,AF=AC的长.【分析】(1)连接EO,则OA=OE,∴∠OAE=∠OEA,又AE平分∠BAC,∴∠OAE=∠CAE,∴∠OEA=∠CAE,∴OE∥AC,∵AC⊥BC,∴OE⊥BC,∴BC是圆O的切线.(2)EF平分∠AED,则点F是半圆AD中点,连接OF,则△AOF是等腰直角三角形,∴5OA AF===,∴AD=10,4sin sin5EDA EFA∠=∠=,∴AE=8,DE=6,∵AE平分∠BAC,∴4 cos cos5CAE EAD∠=∠=,即45ACAE=,∴44328555AC AE==⨯=,故AC的长为325.4.(2018·毕节市)如图,在△ABC中,以BC为直径的圆C交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EG是圆O的切线;(2)若1tan2C=,AC=8,求圆O的半径.【分析】(1)连接OE,则OE=OC,∴∠OEC=∠OCE,∴∠EOG=2∠C,又∠ABG=2∠C,∴∠EOG=∠ABG,∴OE∥AB,∵EG⊥AB,∴EG⊥OE,∴EG是圆O的切线.(2)连接BE,则BE⊥AC,∵OE∥AB,∴△ABC是等腰三角形,∴E是AC中点,∵AC=8,∴142CE AC==,∵1tan2C=,∴122BE CE==,∴BC=r=OB,故圆O.【有交点,证垂直,全等证明夹角为直角】5.(2019·天水)如图,AB、AC分别是O的直径和弦,OD AC⊥于点D.过点A作O 的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是O的切线;(2)若60ABC∠=︒,10AB=,求线段CF的长.【分析】(1)连接OC,∵OP⊥AC,∴OP平分AC,∴OP是AC的垂直平分线,∴P A=PC,易证△POA≌△POC,∴∠PCO=∠P AO=90°,∴OC⊥PC,∴PC是圆O的切线.(2)若∠ABC=60°则△OBC是等边三角形,∴∠BOC=60°,OC=OB=5,在Rt△OCF中,CF=故CF的长为6.(2016·郴州)如图,OA ,OD 是O 半径,过A 作O 的切线,交AOD ∠的平分线于点C ,连接CD ,延长AO 交O 于点E ,交CD 的延长线于点B (1)求证:直线CD 是O 的切线;(2)如果D 点是BC 的中点,O 的半径为3cm ,求DE 的长度(结果保留)πB【分析】(1)易证△COA ≌△COD ,∴∠ODC =∠OAC =90°,即OD ⊥CD ,∴CD 是圆O 的切线.(2)若点D 是BC 的中点,则△BOC 是等腰三角形,∴∠OBC =∠OCB ,又∠OCB =∠OCA ,∴设∠OBC =∠OCB =∠OCA =α, ∴390α=︒,30α=︒,∴∠BOD =60°,∴1236DE ππ=⋅⋅=cm ,故DE 的长度是πcm .7.(2018·丹东)如图,直线AD 经过O 上的点A ,ABC ∆为O 的内接三角形,并且CAD B ∠=∠.(1)判断直线AD 与O 的位置关系,并说明理由;(2)若30CAD ∠=︒,O 的半径为1,求图中阴影部分的面积.(结果保留)πD【分析】 (1)相切.连接AO 并延长交圆O 于点P ,连接CP ,则∠P =∠B ,又∵∠B =∠CAD ,∴∠P =∠CAD , ∵∠P +∠P AC =90°,∴∠CAD +∠P AC =90°, ∴P A ⊥AD ,∴AD 是圆O 的切线.(2)连接OC ,则∠AOC =2∠APC =2∠CAD =60°,21166S ππ=⋅⋅=扇AOC,21AOCS=∴6S π=阴,故阴影部分的面积为6π-【有交点证垂直,证明夹角为直角】8.(2019·盐城)如图,在Rt△ABC中,90ACB∠=︒,CD是斜边AB上的中线,以CD为直径的O分别交AC、BC于点M、N,过点N作NE AB⊥,垂足为E.(1)若O的半径为52,6AC=,求BN的长;(2)求证:NE与O相切.【分析】(1)∵52r=,∴CD=5,∴AB=10,∴BC=8,连接DN,则DN⊥BC,∴DN∥AC,∴点N是BC中点,∴118422BN BC==⨯=.故BN的长为4.(2)连接NO,∵N、O分别是BC、CD中点,∴NO∥BD,∵NE⊥BD,∴NE⊥NO,∴NE与圆O相切.9.(2018·本溪)如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)当∠A=30°,CF时,求⊙O的半径.【分析】(1)相切.连接OE,则OE⊥AC,∴点E是AC边中点,连接OF,过点O作OH⊥DF交DF于H点,∵DO∥AC,∴∠DOF=∠OF A,又DO=DF,∴∠DOF=∠DFO,∴∠OF A=∠OFD,易证△OFE≌△OFH,∴OH=OE,∴DF是圆O的切线.(2)设半径为r,则CD=r,DF=DO,∴CF=,又CF,∴r=1,10.(2018·江西)如图,在△ABC 中,O 为AC 上一点,以点O 为圆心,OC 为半径做圆,与BC 相切于点C ,过点A 作AD ⊥BO 交BO 的延长线于点D ,且∠AOD =∠BAD . (1)求证:AB 为⊙O 的切线; (2)若BC =6,tan ∠ABC =43,求AD 的长.【分析】(1)∵∠AOD +∠DAO =90°,∠ABD +∠BAD =90°,且∠AOD =∠BAD ,∴∠DAO =∠ABD ,又∠DAO =∠OBC , ∴∠ABD =∠OBC ,过点O 作OH ⊥AB 交AB 于H 点,易证△BOH ≌△BOC ,∴OH =OC ,∴AB 是圆O 的切线. (2)∵BC =6,4tan 3ABC ∠=,∴AC =8,AB =10, BH =BC =6,AH =4,OH =3,OA =5,∴5OD ===2AD OD ==.故AD 的长为【圆中等腰三角形】11.(2018·鄂尔多斯)如图,O 是ABC ∆的外接圆,AC 是直径,弦BD BA =,EB DC ⊥,交DC 的延长线于点E . (1)求证:BE 是O 的切线; (2)当3sin 4BCE ∠=,3AB =时,求AD 的长.【分析】(1)连接BO 并延长,分别交AD 、圆O 于点H 、Q ,易证△BDQ ≌△BAQ ,∴DQ =AQ ,又AB =DB , ∴BQ 是AD 的垂直平分线, ∴BQ ⊥AD ,∵AC 是直径,∴∠ADC =90°,又∠E =90°,∴AD ∥BE , ∴BQ ⊥BE ,∴BE 是圆O 的切线.(2)∵∠BAC =∠CBE ,∴∠ACB =∠BCE ,∴3sin 4ACB ∠=,∵AB=3,∴AC =4,BC∵3sin 4BE BCE BC ∠===,∴BE =, ∴HD BE ==,∴AD =2HD .故AD。

