历年全国理科数学高考试题立体几何部分精选(含答案).doc
各省历年高考理科数学试题及答案汇编九立体几何(解答题)(1)
各省历年高考理科数学试题及答案汇编九立体几何(安徽、福建、广东、湖北、湖南、江西、山东七省)安徽省(试题)1、18.(12分)(2008安徽)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.2、18.(13分)(2009安徽)如图所示,四棱锥F﹣ABCD的底面ABCD是菱形,其对角线AC=2,BD=.AE、CF都与平面ABCD垂直,AE=1,CF=2.(1)求二面角B﹣AF﹣D的大小;(2)求四棱锥E﹣ABCD与四棱锥F﹣ABCD公共部分的体积.3、18.(12分)(2010安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求二面角B﹣DE﹣C的大小.4、17.(12分)(2011安徽)如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O 在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形(I)证明直线BC∥EF;(II)求棱锥F﹣OBED的体积.5、18.(12分)(2012安徽)平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.(Ⅰ)证明:AA1⊥BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角A﹣BC﹣A1的余弦值.6、19.(13分)(2013安徽)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,(1)证明:平面PAB与平面PCD的交线平行于底面;(2)求cos∠COD.7、20.(13分)(2014安徽)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD 为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.8、19.(13分)(2015安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.福建省(试题)1、18.(12分)(2008福建)如图,在四棱锥P﹣ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.2、18.(13分)(2010福建)如图,圆柱OO1内有一个三棱柱ABC﹣A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径.(1)证明:平面A1ACC1⊥平面B1BCC1;(2)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC﹣A1B1C1内的概率为P.当点C在圆周上运动时,记平面A1ACC1与平面B1OC所成的角为θ(0°<θ≤90°),当P取最大值时,求cosθ的值.3、20.(14分)(2011福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(Ⅰ)求证:平面PAB⊥平面PAD;(Ⅱ)设AB=AP.(i)若直线PB与平面PCD所成的角为30°,求线段AB的长;(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.4、18.(13分)(2012福建)如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.5、19.(13分)(2013福建)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)(1)求证:CD⊥平面ADD1A1(2)若直线AA1与平面AB1C所成角的正弦值为,求k的值(3)现将与四棱柱ABCD﹣A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)6、17.(13分)(2014福建)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD 沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.7、17.(13分)(2015福建)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.广东省(试题)1、20.(14分)(2008广东)如图所示,四棱锥P﹣ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,PD垂直底面ABCD,,E,F分别是PB,CD上的点,且,过点E作BC的平行线交PC于G.(1)求BD与平面ABP所成角θ的正弦值;(2)证明:△EFG是直角三角形;(3)当时,求△EFG的面积.2、18.(本小题满分14分)如图6,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F 、G 分别是棱111,C D AA 的中点.设点11,E G 分别是点E ,G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;(2)证明:直线⊥1FG 平面1FEE ;(3)求异面直线11E G EA 与所成角的正弦值.3、18.(14分)(2010广东)如图,是半径为a 的半圆,AC 为直径,点E 为的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足,. (1)证明:EB ⊥FD ;(2)已知点Q ,R 为线段FE ,FB 上的点,,,求平面BED 与平面RQD 所成二面角的正弦值.(13分)(2011广东)如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,4、18.PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.5、18.(13分)(2012广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.6、18.(14分)(2013广东)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E 分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′﹣BCDE,其中A′O=.(1)证明:A′O⊥平面BCDE;(2)求二面角A′﹣CD﹣B的平面角的余弦值.7、18.(13分)(2014广东)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.8、18.(14分)(2015广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.湖北省(试题)1、18.(12分)(2009湖北)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE(Ⅱ)设二面角C﹣AE﹣D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ•tanφ=1,求λ的值.2、18.(12分)(2010湖北)如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1(Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.3、18.(12分)(2011湖北)如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(Ⅰ)当CF=1时,求证:EF⊥A1C;(Ⅱ)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.4、19.(12分)(2012湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.5、19.(12分)(2013湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.6、19.(12分)(2014湖北)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC1∥平面EFPQ;(Ⅱ)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.7、19.(12分)(2015湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD 中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.湖南省(试题)1、18.(12分)(2008湖南)把边长为2的正三角形ABC沿BC上的高AD折成直二面角,设折叠后BC的中点为P,(I)求异面直线AC,PD所成的角的余弦值;(II)求二面角C﹣AB﹣D的大小.2、17.(12分)(2008湖南)如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.3、18.(12分)(2009湖南)如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1,点D是A1B1的中点,点E在A1C1上,且DE⊥AE.(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.4、18.(12分)(2010湖南)如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.5、19.(12分)(2011湖南)如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是的中点,D为AC的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B﹣PA﹣C的余弦值.6、18.(12分)(2012湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD 的体积.7、19.(12分)正四棱柱ABCD﹣A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求截面AEF与底面ABCD所成二面角θ的正切值.8、19.(12分)(2014湖南)如图,四棱柱ABCD﹣A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(Ⅰ)证明:O1O⊥底面ABCD;(Ⅱ)若∠CBA=60°,求二面角C1﹣OB1﹣D的余弦值.9、21.(2015湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.江西省(试题)1、20.(12分)(2008江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.(1)求证:B1C1⊥平面OAH;(2)求二面角O﹣A1B1﹣C1的大小.(2009江西)在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,(12分)2、20.AB=2.以AC的中点O为球心、AC为直径的球面交PD于点M,交PC于点N(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成的角的大小;(3)求点N到平面ACM的距离.3、20.(12分)(2010江西)如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.4、21.(14分)(2011江西)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.5、19.(12分)(2012江西)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.6、20.(12分)(2013江西)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G 为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.7、20.(12分)(2014江西)如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.山东省(试题)1、20.(12分)(2008山东)如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF﹣C 的余弦值.2、18.(12分)(2009山东)如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,E、F是AA1、AB的中点.(Ⅰ)证明:直线EE1∥平面FCC1;(Ⅱ)求二面角B﹣FC1﹣C的余弦值.3、19.(12分)(2010山东)如图,在五棱锥P﹣ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P﹣ACDE的体积.(12分)(2011山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,4、19.EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A﹣BF﹣C的大小.5、18.(12分)(2012山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F﹣BD﹣C的余弦值.6、18.(12分)(2013山东)如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D﹣GH﹣E的余弦值.7、17.(12分)(2014山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.8、17.(12分)(2015山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC 的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.9、17.(12分)(2016山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.10、17.(12分)(2017山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.安徽省(答案)1、解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.2、解:(1)解:连接AC、BD交于菱形的中心O,过O作OG⊥AF,G为垂足,连接BG、DG.由BD⊥AC,BD⊥CF得BD⊥平面ACF,故BD⊥AF.于是AF⊥平面BGD,所以BG⊥AF,DG⊥AF,∠BGD为二面角B﹣AF﹣D的平面角.由FC⊥AC,FC=AC=2,得∠FAC=,OG=.由OB⊥OG,OB=OD=,得∠BGD=2∠BGO=.(2)解:连接EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E﹣ABCD与四棱锥F﹣ABCD的公共部分为四棱锥H﹣ABCD.过H作HP⊥平面ABCD,P为垂足.因为EA⊥平面ABCD,FC⊥平面ABCD,所以平面ACEF⊥平面ABCD,从而P∈AC,HP⊥AC.由+=+=1,得HP=.又因为S菱形ABCD=AC•BD=,故四棱锥H﹣ABCD的体积V=S菱形ABCD•HP=.3、证明:(1)设AC于BD交于点G,则G为AC的中点,连接EG,GH,又H为BC的中点,∴GH∥AB且GH=AB,又EF∥AB且EF=AB,∴EF∥GH且EF=GH,∴四边形EFHG为平行四边形∴EG∥FH,而EG⊂平面EDB,∴FH∥平面EDB.(2)由四边形ABCD为正方形,有AB⊥BC,又EF∥AB,∴EF⊥BC而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH,又BF=FC,H为BC的中点,∴FH⊥BC∴FH⊥平面ABCD,∴FH⊥BC,FH⊥AC,又FH∥EG,∴AC⊥EG又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB,(3)EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF,在平面CDEF内过点F作FK⊥DE交DE的延长线与k,则∠FKB为二面角B﹣DE﹣C的一个平面角,设EF=1,则AB=2,FC=,DE=,又EF∥DC,∴∠KEF=∠EDC,∴sin∠EDC=sin∠KEF=,∴FK=EFsin∠KEF=,tan∠FKB==,∴∠FKB=60°,∴二面角B﹣DE﹣C为60°.4、解:(I)证明:设G是线段DA与线段EB延长线的交点,由于△OAB与△ODE都是正三角形,所以OB∥DE,OB=同理,设G′是线段DA与线段FC延长线的交点,有OG′=OD=2,又由于G与G′都在线段DA的延长线上,所以G与G′重合,在△GED和△GFD中,由和可知B,C分别是GE,GF的中点,所以BC是△GFE 的中位线,故BC∥EF(II)解:由OB=1,OE=2,∠EOB=60°,知而△OED是边长为2的正三角形,故所以过点F作FQ⊥AD,交AD于点Q.由平面ABED⊥平面ACFD,FQ就是四棱锥F﹣OBED的高,且FQ=,所以另外本题还可以用向量法解答,同学们可参考图片,自行解一下,解法略.5、(Ⅰ)证明:取BC,B1C1的中点为点O,O1,连接AO,OO1,A1O,A1O1,∵AB=AC,∴AO⊥BC∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC∴AO⊥平面BB1C1C同理A1O1⊥平面BB1C1C,∴AO∥A1O1,∴A、O、A1、O1共面∵OO1⊥BC,AO⊥BC,OO1∩AO=O,∴BC⊥平面OO1A1A∵AA1⊂平面OO1A1A,∴AA1⊥BC;(Ⅱ)解:延长A1O1到D,使O1D=OA,则∵O1D∥OA,∴AD∥OO1,AD=OO1,∵OO1⊥BC,平面A1B1C1⊥平面BB1C1C,平面A1B1C1∩平面BB1C1C=B1C1,∴OO1⊥面A1B1C1,∵AD∥OO1,∴AD⊥面A1B1C1,∵AD=BB1=4,A1D=A1O1+O1D=2+1=3∴AA1==5;(Ⅲ)解:∵AO⊥BC,A1O⊥BC,∴∠AOA1是二面角A﹣BC﹣A1的平面角在直角△OO1A1中,A1O=在△OAA1中,cos∠AOA1=﹣∴二面角A﹣BC﹣A1的余弦值为﹣.6、(1)证明:设平面PAB与平面PCD的交线为l,则∵AB∥CD,AB⊄平面PCD,∴AB∥平面PCD∵AB⊂面PAB,平面PAB与平面PCD的交线为l,∴AB∥l∵AB在底面上,l在底面外∴l与底面平行;(2)解:设CD的中点为F,连接OF,PF由圆的性质,∠COD=2∠COF,OF⊥CD∵OP⊥底面,CD⊂底面,∴OP⊥CD∵OP∩OF=O∴CD⊥平面OPF∵CD⊂平面PCD∴平面OPF⊥平面PCD∴直线OP在平面PCD上的射影为直线PF∴∠OPF为OP与平面PCD所成的角由题设,∠OPF=60°设OP=h,则OF=OPtan∠OPF=∵∠OCP=22.5°,∴∵tan45°==1∴tan22.5°=∴OC==在Rt△OCF中,cos∠COF===∴cos∠COD=cos(2∠COF)=2cos2∠COF﹣1=17﹣127、(Ⅰ)证明:∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面QBC∥平面A1D1DA,∴平面A1CD与面QBC、平面A1D1DA的交线平行,∴QC∥A1D∴△QBC∽△A1AD,∴=,∴Q为BB1的中点;(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2,设BC=a,则AD=2a,∴==,V Q﹣ABCD==ahd,∴V2=,∵V棱柱=ahd,∴V1=ahd,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,∴∠AEA1为平面α与底面ABCD所成二面角的平面角,∵BC∥AD,AD=2BC,∴S△ADC=2S△ABC,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α与底面ABCD所成二面角的大小为.8、(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.