历年广东省中考真题实数计算练习题

合集下载

广东中考专题复习数值运算和化简求值17题18题

广东中考专题复习数值运算和化简求值17题18题

专题三 解答题突破——数与式类型一 实数的运算【例1】 计算:2-1-(2-8)+4sin 30°-( 2 016)0.误区警示 括号前面是“-”运算时,去括号后注意变号;任何不等于0的数的0次冪都等于1.类型二 整式的运算【例2】 先化简,再求值:(a +2b )(a -2b )-(a -b )2,其中a =3,b = 2.【例3】 设y =ax ,若代数式(x +y )(x -2y )+3y (x +y )化简的结果为x 2,请你求出满足条件的a 值.误区警示 本题容易出现(x +y )2=x 2,得出y =0,即ax =0,出现a =0这样的漏解.正确的做法是利用y =ax 的关系,用ax 代替y 代入原式中得到(1+a )2x 2=x 2,从而得到(1+a )2=1,解得a =-2或a =0,确保不会出现漏解.类型三 分式的运算【例4】 先化简,再求值:⎝⎛⎭⎪⎫a +1-4a -5a -1÷⎝⎛⎭⎫1a -1a 2-a ,其中a =2+ 3.【例5】 先化简,再求值:⎝⎛⎭⎫1-2x ÷x 2-4x +4x 2-4-x +4x +2,其中x 2+2x -15=0.类型一 实数的运算:1、 cos 60°-2-1+(-2)2-(π-3)0.2、(π-10)0-|2-1|+⎝⎛⎭⎫12-1+2sin 45°.3、(-2)3+16-2sin 30°+(2 016-π)0.4、⎝ ⎛⎭⎪⎪⎪⎫12-1+(sin 60°-1)0-2cos 30°+|3-1|.5、 -14+12sin 60°+⎝ ⎛⎭⎪⎪⎪⎫12-2-(π-5)0. 6、 3tan 30°+38+|-2|-(3-2).类型二 整式的运算2.先化简,再求值:4x ·x +(2x -1)(1-2x ).其中x =140.3.先化简,再求值:(x +y )(x -y )-x (x +y )+2xy ,其中x =(3-π)0,y =2.4.欢欢与乐乐两人共同计算(2x +a )(3x +b ),欢欢抄错为(2x -a )(3x +b ),得到的结果为6x 2-13x +6;乐乐抄错为(2x +a )(x +b ),得到的结果为2x 2-x -6.(1)式子中的a 、b 的值各是多少?(2)请计算出原题的正确答案.类型三 分式的运算1、先化简,再求值:⎝⎛⎭⎫1x -y +2x 2-xy ÷x +22x ,其中实数x 、y 满足y =x -2-4-2x +1.2.化简再求值:222844(1)442a a a a a a+--÷+++,其中a= 23.先化简,再求值:⎝⎛⎭⎫x x 2+x -1÷x 2-1x 2+2x +1,其中x 的值从不等式组⎩⎪⎨⎪⎧-x ≤1,2x -1<4的整数解中选取.4.先化简,再求代数式⎝ ⎛⎭⎪⎫2a +1-2a -3a 2-1÷1a +1的值,其中a =2sin 60°+tan 45°.5.先化简,再求值:2221(1)11a a a a a --÷---+,其中a 是方程x 2-x=6的根6、化简分式222()1121x x x x x x x x --÷---+,并从-1≤x≤1中选一个你认为合适的整数x 代入求值.。

2024年广东省中考数学真题卷含答案解析

2024年广东省中考数学真题卷含答案解析

机密★启用前2024年广东省初中学业水平考试数学满分120分 考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是( )A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D.538.410⨯4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是().A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a -=--_______.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233-⨯-+-.17. 如图,ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879在B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】的步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.的【23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.机密★启用前2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D. 538.410⨯【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =, ∴384000用科学记数法表示为53.8410⨯,故选:B .4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒【答案】C【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =【答案】D【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A. 14 B. 13 C. 12 D. 34【答案】A【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 20【答案】B【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴5=,故选:B .8. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>【答案】A【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.【答案】B【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x≤【解析】【分析】本题主要考查了求不等式组解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14. 计算:333a a a -=--_______.【答案】1【解析】的【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BF CF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCD BF h S S BC h ⋅=⋅菱形 ,即18224BF BC=,∴23BF BC =,∴2BF CF=,∴12212ABF CDF BF h S BF S CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+-.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+-111233⨯+-=11233=+-2=.17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,的GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m(2)66.7m【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到AQ =,接着解直角三角形得到BC =,进而求出AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴sin AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴tan CE BC CBE ==∠,∴AD =;∵180309060PAD =︒-︒-︒=︒∠,∴cos AP AD PAD =⋅=∠,∴ 6.1m PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CE BE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B 景区去游玩(2)王先生会选择A 景区去游玩(3)最合适的景区是B 景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.小问1详解】解:A 景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B 景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%815%640%615%6.9⨯+⨯+⨯+⨯=分,∵6.97.157.4<<,∴王先生会选择B 景区去游玩;【小问2详解】的【解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+的25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(23cm 【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180n ππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DF A DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F ,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O DO F DF DB DE BE ==,11O DDBDE O F =.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,216482563.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x=验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE=,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m , ∴将k y m =代入y ax =中得:k m ax =得,∴k x am=,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DHHEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =,∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴tan 30AP OP PD =︒⨯===,2AC BD AP ===,∴AB AD ===,OD BP PD =+=+, ∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-=,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。

实数的运算(含二次根式 三角函数特殊值的运算)【中考真题分析汇总】

实数的运算(含二次根式 三角函数特殊值的运算)【中考真题分析汇总】

一、选择题1. (2018四川绵阳,1,3分) 0)2018(-的值是 A.-2018 B.2018 C.0 D.1 【答案】D.【解析】解:0)2018(-=1.故选D.【知识点】零指数幂 2. 7.(2018山东烟台,7,3分)利用计算器求值时,小明将按键顺序为的显示结果记为a ,的显示结果记为b .则a ,b 的大小关系为( )A. a<b B .a>b C .a=b D .不能比较 【答案】B【解析】本题考查鲁教版课本中(大雁牌)计算器的使用方法,,,∴a>b ,故选B .【知识点】锐角三角函数;负整数指数幂;计算器的使用;1. (2018内蒙古呼和浩特,9,3分)下列运算及判断正确的是( ) A. 115()5155-⨯÷-⨯= B.方程 23(1)1x x x ++-=有四个整数解C.若3356710,a ⨯=310a b ÷= , 则6310567a b ⨯=D.有序数对2(1,)m m +在平面直角坐标系中对应的点一定在第一象限 【答案】:B【解析】:对于A:1115()55(5)525555-⨯÷-⨯=-⨯⨯-⨯=,所以A 不正确;对于C:∵3356710a ⨯=,∴3310567a =,∵310a b ÷=,∴3331056710aa b ⨯=⨯ ,所以C 不正确; 对于D: ∵220,11,0.m m m ≥∴+≥≥所以D C 不正确;【知识点】实数的运算,零指数幂,幂的运算,平面直角坐标系的象限点的特征-44411(sin 30)=()1612()2a -=︒==26123b ==2. (2018山东菏泽,1,3分)下列各数:-2,0,13,0.020020002…,π ) A .4 B .3 C .2 D .1 【答案】C【解析】,则-2,0,130.020020002…,π是无理数,故选C . 【知识点】无理数3. (2018山东省日照市,7,3分) 计算:(12)-1+tan 30°·sin 60°=( ) A .-32B .2C .52D .72【答案】C【解析】因为原式=2+12=52,故选C 。