圆的切线的性质及判定定理

圆的切线的性质及判定定理
直线作垂线,再证明此垂线段是圆的半径,即用距离法证明;通常不
用定义法证明.
题型一
题型二
题型一
圆的切线性质的应用
【例1】 如图,在△ABC中,AB=AC,以AB为直径的☉O交BC于点D,
过点D作☉O的切线交AC于E.
求证:DE⊥AC.
分析:由DE是☉O的切线,知OD⊥DE,故要证明DE⊥AC,只需要证
证:CD是☉O的切线.
分析:只需证明OE⊥CD即可.
题型一
题型二
证明:如图,连接OE.
∵OA=OE,∴∠1=∠2.
又∵AE平分∠BAF,
∴∠2=∠3.∴∠1=∠3.
∴OE∥AD.
∵AD⊥CD,∴OE⊥CD.
∴CD与☉O相切于点E.
反思根据圆的切线性质判定圆的切线是平面几何中最常用的方
法.这种方法的步骤是:①连接圆心和公共点;②转化为证明直线过
∴∠ODC=∠OBC=90°.
又∵点D在圆上,∴DC是☉O的切线.
公共点且垂直于所连线段.由此看出,证明圆的切线可转化为证明
直线垂直.
题型一
题型二
【变式训练2】 如图,AB是☉O的直径,BC是☉O的切线,切点为
B,OC平行于弦AD.求证:DC是☉O的切线.
证明:如图,连接OD.
∵OC∥AD,∴∠1=∠3,∠2=∠4.
又∵∠1=∠2,∴∠4=∠3.
∵OD=OB,OC=OC,∴△ODC≌△OBC.