福建省(答案)1、解:(Ⅰ)证明:在△PAD中,PA=PD,O为AD的中点,所以PO⊥AD又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD所以PO⊥平面ABCD.(Ⅱ)连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC=2有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC由(Ⅰ)知PO⊥OB,∠PBC是锐角,所以∠PBC是异面直线PB与CD所成的角因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=在Rt△AOP中因为AP=AO=1,所以OP=1在Rt△AOP中tan∠PBC=所以:异面直线PB与CD所成角的大小.(Ⅲ)假设存在点Q,使得它到平面PCD的距离为.设QD=x,则,由(Ⅱ)得CD=OB=,在Rt△POC中,,所以PC=CD=DP,,由V p﹣DQC=V Q﹣PCD,得x=,所以存在点Q满足题意,此时.解法二:(Ⅰ)同解法一.(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O﹣xyz,依题意,易得A(0,﹣1,0),B(1,﹣1,0),C(1,0,0),D(0,1,0),P(0,0,1),所以.所以异面直线PB与CD所成的角是arccos,(Ⅲ)假设存在点Q,使得它到平面PCD的距离为,由(Ⅱ)知.设平面PCD的法向量为n=(x0,y0,z0).则所以即x0=y0=z0,取x0=1,得平面PCD的一个法向量为=(1,1,1).设,由,得,解y=﹣或y=(舍去),此时,所以存在点Q满足题意,此时.2、解:(Ⅰ)因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,因为AB是圆O直径,所以BC⊥AC,又AC∩AA1=A,所以BC⊥平面A1ACC1,而BC⊂平面B1BCC1,所以平面A1ACC1⊥平面B1BCC1.(Ⅱ)设圆柱的底面半径为r,则AB=AA1=2r,故三棱柱ABC﹣A1B1C1的体积为=AC•BC•r,又因为AC2+BC2=AB2=4r2,所以=2r2,当且仅当时等号成立,从而V1≤2r3,而圆柱的体积V=πr2•2r=2πr3,故P=,当且仅当,即OC⊥AB时等号成立,所以P的最大值是.P取最大值时,OC⊥AB,于是以O为坐标原点,建立空间直角坐标系O﹣xyz,设OB为y轴的正半轴,OC为x轴正半轴,OO1为z轴的正半轴,则C(r,0,0),B(0,r,0),B1(0,r,2r),因为BC⊥平面A1ACC1,所以是平面A1ACC1的一个法向量,设平面B1OC的法向量,由,故,取z=1得平面B1OC的一个法向量为,因为0°<θ≤90°,所以===.3、解:(I)证明:∵PA⊥平面ABCD,AB⊂平面ABCD∴PA⊥AB又∵AB⊥AD,PA∩AD=A∴AB⊥平面PAD又∵AB⊂平面PAB,∴平面PAB⊥平面PAD(II)(i)以A为坐标原点,建立空间直角坐标系A﹣xyz(如图)在平面ABCD内,作CE∥AB交于点E,则CE⊥AD 在Rt△CDE中,DE=CD•cos45°=1,CE=CD•sin45°=1设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4﹣t,所以E(0,3﹣t,0),C(1,3﹣t,0),D(0,4﹣t,0),设平面PCD的法向量为=(x,y,z)由,,得取x=t,得平面PCD的一个法向量为又,故由直线PB与平面PCD所成的角为30°得cos(90°﹣30°)==即解得或t=4(舍去,因为AD=4﹣t>0)所以AB=(ii)假设在线段AD上存在一个点G到P、B、C、D的距离都相等由GC=GD,得∠GCD=∠GDC=45°从而∠CGD=90°,即CG⊥AD所以GD=CD•cos45°=1设AB=λ,则AD=4﹣λ,AG=AD﹣GD=3﹣λ在Rt△ABG中,GB=这GB=GD与矛盾.所以在线段AD上不存在一个点G,使得点G到B、C、D的距离都相等.从而,在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.4、解:(I)以A为原点,,,的方向为X轴,Y轴,Z轴的正方向建立空间直角坐标系,如图,设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1)故=(0,1,1),=(﹣,1,﹣1),=(a,0,1),=(,1,0),∵•=1﹣1=0∴B1E⊥AD1;(II)假设在棱AA1上存在一点P(0,0,t),使得DP∥平面B1AE.此时=(0,﹣1,t).又设平面B1AE的法向量=(x,y,z).∵⊥平面B1AE,∴⊥B1A,⊥AE,得,取x=1,得平面B1AE的一个法向量=(1,﹣,﹣a).要使DP∥平面B1AE,只要⊥,即有•=0,有此得﹣at=0,解得t=,即P(0,0,),又DP⊈平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=(III)连接A1D,B1C,由长方体ABCD﹣A1B1C1D1及AA1=AD=1,得AD1⊥A1D.∵B1C∥A1D,∴AD1⊥B1C.由(I)知,B1E⊥AD1,且B1C∩B1E=B1.∴AD1⊥平面DCB1A1,∴AD1是平面B1A1E的一个法向量,此时=(0,1,1).设与所成的角为θ,则cosθ==∵二面角A﹣B1E﹣A1的大小为30°,∴|cosθ|=cos30°=,即||=,解得a=2,即AB的长为25、(1)证明:取DC的中点E,连接BE,∵AB∥ED,AB=ED=3k,∴四边形ABED是平行四边形,∴BE∥AD,且BE=AD=4k,∴BE2+EC2=(4k)2+(3k)2=(5k)2=BC2,∴∠BEC=90°,∴BE⊥CD,又∵BE∥AD,∴CD⊥AD.∵侧棱AA1⊥底面ABCD,∴AA1⊥CD,∵AA1∩AD=A,∴CD⊥平面ADD1A1.(2)解:以D为坐标原点,、、的方向为x,y,z轴的正方向建立空间直角坐标系,则A(4k,0,0),C(0,6k,0),B1(4k,3k,1),A1(4k,0,1).∴,,.设平面AB1C的一个法向量为=(x,y,z),则,取y=2,则z=﹣6k,x=3.∴.设AA1与平面AB1C所成角为θ,则===,解得k=1,故所求k=1.(3)由题意可与左右平面ADD1A1,BCC1B1,上或下面ABCD,A1B1C1D1拼接得到方案新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出f(k)=6、(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.7、解法一:(1)如图,取AE的中点H,连接HG,HD,∵G是BE的中点,∴GH∥AB,且GH=AB,又∵F是CD中点,四边形ABCD是矩形,∴DF∥AB,且DF=AB,即GH∥DF,且GH=DF,∴四边形HGFD是平行四边形,∴GF∥DH,又∵DH⊂平面ADE,GF⊄平面ADE,∴GF∥平面ADE.(2)如图,在平面BEG内,过点B作BQ∥CE,∵BE⊥EC,∴BQ⊥BE,又∵AB⊥平面BEC,∴AB⊥BE,AB⊥BQ,以B为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1)∵AB⊥平面BEC,∴为平面BEC的法向量,设=(x,y,z)为平面AEF的法向量.又=(2,0,﹣2),=(2,2,﹣1)由垂直关系可得,取z=2可得.∴cos<,>==∴平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)如图,取AB中点M,连接MG,MF,又G是BE的中点,可知GM∥AE,且GM=AE又AE⊂平面ADE,GM⊄平面ADE,∴GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点可得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,∴MF∥平面ADE.又∵GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF∴平面GMF∥平面ADE,∵GF⊂平面GMF,∴GF∥平面ADE(2)同解法一.广东省(答案)1、解:(1)在Rt△BAD中,∵∠ABD=60°,∴而PD垂直底面ABCD,,,在△PAB中,PA2+AB2=PB2,即△PAB为以∠PAB为直角的直角三角形.设点D到面PAB的距离为H,由V P﹣ABD=V D﹣PAB,有PA•AB•H=AB•AD•PD,即,.(2)EG∥BC,∴,而,即,∴GF∥PD,∴GF⊥BC,∴GF⊥EG,∴△EFG是直角三角形.(3)时,,即,∴△EFG 的面积.2、解:(1)依题作点E 、G 在平面11DCC D 内的正投影1E 、1G ,则1E 、1G 分别为1CC 、1DD 的中点,连结1EE 、1EG 、ED 、1DE ,则所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111E D G Rt FG E Rt FG D E S S S ∆∆+=221212221=⨯⨯+⨯⨯=, 又⊥1EE 面11FG DE ,11=EE ,∴323111111=⋅=-EE S V FG DE FG DE E .(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E 、)1,0,0(1G ,又)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,∴01)1(01=+-+=⋅FG ,01)1(011=+-+=⋅FE FG ,即FE FG ⊥1,11FE FG ⊥, 又F FE FE =⋂1,∴⊥1FG 平面1FEE .(3))0,2,0(11-=G E ,)1,2,1(--=EA,则62,cos 11=>=<G E ,设异面直线11E G EA 与所成角为θ,则33321sin =-=θ3、(1)证明:连接CF ,因为是半径为a 的半圆,AC 为直径,点E 为的中点,所以EB ⊥AC . 在RT △BCE 中,.在△BDF中,,△BDF为等腰三角形,且点C是底边BD的中点,故CF⊥BD.在△CEF中,,所以△CEF为Rt△,且CF⊥EC.因为CF⊥BD,CF⊥EC,且CE∩BD=C,所以CF⊥平面BED,而EB⊂平面BED,∴CF⊥EB.因为EB⊥AC,EB⊥CF,且AC∩CF=C,所以EB⊥平面BDF,而FD⊂平面BDF,∴EB⊥FD.(2)解:设平面BED与平面RQD的交线为DG.由,,知QR∥EB.而EB⊂平面BDE,∴QR∥平面BDE,而平面BDE∩平面RQD=DG,∴QR∥DG∥EB.由(1)知,BE⊥平面BDF,∴DG⊥平面BDF,而DR,DB⊂平面BDF,∴DG⊥DR,DG⊥DB,∴∠RDB是平面BED与平面RQD所成二面角的平面角.在Rt△BCF中,,,.在△BDR中,由知,,由余弦定理得,=由正弦定理得,,即,.故平面BED与平面RQD所成二面角的正弦值为.4、解:(1)取AD的中点G,连接PG,BG,在△ABG中,根据余弦定理可以算出BG=,发现AG2+BG2=AB2,可以得出AD⊥BG,又DE∥BG∴DE⊥AD,又PA=PD,可以得出AD⊥PG,而PG∩BG=G,∴AD⊥平面PBG,而PB⊂平面PBG,∴AD⊥PB,又PB∥EF,∴AD⊥EF.又EF∩DE=E,∴AD⊥平面DEF.(2)由(1)知,AD⊥平面PBG,所以∠PGB为二面角P﹣AD﹣B的平面角,在△PBG中,PG=,BG=,PB=2,由余弦定理得cos∠PGB=,因此二面角P﹣AD﹣B的余弦值为.5、解:(1)∵PA⊥平面ABCD∴PA⊥BD∵PC⊥平面BDE∴PC⊥BD,又PA∩PC=P∴BD⊥平面PAC(2)设AC与BD交点为O,连OE∵PC⊥平面BDE∴PC⊥平面BOE∴PC⊥BE∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面PAC∴BD⊥AC∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3∴OC=在△PAC∽△OEC中,又BD⊥OE,∴∴二面角B﹣PC﹣A的平面角的正切值为36、(1)证明:连接OD,OE.因为在等腰直角三角形ABC中,∠B=∠C=45°,,CO=BO=3.在△COD中,,同理得.因为,.所以A′O2+OD2=A′D2,A′O2+OE2=A′E2.所以∠A′OD=∠A′OE=90°所以A′O⊥OD,A′O⊥OE,OD∩OE=O.所以A′O⊥平面BCDE.(2)方法一:过点O作OF⊥CD的延长线于F,连接A′F因为A′O⊥平面BCDE.根据三垂线定理,有A′F⊥CD.所以∠A′FO为二面角A′﹣CD﹣B的平面角.在Rt△COF中,.在Rt△A′OF中,.所以.所以二面角A′﹣CD﹣B的平面角的余弦值为.方法二:取DE中点H,则OH⊥OB.以O为坐标原点,OH、OB、OA′分别为x、y、z轴建立空间直角坐标系.则O(0,0,0),A′(0,0,),C(0,﹣3,0),D(1,﹣2,0)=(0,0,)是平面BCDE的一个法向量.设平面A′CD的法向量为n=(x,y,z),.所以,令x=1,则y=﹣1,.所以是平面A′CD的一个法向量设二面角A′﹣CD﹣B的平面角为θ,且所以所以二面角A′﹣CD﹣B的平面角的余弦值为7、解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:8、(1)证明:在△POC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.湖北省(答案)1、解:(Ⅰ)证法1:如图1,连接BE、BD,由地面ABCD是正方形可得AC⊥BD.∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE(Ⅱ)解法1:如图1,由SD⊥平面ABCD知,∠DBE=φ,∵SD⊥平面ABCD,CD⊂平面ABCD,∴SD⊥CD.又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.连接AE、CE,过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,故∠CFD是二面角C﹣AE﹣D的平面角,即∠CFD=θ.在Rt△BDE中,∵BD=2a,DE=λa∴tanφ=在Rt△ADE中,∵,DE=λa∴AE=a从而DF=在Rt△CDF中,tanθ=.由tanθ•tanφ=1,得即=2,所以λ2=2.由0<λ≤2,解得,即为所求.(Ⅰ)证法2:以D为原点,以DA.DC.DS的方向分别作为x,y,z轴的正方向建立如图2所示的空间直角坐标系,则D(0,0,0),A(,0,0),B(a,a,0),C(0,a,0),E(0,0,λa),∴,∴,即AC⊥BE.(Ⅱ)解法2:由(I)得,,.设平面ACE的法向量为n=(x,y,z),则由,得即取,得.易知平面ABCD与平面ADE的一个法向量分别为与.∴,.∵0<θ<,λ>0∴tanθ•tanφ=1⇔θ+φ=⇔sinφ=cosθ⇔⇔λ2=2.由0<λ≤2,解得,即为所求.2、解:法一:(Ⅰ)在平面OAB内作ON⊥OA交AB于N,连接NC.又OA⊥OC,∴OA⊥平面ONC。
2016年-2019年立体几何大题全国卷高考真题
2016年-2019年立体几何大题全国卷高考真题1、(2015年1卷18题)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AFC⊥平面AEC;(Ⅱ)求直线AE与直线CF所成有的余弦值。
(2016年1卷18题)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, 2、90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.3(2016年2卷19题)(本小题满分12分) CA BD EF如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF'的位置10OD '=. (I )证明:D H '⊥平面ABCD ;(II )求二面角B D A C '--的正弦值.4、(2017年1卷18题)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=?.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=?,求二面角A PB C --的余弦值.5.(2018年1卷18题)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.⑴证明:平面PEF ⊥平面ABFD ;⑵求DP与平面ABFD所成角的正弦值.6.(2018年新课标Ⅱ理)如图,在三棱锥P-ABC中,AB=BC=22,P A =PB=PC=AC=4,O为AC的中点.(1)求证:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-P A-C为30°,求PC与平面P AM所成角的正弦值.18.(2019年1卷18题)(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.8.(12分)(2019年新课标Ⅱ理)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E 在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.。
历年全国理科数学高考试题立体几何部分精选(含答案)
(一)1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,==,则棱锥AB BC-的体积为。
O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。
(一)1.D2.3. 解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A,()0B,()C -,()0,0,1P 。