中考数学考点《实数》专项练习题-附答案

中考数学考点《实数》专项练习题-附答案

中考数学考点《实数》专项练习题-附答案学校: 班级: 姓名: 考号:一、单选题1.对 √2 描述不正确的一项是( )A .面积为2的正方形的边长B .它是一个无限不循环小数C .它是2的一个平方根D .它的小数部分大于2- √2 2.下列各式比较大小正确的是( )A .-√2<-√3B .-√55>-√66C .-π<-3.14D .-√10>-3 3.在实数−23,0,√43,π,√9中,无理数有 ( )A .1个B .2个C .3个D .4个4.估算√5+√15的运算结果应在( )A .3到4之间B .4到5之间C .5到6之间D .6到7之间5.满足 −√2<x <√5 的整数x 是( )A .-1,0,1,2B .-2,-1,0,1C .-1,1,2,3D .0,1,2,36.若某自然数的立方根为a ,则它前面与其相邻的自然数的立方根是( )A .a −1B .√a −13C .√a 3−13D .a 3−17.如图,已知数轴上的点A ,B ,C ,D 分别表示数﹣2、1、2、3,则表示数的点P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上8.如图,将五个边长为1的小正方形组成的十字形纸板沿虚线剪开,把剪下的①放在②的位置,③放在④的位置,⑤放在⑥的位置,⑦放在⑧的位置,这样重新拼成一个大正方形,则大正方形的边长为( )A .2B .4C .5D .√5二、填空题9.一个正数x 的平方根分别是2a ﹣3与5﹣a ,则x 等于 .10.若n 为整数,且n<√93<n+1,则n 的值是 .11.-64的立方根是 , √16 的平方根是 .12.已知:x-2的平方根是±2, 2x +y +7 的立方根为3,则 x 2+y 2 的算术平方根为 .13.如图,正方形 OABC 的边 OC 落在数轴上,点 C 表示的数为 1 ,点 P 表示的数为 −1 ,以 P 点为圆心, PB 长为半径作圆弧与数轴交于点 D ,则点 D 表示的数为 .三、解答题14.在数轴上表示下列各数,并用“<”连接起来.-(-2),-|-3.5|,0, √14 和(-2)215. 计算:(1)√16−√−83+√−1273; (2)√9+√−1253+|√3−2|.16.已知实数a ,b ,满足 √3a−b+|a 2√a+7 =0,c 是 √35 的整数部分,求a+2b+3c 的平方根.17.将一个体积为 125cm 3 的立方体体积增加V ,而保持立方体的形状不变,则棱长应该增加多少?(用含有V 的代数式表示);若 V =875cm 3 ,则棱长应增加多少厘米?18.阅读下面的文字,解答问题:大家知道 √2 是无理数,而无理是无限不循环小数,因此 √2 的小数部分我们不可能全部写出来,于是小明用 √2 ﹣1来表示 √2 的小数部分,事实上,小明的表示方法是有道理的,因为 √2 的整数部分是1,将这个数减去其整数部分,差就是 √2 的小数部分,又例如:∵23<( √7 )2<32,即2< √7 <3,∴√7 的整数部分为2,小数部分为( √7 ﹣2). 请解答(1)√11 的整数部分是 ,小数部分是 .(2)如果 √5 的小数部分为a , √41 的整数部分为b ,求a+b ﹣ √5 的值.(3)已知x 是3+ √5 的整数部分,y 是其小数部分,直接写出x ﹣y 的值.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】D5.【答案】A6.【答案】C7.【答案】B8.【答案】D9.【答案】4910.【答案】211.【答案】-4;±212.【答案】1013.【答案】D14.【答案】解:描点如图所示:所以-|-3.5|< 3√−27 <0< √14<-(-2)><(-2)2.15.【答案】(1)解:原式=4−(−2)+(−13)=4+2−1 3=523;(2)解:原式=3−5+2−√3=−√3.16.【答案】解:∵实数a,b,满足√3a−b+|a2√a+7=0 ∴a2﹣49=0∴a=±7∵a+7>0∴a=7∵3a ﹣b=0∴b=21∵c 是 √35 的整数部分∴c=5∴a+2b+3c=7+2×21+3×5=64∴a+2b+3c 的平方根为±817.【答案】解:依题意得:棱长应该增加: √125+V 3−√1253=√125+V 3−5 (厘米) 当 V =875 时√125+V 3−5=√125+8753−5=10−5=5 (厘米). 18.【答案】(1)3;√11−3(2)解:∵√4<√5<√9∴2<√5<3∵√5 的小数部分为a∴a=√5−2;∵√36<√41<√49∴6<√41<7∵√41 的整数部分为b∴b=6;∴ a+b ﹣ √5 =√5−2+6−√5=4.(3)解: 7−√5。

初三实数运算练习题及答案

初三实数运算练习题及答案

初三实数运算练习题及答案以下是初三实数运算练习题及答案,每题都包含详细的解答过程,希望对你的学习有所帮助。

1. 计算以下两个实数的和,并化简结果:3.8 + (-2.4)解答过程:3.8 + (-2.4) = 1.42. 计算以下两个实数的差,并化简结果:7.5 - (-4.2)解答过程:7.5 - (-4.2) = 7.5 + 4.2 = 11.73. 计算以下两个实数的积,并化简结果:(-0.6) × (-5)解答过程:(-0.6) × (-5) = 34. 计算以下两个实数的商,并化简结果:15 ÷ (-3)解答过程:15 ÷ (-3) = -55. 计算以下两个实数的和,并将结果写成科学计数法的形式: 2.5 × 10^6 + 8.7 × 10^5解答过程:2.5 × 10^6 + 8.7 × 10^5 = 2.5 × 10^6 + 0.87 × 10^6 =3.37 × 10^6 6. 计算以下两个实数的差,并将结果写成科学计数法的形式: 6.3 × 10^7 - 2.5 × 10^6解答过程:6.3 × 10^7 - 2.5 × 10^6 = 6.3 × 10^7 - 0.25 × 10^7 = 6.05 × 10^77. 计算以下两个实数的积,并将结果写成科学计数法的形式: (3.2 × 10^4) × (2.5 × 10^3)解答过程:(3.2 × 10^4) × (2.5 × 10^3) = (3.2 × 2.5) × 10^(4+3) = 8 × 10^7 8. 计算以下两个实数的商,并将结果写成科学计数法的形式: (6 × 10^6) ÷ (3 × 10^2)解答过程:(6 × 10^6) ÷ (3 × 10^2) = (6 ÷ 3) × 10^(6-2) = 2 × 10^4通过以上题目的练习,你可以巩固实数运算的基础知识,并学会了如何将结果写成科学计数法的形式。