圆的切线的性质及判定定理
1.理解切线的性质定理及其两个推论,并能解决相关的计算或证
明问题.
2.掌握切线的判定定理,会判定直线与圆相切.
判定切线的方法
剖析:判定切线通常有三种方法:(1)定义法:和圆有唯一一个公共

圆的切线与切点的性质与判定

圆的切线与切点的性质与判定

圆的切线与切点的性质与判定圆是几何学中的重要概念之一,它有很多特性和性质。

其中一个重要的性质是切线与切点的关系。

本文将介绍切线与切点的性质以及判定方法。

一、切线与切点的定义在几何学中,我们定义一个几何图形与另一个图形的一点相切时,这个点是该图形的切点,而与该图形相切的直线称为切线。

对于圆来说,切点是与圆相交于一点的直线,这条直线同时也是圆的切线。

二、切线与切点的性质1. 切点与圆心连线垂直于切线假设有一个圆,它的圆心是O,切点是A,切线是l。

根据性质,可以得出结论:切点与圆心连线AO垂直于切线l。

这一性质可以通过几何推理或使用垂直性质证明得出。

2. 切线与半径的夹角切线与半径的夹角等于90度。

对于任意一条半径OA和切线l,我们可以推导出∠OAL=90°。

这个性质也可以通过几何证明得出。

3. 切点在切线上的唯一性每条切线与圆只有一个切点。

这个切点是在圆上与切线相切的点,其他点不与切线相切。

也就是说,对于一条切线l和圆O,它们的切点A是唯一的。

4. 切线在切点处切分弦切线在切点处将切点外的弦分为两段,其中一个是切点外的弧。

三、切点的判定方法如何判断一条直线是否是圆的切线?下面是两种判定方法:1. 切线定理给定一个圆,如果一个直线与圆相交,在交点处的切角为90度,则这条直线是圆的切线。

换句话说,如果一个线段与圆相交于一点,并与半径的延长线构成90度的夹角,那么这条线段就是圆的切线。

2. 切线的斜率圆的切线的斜率与切点处圆的切线相切。

通过计算待判定的直线与给定圆的相切点的斜率,如果该斜率等于切点切线的斜率,那么这条直线就是圆的切线。

四、实际应用切线和切点的性质在几何学和物理学中有广泛的应用。

例如,在求解圆的切线问题时,可以利用切点与圆心连线垂直于切线的性质,来确定切线方程的斜率。

在实际生活中,切线和切点的性质也用于计算机图形学、光学等领域,例如,用于光线的反射和折射的计算。

总结:本文介绍了圆的切线与切点的性质与判定方法。

(完整word版)圆的切线判定和性质定理

(完整word版)圆的切线判定和性质定理

知识考点考点 1、切线的判定切线的判定定理:过半径的外端并且垂直于半径的直线是圆的切线。

符号语言∵ OA ⊥ l 于A , OA 为半径∴ l 为⊙O 的切线(请务必记住证明切线方法:有交点就连半径证垂直;无交点就做垂直证半径) 判断①垂直于半径的直线是圆的切线。

………………………………( )②过半径外端的直线是圆的切线。

………………………………( )考点2、切线的性质定理● 圆的切线垂直于经过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点。

推论2:经过切点且垂直于切线的直线必经过圆心。

(请务必记住切线重要用法: 见切线就要连圆心和切点得到垂直)小试牛刀:如图,AB 与⊙O 相切于B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠A =36° .则∠C =______题型总结题型一、切线的判定(有交点就连半径证垂直;无交点就做垂直证半径)1、如图,△ABC 内接于⊙O,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .求证:PA 是⊙O 的切线;l A O2、O是∠BAC的角平分线上的一点,OD⊥AB于D,以O为圆心,以OD为半径作圆,求证:AC与⊙O相切题型二、切线性质的应用(见切点,连圆心,得垂直)3、如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,∠C=20°,求∠CDA的度数。

习题训练1、已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是()A.相切 B.相离 C.相离或相切 D.相切或相交2.如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O的半径为()A.45cm B.25cm C.213cm D.133、如图,AB为⊙O的直径,C为⊙O上一点,AD的过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.4、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.。

圆的基础知识及切线判定和性质 Word 文档 -

圆的基础知识及切线判定和性质 Word 文档 -

1、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

2、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

注:(1)上述定理中,共有五个条件,即:①过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧,这五个条件中知其中二个可得另外三个。