(1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=u u u r u u u r00z =-=因此可取n=设平面PBC 的法向量为m ,则m 0,m 0,{PB BC ⋅=⋅=u u u ru u u r可取m=(0,-1, cos ,7m n ==- 故二面角A-PB-C 的余弦值为(二)1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为C 232. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4- (B)3-+ (C) 4-+3-+3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(二)1. D2. D3. B4. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥. 又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,故,BK EDC BK DE DE ⊥⊥平面,与平面SBC 内的两条相交直线BK 、BC 都垂直 DE ⊥平面SBC ,DE ⊥EC,DE ⊥SBSB =SD DB DE SB ==,-33EB SE SB EB ==== 所以,SE=2EB(Ⅱ) 由1,2,,SA AB SE EB AB SA ====⊥知1,AD=1AE ==又.故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则,AF DE AF ⊥==. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角.连接AG,A G=,FG ==,2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°. 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -, 设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2)(Ⅰ)(0,2,-2),(-1,1,0)SC BC ==设平面SBC 的法向量为n=(a, b, c) 由,n SC n BC ⊥⊥,得0,0n SC n BC == 故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1) 又设SE EB λ= (0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++设平面CDE 的法向量m=(x,y,z) 由,m DE m DC ⊥⊥,得0m DE ⊥=,0m DC ⊥= 故20,20111x y zy λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n,0,20,2m n λλ=-== 故SE=2EB(Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =--,故0FA DE =,由此得FA DE ⊥又242(,,)333EC =--,故0EC DE =,由此得EC DE ⊥, 向量FA 与EC 的夹角等于二面角A DE C --的平面角于是 1cos(,)2||||FA EC FA EC FA EC ==-所以,二面角A DE C --的大小为120(三)1. 已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A )4 (B )4 (C )4 (D) 342. 已知二面角l αβ--为60o,动点P 、Q 分别在面α、β内,P 到β,Q 到α的距离为则P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) 3. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=︒,则此球的表面积等于 。
高三数学立体几何历年高考题(2011年-2017年)完整版.doc
(Ⅱ)平面 BDC 1 分此棱柱为两部分,求这两部分体积的比。
16 (2014 课标全国Ⅰ )如图 1-1 所示,三棱柱 ABC - A1B1C1中,点 A1 在平面 ABC 内的射影 D 在 AC 上,∠ ACB= 90°, BC= 1,AC= CC1= 2. (1)证明: AC1⊥ A1B; (2)设直线 AA1 与平面 BCC1B1 的距离为 3, 求二面角 A1-AB -C 的大小.
12.( 2017 年 16)已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上, SC 是球 O 的直径。若平 面 SCA⊥平面 SCB,SA=AC,SB=BC,三棱锥 S-ABC 的体积为 9,则球 O 的表面积为 ________。
13(2011 年).如图,四棱锥 P ABCD 中,底面 ABCD 为平行四边形,
17.(2015 年新课标 1)如图四边形 ABCD 为菱形,
G 为 AC 与 BD 交点, BE 平面 ABCD , (1) 证明:平面 AEC 平面 BED ; (2) 若 ABC 120o , AE EC, 三棱锥
E ACD 的体积为 6 ,求该三棱锥的侧面积 . 3
18 (2016 年新课标 1)如图,已知正三棱锥 P-ABC 的侧面是直角三角形, PA=6,顶点 P 在平面 ABC 内的正投影为点 D, D 在平面 PAB 内的正投影为点 E,连结 PE 并延长交 AB 于点 G. ( I)证明: G 是 AB 的中点; ( II )在图中作出点 E 在平面 PAC 内的正投影 F(说明作法及理由) ,并求四面体 PDEF 的体积.
PD 底面 ABCD . ( I)证明: PA BD ;
( II )设 PD=AD=1 ,求棱锥 D-PBC 的高.
高考数学近三年真题立体几何(理科专用)
三年专题 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3B .1.2×109m 3C .1.4×109m 3D .1.6×109m 32.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,B B '与C C '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差A A C C ''- 1.732≈)( )A .346B .373C .446D .4735.【2021年甲卷理科】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1A CBC A C B C ⊥==,则三棱锥O A B C-的体积为( )A 12B 12C 4D 46.【2021年新高考1的母线长为( )A .2B .C .4D .7.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .201+B .2C .563D 38.【2020年新课标1卷理科】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 4B 2C 4D 29.【2020年新课标1卷理科】已知,,A B C 为球O 的球面上的三个点,⊙1O 为A B C的外接圆,若⊙1O 的面积为4π,1A BB C A C O O ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π10.【2020年新课标2卷理科】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H11.【2020年新课标2卷理科】已知△ABC 4的等边三角形,且其顶点都在球O的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 212.【2020年新课标3卷理科】下图为某几何体的三视图,则该几何体的表面积是( )A.B .C .D .13.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°14.【2022年新高考1卷】已知正方体ABCD −A 1B 1C 1D 1,则( ) A .直线BC 1与DA 1所成的角为90° B .直线BC 1与CA 1所成的角为90° C .直线BC 1与平面BB 1D 1D 所成的角为45°D .直线BC 1与平面ABCD 所成的角为45°15.【2022年新高考2卷】如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A .V 3=2V 2B .V 3=V 1C .V 3=V 1+V 2D .2V 3=3V 116.【2021年新高考1卷】在正三棱柱111A B CA B C -中,11A BA A ==,点P 满足1B P BC B B λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1A B P△的周长为定值B .当1μ=时,三棱锥1P A B C-的体积为定值C .当12λ=时,有且仅有一个点P ,使得1AP B P⊥D .当12μ=时,有且仅有一个点P ,使得1AB ⊥平面1A BP17.【2021年新高考2卷】如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足M NO P⊥的是( )A .B .C .D .18.【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.19.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD=60°.以1D BCC 1B 1的交线长为________.20.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________三年专题立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.2.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.3.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 5.【2021年甲卷理科】已知直三棱柱111A B C A B C -中,侧面11A AB B为正方形,2A BB C ==,E ,F 分别为A C 和1C C 的中点,D 为棱11AB 上的点.11B FA B ⊥(1)证明:B F D E⊥;(2)当1BD为何值时,面11B BC C与面D F E 所成的二面角的正弦值最小?6.【2021年乙卷理科】如图,四棱锥P A B C D==,P D D C-的底面是矩形,P D⊥底面A B C D,1M为B C的中点,且P B A M⊥.(1)求B C;(2)求二面角A P M B--的正弦值.7.【2021年新高考1卷】如图,在三棱锥A B C D-中,平面A B D⊥平面B C D,A B A D=,O为B D的中点.(1)证明:O A C D⊥;(2)若OCD是边长为1的等边三角形,点E在棱A D上,2--=,且二面角E B C DD E E A的大小为45︒,求三棱锥A B C D-的体积.8.【2021年新高考2卷】在四棱锥Q A B C D-中,底面A B C D是正方形,若====.A D Q D Q A Q C2,3(1)证明:平面Q A D ⊥平面A B C D ; (2)求二面角BQ D A--的平面角的余弦值.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,A E 为底面直径,A EA D=.A B C是底面的内接正三角形,P 为D O 上一点,6P OO=.(1)证明:P A ⊥平面P B C ;(2)求二面角BP C E--的余弦值.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AM N 所成角的正弦值.11.【2020年新课标3卷理科】如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D DB B 上,且12D EE D =,12B FF B =.(1)证明:点1C 在平面A E F 内;(2)若2A B=,1A D=,13A A=,求二面角1AE F A --的正弦值.12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 13.【2020年新高考2卷(海南卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.。
(完整)高中数学《立体几何》大题及答案解析.doc
高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。
(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。
2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。
历年全国理科数学高考试题立体几何部分精选(含答案)
1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,==,则棱锥AB BC-的体积为。
O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。
1.D2.3. 解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A,()0B,()C -,()0,0,1P 。
(1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=u u u r u u u r00z =-=因此可取n=设平面PBC 的法向量为m ,则m 0,m 0,{PB BC ⋅=⋅=u u u ru u u r可取m=(0,-1, cos ,m n == 故二面角A-PB-C 的余弦值为1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为C 232. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4- (B)3-+ (C) 4-+3-+3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .1. D2. D3. B4. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥. 又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,故,BK EDC BK DE DE ⊥⊥平面,与平面SBC 内的两条相交直线BK 、BC 都垂直 DE ⊥平面SBC ,DE ⊥EC,DE ⊥SBSB =SD DB DE SB ==-EB SE SB EB ====所以,SE=2EB(Ⅱ) 由1,2,,SA AB SE EB AB SA ===⊥知1,AD=1AE ==又.故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则,AF DE AF ⊥==. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角.连接AG,A G=,3FG ==, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°. 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -, 设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2)(Ⅰ)(0,2,-2),(-1,1,0)SC BC ==设平面SBC 的法向量为n=(a, b, c) 由,n SC n BC ⊥⊥,得0,0n SC n BC == 故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1) 又设SE EB λ= (0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++设平面CDE 的法向量m=(x,y,z) 由,m DE m DC ⊥⊥,得0m DE ⊥=,0m DC ⊥= 故20,20111x y zy λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n,0,20,2m n λλ=-== 故SE=2EB(Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =--,故0FA DE =,由此得FA DE ⊥ 又242(,,)333EC =--,故0EC DE =,由此得EC DE ⊥, 向量FA 与EC 的夹角等于二面角A DE C --的平面角 于是 1cos(,)2||||FA EC FA EC FA EC ==-所以,二面角A DE C --的大小为120(三)1. 已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A (B (C (D) 342. 已知二面角l αβ--为60o,动点P 、Q 分别在面α、β内,P 到β,Q 到α的距离为则P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) 3. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=︒,则此球的表面积等于 。
全国卷历年高考立体几何真题归类分析(含答案)
全国卷历年高考立体几何真题归类分析(含答案)类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。
这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,或线上动点等问题,以增加难度。
该类问题的突破点是通过条件建立方程求解,对于向上动点问题这主意共线向量的应用。
1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值.EM DCBAP类型二:证建系(1)——条件中已经有线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明平面线线垂直定理)。
2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)