历年广东省中考真题实数练习题

历年广东省中考真题实数练习题

1.2006年广东省国税系统完成税收收入人民币3.45065×1011元,连续12年居全国首位,也就是收入了( )。

1A 、345.065亿元B 、3450.65亿元C 、34506.5亿元D 、345065亿元 2.在三个数0.5、35、31-中,最大的数是( )。

A 、0.5 B 、35 C 、31- D 、不能确定 3.4的算术平方根是A.-4 B.4 C.-2 D.2 4.下列运算正确的是A.532a a a =+ B.532a a a =⋅ C.532)(a a = D.10a ÷52a a = 5.2008年北京奥运会全球共选拔21880名火炬手,创历史记录.将这个数据精确到千位, 用科学记数法表示为A.31022⨯ B.5102.2⨯ C.4102.2⨯ D.51022.0⨯ 6.21-的值是 A .21- B .21 C .2-D .27.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递路线全长约40820米,用科学计数法表示火炬传递路程是A .2102.408⨯米B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 8.计算()23a 结果是( )A.6a B.9a C.5a D.8a 9.-3的相反数是( ) A .3B .31C .-3D .13-10.下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+1.-3的相反数是( ) A .3B .31C .-3D .31-12.下列式子运算正确的是( ) A .123=-B .248=C .331= D .4321321=-++13.﹣5的绝对值是( )A .5B .﹣5C .D .﹣15.2的相反数是( )A .21- B .21 C .2- D .216.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( )A .1210126.0⨯元 B .121026.1⨯元 C .111026.1⨯元 D .11106.12⨯元17.已知实数a 、b ,若b a >,则下列结论正确的是( )A .55-<-b aB .b a +<+22C .33ba < D .b a 33> 18.2-的绝对值是 A .12- B .21C .2-D .2 19.某外贸企业为参加2012年中国南通港口洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为A .10.5410⨯B .1.05⨯510C .1.05⨯610D .0.105610⨯20.关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <221.计算:2)21(45tan 45sin 4)73(10⨯+--- 计算:03)2008(830tan 33π---︒⋅+-计算 :01)2008(260cos π-++- . 计算-+-921sin30°+()03+π.计算()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-. 计算:﹣2sin45°﹣(1+)0+2﹣1.6tan 230°-3sin 60°-2sin 45°计算:01121)2sin 30()2--++︒-;22.已知不等式x +8>4x +m(m 是常数)的解集是x <3,求m 。

中考数学复习《实数的运算及大小比较》练习题真题含答案

中考数学复习《实数的运算及大小比较》练习题真题含答案

第一单元 数与式第三课时 实数的运算及大小比较基础达标训练)1. (2017河南)下列各数中比1大的数是( )A. 2B. 0C. -1D. -32. (2017咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )景区 潜山公园 陆水湖 隐水洞 三湖连江 气温-1℃0℃-2℃2℃A. 潜山公园B. 陆水湖C. 隐水洞D. 三湖连江3. (2017天津)计算(-3)+5的结果等于( ) A. 2 B. -2 C. 8 D. -84. (2017苏州)(-21)÷7的结果是( ) A. 3 B. -3 C. 13 D. -135. (2017河北)下列运算结果为正数的是( ) A. (-3)2 B. -3÷2 C. 0×(-2017) D. 2-36. (2017烟台)30×(12)-2+|-2|=________.7. (2017南充)计算:|1-5|+(π-3)0=________. 8. (6分)(2017安徽)计算:|-2|×cos60°-(13)-1. 9. (6分)(2017桂林)计算:(-2017)0-sin 30°+8+2-1. 10. (6分)计算:2sin30°+(π-3.14)0+|1-2|+(-1)2017.11. (6分)(2017随州)计算:(13)-2-(2017-π)0+(-3)2-|-2|., 能力提升训练)1. 在(-1)2017,(-3)0,9,(12)-2这四个数中,最大的数是( ) A. (-1)2017 B. (-3)0 C. 9 D. (12)-2第2题图2. (2017宁夏)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是( ) A. 第一天 B. 第二天 C. 第三天 D. 第四天3. 注重阅读理解(2017常德)下表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )30 4 23sin 60° 22 -3 -2 -2sin 45° 0 |-5| 623 (13)-1425(16)-1A. 5B. 6C. 7D. 84. (2017广东省卷)已知实数a ,b 在数轴上对应点的位置如图所示,则a +b ________0(填“>”,“<”或“=”).第4题图,拓展培优训练)1. (2017雅礼教育集团新苗杯)用“⊕”定义新运算,对于任意实数a,b,有a⊕b =2b-3a,例如4⊕1=2×1-3×4=-10,那么(-3)⊕2=________.第2题图2. (2017江西)中国人最先使用负数,魏晋时期的数学家刘微在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘微的这种表示法,观察图①,可推算图②中所得的数值为________.实数混合运算巩固集训1. (6分)计算:(-1)2018+4cos45°+|-2|-8.2. (6分)(2017永州改编)计算:|-3|+2cos45°+(π-3.14)0-9.3. (6分)(2017北京改编)计算:4cos30°+(12)-1-12+|-2|.4. (6分)(2017金华改编)计算:2cos60°+(-1)2017+|-3|-9.5. (6分)(2017长沙中考模拟卷四)计算:(12)-2-(2016-π)0-2sin 45°+|2-1|.6. (6分)(2017兰州改编)计算:16+(-12)-2-|-2|-2cos60°.7. (6分)(2017岳阳)计算:2sin60°+|3-3|+(π-2)0-(12)-1.8. (6分)计算:|3-1|+(2017-π)0-(14)-1-3tan 30°+38.答案1. A2. C3. A4. B5. A6. 67. 58. 解:原式=2×12-3=-2.9. 解:原式=1-12+22+12=1+2 2.10. 解:原式=2×12+1+2-1-1= 2.11. 解:原式=9-1+3-2 =9.能力提升训练 1. D 2. B3. C 【解析】设所求的数为x ,按条件分别取含有所求数的四个数及不含所求数的四个数,根据和为定值,列方程:30+(-2)+x +(16)-1=22-3+6+25,解得x =7.4. > 【解析】由题图可得-1<a <0,1<b <2,∴a +b >0. 拓展培优训练 1. 13 2. -3实数混合运算巩固集训1. 解:原式=1+4×22+2-2 2=3.2. 解:原式=3+2×22+1-3 =3+1+1-3 =2.3. 解:原式=4×32+2-23+2 =23+2-23+2 =4.4. 解:原式=2×12-1+3-3=0.5. 解:原式=4-1-2×22+2-1 =4-1-2+2-1 =2.6. 解:原式=4+4-2-2×12=5.7. 解:原式=2×32+3-3+1-2 =2.8. 解:原式=3-1+1-4-3×33+2 =-2.。