(2)相关计算:垂径定理的基本图形中,若半径OC、弦心距OE、弦CD(或弦的一半)、弓形高BE这四个量,知其中二个可求得另外二个。

所以在相关题目中,可根据具体情况作出相应的辅助线。

具体公式为:BE+OE=OB,OC 2 + CE 2 = OC 2。

(3)、圆的两条平行弦所夹的弧相等。

3、弧、弦、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等(或所对弦的弦心距相等)。

在同圆或等圆中,两个圆心角、两条弧、两条弦(或两弦的弦心距)中有一组量相等,它们所对应的其余各组量也相等。

(2)与半径相等的弦所对的圆心角是60°。

4、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

5、不在同一直线上的三个点确定一个圆。

6、圆周角定理的推论:(1)①半圆(或直径)所对的圆周角是直角;②90°的圆周角所对的弦是直径。

(2)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。

7、圆内接四边形的性质:圆内接四边形的对角互补。

8、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

(常用辅助线:连半径,证垂直;作垂直,等半径。

)9、切线的性质:圆的切线垂直于过切点的半径。

(辅助线:作过切点的半径)10、切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

11、点和圆、直线和圆、圆和圆各种位置关系的数量关系及判断方法:(1)锐角三角形的外心在三角形内,直角三角形的外心在斜边的中点处,钝角三 角形的外心在三角形外。

(2)三角形的外心是三边的垂直平分线的交点,到三角形三个顶点的距离相等; (3)三角形的内心是三个内角角平分线的交点,到三角形三边的距离相等。

圆切线的性质及判定

圆切线的性质及判定

圆切线的性质及判定一. 切线的判定方法:⑴.切线的定义:与圆有唯一公共点的直线叫做圆的切线。

⑵.到圆心的距离等于半径的直线是圆的切线⑶.经过半径的外端,并且垂直于这条半径的直线是圆的切线。

二.辅助线规律:(1)直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证直线与半径垂直简称:"有点,连接,证垂直”。

即当条件中已知直线与圆有公共点时,利用“⑶.经过半径的外端,并且垂直于这条半径的直线是圆的切线”证明。

(2)当直线与圆并没明确有公共点时,辅助线的作法是“过圆心向直线作垂线”,再证圆心到直线的距离等于半径简称:“无点,作垂线,证(等于)半径” 。

即当条件没有告诉直线与圆有公共点时,利用“(2)到圆心的距离等于半径的直线是圆的切线;”证明。

三.例题讲析:例1.已知:直线AB经过O O上的点C,并且OA=OB CA=CB 求证:直线AB是O O的切线。

A C B例2.如图,已知OA=OB=厘米,AB=8厘米,O O的直径为6厘米求证:AB与O O相切A C B例3.如图,已知AB是O O的直径,点D在AB的延长线上,BD=OB点C在圆上,/ CAB=30 .求证:DC是O O的切线。

例4.如图,AB为O O的直径, C为O O上一点, AD和过C点的切线互相垂直,垂足为 D.求证:AC平分/ DAB例5.已知:AB是O O的直径,BC是O O的切线,切点为B, OC平行于AD 求证:DC是O O的切线。

例6.如图,A是O O外一点,连OA交O O于C,过O O上一点P作OA的垂线交OA于F,交O O于E,连结PA 若/ FPC=Z CPA.求证:PA是O O的切线例7.如图,AB=AC以AB为直径的O O交BC于D, DE L AC于E求证:DE与O O相切例8.如图,已知AB为O 0的直径,BC切O 0于B, AC交O O于P, C E=EB E点在BC上。