2012-2021十年全国高考数学真题分类汇编立体几何客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D解析:如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D2.(2021年高考全国甲卷理科)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()()A.B.C.D.【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D3.(2021年高考全国甲卷理科)已如A.B.C是半径为1的球O的球面上的三个点,且,1AC BC AC BC⊥==,则三棱锥O ABC-的体积为()A.212B.312C.24D.34【答案】A解析:,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则22d =,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A .【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.4.(2020年高考数学课标Ⅰ卷理科)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()()A .514-B .512-C .514+D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a =(负值舍去).故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6.(2020年高考数学课标Ⅱ卷理科)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A .3B .32C .1D .32【答案】C解析:设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.7.(2020年高考数学课标Ⅱ卷理科)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()()A .EB .FC .GD .H【答案】A解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2020年高考数学课标Ⅲ卷理科)下图为某几何体的三视图,则该几何体的表面积是()()A .6+4B .C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.(2019年高考数学课标Ⅲ卷理科)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】取DC 中点E ,如图连接辅助线,在BDE △中,N 为BD 中点,M 为DE 中点,所以//MN BE ,所以BM ,EN 共面相交,选项C ,D 错误. 平面CDE ⊥平面ABCD ,EF CD ⊥,EF ∴⊥平面ABCD ,又DC CD ⊥,∴DC ⊥平面DCE ,从而EF FN ⊥,BC MC ⊥.所以MCB △与EFN△均为直角三角形.不妨设正方形边长为2,易知3,1MC EF NF ===,所以22(3)27BM =+=,22(3)12EN =+=,BM EN ∴≠,故选B .【点评】本题比较具有综合性,既考查了面面垂直、线面垂直等线面关系,还考查了三角形中的一些计算问题,是一个比较经典的题目.10.(2019年高考数学课标全国Ⅱ卷理科)设α、β为两个平面,则αβ//的充要条件是()()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ//的充分条件,由面面平行性质定理知,若αβ//,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ//的必要条件,故选B .【点评】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.11.(2019年高考数学课标全国Ⅰ卷理科)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A .B .C .D 【答案】D解析:三棱锥P ABC -为正三棱锥,取AC 中点M ,连接,PM BM ,则,AC PM AB BM ⊥⊥,PM BM M = ,可得AC ⊥平面PBM ,从而AC PB ⊥,又//,PB EF EF CE ⊥,可得PB CE ⊥,又AC CE C = ,所以PB ⊥平面PAC ,从而,PB PA PB PC ⊥⊥,从而正三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且PA PB PC ===,,PA PB PC 为棱的正方体,正方体的体对角线即为球O 的直径,即22R R ==,所以球O 的体积为343V R π==.12.(2018年高考数学课标Ⅲ卷(理))设,,,A B C D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A.B.C.D.【答案】B解析:设ABC △的边长为a,则21sin 6062ABC S a a =︒=⇒=△,此时ABC △外接圆的半径为112sin 60232a r =⋅=⨯︒,故球心O 到面ABC2==,故点D 到面ABC 的最大距离为26R +=,此时11633D ABC ABC D ABC V S d --=⋅=⨯=△,故选B.点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型.13.(2018年高考数学课标Ⅲ卷(理))中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是()()【答案】A解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A 图.14.(2018年高考数学课标Ⅱ卷(理))在长方体1111ABCD A B C D -中,1AB BC ==,1AA =线1AD 与1DB 所成角的余弦值为()A .15B .56C .55D .22【答案】C解析:以D 为坐标原点,1,,DA DC DD DA 为,,x y z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),(0,0,3)D A B D ,所以11(1,0,3),(1,1,3)AD DB =-=因为111111135cos ,5||||25AD DB AD DB AD DB ⋅-+<>===⋅⨯所以异面直线1AD 与1DB 所成角的余弦值为55,故选C .15.(2018年高考数学课标卷Ⅰ(理))已知正方体的校长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面而积的最大值为()A .334B .233C .324D .32【答案】A【解析一】根据题意,平面α与正方体对角线垂直,记正方体为111ABCD A B C D -不妨设平面α与1AC 垂直,且交于点M .平面ABD 与平面11B D C 与1AC 分别交于,P Q .正方体中心为O ,则容易证明当M 从A 运动到P 时,截面为三角形且周长逐渐增大:当M 从P 运动到Q 时,截面为六边形且周长不变;当M 从Q 运动到1C 时,截面为三角形且周长还渐减小。
(2008年-2020年)高考数学分类汇编全国1卷(理)--立体几何(含全部答案解析)
(D)8
16(2016)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中 两条相互垂直的半径.若该几何体的体积是 28 ,则它的表面积是 3
(A)17 (B)18 (C) 20 (D) 28
17(2016() 11)平面 过正方体 ABCD A1B1C1D1 的顶点 A , // 平面 CB1D1 , 平面 ABCD m , 平面 ABB1 A1 n ,则 m, n 所成角的正弦值为
A.14 斛
B.22 斛
C.36 斛 D.66 斛
李老师数学
3
高考真题分类汇编
高三数学强化训练最佳资料
15(2015)圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体三视 图中的正视图和俯视图如图所示。若该几何体的表面积为 16 + 20 ,则 r =
(A)1
(B)2
(C)4
8(2011)(15)已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB 6, BC 2 3 ,则棱锥 O ABCD 的体积为 。
9(2012)7.如图,网格纸上小正方形的边长为 1,粗线画出的是某 几何体的三视图,则此几何体的体积为
(A)6
(B)9
(C)12
(D)18
10(2012)11.已知三棱锥 S ABC 的所有顶点都在球 O 的球面上,ABC 是边长为1的正 三角形, SC 为 O 的直径,且 SC 2 ,则此棱锥的体积为
(A) 2 3
(B) 3 3
(C) 2 3
6(2010)(12)已知在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四 面体 ABCD 的体积的最大值
( A) 2 3 3
专题05 立体几何专项高考真题总汇(带答案与解析)
专题05立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是()A .32B .3C.2D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为12=,故1111131222ABCD A B C D V -=⨯+⨯⨯=,故选:A.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为()A .332+B .4C .33D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【解析】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213333112242+⨯⨯⨯+⨯=,故选:A.3.【2021·浙江高考真题】如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.【2021·全国高考真题(理)】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .212B .312C .24D .34【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.【2021·全国高考真题(理)】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B.C .4D.【答案】B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l =.故选:B.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【解析】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.8.【2021·全国高考真题】在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-由题意得212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去).故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.12.【2020年高考全国II 卷理数】已知△ABC 是面积为934O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A 3B .32C .1D .32【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=⨯-,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A .2B .4+42C .3D .4+23【答案】C 【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考天津】若棱长为为A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12+D .12+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.17.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A 【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.18.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 【答案】D【解析】解法一:,PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==364466,π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,221221222x x x ∴+=∴==,,,PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,62R ∴=,34466338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.22.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.24.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PB αβ===<=,即αβ>;在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r =,其体积:34233V r =π=π.故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯⨯,圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,为半径的球面与侧面BCC 1B 1的交线长为________.【答案】22π.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B = ,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,所以||EP ===,所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得 22FGπ==.故答案为:22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.32.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.33.【2019年高考天津卷理数】2的正方形,5若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,的正方形,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.34.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是▲.【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴=1.。
历年高考理科数学真题汇编+答案解析(5):立体几何(2017-2020年)
历年高考理科数学真题汇编+答案解析专题5立体几何(2021年版)考查频率:一般为1~2个小题和1个大题.考试分值:17-22分知识点分布:必修2、选修2-1一、选择题和填空题(每题5分)1.(2020全国I 卷理16)如图,在三棱锥P ABC -的平面展开图中,1AC =,AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠= ,则cos FCB ∠=________.【解析】由题意可知,AE AD ==,CE CF =,BD BF =,在△ACE 中,由余弦定理可得,222o 2cos303112CE AE AC AE AC =+-⋅⋅=+-=,即1CE =,∴1CF CE ==在Rt △ABD 中,BD =,故BF BD ==,在Rt △ABC 中,2224BC AB AC =+=,故2BC =,在△BCF 中,由余弦定理可得,2224161cos 22214BC CF BF FCB BC CF +-+-∠===-⋅⨯⨯.【答案】1 4-2.(2020全国II卷理7)下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.E B.F C.G D.H【解析】由三视图的特点,如图A7所示,该端点在侧视图中对应的点为E.图A7【答案】A3.(2019全国I卷理12)已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A.B.C.D【解析】如图所示.在△PAC 中,设∠PAC=θ,PA=PB=PC=2x ,EC=y ,x >0,y >0,∵点E 、F 分别为PA 、AB 的中点,∴x PB EF ==21,AE =x ,在△PAC 中,由余弦定理得:xx x x 21222424cos 222=⨯⨯-+=θ,在△EAC 中,由余弦定理得:xy x x y x 44222cos 22222+-=⨯⨯-+=θ,∴xy x x 442122+-=,即222-=-y x ①.∵△ABC 是边长为2的正三角形,∴360sin 2=⨯= CF ∵∠CEF =90°,∴222CF EF CE =+,即322=+y x ②.联立①②得,22=x ,∴PA=PB=PC=2x=2∵△ABC 是边长为2的正三角形,∴222AB PB PA =+,222AC PC PA =+,222BC PC PB =+,即PA=PB=PC 两两垂直,∴三棱锥P-ABC 的外接球O 即以PA 为棱的正方体的外接球∴外接球的直径为62222=++=PC PB PA R ,∴26=R ∴外接球O 的体积为π6866π34π343=⨯==R V 【答案】D【考点】必修2空间几何体的体积、余弦定理4.(2019全国II 卷理7)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】通过画图,采用排除法,很容易得到正确答案.【答案】B【考点】必修2直线、平面平行的判断和性质5.(2019全国II 卷理16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【解析】由题意可知,该半正多面体所有顶点都在同一个正方体的表面上,由18个正方形面和8个三角形面构成,所有该半正多面体共有26个面.并且图中的一个八边形与正方体一个面的关系如图A16所示.设该半正多面体的棱长a ,则有1222=⨯+a a 12-=a 【答案】26,12-【考点】必修2空间几何体的结构6.(2019全国III 卷理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图A8所示,连接BD ,由已知可知,在△BDE 中,EN 为BD 边上的中线,BM 为DE 边上的中线,∴直线BM ,EN 在同一平面内且是相交直线.过点E 作EO ⊥CD ,交CD 于点O ,过点M 作MF ⊥CD ,交CD 于点F .连接ON ,BF .又∵平面ECD ⊥平面ABCD ,∴EO ⊥平面ABCD ,MF ⊥平面ABCD ,∴EO ⊥ON ,MF ⊥BF ,即△EON 与△MFB 均为直角三角形.设ABCD 的边长为2a ,则3EO a =,ON a =,32MF a =,222235()(2)22BF CF CB a a a =+=+=,∴2222(3)2EN EO ON a a a =++=,222235()()722BM MF BF a a =+=+∴EN BM ≠.【答案】B【考点】必修2直线、平面垂直的判定与性质7.(2019全国III 卷理16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意可得,四棱锥O −EFGH 的底面积为2146423=12cm 2⨯-⨯⨯⨯,其高为点O 到底面BB 1C 1C的距离3cm ,因此四棱锥O −EFGH 的体积为311=312=12cm 3V ⨯⨯.长方体1111ABCD A B C D -的体积为32=466=144cm V ⨯⨯,所以该模型的体积为312=132cm V V V =-,其所需原料的质量为1320.9=118.8 g ⨯.【答案】118.8【考点】必修2空间几何体的表面积和体积8.