广东中考数学试题分类(精编含解析)汇编专题1 实数

广东中考数学试题分类(精编含解析)汇编专题1 实数

广东中考数学试题分类解析汇编专题1:实数一、选择题1. (广东省3分)﹣5的绝对值是【】A. 5 B.﹣5 C.D.﹣2. (广东省3分)地球半径约为6400000米,用科学记数法表示为【】 A.0.64×107 B.6.4×106 C. 64×105 D.640×1043. (广东佛山3分)12-的绝对值是【】A.2 B.2-C.12D.12-4. (广东佛山3分)与2÷3÷4运算结果相同的是【】A.4÷2÷3B.2÷(3×4)C.2÷(4÷2)D.3÷2÷45. (广东广州3分)实数3的倒数是【】A.﹣B.C.﹣3 D.36. (广东广州3分)已知a1-,则a+b=【】A.﹣8 B.﹣6 C.6 D.87. (广东梅州3分)12⎛⎫--⎪⎝⎭=【】A.﹣2 B.2 C.1 D.﹣18. (广东深圳3分)-3的倒数是【 】 A .3 B .-3 C. 13 D 。

13-9.(广东深圳3分)第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高.将数143 300 000 000用科学记数法表示为【 】 A ,101.43310⨯ B 。

111.43310⨯ C 。

121.43310⨯ D 。

120.143310⨯10. (广东湛江4分)2的倒数是【 】 A .2 B .﹣2 C . D .﹣11. (广东湛江4分)国家发改委已于年5月24日核准广东湛江钢铁基地项目,项目由宝钢湛江钢铁有限公司投资建设,预计投产后年产10200000吨钢铁,数据10200000用科学记数法表示为【 】A .102×105B .10.2×106C .1.02×106D .1.02×107 12. (广东肇庆3分)计算 23+- 的结果是【 】A .1B .1-C . 5D . 5- 13. (广东肇庆3分)用科学记数法表示5700000,正确的是【 】A .6107.5⨯B .51057⨯C .410570⨯D .71057.0⨯14. (广东珠海3分)2的倒数是【 】 A .2 B .﹣2 C . D .﹣二、填空题1. (广东省4分)若x ,y 为实数,且满足x 3-,则2012x y ⎛⎫⎪⎝⎭的值是 .2. (广东梅州3分)m 是 .3. (广东梅州3分)梅州水资源丰富,水力资源的理论发电量为775000千瓦,这个数据用科学记数法可表示为 千瓦.4. (广东湛江4分) x 的取值范围是 .5. (广东肇庆3分)计算5120⋅的结果是 .6. (广东珠海4分)x 的取值范围是 .三、解答题1. (广东省6分)(012sin45+2--.2. (广东省7分)观察下列等式:第1个等式:1111133a 12==⨯-⨯(); 第2个等式:21113521a 35=⨯-⨯=(); 第3个等式:31115721a 57=⨯-⨯=(); 第4个等式:41117921a 79=⨯-⨯=(); …请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)用含有n 的代数式表示第n 个等式:a n = = (n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.3. (广东梅州7分)计算:11+3-⎛⎫⎪⎝⎭.4. (广东汕头7分)(012sin45+2--.5. (广东深圳7分))-114+-452⎛⎫ ⎪⎝⎭计算;6. (广东湛江7分)()0-3-2014计算;7. (广东肇庆7分)-145+4计算;8. (广东珠海6分)()111+20122π-⎛⎫--- ⎪⎝⎭.选择: 1.【答案】A 。

中考复习 实数的计算(含答案)

中考复习   实数的计算(含答案)

实数的计算一.解答题(共30小题)1.计算:+(2﹣π)0﹣|1﹣|2.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.3.计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.4.计算:+()﹣3+20160.5.计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.6.计算:cos60°﹣2﹣1+﹣(π﹣3)0.7.化简求值:(),其中a=2+.8.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.9.计算:|﹣3|﹣+()0.10.计算:﹣|﹣5|+()﹣1.11.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.12.计算:.13.计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.14.计算:(﹣1)2016﹣+(cos60°)﹣1+(﹣)0+ 83×(﹣0.125)3.15.(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.16.计算:()﹣2﹣(2016﹣π)0﹣2sin45°+|﹣1|17.计算:()﹣1﹣6cos30°﹣()0+.18.计算:.19.计算:.20.计算:()0+(﹣1)2016﹣|﹣|+2sin60°.21.计算:20160+2|1﹣sin30°|﹣()﹣1+.22.计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.23.计算:()﹣1﹣+2tan60°﹣(2﹣)0.24.计算:﹣14+sin60°+()﹣2﹣()0.25.计算:.26.计算:20160+﹣sin45°﹣3﹣1.27.计算:||+()0+2sin45°﹣2cos30°+()﹣1.28.计算:+(3﹣π)0﹣2sin60°+(﹣1)2016+||.29.计算:.30.计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.实数的计算答案参考答案与试题解析一.解答题(共30小题)1.(2017•新城区校级模拟)计算:+(2﹣π)0﹣|1﹣|【分析】本题涉及零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+(2﹣π)0﹣|1﹣|=+1+1﹣3=+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式、绝对值等考点的运算.2.(2017•罗平县一模)|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.(2017•曲靖一模)计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.【分析】先计算|﹣2|、(﹣1)2017、(π﹣3)0、()﹣2的值,再计算最后的结果.【解答】解:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2=2+(﹣1)×1﹣2+4=2﹣1﹣2+4=5﹣2.【点评】本题考查了0指数幂、负整数指数幂及实数的运算.实数的运算顺序是先乘方,再乘除最后加减.4.(2017秋•海宁市校级月考)计算:+()﹣3+20160.【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=3+8+1﹣=9+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.(2016•达州)计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.【分析】原式利用二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣1+3﹣4×=2.【点评】此题考查了平方根,绝对值,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.6.(2016•安顺)计算:cos60°﹣2﹣1+﹣(π﹣3)0.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用二次根式性质化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣+2﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.(2016•黄石)计算:(﹣1)2016+2sin60°﹣|﹣|+π0.【分析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式(﹣1)2016+2sin60°﹣|﹣|+π0的值是多少即可.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.9.(2016•莆田)计算:|﹣3|﹣+()0.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解:原式=3﹣﹣4+1=﹣.【点评】本题考查了绝对值的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.注意零指数幂的意义.10.(2016•天门)计算:﹣|﹣5|+()﹣1.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=9﹣1﹣5+2=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2016•绵阳)计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.【分析】本题涉及零指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解::(π﹣3.14)0﹣|sin60°﹣4|+()﹣1=1﹣|2×﹣4|+2=1﹣|﹣1|+2=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.12.(2016•毕节市)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.13.(2016•随州)计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.【分析】本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1+2×﹣4+1=﹣1+3﹣4+1=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.14.(2016•铜仁市)计算:(﹣1)2016﹣+(cos60°)﹣1+(﹣)0+83×(﹣0.125)3.【分析】根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可.【解答】解:原式=1﹣3+2+1﹣1=0.【点评】本题考查的是实数的运算,掌握有理数的乘方法则、零次幂的性质、特殊角的三角函数值是解题的关键.15.(2016•朝阳)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【分析】根据零指数幂和负整数指数幂的运算法则、特殊角的锐角三角函数值计算即可.【解答】解:运算=1+2×﹣4+1=1+1﹣4+1=﹣1.【点评】本题考查的是实数的运算,掌握零指数幂和负整数指数幂的运算法则、熟记特殊角的锐角三角函数值是解题的关键.16.(2016•通辽)计算:()﹣2﹣(2016﹣π)0﹣2sin45°+|﹣1|【分析】根据零指数幂的性质、负整数指数幂的性质和特殊角的三角函数值计算即可.【解答】解:原式=4﹣1﹣2×+﹣1=4﹣1﹣+﹣1=2.【点评】本题考查的是实数的运算,掌握零指数幂的性质、负整数指数幂的性质和特殊角的三角函数值是解题的关键.17.(2016•德阳)计算:()﹣1﹣6cos30°﹣()0+.【分析】根据锐角三角函数,负整数和零指数幂的法则,二次根式的性质即可求出答案.【解答】解:=2﹣6×﹣1+3=2﹣3﹣1+3=1,【点评】本题考查实数运算,涉及锐角三角函数,二次根式的性质,属于基础题型.18.(2016•眉山)计算:.【分析】分别利用零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质分别化简求出答案.【解答】解:原式=1﹣3×+1﹣2=1﹣+1﹣2=﹣.【点评】此题主要考查了零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质等知识,正确化简各数是解题关键.19.(2016•张家界)计算:.【分析】首先计算绝对值、零次幂、负整数指数幂、特殊角的三角函数值,然后再计算乘法,最后计算加减即可.【解答】解:原式=+1+2﹣2×,=+3﹣,=3.【点评】此题主要考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(2016•郴州)计算:()0+(﹣1)2016﹣|﹣|+2sin60°.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式()0+(﹣1)2016﹣|﹣|+2sin60°的值是多少即可.【解答】解:()0+(﹣1)2016﹣|﹣|+2sin60°=1+1﹣+2×=2﹣+=2.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.21.(2016•怀化)计算:20160+2|1﹣sin30°|﹣()﹣1+.【分析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式20160+2|1﹣sin30°|﹣()﹣1+的值是多少即可.【解答】解:20160+2|1﹣sin30°|﹣()﹣1+=1+2×|1﹣|﹣3+4=1+2×+1=1+1+1=3.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.22.(2016•娄底)计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.【分析】直接利用特殊角的三角函数值以及绝对值、零指数幂的性质分析得出答案.【解答】解:(π﹣)0+|﹣1|+()﹣1﹣2sin45°=1+﹣1+2﹣=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.24.(2016•常德)计算:﹣14+sin60°+()﹣2﹣()0.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=5【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.25.(2016•凉山州)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1=1.【点评】此题主要考查了绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质,正确化简各数是解题关键.26.(2016•乐山)计算:20160+﹣sin45°﹣3﹣1.【分析】原式利用零指数幂、负整数指数幂法则,分母有理化,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+﹣﹣=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2016•鄂州)计算:||+()0+2sin45°﹣2cos30°+()﹣1.【分析】直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质、特殊角的三角函数值分别化简求出答案.【解答】解:||+()0+2sin45°﹣2cos30°+()﹣1=﹣+1+2×﹣2×+2015=﹣+1+﹣+2015=2016.【点评】此题主要考查了实数运算,根据相关运算法则正确化简是解题关键.28.(2016•龙岩)计算:+(3﹣π)0﹣2sin60°+(﹣1)2016+||.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.29.(2016•荆州)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.【解答】解:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.30.(2016•赤峰)计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣)﹣1+3tan30°﹣+(﹣1)2016的值是多少即可.【解答】解:(﹣)﹣1+3tan30°﹣+(﹣1)2016=﹣3+3×﹣3+1=﹣3+﹣3+1=﹣2﹣2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.第11页(共11页)。