求证:PE是O 0的切线。

圆的切线的性质及判定定理

圆的切线的性质及判定定理

三圆的切线的性质及判定定理[对应学生用书P25]1.切线的性质(1)性质定理:圆的切线垂直于经过切点的半径. 如图,已知AB 切⊙O 于A 点,则OA ⊥AB .(2)推论1:经过圆心且垂直于切线的直线必经过切点. (3)推论2:经过切点且垂直于切线的直线必经过圆心. 2.圆的切线的判定方法(1)定义:和圆只有一个公共点的直线是圆的切线. (2)数量关系:到圆心距离等于半径的直线是圆的切线. (3)定理:过半径外端点且与这条半径垂直的直线是圆的切线.其中(2)和(3)是由(1)推出的,(2)是用数量关系来判定,而(3)是用位置关系加以判定的.[说明] 在切线的判定定理中要分清定理的题设和结论,“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则该直线就不是圆的切线.[对应学生用书P25]圆的切线的性质[例1] 如图,已知∠C =90°,点O 在AC 上,CD 为⊙O 的直径,⊙O 切AB于E ,若BC =5,AC =12.求⊙O 的半径.[思路点拨] ⊙O 切AB 于点E ,由圆的切线的性质,易联想到连接OE 构造Rt △OAE ,再利用相似三角形的性质,求出⊙O 的半径.[解] 连接OE ,∵AB 与⊙O 切于点E , ∴OE ⊥AB ,即∠OEA =90°. ∵∠C =90°,∠A =∠A , ∴Rt △ACB ∽Rt △AEO , ∴OE BC =AOAB. ∵BC =5,AC =12,∴AB =13, ∴OE 5=12-OE 13,∴OE =103.即⊙O 的半径为103.利用圆的切线的性质来证明或进行有关的计算有时需添加辅助线,其中连接圆心和切点的半径是常用辅助线,从而可以构造直角三角形,利用直角三角形边角关系求解,或利用勾股定理求解,或利用三角形相似求解等.1.如图,AB 切⊙O 于点B ,延长AO 交⊙O 于点C ,连接BC .若∠A =40°,则∠C =( )A .20°B .25°C .40°D .50°解析:连接OB ,因为AB 切⊙O 于点B ,所以OB ⊥AB ,即∠ABO =90°,所以∠AOB =50°.又因为点C 在AO 的延长线上,且在⊙O 上, 所以∠C =12∠AOB =25°.答案:B2.如图,已知P AB 是⊙O 的割线,AB 为⊙O 的直径.PC 为⊙O 的切线,C 为切点,BD ⊥PC 于点D ,交⊙O 于点E ,P A =AO =OB =1.(1)求∠P 的度数; (2)求DE 的长. 解:(1)连接OC .∵C 为切点,∴OC ⊥PC ,△POC 为直角三角形. ∵OC =OA =1,PO =P A +AO =2, ∴sin ∠P =OC PO =12.∴∠P =30°.(2)∵BD ⊥PD ,∴在Rt △PBD 中, 由∠P =30°,PB =P A +AO +OB =3, 得BD =32.连接AE .则∠AEB =90°,∴AE ∥PD . ∴∠EAB =∠P =30°,∴BE =AB sin 30°=1,∴DE =BD -BE =12.圆的切线的判定[例2] 已知D 是△ABC ADB =60°,求证:AB 是△BCD 的外接圆的切线.[思路点拨]连接OB ,OC ,OD →∠BOD =90°→ ∠OBC =∠OCB =30°→∠ABO =90°→结论. [证明] 如图,连接OB ,OC ,OD ,OD 交BC 于E . ∵∠DCB 是BD 所对的圆周角, ∠BOD 是BD 所对的圆心角,∠BCD =45°, ∴∠BOD =90°.∵∠ADB 是△BCD 的一个外角, ∴∠DBC =∠ADB -∠ACB =60°-45°=15°, ∴∠DOC =2∠DBC =30°, 从而∠BOC =120°,∵OB =OC ,∴∠OBC =∠OCB =30°. 在△OEC 中,因为∠EOC =∠ECO =30°, ∴OE =EC ,在△BOE 中,因为∠BOE =90°,∠EBO =30°. ∴BE =2OE =2EC , ∴CE BE =CD DA =12, ∴AB ∥OD ,∴∠ABO =90°, 故AB 是△BCD 的外接圆的切线.要证明某直线是圆的切线,主要是运用切线的判定定理,除此以外,还有圆心到直线的距离等于半径等判定方法,但有时需添加辅助线构造判定条件,其中过圆心作直线的垂线是常用辅助线.3.本例中,若将已知改为“∠ABD =∠C ”,怎样证明:AB 是△BCD 的外接圆的切线. 证明:作直径BE ,连接DE , ∵BE 是⊙O 的直径,∴∠BDE =90°, ∴∠E +∠DBE =90°. ∵∠C =∠E ,∠ABD =∠C , ∴∠ABD +∠DBE =90°. 即∠ABE =90°.∴AB 是△BCD 的外接圆的切线.4.如图,△ABC 内接于⊙O ,点D 在OC 的延长线上,sin B =12,∠D =30°.(1)求证:AD 是⊙O 的切线. (2)若AC =6,求AD 的长. 解:(1)证明:如图,连接OA , ∵sin B =12,∴∠B =30°,∵∠AOC =2∠B ,∴∠AOC =60°, ∵∠D =30°,∴∠OAD =180°-∠D -∠AOC =90°, ∴AD 是⊙O 的切线. (2)∵OA =OC ,∠AOC =60°,∴△AOC 是等边三角形,∴OA =AC =6, ∵∠OAD =90°,∠D =30°, ∴AD =3AO =6 3.圆的切线的性质和判定的综合考查[例3] 如图,AB 为⊙O 的直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线BF 交AD 的延长线于点F .(1)求证:DE 是⊙O 的切线;(2)若DE =3,⊙O 的半径为5,求BF 的长. [思路点拨] (1)连接OD ,证明OD ⊥DE ; (2)作DG ⊥AB . [证明] (1)连接OD , ∵D 是BC 中点,∴∠1=∠2. ∵OA =OD ,∴∠2=∠3. ∴∠1=∠3. ∴OD ∥AE .∵DE ⊥AE ,∴DE ⊥OD ,即DE 是⊙O 的切线. (2)过D 作DG ⊥AB , ∵∠1=∠2,∴DG =DE =3. 在Rt △ODG 中,OG =52-32=4, ∴AG =4+5=9.∵DG ⊥AB ,FB ⊥AB ,∴DG ∥FB . ∴△ADG ∽△AFB . ∴DG BF =AG AB. ∴3BF =910.∴BF =103.对圆的切线的性质与判定的综合考查往往是热点,其解答思路常常是先证明某直线是圆的切线,再利用切线的性质来求解相关结果.5.