(2018全国I 卷理7)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .B .C .3D .2【解析】根据题意,点M 和点N 分别位于圆柱的上下底面的圆周上,且过这两点的圆柱的母线将圆柱底面圆周分为1:3,如图A7所示,由圆柱的侧面展开图可知,从M 到N 的路径中,最短路径的长度为【答案】B【考点】必修2空间几何体的三视图和直观图9.(2018全国I 卷理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A .334B .233C .324D .32【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图所示:图中所示的正六边形平行的平面,并且正六边形顶点在棱的中点时,α截此正方体所得截面面积的最大,此时正六边形的边长是22,α截此正方体所得截面的面积为232336424⎫⨯=⎪ ⎪⎝⎭.【答案】A【考点】必修2直线与平面的夹角、空间几何体的体积10.(2018全国II 卷理9)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =则异面直线1AD 与1DB 所成角的余弦值为A .15B .56C .55D .22【解析】如图所示,点E 为C 1D 1的中点,点F 为AB 的中点,连接EF ,则有EF ∥AD 1.由长方体的几何性质可知,EF 与DB 1在同一平面内且相交于点O ,O 为长方体的中心.所以EF 与DB 1所成角∠EOB 1的余弦值就是异面直线AD 1与DB 1所成角的余弦值.在Rt △ADD 1中,AD =1,DD 13AD 1=2,EF =2,EO =1;在Rt △B 1C 1E 中,B 1C 1=1,EC 1=12,所以EB 1=52;长方形的体对角线DB 15,OB 1=52;所以异面直线AD 1与DB 1所成角的余弦值为2221122cos 5+-∠==EOB.【答案】C【考点】必修2异面直线所成的角、余弦定理11.(2018全国II 卷理16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB的面积为,则该圆锥的侧面积为__________.【解析】设母线SA ,SB 所成角为θ,圆锥底面半径为R ,∵SA 与圆锥底面所成角为45°,∴OM=OA=OB=R ,MA=MB.依题意有7cos 8θ=,∴sin θ=,又∵△SAB 的面积=22211sin )sin 228SA θθR ===,∴240R =,∴该圆锥的侧面积=212π2R R ⨯==.图A16【答案】【考点】必修2空间几何体的表面积和体积12.(2018全国III 卷理3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示.【答案】A【考点】必修2空间几何体的三视图和直观图13.(2018全国III 卷理10)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D-ABC 体积的最大值为A .312B .318C .324D .354【解析】如图所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D-ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6.∴3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O ,∴642=+='D O .∴三棱锥D-ABC 体积的最大值为31863931=⨯⨯=V .【答案】B【考点】必修2空间几何体的表面积和体积14.(2017全国I 卷理7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【解析】由三视图可得直观图,如图所示.该立体图中共有两个相同的梯形的面,梯形的面积为12(24)62S =⨯⨯+=,故梯形的面积之和为12.【答案】B【考点】必修2空间几何体的三视图和直观图15.(2017全国I 卷理16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【解析】由题意,连接OD ,交BC 于点G ,由题意得OD 丄BC ,36OG BC =,即OG 的长度与BC 的长度成正比,设OG =x ,则23BC x =,DG =5—x ,∴三棱锥的高2222(5)2510h DG OG x x x =-=---,三棱锥的底面积21333322ABC S x x x ∆=⨯⨯=,图A16∴三棱锥的体积为245112510333251033ABC V hS x x x x ∆==-=⋅-,令45()2510f x x x =-,5(0,)2x ∈,则34()10050f x x x '=-,令34()10050=0f x x x '=-,得2x =,即2x =时,45()2510f x x x =-,5(0,2x ∈取得最大值,即max ()80f x =,∴三棱锥的体积的最大值为max 38015V ==.【答案】15【考点】必修2空间几何体的体积、导数及其应用16.(2017全国II 卷理4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A .90πB .63πC .42πD .36π【解析】由三视图可得,直观图为一个高为10的圆柱减去一个高为6的圆柱的一半,其体积为221103π63π=63π2V =⨯-⨯⨯.【答案】B【考点】必修2空间几何体的三视图和直观图、体积17.(2017全国II 卷理10)已知直三棱柱111C C AB -A B 中,C 120∠AB = ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()A .32B .155C .105D .33【解析】以B 为原点,在平面ABC 中过B 作BC 的垂线交AC 于D ,以BD 为x 轴,以BC 为y 轴,以BB 1为z 轴,建立空间直角坐标系,如图所示.图A10∵直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,∴1,0)A -,1(0,0,1)B ,(0,0,0)B ,1(0,1,1)C ,∴1(AB = ,1(0,1,1)BC =,∴异面直线1AB 与1C B所成角的余弦值为1111||cos 5||||AB BC AB BC θ⋅==⋅.【答案】C【考点】选修2-1异面直线、空间直角坐标系与立体几何18.(2017全国III 卷理8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π4【解析】由题可知,圆柱的轴截面如图所示,AC =2,BC =1,故AB =3,圆柱底面圆的半径为23,所以圆柱的体积为43π123(π2=⨯⨯.图A8【答案】B【考点】必修2空间几何体的表面积和体积19.(2017全国III 卷理16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最小值为60°;其中正确的是________。
2007-2018全国卷高考真题——立体几何解答题(理科)解析
专题 立体几何 空间向量与立体几何答案部分1.(2018全国卷Ⅰ)【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF u u u r的方向为y 轴正方向,||BF uuu r 为单位长,建立如图所示的空间直角坐标系-H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE又PF =1,EF =2,故PE ⊥PF .可得=PH ,32=EH . 则(0,0,0)H,P ,3(1,,0)2--D,3(1,2=u u u r DP , (0,0,)2HP =u u u r 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin ||4||||HP DP HP DP θ⋅===⋅u u u r u u u ru u u r u u u r .所以DP 与平面ABFD. 2.(2018全国卷Ⅱ)【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥.由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.A由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)-A ,(0,2,0)C,(0,0,P ,=AP u u u r,取平面PAC 的法向量(2,0,0)OB =u u u r . 设(,2,0)(02)-<≤M a a a ,则(,4,0)AM a a =-u u u r.设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn.由已知得|cos ,|OB =uu u r n .2.解得4a =-(舍去),43a =.所以4()3=-n.又(0,2,PC =-u u u r,所以cos ,PC =uu u r n . 所以PC 与平面PAM所成角的正弦值为4. 3.(2018全国卷Ⅲ)【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又BC I CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.当三棱锥M ABC -体积最大时,M 为»CD的中点. 由题设得(0,0,0)D ,(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(0,1,1)M ,(2,1,1)AM =-u u u u r ,(0,2,0)AB =u u u r ,(2,0,0)DA =u u u r设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u ur n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA u u u r是平面MCD 的法向量,因此cos ,5||||DA DA DA ⋅==u u u ru u u r u u u r n n n ,sin ,5DA =u u u r n ,所以面MAB 与面MCD所成二面角的正弦值是5. 4.(2017新课标Ⅰ)【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内做PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2A,(0,0,2P,,1,0)2B,(2C -.所以(,1,)22PC =--u u u r,CB =u u u r,)22PA =-u u u r , (0,1,0)AB =u u u r.设(,,)x y z =n 是平面PCB 的法向量,则00PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n,即0220x y z ⎧-+-=⎪=,可取(0,1,=-n .设(,,)x y z =m 是平面PAB 的法向量,则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m,即0220x z y -=⎪⎨⎪=⎩, 可取(1,0,1)=n .则cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为 5.(2017新课标Ⅱ)【解析】(1)取PA 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF AD ∥,12EF AD =.由90BAD ABC ∠=∠=o 得BC AD ∥,又12BC AD =,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC =u u u r ,(1,0,0)AB =u u u r.x设(,,)M x y z (01)x <<,则(1,,)BM x y z =-u u u u r,(,1,PM x y z =-u u u u r.因为BM 与底面ABCD 所成的角为45o,而(0,0,1)=n 是底面ABCD 的法向量,所以|cos ,|sin 45BM <>=ou u u u r n2=, 即222(1)0x y z -+-=. ①又M 在棱PC 上,设PM PC λ=u u u u r u u u r,则x λ=,1y =,z =. ②由①,②解得121x y z ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(舍去),121x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩所以(12M -,从而(12AM =-u u u u r . 设000(,,)x y z =m 是平面ABM 的法向量,则0=0AM AB ⎧⋅=⎪⎨⋅⎪⎩u u u u ru u ur m m,即0000(2200x y x ⎧+=⎪⎨=⎪⎩,所以可取(0,2)=m,于是cos ,||||⋅<>==m n m n m n因此二面角M AB D --的余弦值为5. 6.(2017新课标Ⅲ)【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =. 又由于ABC ∆是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=o . 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA u u u r的方向为x 轴正方向,OA u u u r为单位长,建立如图所示的空间直角坐标系O xyz -,则(1,0,0)A,B ,(1,0,0)C -,(0,0,1)D .由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得1(0,)22E .故(1,0,1)AD =-u u u r ,(2,0,0)AC =-u u u r,1(1,)22AE =-u u u r设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩u u u r g u u u r g 0,0,n n即x z x y z -+=⎧⎪⎨-++=⎪⎩01022可取=n 设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩u u u r g u u u rg m m同理可得(0,=-m则cos ,==g 7n m n m n m 所以二面角D AE C --的余弦值为77.(2016全国I )【解析】(Ⅰ)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(Ⅱ)过D 作DG EF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ABEF .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,||GF uuu r为单位长度,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=o,则2DF =,DG =,可得(1,4,0)A ,(3,4,0)B -,(3,0,0)E -,D .由已知,AB EF ∥,所以AB ∥平面EFDC .又平面ABCD I 平面EFDC DC =,故AB CD ∥,CD EF ∥.由BE AF ∥,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,60CEF ∠=o.从而可得(C -.所以EC =u u u r ,(0,4,0)EB =u u u r,(3,AC =--u u u r ,(4,0,0)AB =-u u u r.设(),,n x y z =r是平面BCE 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r,即040x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,n =r.设m r 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u rr ,同理可取()4m =r.则cos ,19n m n m n m ⋅==-r r r r r r .故二面角C E-B -A的余弦值为19-.8.(2016全国II )【解析】(I )证明:∵54AE CF ==, ∴AE CFAD CD=,∴EF AC ∥. ∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AEOH OD AO=⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥. 又∵OH EF H =I ,∴'D H ⊥面ABCD .(Ⅱ)建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩u u r u u u r u u r u u u u r得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量()2301n =u u r,,, ∴12129575cos 5210n n n n θ⋅+==⋅u r u u ru r u u r ,∴295sin θ. 9.(2016全国III )【解析】(Ⅰ)由已知得232==AD AM , 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥, 且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-u u u u r ,)2,1,25(-=PN ,)2,1,25(=AN . 设(,,)x y z =r n 为平面PMN 的法向量,则00PM PN ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u rn n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =r,于是||85|cos ,|||||n AN n AN n AN ⋅<>==r u u u rr u u u r r u u u r .10.(2015新课标Ⅰ)【解析】(Ⅰ)连接BD ,设BD AC G =I ,连接,,EG FG EF .在菱形ABCD 中,不妨设1GB =,由120∠=oABC ,可得3AG GC =由⊥BE 平面ABCD ,AB BC =可知,AE EC =, 又∵⊥AE EC ,∴3EG =,⊥EG AC ,在Rt EBG ∆中,可得2BE 22DF =.在Rt FDG ∆中,可得62FG =.在直角梯形BDFE 中,由2BD =,BE =2DF =,可得2EF =, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG =G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,0),E(1,0,),F (-1,0,C (00), ∴AE u u u r =(1),CF uuu r =(-12).故cos ,3||||<>==-u u u r u u u ru u u r u u u r g u u u r u u u r AE CF AE CF AE CF .