专题03:实数-2021年广东地区中考数学真题与模拟试题精选汇编(解析版)

专题03:实数-2021年广东地区中考数学真题与模拟试题精选汇编(解析版)

专题03:实数-2021年广东地区中考数学真题与模拟试题精选汇编一、单选题1.(2021·广东中考真题)下列四个选项中,为负整数的是( )A .0B .0.5-C .D .2-【答案】D【解析】根据整数的概念可以解答本题.【解答】解:A 、0既不是正数,也不是负数,故选项A 不符合题意; B 、−0.5是负分数,故选项B 不符合题意;C 、不是负整数,故选项C 不符合题意;D 、-2是负整数,符合题意. 故选:D .【点评】本题主要考查了大于0的整数是正整数,小于0的整数是负整数,本题熟记负整数的概念是解题的关键.2.(2021·广东中考真题)下列实数中,最大的数是( )A .π BC .2-D .3【答案】A【解析】直接根据实数的大小比较法则比较数的大小即可.【解答】解: 3.14π≈, 1.414≈,22-=,23π<-<<, 故选:A .【点评】本题考查了实数的大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.3.(2021·广东肇庆市·九年级二模)定义一个新运算,若1i i =,21i =-,3i i =-,41i =,5i i =,61i =-,7i i =-,81i =,…,则2021i 是( )A .i -B .iC .1-D .1【答案】B【解析】观察题目得到每4个数据一循环,再根据2021÷4=505……1得到答案.【解答】解:∵1i i =,21i =-,3i i =-,41i =,5i i =,61i =-,7i i =-,81i =,…, ∴每4个数据一循环, ∵2021÷4=505……1,∴i 2021=1i i =. 故选:B .【点评】此题主要考查了实数运算,正确得出变化规律是解题关键. 4.(2021·广东梅州市·九年级二模)下列实数是无理数的是( ) A .2021- B .πC .3.14159D .12021【答案】B【解析】根据无理数的概念判断即可. 【解答】12021,3.14159,2021-是有理数,π是无理数, 故选:B .【点评】本题主要考查无理数,掌握无理数的概念是关键.5.(2021·广东广州市·九年级二模)实数0,1-,4,π中,无理数是( ). A .4 B .πC .0D .1-【答案】B【解析】根据无理数的定义,逐一判定各个选项,是解题的关键. 【解答】解:实数0,1-,4,π中,π是无理数, 故选B .【点评】本题主要考查无理数的定义,掌握“无限不循环小数,是无理数”是解题的关键.6.(2021·广东中考真题)若0a -+=,则ab =( )A B .92C .D .9【答案】B【解析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【解答】∵0a -≥0≥,且0a -+=∴0a =0==即0a -=,且320a b -=∴a =b =∴922ab == 故选:B .【点评】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.7.(2021·贵州黔东南苗族侗族自治州·中考真题)实数2021的相反数是( ) A .2021 B .2021-C .12021D .12021-【答案】B【解析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案. 【解答】解:2021的相反数是:2021-. 故选:B .【点评】本题主要考查相反数的定义,正确掌握其概念是解题关键.8.(2021·广东汕头市·九年级一模)如图,数轴上两点A ,B 所对应的实数分别为a ,b ,则a b +的结果可能是( )A .-1B .0C .1D .2【答案】C【解析】根据a ,b 的范围求出a +b 的范围即可. 【解答】解:由数轴知:−1<a <0,1<b <2. ∴0<a +b <2. ∴a +b 的值可能为1. 故选:C .【点评】本题考查数轴上的点与实数的对应关系,根据不等式性质求出a +b 的范围是求解本题的关键. 9.(2021·广东广州市·九年级一模)已知2a +1和5是正数b 的两个平方根,则a +b 的值是( ) A .25 B .30C .20D .22【答案】D【解析】根据正数的两个平方根互为相反数建立方程可求出a 的值,根据平方根的定义可得25b =,再代入计算即可得.【解答】解:由题意得:2150a ++=, 解得3a =-,5是正数b 的平方根, 2525b ∴==,32522a b ∴+=-+=,故选:D .【点评】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键.10.(2021·广东中考真题)设6-的整数部分为a ,小数部分为b ,则(2a b 的值是( )A .6B .C .12D .【答案】Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【解答】∵34<<,∴263<-<,∴6的整数部分2a =,∴小数部分624b =-=∴(((22244416106a b =⨯-=+=-=.故选:A .【点评】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.二、填空题11.(2021·广州市第十六中学九年级二模)101tan 6032-⎛⎫-+= ⎪⎝⎭°______.1【解析】根据特殊角的三角函数值,负整数指数幂,零指数幂计算即可.【解答】解:原式21=+1=,1-.【点评】本题考查了特殊角的三角函数值,负整数指数幂,零指数幂,考核学生的计算能力,注意031=.12.(2021·广东阳江市·20y +=,则()2021x y +=______.【答案】-1【解析】利用非负数的性质求出x 、y 的值,再将x 、y 的值代入()2021x y +求值即可.【解答】20y +=, ∴10x -=,20y +=.∴1x =,2y =-. ∴()()20212021121x y +=-=-.故答案为-1.【点评】本题考查算术平方根和绝对值的非负性以及代数式求值.掌握算数平方根和绝对值的性质是解答本题的关键.13.(2021·广东广州市·2﹣2﹣﹣3|+20200=__. 【答案】12-【解析】分别根据开平方、负整数指数幂、特殊角的三角函数值、零指数幂运算各项,再进行运算即可.【解答】解:原式123|14=⨯--+1212=-+ 12=-.故答案为:12-. 【点评】本题考查开平方、负整数指数幂、特殊角的三角函数值、零指数幂等内容,掌握运算法则是解题的关键.14.(2021·广东梅州市·九年级二模)计算:113-⎛⎫= ⎪⎝⎭______. 【答案】2-【解析】根据负整数指数幂、算术平方根的性质计算即可.【解答】解:113523-⎛⎫= ⎪⎝⎭-=-, 故答案为:2-.【点评】本题考查了负整数指数幂、算术平方根,掌握运算法则是解题的关键.15.(2021·广东佛山市·九年级一模)2120212-⎛⎫+-= ⎪⎝⎭______. 【答案】2【解析】利用零指数幂、负分数指数幂法则以及二次根式的化简进行计算即可的得到结果. 【解答】原式=1+4-3=2 故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题的关键.16.(2021·广东佛山市·()210a b c +++=,则b c +的值为__________. 【答案】-2【解析】先根据非负数的性质得a 、b 、c 的值,再代入计算可得答案. 【解答】解:()210a b c +++=,∴10010a a b c -=⎧⎪+=⎨⎪+=⎩,解得:a =1,b =-1,c =-1, ∴b +c =-1+(-1)=-2. 