如图,已知两个同心圆O ,大圆的直径AB 交小圆于C 、D ,大圆的弦EF 切小圆于C ,ED 交小圆于G ,若小圆的半径为2,EF =43,试求EG 的长.解:连接GC ,则GC ⊥ED . ∵EF 和小圆切于C , ∴EF ⊥CD ,EC =12EF =2 3.又CD =4,∴在Rt △ECD 中, 有ED =EC 2+CD 2 =(23)2+42=27.由射影定理可知EC 2=EG ·ED , ∴EG =EC 2ED =(23)227=677.6.如图,以Rt △ABC 直角边AC 上一点O 为圆心,OC 为半径的⊙O 与AC 的另一个交点为E ,D 为斜边AB 上一点且在⊙O 上,AD 2=AE ·AC .(1)证明:AB 是⊙O 的切线; (2)若DE ·OB =8,求⊙O 的半径. 解:(1)证明:连接OD ,CD ,∵AD 2=AE ·AC , ∴AD AE =ACAD.又∵∠DAE =∠DAC , ∴△DAE ∽△CAD ,∴∠ADE =∠ACD . ∵OD =OC ,∴∠ACD =∠ODC , 又∵CE 是⊙O 的直径,∴∠ODE +∠CDO =90°,∴∠ODA =90°, ∴AB 是⊙O 的切线. (2)∵AB ,BC 是⊙O 的切线,∴OB ⊥DC ,∴DE ∥OB ,∴∠CED =∠COB , ∵∠EDC =∠OCB ,∴△CDE ∽△BCO , ∴DE CO =CEBO,DE ·OB =2R 2=8, ∴⊙O 的半径为2.[对应学生用书P27]一、选择题1.下列说法:①与圆有公共点的直线是圆的切线;②垂直于圆的半径的直线是圆的切线;③与圆心的距离等于半径的直线是圆的切线;④过直径的端点,垂直于此直径的直线是圆的切线.其中正确的有( )A .①②B .②③C .③④D .①④答案:C2.如图,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 交⊙O 于D .AB =6,BC =8,则BD 等于( )A .4B .4.8C .5.2D .6解析:∵AB 是⊙O 的直径,∴BD ⊥AC . ∵BC 是⊙O 的切线,∴AB ⊥BC . ∵AB =6,BC =8,∴AC =10. ∴BD =AB ·BCAC =4.8.答案:B3.如图,CD 切⊙O 于B ,CO 的延长线交⊙O 于A ,若∠C =36°,则∠ABD 的度数是( )A .72°B .63°C .54°D .36°解析:连接OB .∵CD 为⊙O 的切线,∴∠OBC =90°. ∵∠C =36°,∴∠BOC =54°. 又∵∠BOC =2∠A ,∴∠A =27°, ∴∠ABD =∠A +∠C =27°+36°=63°. 答案:B4.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与AD 的延长线交于C ,若AD =DC ,则sin ∠ACO 等于( )A.1010 B.210 C.55D.24 解析:连接BD ,则BD ⊥AC .∵AD =DC ,∴BA =BC , ∴∠BCA =45°.∵BC 是⊙O 的切线,切点为B , ∴∠OBC =90°.∴sin ∠BCO =OB OC =OB 5OB =55,cos ∠BCO =BC OC =2OB 5OB =255.∴sin ∠ACO =sin(45°-∠BCO ) =sin 45°cos ∠BCO -cos 45°sin ∠BCO =22×255-22×55=1010. 答案:A 二、填空题5.如图,已知∠AOB =30°,M 为OB 边上一点,以M 为圆心、2为半径作⊙M .若点M 在OB 边上运动,则当OM =________时,⊙M 与OA 相切.解析:若⊙M 与OA 相切,则圆心M 到直线OA 的距离等于圆的半径2.过M作MN⊥OA于点N,则MN=2.在Rt△MON中,∵∠MON=30°,∴OM=2MN=2×2=4.答案:46.已知P A是圆O的切线,切点为A,P A=2,AC是圆O的直径,PC与圆O交于B点,PB=1.则圆O 的半径R=________.解析:AB=AP2-PB2= 3.由AB2=PB·BC,∴BC=3,Rt△ABC中,AC=AB2+BC2=2 3.∴R= 3.答案: 37.圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E,则∠DAC=________,DC=________.解析:连接OC,∵OC=OB,∴∠OCB=∠OBC.又∠DCA+∠ACO=90°,∠ACO+∠OCB=90°,∴∠DCA=∠OCB,∵OC=3,BC=3,∴△OCB是正三角形.∴∠OBC=60°,即∠DCA=60°.∴∠DAC=30°.在Rt△ACB中,AC=AB2-BC2=33,DC=AC sin 30°=32 3.答案:30°33 2三、解答题8.如图所示,D是⊙O的直径AB的延长线上一点,PD是⊙O的切线,P是切点,∠D=30 °.求证:P A=PD.证明:如图,连接OP,∵PD是⊙O的切线,P为切点.∴PO⊥PD.∵∠D=30°,∴∠POD=60°.又∵OA=OP,∴∠A=∠APO=30°.∴∠A=∠D.∴P A=PD.9.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,过D点作⊙O的切线交AC于E.求证:(1)DE⊥AC;(2)BD2=CE·CA.证明:(1)连接OD,AD.∵DE是⊙O的切线,D为切点,∴OD⊥DE.∵AB是⊙O的直径,∴AD⊥BC.又AB=AC,∴BD=DC.∴OD∥AC.∴DE⊥AC.(2)∵AD⊥BC,DE⊥AC,∴△CDE∽△CAD.∴CDCA=CECD.∴CD2=CE·CA.∴BD=DC.∴BD2=CE·CA.10.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1 cm,求BD的长.解:(1)证明:连接OA.∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD.∴∠OAD=∠EDA.∴OA∥CE.∵AE⊥DE,∴∠AED=90°,∴∠OAE=∠DEA=90°.∴AE⊥OA.∴AE是⊙O的切线.(2)∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∴∠BDC=60°.∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1 cm,∴BD的长是4 cm.。