所以直线AE 与CF所成的角的余弦值为3. 11.(2015新课标II )【答案】(Ⅰ)详见解析;. 【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,所以10AH =.以D为坐标原点,DA u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =u u u r ,(0,6,8)HE =-u u u r.设(,,)n x y z =r 是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =r .又(10,4,8)AF =-u u u r,故cos ,n AF n AF n AF⋅<>==⋅r u u u r r u u u r r u u u r .所以直线AF 与平面α所成角的正弦值为4515. 【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.A 1AB 1BD 1DC 1CF E H GM12.(2014新课标1)【解析】(Ⅰ)连接1BC ,交1B C O 于点,连接AO ,因为侧面11BB C C 为菱形,所以1111,B C BC O B C BC ⊥且为及的中点. 又11,.AB B C B C ABO ⊥⊥所以平面1AO ABO B C AO ⊂⊥由于平面,故又11,=.B O CO AC AB =故(Ⅱ)因为11,.AC AB O B C AO CO ⊥=且为的中点,所以 又因为,AB BC BOA BOC =∆≅∆所以,1,,,OA OB OA OB OB ⊥故从而两两相互垂直,以O OB x OB 为坐标原点,的方向为轴正方向,为单位长, O xyz =建立如图所示的空间直角坐标系.zyO因为1160,.CBB CBB AB BC∠=︒∆=所以为等边三角形又,则111111(00(100),(0,(0,,(1,0,(1,,0),3333A B B CAB A B AB B C BC=-==-==--u u u r u u u u r u u u r u u u u r u u u r,,11111(,,)=00,330,0.x y z AA By zABA Bx z=-⎧⋅=⎪⎪⎨⎨⋅=⎪⎪⎩=⎪⎩=u u u ru u u u r设是平面的法向量,则,即所以可取nnnn11111110,0,(1,A BA B CB Cm⎧⋅=⎪⎨⋅=⎪⎩=u u u u ru u u u r设是平面的法向量,则同理可取mmm则1cos,.7⋅==n mn mn m1111.7A AB C--所以二面角的余弦值为13.(2014新课标2)【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(Ⅱ)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,ABu u u r的方向为x轴的正方向,APu u u r为单位长,建立空间直角坐标系A xyz-,则D1(0,),22E1(0,)22AE=u u u r.设(,0,0)(0)Bm m>,则(C m(AC m=u u u r.设1(,,)x y z=n为平面AEC的法向量,则110,0,ACAE⎧⋅=⎪⎨⋅=⎪⎩uu u ru u u rnn即0,10,22mxy z⎧+=+=⎪⎩,可取1=-n.又2(1,0,0)=n为平面DAE的法向量,由题设121cos,2=n n12=,解得32m=.因为E为PD的中点,所以三棱锥EACD-的高为12.三棱锥E ACD-的体积11313222V=⨯⨯=.14.(2013新课标Ⅰ)【解析】(Ⅰ)取AB中点E,连结CE,1A B,1A E,∵AB=1AA,1BAA∠=060,∴1BAA∆是正三角形,∴1A E⊥AB,∵CA=CB,∴CE⊥AB,∵1CE A E⋂=E,∴AB⊥面1CEA,∴AB⊥1A C;(Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA ,∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA u u u r 的方向为x 轴正方向,|EA u u u r|为单位长度,建立如图所示空间直角坐标系O xyz -,有题设知A (1,0,0),1A 3,0),C 3B (-1,0,0),则BC uuu r=(1,03,1BB u u u r =1AA u u u r =(-31AC u u u r=(0,33), 设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧•=⎪⎨•=⎪⎩u u u ru u u r n n ,即3030x z x ⎧=⎪⎨=⎪⎩,可取n =3,1,-1), ∴1cos ,AC u u u r n =11|AC AC •u u u ru u u r n |n ||105, ∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为105. 15.(2013新课标Ⅱ)【解析】(Ⅰ)连结1AC ,交1A C 于点O ,连结DO ,则O 为1AC 的中点,因为D 为AB 的中点,所以OD ∥1BC ,又因为OD ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1BC //平面1A CD ;(Ⅱ)由1AA =AC=CB=22AB 可设:AB=2a ,则1AA 2a ,所以AC⊥BC,又因为直棱柱,所以以点C为坐标原点,分别以直线CA、CB、1CC为x轴、y轴、z轴,建立空间直角坐标系如图,1则(0,0,0)C、1)A、D、E,1)CA=u u u r,,,0)22CD=u u u r,,)2CE=u u u r,1(,)2A E=-u u u r,设平面1A CD的法向量为(,,)n x y z=r,则0n CD⋅=r u u u r且1n CA⋅=r u u u r,可解得y x z=-=,令1x=,得平面1A CD的一个法向量为(1,1,1)n=--r,同理可得平面1A CE的一个法向量为(2,1,2)m=-ur,则cos,n m<>=r u r3,所以sin,3n m<>=r u r,所以二面角D-1A C-E的正弦值为316.(2012新课标)【解析】(Ⅰ)在Rt DAC∆中,AD AC=,得:45ADC︒∠=同理:1114590A DC CDC︒︒∠=⇒∠=得:111,DC DC DC BD DC⊥⊥⇒⊥面1BCD DC BC⇒⊥(Ⅱ)11,DC BC CC BC BC⊥⊥⇒⊥面11ACC A BC AC⇒⊥取11A B的中点O,过点O作OH BD⊥于点H,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则122aC O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒17.(2011新课标)【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD . 故 P A ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()3,0C -,()0,0,1P .(3,0),3,1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为(,,)x y z =n ,则0AB PB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu r n n ,即 3030x z ⎧-+=⎪⎨-=⎪⎩因此可取n =3,1,3)设平面PBC的法向量为m,则PBBC⎧⋅=⎪⎨⋅=⎪⎩uu ruu u rmm可取m=(0,-1,3-)27cos,27==-m n故二面角A-PB-C的余弦值为277-.18.(2010新课标)【解析】:以H为原点,,,HA HB HP分别为,,x y z轴,线段HA的长为单位长,建立空间直角坐标系如图,则(1,0,0),(0,1,0)A B(Ⅰ)设(,0,0),(0,0,)(0,0)C m P n m n<>,则1(0,,0),(,,0).22mD m E可得1(,,),(,1,0).22mPE n BC m=-=-因为0022m mPE BC⋅=-+=,所以PE BC⊥(Ⅱ)由已知条件可得331,33m n C=-=-故(313(0,(,(0,0,1)326D E P--设(,,)n x y x=为平面PEH的法向量则0,0,HEHP⎧⋅=⎪⎨⋅=⎪⎩nn即132x yz⎧-=⎪⎨⎪=⎩因此可以取3,0)=n,由(1,0,1)PA=-u u u r,可得2cos,4PA=u u u rn,.所以直线PA与平面PEH所成角的正弦值为4。
历年高考立体几何解答题汇编(完整资料).doc
【最新整理,下载后即可编辑】历年高考立体几何解答题汇编1.(2006年北京卷)如图,在底面为平行四边表的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证://PB 平面AEC ; 2.(2006年上海卷)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 . (1)求四棱锥P -ABCD 的体积;3.( 2006年浙江卷)如图,在四棱锥P-ABCD 中,底面为直角梯形,AD ∥BC,∠BAD=90°,PA ⊥底面ABCD ,且PA =AD=AB=2BC,M 、N 分别为PC 、PB 的中点.(Ⅰ)求证:PB ⊥DM;4. ( 2006年湖南卷)如图4,已知两个正四棱锥P-ABCD 与Q-ABCD 的高分别为1和2,AB=4.(Ⅰ)证明PQ ⊥平面ABCD;P ABCD OE PA DCB5.(2006年福建卷)如图,四面体ABCD中,O、E分别是BD、BC的中点,2, 2.CA CB CD BD AB AD======(I)求证:AO⊥平面BCD;6.(2006年天津卷)如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱//1 2EF BC=.(1)证明FO//平面CDE;(2)设3BC CD=,证明EO⊥平面CDF.7.(2006年江苏卷)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。
将△AEF沿EF折起到EFA1∆的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P (如图2)(Ⅰ)求证:A1E⊥平面BEP;AFEC BA1EFCPB图1 图2DBOE8.(2006年辽宁卷)已知正方形ABCD .E 、F 分别是AB 、CD 的中点,将ADE 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<. (I) 证明//BF 平面ADE ;9.(广东•理•19题)如图6所示,等腰△ABC 的底边AB =66,高C D =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE 。
专题06 立体几何专项高考真题总汇(带答案与解析)
专题06立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)6【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥ME 则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.【答案】(1)证明见解析;(2)156.【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠= ,由余弦定理可得DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DMD ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD,因为AM =,所以PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(2,0),(0,0,A P D,(0,0,0),1,0)M C -又N 为PC中点,所以31335,,,2222N AN ⎛⎛-=- ⎝⎝ .由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM所成角的正弦值为5||2sin 6||AN n AN n θ⋅===‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案.【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥,又1BB BF B ⋂=,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-= ,所以BF DE ⊥.(2)设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅===⋅ .当12a =时,2224a a -+取最小值为272,此时cos θ63=.所以()min3sin 3θ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(12;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+= ,解得22a =,故2BC a ==;(2)设平面PAM 的法向量为()111,,m x y z = ,则2,1,02AM ⎛⎫=- ⎪ ⎪⎝⎭,()AP = ,由111102m AM x y mAP z ⎧⋅=-+=⎪⎨⎪⋅=+=⎩,取1x =,可得)2m = ,设平面PBM 的法向量为()222,,n x y z = ,2,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =- ,由2222202n BM x nBP y z ⎧⋅=-=⎪⎨⎪⋅=-+=⎩ ,取21y =,可得()0,1,1n =r,314cos ,14m n m n m n⋅<>==⋅,所以,70sin ,14m n <>==,因此,二面角A PM B --的正弦值为14.【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --的余弦值为53,求111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =.【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C ,由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD ,从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF ,据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合,即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤,则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-,设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩,令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:5,m n m n ⋅===则:,5cos 3m n m n m n ⋅===⨯ ,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===.因此222PA PB AB +=,从而PA PB ⊥.又222PA PC AC +=,故PA PC ⊥.所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,,0),(0,0,222E A C P --.所以312(,,0),(0,1,222EC EP =--=- .设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(3=-m .由(1)知2(0,1,2AP = 是平面PCB 的一个法向量,记AP = n ,则25cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为255.【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3连接NP ,则四边形AONP 为平行四边形,故23231(,0)333PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a ,则22123234()(4())33NQ a B a a =----,故21123223210(,,4()|3333B E a a B E =-----=.又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅ n n |n |所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c = ,11(0,,)3C F b c = ,得1EA C F = .因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内.(2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =-- ,1(0,1,2)A E =- ,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n .设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C ,所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C = 所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥.(Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ====BD OH ==所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC 所成角的正弦值为33.方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M = ,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA = 是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =- .设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||6cos ,6|A CA C CA ⋅〈〉==n n n ,于是30sin ,6CA 〈〉= n .所以,二面角1B B E D --的正弦值为306.(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33.12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A−MA 1−N 的正弦值.【答案】(1)见解析;(2)105.