故答案为:-2.【点评】本题主要考查了非负数的性质,掌握绝对值、平方和二次根式的非负性是解决此类问题的关键. 17.(2021·广东深圳市·九年级二模)定义:x *y =x -my ,如2*3=2-3m ,已知1*2≤5,则m 的取值范围是____________ 【答案】m ≥-2【解析】根据新定义1*2=1-2m ,再列出不等式,解不等式即可. 【解答】解:∵1*2=1-2m ,1*2≤5, ∴1-2m ≤5,解得m ≥-2. 故答案为:m ≥-2.【点评】本题考查新定义运算问题,仔细阅读题干,掌握运算法则,根据运算法则把1*2转化为1-2m ,然后列不等式是解题关键.18.(2021·广东佛山市·九年级二模)定义新运算“*a b ”:对于任意实数a 、b ,都有()()*1a b a b a b =+--,例()()4*343431716=+--=-=.若*24x x =,则x 的值为___________. 【答案】5或-1【解析】根据新运算的定义列出方程,然后解方程求得x 的值即可. 【解答】解:由题意得:(x +2)(x -2)-1=4x , 整理得:x 2-4x -5=0,解得:x 1=-1,x 2=5. 故答案为:5或-1.【点评】本题考查了平方差公式和解一元二次方程,解题的关键是根据新定义运算法则得到关于x 的方程. 19.(2021·广东深圳市·九年级二模)公元3世纪,2ra a≈+得到无理数的近似值,其中r 取正整数,且a131212≈+=⨯≈_____________.【答案】103. 【解析】由题意得到a 和r 的值,再利用所给的公式可得解答.【解答】解:∵2ra a≈+ ∴a =3,r=2,21103+=3+=2333≈⨯. 故答案为103. 【点评】本题考查无理数的估值计算方法,对阅读资料的归纳和应用以及正整数的平方与非平方正整数的和,找出无理数的最大整数平方是解题关键.20.(2021·广东九年级二模)已知 ∣3y -5∣=0,则y x =_______【答案】925【解析】根据二次根式与绝对值的非负性解答. 【解答】解:由题意可得: x+2=0,3y-5=0, ∴x=-2,y=53, ∴225393525x y -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,故答案为925. 【点评】本题考查二次根式与绝对值的应用,熟练掌握二次根式与绝对值的非负性、负整数指数幂的运算法则是解题关键.三、解答题21.(2021·深圳市高级中学九年级二模)计算:2012cos60(3)12π-⎛⎫︒--+-+ ⎪⎝⎭.【答案】3【解析】直接利用二次根式的性质结合绝对值的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式121412=⨯-+1141=-+3=+【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(2021·广东深圳市·深圳中学九年级月考)(1)212tan 60π2-⎛⎫-︒-+- ⎪⎝⎭;(2)先化简,再求值:352242x x x x -⎛⎫÷-- ⎪--⎝⎭,其中3x =.【答案】(1)5;(2)126x +;6.【解析】(1)先化简二次根式、代入三角函数值、计算零指数幂和负整数指数幂,再进一步计算即可; (2)先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算即可. 【解答】解:(1)原式1|2142=⨯-+23=+5=;(2)原式23542(2)22x x x x x ⎛⎫--=÷- ⎪---⎝⎭2392(2)2x x x x --=÷-- 322(2)(3)(3)x x x x x --=⋅-+-12(3)x =+126x =+,当3x =时,原式== 【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及实数的运算.23.(2021·广东深圳市·九年级二模)计算:14011(3)2π-⎛⎫-+︒-+- ⎪⎝⎭.【答案】1【解析】分别化简各项,再算乘法,最后计算加减法.【解答】解:14011(3)2π-⎛⎫-+︒-+-⎪⎝⎭=211-++=1132-+-+=1【点评】本题考查了实数的混合运算,解题的关键是掌握运算法则和运算顺序.24.(2021·广东深圳市·九年级二模)计算:﹣3×(13)﹣1+|5|+20210+4sin60°.【答案】-3【解析】依据实数运算法则进行运算即可.【解答】解:原式=﹣3×3+5﹣+1+4×2=﹣9+5﹣=﹣3.【点评】本题主要考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,熟练运用实数的运算法则是解题的关键.25.(2021·广东汕头市·1134cos453-⎛⎫---︒⎪⎝⎭.【解析】先算二次根式,负整数指数幂,绝对值,特殊角三角函数,再算加减法,即可求解.【解答】解:原式=3342--⨯=.【点评】本题主要考查实数的混合运算,熟练掌握二次根式的性质,负整数指数幂,绝对值,特殊角三角函数,是解题的关键.26.(2021·广东广州市·九年级一模)计算:112cos45|2-⎛⎫-︒+⎪⎝⎭.【答案】2【解析】根据负整数指数幂的性质、45°角的余弦值、绝对值的性质分别计算后,再合并即可得到答案.【解答】原式222=-⨯+,2=.【点评】本题考查的是实数的混合运算,考查了负整数指数幂,绝对值,45°角的余弦的计算,掌握以上运算是解题的关键.27.(2021·广东广州市·九年级一模)已知22244a a a T a a a --⎛⎫=÷- ⎪⎝⎭. (1)化简T ;(24=,求T 的值. 【答案】(1)12a -;(2)18-. 【解析】(1)先计算括号内的分式减法,再计算分式的除法即可得;(2)先利用算术平方根的性质求出a 的值,再根据分式有意义的条件选定a 的值,代入计算即可得.【解答】(1)22244a a a T a a a --⎛⎫=÷- ⎪⎝⎭, 22(2)44a a a a a aa ⎛⎫--=÷- ⎪⎝⎭, 2244a a a a a--+=÷, 22(2)a a a a --=÷, 22(2)a a a a -=⋅-, 12a =-;(2)244a a +=4=,24a ∴+=,解得2a =或6a =-,由分式的分母不能为0得:0,20a a ≠-≠,即0,2a a ≠≠, 则将6a =-代入得:1112628T a ===----, 故T 的值为18-.28.(2021·广东佛山市·九年级月考)计算:212cos3012-⎛⎫︒-++ ⎪⎝⎭【答案】7【解析】原式利用特殊角的三角函数值,负整数指数幂法则,立方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:原式2421=--+421=-+7=-.29.(2021·广东佛山市·()﹣|+(12)﹣3﹣(π﹣3.14)0. 【答案】7﹣【解析】首先计算二次根式的乘法、零指数幂、负整数指数幂和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(301()(π 3.14)2--+--81=--7=-【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.30.(2021·广东深圳市·九年级二模)计算:()1012cos30120212-⎛⎫--︒++- ⎪⎝⎭π 【答案】-2【解析】分别计算负整数指数幂,锐角三角函数,绝对值,零次幂,再合并同类二次根式即可.【解答】解:()1012cos30120212-⎛⎫--︒++- ⎪⎝⎭π,=2211--+, 2=-.。