圆切线的判定和性质

圆切线的判定和性质

练一练
判断下列命题是否正确.
1.经过半径外端的直线是圆的切线( 2.垂直于半径的直线是圆的切线( ) )
3.经过半径的一端并垂直于这条半径的直线是圆的切线(

o o
o o
o o
做一做
例1 如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB. 求证:直线AB是⊙O的切线.
O A C B
探究二
自我检测
1、如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD= ∠B=30°,边BD交圆于点D。BD是⊙O的切线吗?为什么? 2、如右图所示,已知OC平分∠AOB,D是OC上任意一点,
⊙D与OA相切于点E。那么,OB是⊙D的切线吗?请说明理由。
A D E A

C

O

O
C
B
D
B
F
拓展应用二
3、已知AB是⊙O的直径,BC是⊙O的切线,切 点为B,OC平行于弦AD 求证:DC是⊙O的切线
探究一
动手画一画: 画一个⊙O ,在⊙O中任意画一条半径OA,经过半径OA 的外端点A作直线l⊥OA. 思考: (1)所画的直线l满足哪些条件? (2)这样画出来的直线l和⊙O有什 么位置关系?为什么?
o
l
A
知识归纳 一、圆的切线: 1、定义:经过半径的外端且垂直 于这条半径的直线是圆的切线。
条件:(1)经过半径外端;
1、如何判定一条直线是已知圆的切线?
(1)只有一个公共点; (2) d=r (3)过半径外端且垂直于这条半径的直线是圆的切线;
2、圆的切线有什么性质?
(1)只有一个公共点; (2) d=r (3)圆的切线垂直于经过切点的半径。 连半径证垂直;