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1= DC ,可得B 1C = A 1D ,故ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =- ,1(3,2)A M =--,1(1,0,2)A N =-- ,(0,3,0)MN =-.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取(3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧-=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉==⨯‖m n m n m n ,所以二面角1A MA N --的正弦值为105.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2)32.【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB = ,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩所以可取m =(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2.【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B−CG−A 的大小.【答案】(1)见解析;(2)30 .【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH以H 为坐标原点,HC的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz,则A (–1,1,0),C (1,0,0),G (2,0),CG =(1,0AC=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩所以可取n =(3,6,).又平面BCGE 的法向量可取为m =(0,1,0),所以3cos ,||||2⋅〈〉==n m n m n m .因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13 PFPC=.(1)求证:CD⊥平面PAD;(2)求二面角F–AE–P的余弦值;(3)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.【答案】(1)见解析;(2)33;(3)见解析.【解析】(1)因为PA⊥平面ABCD,所以PA⊥CD.又因为AD⊥CD,所以CD⊥平面PAD.(2)过A作AD的垂线交BC于点M.因为PA⊥平面ABCD,所以PA⊥AM,PA⊥AD.如图建立空间直角坐标系A−xyz,则A(0,0,0),B(2,-1,0),C(2,2,0),D(0,2,0),P(0,0,2).因为E为PD的中点,所以E(0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP==-=.所以1222224,,,,,3333333PF PC AF AP PF⎛⎫⎛⎫==-=+=⎪ ⎪⎝⎭⎝⎭.设平面AEF的法向量为n=(x,y,z),则0,0,AEAF⎧⋅=⎪⎨⋅=⎪⎩nn即0,2240.333y zx y z+=⎧⎪⎨++=⎪⎩令z=1,则1,1y x=-=-.于是=(1,1,1)--n.又因为平面PAD的法向量为p=(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p .由题知,二面角F −AE −P为锐角,所以其余弦值为3.(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭.由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++= n .所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87.【解析】依题意,可以建立以A 为原点,分别以AB AD AE,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB = 是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有224||1cos ,||||3432h h -⋅〈〉==+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为8 7.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E 3EG 3由于O 为A 1G 的中点,故11522A G EO OG ===,所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,),B,1,0),1B,33,,22F ,C (0,2,0).因此,33(,,22EF =,(BC = .由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(10)=(02BC A C -,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n,得0y y ⎧+=⎪⎨=⎪⎩,取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35.【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。
(完整版)近三年高考全国卷理科立体几何真题(可编辑修改word版)
新课标卷高考真题1、(2016 年全国I 高考)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD = 90 ,且二面角D -AF -E 与二面角C -BE - F 都是60 .(I)证明:平面ABEF ⊥平面EFDC;(II)求二面角E - BC - A 的余弦值.10 2、( 2016 年全国 II 高考) 如图, 菱形 ABCD 的对角线 AC 与 BD 交于点 O ,AB = 5, AC = 6 , 点 E , F 分别在 AD , CD 上, AE = CF = 5 , EF 交 BD 于点 H4.将∆DEF 沿 EF 折到∆D 'EF 位置, OD ' = .(Ⅰ)证明: D 'H ⊥ 平面 ABCD ;(Ⅱ)求二面角 B - D 'A - C 的正弦值.3【2015 高考新课标 1,理 18】如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.4、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P-ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD,E 为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C 为60°,AP=1,AD= 3,求三棱锥E-ACD 的体积.图1-35、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,AB⊥B1C.图1-5(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1C1的余弦值.6、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E 是PD 的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M﹣AB﹣D 的余弦值.7(、2017•新课标Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.8、(2017•新课标Ⅰ卷)如图,在四棱锥P﹣ABCD 中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C 的余弦值.m n ⋅ -4 3 + 1 ⋅ 3 + 16 m 1 1 1 m 1【解析】⑴ ∵ ABEF 为正方形∴ AF ⊥ EF ∵ ∠AFD = 90︒∴ AF ⊥ DF ∵ D F EF =F∴ AF ⊥ 面 EFDC AF ⊥ 面 ABEF∴平面 ABEF ⊥ 平面 EFDC⑵ 由⑴知∠DFE = ∠CEF = 60︒∵ AB ∥ EF AB ⊄ 平面 EFDCEF ⊂ 平面 EFDC ∴ AB ∥平面 ABCDAB ⊂ 平面 ABCD∵面 ABCD 面 EFDC = CD∴ AB ∥CD ,∴ CD ∥ EF∴四边形 EFDC 为等腰梯形以 E 为原点, 如图建立坐标系,FD = aE (0 ,0 ,0)B (0 ,2a ,0)C ⎛ a ,0 , 3 a ⎫ A (2a ,2a ,0)2 2 ⎪ ⎝ ⎭ ⎛ a3 ⎫EB = (0 ,2a ,0) , BC = 2 ,- 2a , 2 a ⎪ , AB = (-2a ,0 ,0)⎝ ⎭设面 BEC 法向量为= ( x ,y ,z ) . ⎧ ⎧2a ⋅ y 1 = 0 ⎪m ⋅ EB = 0 ,即⎪ ⎨ ⋅ = 0 ⎨ a ⋅ x - 2ay + 3 a ⋅ z = 0 ⎪⎩m BC ⎪⎩ 2 1 1 2 1x = 3 ,y = 0 ,z = -1 = ( 3 ,0 ,- 1)设面 ABC 法向量为 = ( x ,y ,z ) ⎧ n 2 2 2 ⎧ a ⎪n ⋅ BC =0 .即⎪ x 2 - 2ay 2 + az 2 = 0 x = 0 ,y = 3 ,z = 4 ⎨ ⎨ 2 22 2 2⎪⎩n ⋅ AB = 0⎪⎩2ax 2 = 0 n = (0 , 3 ,4)设二面角 E - BC - A 的大小为. cos =∴二面角 E - BC - A 的余弦值为-2 19 19 m ⋅ n = = - 2 19 19 3u r u u r n 1 ⋅ n 2 u r u u r n 1 n 2 7 5 2 95 ⋅ ' ⎩ ⎩ 2【解析】⑴证明:∵ AE = CF = 5 ,∴AE = CF , 4 AD CD∴ EF ∥ AC .∵四边形 ABCD 为菱形,∴ AC ⊥ BD , ∴ EF ⊥ BD ,∴ EF ⊥ DH ,∴ EF ⊥ D 'H .∵ AC = 6 ,∴ AO = 3 ;又 AB = 5 , AO ⊥ OB ,∴ OB = 4 , ∴ O H = AE⋅ OD = 1 ,∴ D H = D 'H = 3 ,∴ OD ' 2 = O H 2 + D ' H 2 ,∴ D ' H ⊥ O H AO .又∵ OH I EF = H ,∴ D ' H ⊥ 面 ABCD .⑵建立如图坐标系 H - xyz .B (5 , 0 , 0) ,C (1, 3,0) , D '(0 , 0 , 3) , A (1, - 3, 0) ,AB = (4 , 3, 0) , AD ' = (-1, 3,3) , AC = (0 , 6 , 0) ,设面 ABD ' 法向量n 1 = ( x ,y ,z ) ,⎧ ⎧x = 3 由⎪n 1 ⋅ AB = 0 得⎧4x + 3y = 0 ,取⎪ y = -4 ,∴ n = (3, - 4 , 5) . ⎨ ⎪⎩n 1 A D = 0 ⎨-x + 3y + 3z = 0 ⎨ 1 ⎪z = 5同理可得面 AD 'C 的法向量n 2 = (3, 0 , 1) ,∴ cos= = = ,∴ s in = . 25 253,【答案】(Ⅰ)见解析(Ⅱ) 339 + 5 5 2 ⋅ 103 2 2 32 GB , G C又∵AE ⊥EC ,∴EG = ,EG ⊥AC , 在 Rt △EBG 中,可得 BE = ,故 DF =2 .2在 Rt △FDG 中,可得 FG =6 .2在直角梯形 BDFE 中,由 BD =2,BE = ,DF = 2可得 EF = 3 2, 2 2 ∴ EG 2 + FG 2 = EF 2 ,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面 AFC , ∵EG ⊂ 面 AEC ,∴平面 AFC ⊥平面 AEC .……6 分(Ⅱ)如图,以 G 为坐标原点,分别以 的方向为 x 轴,y 轴正方向,| GB |为单位长度,建立空间直角坐标系 G-xyz ,由(Ⅰ)可得 A (0,- ,0),E (1,0,),F (-1,0, ),C (0, ,0),∴ AE =(1, , ), C F =(-1,- 2 , 2 ).…10 分 23 2 3 2 33 3 3 33 AE ,C F >= •1AP |为单位长,建立空间直角坐标系 A -xyz ,则 D (0, 3,0),E 0, 2 , 2,AE = 0 2 , 2 = - { 即 故cos < AE CF 3 . | AE || C F | 3 所以直线 AE 与 CF 所成的角的余弦值为3 .……12 分3 4,解:(1)证明:连接 BD 交 AC 于点 O ,连接 EO .因为 ABCD 为矩形,所以 O 为 BD 的中点. 又 E 为 PD 的中点,所以 EO ∥PB .因为 EO ⊂平面 AEC ,PB ⊄平面 AEC ,所以 PB ∥平面 AEC . (2)因为 PA ⊥平面 ABCD ,ABCD 为矩形, 所以 AB ,AD ,AP 两两垂直.如图,以 A→ AD ,AP 的方向为 x 轴、y 轴、z 轴的正方向,| 为坐标原点,AB , →( 1)→ (, 1).设 B (m ,0,0)(m >0),则 C (m ,3,0) →(m ,3,0).,AC = 设 n 1=(x ,y ,z )为平面 ACE 的法向量,→ n 1·AC =0,则 → ) {m x + 3y =0,)n 1·AE =0, 2 y + z =0,可取 n 1=(2,-1, ).又 n 2=(1,0,0)为平面 DAE 的法向量,1由题设易知|cos 〈n 1,n 2〉|= ,即2 13 = ,解得 m = .22 1因为 E 为 PD 的中点,所以三棱锥 E -ACD 的高为 .三棱锥 E -ACD 的体积 V =21 1 3 1 × × 3× × = . 3 22 2 83m 3 3+4m 233 3 3 3 1(( )B 1C 1=BC = -1,- 3,0 . {{335 解:(1)证明:连接 BC 1,交 B 1C 于点 O ,连接 AO ,因为侧面 BB 1C 1C 为菱形,所以 B 1C ⊥BC 1,且 O 为 B 1C 及 BC 1 的中点.又 AB ⊥B 1C ,所以 B 1C ⊥平面 ABO . 由于 AO ⊂平面 ABO ,故 B 1C ⊥AO . 又 B 1O =CO ,故 AC =AB 1.(2)因为 AC ⊥AB 1,且 O 为 B 1C 的中点,所以 AO =CO .又因为 AB =BC ,所以△BOA ≌ △BOC .故 OA ⊥OB ,从而 OA ,OB ,OB 1 两两垂直.以 O 为坐标原点,OB 的方向为 x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系 O xyz .(3)因为∠CBB 1=60°,所以△CBB 1 为等边三角形,又 AB =BC ,则 A 0,0, 3 ,B (1,0,0),B (0, 3,0),C (0,- 3,0).→ AB 1= 0, 3 ,- 3)3 → 3 ,A 1B 1=AB =1,0,- , 3 3 3→ ( )设 n =(x ,y ,z )是平面 AA 1B 1 的法向量,则n ·AB 1=0,3 y - z =0,)→n ·A 1B 1=0,)即所以可取 n =(1,3, 3).x - z =0.{设m 是平面A1B1C1的法向量,→m·A1B1=0,则→m·B1C1=0,)同理可取m=(1,-3, 3).n·m 1则cos〈n,m〉==.|n||m| 71所以结合图形知二面角 A -A1B1 C1的余弦值为.76、【答案】(Ⅰ)证明:取PA 的中点F,连接EF,BF,因为E 是PD 的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥ AD,∴BCEF 是平行四边形,可得CE∥BF,BF⊂平面PAB,CF✪平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E 是PD 的中点.取AD 的中点O,M 在底面ABCD 上的射影N 在OC 上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM 与底面ABCD 所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2 ,BN= ,MN= ,作NQ⊥AB 于Q,连接MQ,所以∠MQN 就是二面角M﹣AB﹣D 的平面角,MQ== ,二面角M﹣AB﹣D 的余弦值为: = .7、【答案】(Ⅰ)证明:如图所示,取AC 的中点O,连接BO,OD.∵△ABC 是等边三角形,∴OB⊥AC.△ABD 与△CBD 中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD 是直角三角形,∴AC 是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2 .∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B 到平面ACE 的距离分别为h D,h E.则= .∵平面AEC 把四面体ABCD 分成体积相等的两部分,∴ = = =1.∴点E 是BD 的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE 的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE 的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C 的余弦值为.8、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD 为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD 为矩形,在△APD 中,由PA=PD,∠APD=90°,可得△PAD 为等腰直角三角形,设PA=AB=2a,则AD= .取AD 中点O,BC 中点E,连接PO、OE,以O 为坐标原点,分别以OA、OE、OP 所在直线为x、y、z 轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC 的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos<>= =.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.。
近三年高考全卷理科立体几何真题