专题01 实数及其运算-备战2022年中考数学母题题源解密(广东专用)(原卷版)

专题01 实数及其运算-备战2022年中考数学母题题源解密(广东专用)(原卷版)

专题01 实数及其运算考向1 实数的有关概念【母题来源】2021年中考广东广州卷【母题题文1】(2021·广东广州·)A .0B .0.5-C .D .2-【母题来源】2021年中考广东卷【母题题文2】(2021·广东·中考真题)下列实数中,最大的数是( )A .pB C .2-D .3【母题来源】2021年中考广东卷【母题题文3】(2021·广东·中考真题)据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为( )A .90.51085810´B .751.085810´C .45.1085810´D .85.1085810´一、有理数相关概念1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。

在正数前加上符号“-”(负)的数叫做负数。

0既不是正数,也不是负数。

非负数:包括正数和0,通常表示为:大于等于0的数非正数:包括负数和0,通常表示为:小于等于0的数(2)有理数正整数、0、负整数统称整数。

正分数、负分数统称分数。

整数和分数统称为有理数。

2、数轴规定了原点、正方向和单位长度的直线叫做数轴。

数轴:3、相反数代数定义:只有符号不同的两个数叫做互为相反数。

几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。

一般地,a 和-a 互为相反数。

0的相反数是0。

a =-a 所表示的意义是:一个数和它的相反数相等。

很显然,a =0。

4、绝对值定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即:如果a >0,那么|a |=a ; 如果a =0,那么|a |=0; 如果a <0,那么|a |=-a 。

广东省中考数学6分题专练(实数计算、化简求值、作图题)(PDF版无答案)

广东省中考数学6分题专练(实数计算、化简求值、作图题)(PDF版无答案)

6分专题训练一、实数计算1.计算:﹣24﹣+|1﹣4sin60°|+(2019π)0.2.计算:(﹣1)2019﹣()﹣1+4×()0+3.计算:4cos30°﹣+20190+|1﹣|4.计算:()﹣2﹣+(﹣4)0﹣cos45°.5.计算:(3.14﹣π)0+|1﹣|+(﹣)﹣1﹣2sin60°.6.计算:|﹣1+|﹣﹣(5﹣π)0+4cos45°.7.计算:(1﹣π)0﹣|3﹣2|++4cos30°.8.计算:()﹣2﹣(π﹣)0+|﹣2|+6tan30°.9.计算:(﹣1)2018+2sin60°﹣|﹣|﹣(π﹣2018)010.计算:(﹣)﹣2+2sin60°﹣|﹣|+(π﹣2019)0 11.计算:﹣12018﹣+2sin30°12.计算:20180+()﹣1﹣2sin60°﹣|﹣2|13.计算:(3﹣π)0﹣8sin45°+()﹣114.计算:4sin60°﹣|3﹣|+()﹣1﹣(2019﹣π)015.计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|16.计算:(+1)0+(﹣1)2018+sin45°﹣()﹣217.计算:|﹣1|+4sin30°﹣()﹣1﹣(3﹣π)0.18.计算:19.计算:﹣32+4sin60°﹣|1﹣|+(π﹣2019)0+()﹣2.20.计算:(﹣)﹣3+2cos30°+|﹣3|+(π﹣2019)0二、化简求值1.先化简,再求值:(1﹣),其中a=.2.化简求值:÷(﹣m+1),其中m=.3.先化简,再求值:,其中a=+14.先化简,再求值:()÷,其中x=.5.先化简再求值:÷(x+),其中x=+3.6.先化简,后求值:•﹣,其中a=3+.7.先化简,再求值:,其中.8.先化简,再求值:,其中x=+1.9.先化简,再求值:(1﹣)÷,其中a=+110.先化简,再求值:(x+)÷,其中x=.11.先化简,再求值:÷(﹣2x),其中x=+112.化简并求值:(1﹣)÷,其中x=﹣1.13.先化简,再求值:÷,其中x=.14.先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.15.先化简,再求值:,其中x=+1.16.先化简,再求值:(x﹣2﹣)÷,其中x=﹣3.17.先化简,再求值:+,其中x=﹣1.18.先化简,再求值:1﹣,其中x=.19.先化简,再求值:•+,其中x=.20.先化简,再求值:(+m﹣2)÷,其中m=+1.三、作图题1、如图,在△ABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法和证明),并求AD的长.2、如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出△DEF关于直线l对称的三角形;(3)求经过(1)(2)操作后形成的四边形的面积.3、如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.4、如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:(1)在图1中作出圆心O;(2)在图2中过点B作BF∥AC.5、如图,△ABC中,AC=8,BC=10,AC>AB.(1)用尺规作图法在△ABC内求作一点D,使点D到两点A、C的距离相等,又到边AC、BC的距离相等(保留作图痕迹,不写作法);(2)若△ACD的周长为18,求△BCD的面积.6、如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其为矩形,再将矩形向下平移3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形.说明在变化过程中所运用的图形变换.7、如图,已知△ABC,其中AB=AC.作AC的垂直平分线DE,交AC于点D,交AB于点E,连结CE(尺规作图,不写作法,保留作图痕迹);在(1)所作的图中.若BC=7.AC=9.求△BCE的周长.8、如图,△ABC中,点D在BC边上,且BD=AD=AC,(1)请用尺规作图法,作出线段DC的垂直平分线AE,交DC于E点(保留作图痕迹,不要求写出作法)(2)若∠CAE=16°,求∠B的度数.9、已知等腰三角形ABC的顶角∠A=36°(如图M1­7).(1)请用尺规作图作底角∠ABC的平分线BD,交AC于点D;(保留作图痕迹,不要求写作法)(2)证明:△ABC∽△BDC.图M1­7。