圆的切线的判定与性质

圆的切线的判定与性质
切线的性质定理: 圆的切线垂直于过切点的半径。
O

∵直线l切⊙O于点A,
∴OA⊥l
几何符号表达:
圆的切线和圆只有一个公共点。
1
圆心到切线的距离等于半径。
2
圆的切线垂直于过切点的半径。
3Leabharlann 切线的性质4归纳
5
小试牛刀:
如图,AB是⊙O的直径,直线l1、l2是⊙O的切线,A、B是切点,直线l1、l2有怎样的位置关系?
下雨天快速转动雨伞时飞出的水滴,以及在砂轮上打磨工件飞出的火星,均沿着圆的切线的方向飞出. 1. 当你在下雨天快速转动雨伞时,水滴顺着伞的什么方向飞出去的? 2. 砂轮打磨零件时,溅出火星沿着砂轮的什么方向飞出去的? 生活中的数学
思考?
改变切线判定定理的题设与结论 如果直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?
2、如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P, PE⊥AC于E。 求证:PE是⊙O的切线。
O
A
B
C
E
P
练一练
有交点,连半径,证垂直
如图CB是⊙O的切线,C是切点,OB交⊙O于D, ∠B=30°, OB =6cm,求BC
C
O
B
D
〖例3〗
解:连接OC
∵ CB切⊙O于C,
连接OC (交点C已给出)
过O作OE⊥AC 于E(交点E未给出)
O
B
A
C
O
A
B
C
D
E
练一练
1、如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心,5为半径的⊙O与OA、OB相交。 求证:AB是⊙O的切线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.2圆的切线的判定、性质和画法(1)
一、教学目的要求:
1.知识目的:
(1)掌握切线的判定定理.
(2)应用切线的判定定理证明直线是圆的切线,初步掌握圆的切线证明问题中辅助线的添加方法.
2.能力目的:
(1)培养学生动手操作能力.
(2)培养学生观察、探索、分析、总结、推理论证等能力.
3.情感目的:
通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性.
二、教学重点、难点
1.重点:切线的判定定理.
2.难点:圆的切线证明问题中,辅助线的添加方法.
三、教学过程:
(一)复习引入
回答下列问题:(投影显示)
1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?
2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?
(要求学生举手回答,教师用教具演示)
我们可以用切线的定义来判定一条直线是不是一个圆的切线,但有时使用起来很不方便,为此,我们还要学习切线的判定定理.
(二)新课讲解
1.切线判定定理的导出
上节课讲了“圆心到一条直线的距离等于该圆的半径,则该直线就是一条切线”.下面请同学们按我口述的上不骤作图(一同学到黑板上作):
先画⊙O,在⊙O上任取一点A,边结OA,过A点作⊙O的切线L.
请学生回顾作图过程,切线L是如何作出来的?它满足哪些条件?
引导学生总结出:①经过关径外端,②垂直于这条半径.
如果一条直线满足以上两个条件,它就是一条切线,这就是本节要讲的“切线的判定定理”.(板书定理)
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.
请同学们思考一下,该判定定理的两个条件缺少一个可以吗?
下图中L是不是圆的切线?(用教具演示下面两个反例)
图(1)中直线L经过半径外端,但不与半径垂直.
图(2)中直线L与半径垂直,但不经过径外端.
从以上两个反例可看出,只满足其中一个条件的直线不是圆的切线.
接着提出问题:若把定理中的“半径”改为“直径”可以吗?答案是肯定的.
然后引导学生分析,切线的判定定理是由前一节所讲的“圆心到直线的距离等于半径时直线与圆相切”直接得到的,只是为了便于应用才把它改写成“经过半径外端并且垂直于这条半径的直线是圆的切线”这种形式,所以定理不再需要另加证明.
提问:判定一条直线是圆的切线,我们有多少种方法呢?
经过学生讨论后,师生小结以下三种方法(板书):
①与圆有唯一公共点的直线是圆的切线.
②与圆心的距离等于半径的直线是圆的切线.
③经过半径外端并且垂直于这条半径的直线是圆的切线.
2.应用举例
例1:已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.
已知:直线AB是⊙O的切线.
分析:已知直线AB和⊙O有一个公共点C,
要证AB是⊙O的切线,只需连结这个公共点
C和圆心O,得到半径OC,再证这条半径和直
线AB垂直即可.
证明:连结OC
∵OA=OB,CA=CB
∴OC是等腰三角形OAB底边AB上的中线∴AB⊥OC
直线AB经过半径OC的外端C,并且垂直于半径OC,所以AB是⊙O的切线.
例2:已知:⊙O的直径长6cm,OA=OB=5cm,AB=8cm.
求证:AB与⊙O相切.
分析:题目中不明确直线和圆有公共点,故证
明相切,宣用方法2,因此只要证点O到直线AB
的距离等于半径即可,从而想到作辅助线OC⊥
AB于C.
证明:过O点作OC⊥AB于C
∵OA=OB=5cm,AB=8cm
∴AC=BC=4cm
∴OC=OA2-AC2 =52-42 =3cm.
又∵⊙O的直径长6cm
∴圆心O到直线AB的距离OC等于半径等于3cm.
∴AB与⊙O相切.
让学生根据以上例题总结一下,证明直线与圆相切时,作辅助线的一般规律,以及证明方法的一般规律.
经学生讨论后得出:
①已明确直线和圆有公共点,辅助线的作法是连结圆心和公共点,即得“半径”,再证“直线与半径垂直”.
②不明确直线和圆有公共点,辅助线的作法是过圆心作直线的垂线,再证“圆心到直线的距离等于半径”.
注意:当题目中不明确直线和圆有公共点时,不能将圆上任意一点当作公共点而连结出半径.
3.课堂练习:
4.课堂小结:
5.布置作业:。

相关文档
最新文档