设面BEC 法向量为m x , y , z .IT uur2am EB 0 即IT uura3m BC 0X 2ay i■—a z 022X i3, y 0, z1新课标卷近三年高考题1、(2016年全国I 高考)如图,在以A , B , C, D , E, F 为顶点的五面体中,面 ABEF 为正方形,AF=2FD, AFD 90°,且二面角 D - AF - E 与二面角 C - BE- F都是60° . (I) 证明:平面 ABEF 平面EFDC (II) 求二面角E - BG A 的余弦值. 【解析】 ⑴ •/ ABEF 为正方形 ••• AF EF •/ AFD 90 • AF DF •/ DF I EF=F• AF 面 EFDC•平面 ABEF 平面 EFDC⑵由⑴知 DFECEF 60•/ AB II EFAF 面 ABEFAB 平面EFDC EF 平面EFDC• AB II 平面 ABCDAB 平面ABCD•/面 ABCD I 面 EFDC CD•- AB II CD •- CD II EFJ•四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD aB 0 , 2a , 0A 2a , 2a , 0uur muiEB 0, 2a , 0 , BC2a,子uu u AB2a , 0 , 0m 3, o, i设面ABC法向量为n x2, y2, z2面角E BC A的余弦值为2空192、(2016年全国II高考)如图,菱形ABCD的对角线AC与BD交于点O ,5AB 5, AC 6,点E,F 分别在AD,CD 上, AE CF ,EF 交BD 于点H .将4 DEF 沿EF 折到D'EF 位置,OD .10 .(I)证明:D H 平面ABCD ;(U)求二面角B D A C的正弦值.• •• EF II AC .• EF BD,• EF DH ,• EF D H .•/ AC 6,• AO 3;又AB 5,AO OB,• OB 4,uuu —X22ax22ay2-2az22 X2 0, y2 3, Z2 4BC A的大小为4.厂.3 162.1919【解析】⑴证明:••• AE CFAE CF ADCD,•••四边形ABCD为菱形, • AC BD,nrnBC=°即AB 0设二面角Ecosur rm n54AE二OH OD 1 ,••• DH D H 3 ,AO2 2 2• |OD 2 |OH| |D'H| , • D'H OH .又T OH I EF H , • D'H 面ABCD .⑵建立如图坐标系H xyz .B 5 , 0 , 0 ,C 1 , 3 , 0 , D' 0 ,uuu uuurAB 4 , 3, 0 , AD'uuu,AC 设面ABD'法向量niu舟n1由iuuuiABUUUTAD0得4X0 x3y3y3zir同理可得面AD'C的法向量uun0, 1 …cosir inni n2up2届--sin -------------257 525 ,TX# BC f TN^\B C = 1.又TD .•眈,故平行且等于川Mj 四边形AS/XT 为平行四边形,于罡胚V 口「 因为AT^L 平面PAB f XfN x 平面PAB f 所以A&M 平面Mg.(ID 取的中点 E, ^AE ?由 AB = AC^AE-^C ?从 ^AE-AD, & AE 二上曲 _ BE ; = J AS :-(~y =庚.以川为坐标原点,川应的方向为x 轴正万冋,建立如團所示的空间直角坐标系A-xyz }由题知;2x 4z 0,即-5 ,可取 x y 2z 02n (0,2,1),| n AN |8、、5 于是 | cos n, AN ||n || AN |25尸(024〕「C 辰皿》(芈丄2),PW 三(027儿毂三*T ,益■(芈4■ 丄刁. (x, y, z )为平面PMN 的法向量,则n PMn PN3、(2016年全国III 高考)如图,四棱锥P ABC 中,PA 地面ABCD , AD P BC , ABAM试题解析;(I 〉由已知得型厶斗Q 二」収恥的中点匚连接川仁由“为巩?中点知4、【2015高考新课标2,理19】如图,长方体 ABCD AB I GU 中,AB=16, BC=10, AA , 8,点 E , F 分别在AB , C ,D , 上, A ,E D ,F 4 •过点E , F 的平面 与此长方体的面相交,交 线围成一个正方形.(I)在图中画出这个正方形(不必说出画法和理由); (U)求直线AF 与平面 所成角的正弦值.【答案】(I)详见解析;(U) 4 5 .15【解析】(I )宏线围成的正方彪EZTGF 如圈*(II)作垂足冷 4 则= 因为EZTGF 丸正方形】所以EH=EF = BC = 10・于是曲= =6,所乩也=10・以D 为坐标原鼠丙的方向沖工轴的正方向,建立如图所示的空间直角坐标系D —2 则皿阿 H(1CUO” EQCU 罔,— _ _ G 一盘=QF(0.4.£), F£ = (10.0.0),肛= (0—6一股.设是平面的法向矍,则二— 刀 I 小【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.座.所以直5平航所唤正弦值为爭【名师点睛】根据线面平行和面面平行的性质画平面与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相r uuu关点,先求出面的法向量,利用sin cos n,AF 求直线AF与平面所成角的正弦值.5、【2015高考新课标1,理18】如图,四边形ABCD为菱形,/ ABC=120°, E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF 丄平面ABCD,BE=2DF,AE丄EC.(I)证明:平面AEC丄平面AFC;【答案】(I)见解析⑴33【解析】试題分析I( I [连接03设珀二06连接EG FG詁在菱形中,不妨设匚41易证EG丄通过计胃可证亘G丄芒,申瞬线面垂直判定定理可知前丄平面丄y 由而面垂宜判宦定理知平而仝c丄平面2_^C ; (ID 取G 为坐标原虽,分别\iXGB.GC 的方向为工轴'「轴正方向,至 为单位民既 崔立空阊直角坐标系 g,利用向重法可求出异面直线总与 疔所成角的余弦值试題解析匚(I 〉连援设站IOG,连接三G, 56, 口 在觌萌中,不蛎设C-S=l,由厶L *O 匕冃 可得上G*=GC= .由呢丄平面尙0 .i3=3C 可知,出又••• AE 丄 EC ,: EG= 3 , EG 丄 AC ,厉在 Rt A EBG 中,可得 BE= 2,故 DF= .2在Rt A FDG 中,可得FG= 6 .2J 2o /2 在直角梯形BDFE 中,由BD=2, BE= 2 , DF= 可得EF= 3,22•'• EG 2 FG 2 EF 2,二 EG 丄 FG ,••• ACAFG=G , • EG 丄平面 AFC , ••• EG 面AEC ,:平面 AFC 丄平面AEC.……6分F(n)如图,以G 为坐标原点,分别以GB,GC 的方向为x 轴,y 轴正方向,|GB| 为单位长度,建立空间直角坐标系G-xyz ,由(I)可得A (0,—崩,0), E(1,0,J 2), F (— 1,0, 22 ), C (0, +3 , 0) , • AE = (1, P 3,、: 2 ) , CF = (-1 ,2-■73, —2) (10)分【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角6 [2014新课标全国卷U ]如图1-3,四棱锥P-ABCD中,底面ABCD为矩形,FA丄平面ABCD,E为PD的中点.(1) 证明:PB//平面AEC;(2) 设二面角D-AE-C为60°,AP= 1, AD = 3,求三棱锥E-ACD的体积.解:(1)证明:连接BD交AC于点0,连接EO.因为ABCD为矩形,所以O为BD的中点. 又E为PD的中点,所以EO / PB.因为EO?平面AEC,PB?平面AEC,所以PB//平面AEC.(2)因为PA丄平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB,AD,AP的方向为x轴、y轴、z轴的正方向,|AP|为单位长,建立空间直角坐标系A-xyz,则D(0,3, 0),E 0, 土,琏uuur uuuuu uuu AE?CF故cos AE,CF uuur ' uuu|AE||CF| 3所以直线AE与CF所成的角的余弦值为3 .12分设 B(m , 0, 0)(m>0),则 C(m , 3, 0), AC= (m , 3, 0).设n i = (x ,y,z)为平面ACE 的法向量,可取 ni = m ,— 1,.3.又n 2= (1, 0, 0)为平面DAE 的法向量,1由题设易知|cos 〈n i , n 2〉| = 2, 即卩1因为E 为PD 的中点,所以三棱锥E-ACD 的高为㊁•三棱锥E-ACD 的体积V7、[2014新课标全国卷I ]如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB 丄B 1C.(1) 证明:AC = AB 1;(2) 若 AC 丄 AB 1, / CBB 1 = 60°, AB = BC ,求二面角 A -A 1B 1 -C 1 的余弦值. 解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱 形,所以B 1C 丄BC 1,且O 为B 1C 及BC 1的中点.又AB 丄B 1C ,所以BQ 丄平面ABO.由于AO?平面ABO , 故 B 1C 丄AO.又 B 1O = CO , 故 AC = AB 1.(2)因为AC 丄AB 1,且O 为B 1C 的中点,所以 AO = CO.又因为 AB = BC ,所以△ BOA 也 △ BOC.故 OA 丄OB ,从而 OA , OB , OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB|为单位长,建立如图所示mx + 3y = 0, •心 0, mx + ,3y = 0,n i • AC = 0,n i • AE = 0,,图1-5的空间直角坐标系0- xyz.因为/ CBB iA 0, 0, f ,0), B i 0, f, 0 , Co ,BC ,则又AB i 3,0.B(1,3, 0,—3 ,J3A iB i = AB = 1, 0,—-3 ,BC i = BC = — 1,-f, 0 -z)是平面AA i B i 的法向量,则多-詐0, 即 X -亍=0-AB i = 0,设 n = (x , y ,n AB i = 0, n A ?B i = 0,所以可取 n = (1,〔3, •. 3).设m 是平面A i B i C i 的法向量, m A i B i = 0, 则 一m B I CI ^ 0,同理可取m = (1,— 3,3).m >所以结合图形知二面角A -A i B i1C i 的余弦值为7-。
全国卷历年高考立体几何真题归类分析(含答案)
全国卷历年高考立体几何真题归类分析(含答案)类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。
这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,或线上动点等问题,以增加难度。
该类问题的突破点是通过条件建立方程求解,对于向上动点问题这主意共线向量的应用。
1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值.EM DCBAP类型二:证建系(1)——条件中已经有线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明平面线线垂直定理)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23==,则棱锥AB BC-的体积为。
O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。
1.D2.833. 解:(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。
(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=u u u r u u u r即 3030x y y z -+=-=因此可取n=(3,1,3)设平面PBC 的法向量为m ,则m 0,m 0,{PB BC ⋅=⋅=u u u ru u u r可取m=(0,-1,3-) 27cos ,27m n ==- 故二面角A-PB-C 的余弦值为 27-1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A23 B 33 C 23D 632. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •u u u v u u u v的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)233 (B)433 (C) 23 (D) 8334. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .1. D2. D3. B4. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥. 又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,故,BK EDC BK DE DE ⊥⊥平面,与平面SBC 内的两条相交直线BK 、BC 都垂直 DE ⊥平面SBC ,DE ⊥EC,DE ⊥SB226SB SD DB =+=3SD DB DE SB ==g 22626-,-EB DB DE SE SB EB ==== 所以,SE=2EB (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则226,3AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-g g ,所以,二面角A DE C --的大小为120°. 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -, 设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2)(Ⅰ)(0,2,-2),(-1,1,0)SC BC ==u u u r u u u r设平面SBC 的法向量为n=(a, b, c)由,n SC n BC ⊥⊥u u u r u u u r ,得0,0n SC n BC ==u u u r u u u rg g故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1)又设SE EB λ=u u r u u u r(0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++u u u r u u u r设平面CDE 的法向量m=(x,y,z) 由,m DE m DC ⊥⊥,得0m DE ⊥=,0m DC ⊥= 故20,20111x y zy λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n,0,20,2m n λλ=-==g 故SE=2EB(Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =--u u u r ,故0FA DE =u u u r u u u rg ,由此得FA DE ⊥又242(,,)333EC =--u u u r ,故0EC DE =u u u r u u u r g ,由此得EC DE ⊥,向量FA u u u r 与EC uuur 的夹角等于二面角A DE C --的平面角于是 1cos(,)2||||FA EC FA EC FA EC ==-u u u r u u u ru u u r u u u r g u uu r u u u r 所以,二面角A DE C --的大小为120o(三)1. 已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A 3(B 5(C 7 (D) 342. 已知二面角l αβ--为60o,动点P 、Q 分别在面α、β内,P 3,Q 到α的距离为3则P 、Q 两点之间距离的最小值为( ) (A) (B)2 (C) 33. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=︒,则此球的表面积等于 。
4.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的余弦值。
(三)1. 解:设BC 的中点为D ,连结1A D ,AD ,易知1A AB θ=∠即为异面直线AB 与1CC 所成的角,由三角余弦定理,易知113co c s 4os cos AD AD A AD DAB A A AB θ=∠∠⋅=⋅=.故选D 2. 解:如图分别作,,,QA A AC l C PB B αβ⊥⊥⊥于于于PD l D ⊥于,连,60,CQ BD ACQ PBD ∠=∠=︒则 23,3AQ BP ==,2AC PD ∴==又2221223PQ AQ AP AP =+=+≥Q当且仅当0AP =,即A P 点与点重合时取最小值。
故答案选C 。
3. 解:在ABC ∆中2AB AC ==,120BAC ∠=︒,可得23BC =,由正弦定理,可得ABC ∆外接圆半径r=2 设此圆圆心为O ',球心为O ,在RT OBO '∆中,易得球半径5R =,故此球的表面积为2420R ππ=.解法一:(I )作ME ∥CD 交SD 于点E ,则ME ∥AB ,ME ⊥平面SAD 连接AE ,则四边形ABME 为直角梯形 作MF AB ⊥,垂足为F ,则AFME 为矩形 设ME x =,则SE x =,222(2)2AE ED AD x =+=-+2(2)2,2MF AE x FB x ==-+=-由2tan 60,(2)23(2)MF FB x x =•-+=-。
得 解得1x =即1ME =,从而12ME DC =所以M 为侧棱SC 的中点 (Ⅱ)222MB BC MC =+=,又60,2ABM AB ∠==o ,所以ABM ∆为等边三角形,又由(Ⅰ)知M 为SC 中点2,6,2SM SA AM ===,故222,90SA SM AM SMA =+∠=o取AM 中点G ,连结BG ,取SA 中点H ,连结GH ,则,BG AM GH AM ⊥⊥,由此知BGH ∠为二面角BCB C A 111ADS AM B --的平面角连接BH ,在BGH ∆中,22312223,,2BG AM GH SM BH AB AH =====+= 所以2226cos 2BG GH BH BGH BG GH +-∠==-••解法二:以D 为坐标原点,射线DA 为x 轴正半轴,建立如图所示的直角坐标系D-xyz 设(2,0,0)A ,则(2,2,0),(0,2,0),(0,0,2)B C S (Ⅰ)设(0)SM MC λλ=〉,则2222(0,,),(2,,)1111M MB λλλλλ-=++++ 又(0,2,0),,60AB MB AB =-o故||||cos 60MB AB MB AB •=•o即222422(2)()()111λλλ-=+++++ 解得1λ=,即SM MC = 所以M 为侧棱SC 的中点(II )由(0,1,1),(2,0,0)M A ,得AM 的中点211(,,)222G 又231(,,),(0,1,1),(2,1,1)222GB MS AM =-=-=- 0,0GB AM MS AM •=•=所以,GB AM MS AM ⊥⊥因此,GB MS 等于二面角S AM B --的平面角6cos ,3||||GB MS GB MS GB MS •==-•(四)1.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B.3CD .232.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 . 3.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45o,求二面角C AD E --的余弦值.CDE AB(四)1.B2.答案:16. 3.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD , 由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。