2022年广东省中考数学总复习:解答题专练《实数的运算、化简求值、解方程与不等式》

2022年广东省中考数学总复习:解答题专练《实数的运算、化简求值、解方程与不等式》

9.解方程组:2x-x+y=3y= 2. -11, 解:2xx-+y=3y= 2.②-11,① ①+②×3 得 x=-1,把 x=-1 代入②得 y=-3, ∴xy==--31.,
10.(2018 齐齐哈尔)解方程:2(x-3)=3x(x-3). 解:移项得 2(x-3)-3x(x-3)=0, 整理得(x-3)(2-3x)=0, x-3=0 或 2-3x=0,解得 x1=3 或 x2=23.
代入求值. 解:原式=x+x1-x2-2 1÷xx+ +11-x+3 1 =x+x1-x2-2 1÷xx- +21=xx- -21.
令 x=0(只要 x≠1 或-1 或 2 均可),则原式=2.
8.解方程:1x--2x+2=x-1 2.
解:方程两边同乘 x-2,得 1-x+2(x-2)=1, 即 1-x+2x-4=1,解得 x=4. 经检验,x=4 是原方程的根.
12.解不等式 4x-6<x,并将不等式的解集表示在数轴上. 解:移项,得 4x-x<6,得 3x<6, ∴不等式的解集为 x<2, 其解集在数轴上表示如下:
2x-7<3x-1,① 13.(2018 威海)解不等式组5-12x+4≥x,② 并将解集在 数轴上表示出来.
解:解①,得 x>-4,解②,得 x≤2,
谢谢!
2022年中考数学一轮总复习
பைடு நூலகம்
第十一章 解答题
第40讲 解答题专练一(6分)
(实数的运算、化简求值、解方程与不等式)
1.(2018 山西)计算:(2 2)2-|-4|+3-1×6+20.
解:原式=8-4+31×6+1=8-4+2+1=7. 2.(2018 桂林)计算: 18+(-3)0-6cos 45°+12-1. 解:原式=3 2+1-6× 22+2=3 2+1-3 2+2=3. 3.(2018 娄底)计算:(π-3.14)0+13-2-|- 12|+4cos 30°.

专题01 实数及其运算(31题)(解析版)--2024年中考数学真题分类汇编

专题01 实数及其运算(31题)(解析版)--2024年中考数学真题分类汇编

专题01实数及其运算(31题)一、单选题1.(2024·广东深圳·中考真题)如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A .aB .bC .cD .d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A .2.(2024·甘肃临夏·中考真题)下列各数中,是无理数的是()A .π2B .13C 327D .0.13133【答案】A【分析】本题考查无理数的定义,根据无理数是无限不循环小数结合立方根的定义,进行判断即可.【详解】解:A 、π2是无理数,符合题意;B 、13是有理数,不符合题意;C 、3273=是有理数,不符合题意;D 、0.13133是有理数,不符合题意;故选A .3.(2024·福建·中考真题)下列实数中,无理数是()A .3-B .0C .23D 5【答案】D【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2ππ等;开方开不尽的数;以及像0.1010010001....,等数.4.(2024·四川内江·中考真题)16的平方根是()A.4-B.4C.2D.4±【答案】D【分析】题考查了平方根,熟记定义是解题的关键.根据平方根的定义计算即可.【详解】解:16的平方根是4±,故选:D.5.(2024·四川泸州·中考真题)下列各数中,无理数是()A.13-B.3.14C.0D.π6.(2024·山东·中考真题)下列实数中,平方最大的数是()A.3B.12C.1-D.2-7.(2024·山东烟台·中考真题)下列实数中的无理数是()A.23B.3.14C D 【答案】C【分析】本题考查无理数,根据无理数的定义:无限不循环小数,叫做无理数,进行判断即可.【详解】解:A 、23是有理数,不符合题意;B 、3.14是有理数,不符合题意;C 、15是无理数,符合题意;D 、3644=是有理数,不符合题意;故选C .8.(2024·四川眉山·中考真题)下列四个数中,无理数是()A . 3.14-B .2-C .12D 2【答案】D【分析】本题考查的是无理数的概念,无理数即无限不循环小数,它的表现形式为:开方开不尽的数,与π有关的数,无限不循环小数.根据无理数的定义,即可得出符合题意的选项.【详解】解: 3.14-,2-,12是有理数,2是无理数,故选:D .9.(2024·广东·中考真题)完全相同的4个正方形面积之和是100,则正方形的边长是()A .2B .5C .10D .20【答案】B【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴正方形的边长为255=,故选:B .10.(2024·天津·中考真题)估算10的值在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间【答案】C【分析】本题考查无理数的估算,根据题意得91016<<,即可求解.【详解】解:∵91016<<11.(2024·四川自贡·中考真题)在0,2-,π四个数中,最大的数是()A .2-B .0C .πD .12.(2024·四川南充·)A .点AB .点BC .点CD .点D13.(2024·北京·中考真题)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A .1b >-B .2b >C .0a b +>D .0ab >【答案】C【分析】本题考查了是实数与数轴,绝对值的意义,实数的运算,熟练掌握知识点是解题的关键.由数轴可得21b -<<-,23a <<,根据绝对值的意义,实数的加法和乘法法则分别对选项进行判断即可.【详解】解:A 、由数轴可知21b -<<-,故本选项不符合题意;B 、由数轴可知21b -<<-,由绝对值的意义知12b <<,故本选项不符合题意;C 、由数轴可知23a <<,而21b -<<-,则a b >,故0a b +>,故本选项符合题意;D 、由数轴可知23a <<,而21b -<<-,因此0ab <,故本选项不符合题意.故选:C .14.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.93=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .15.(2024·内蒙古包头·中考真题)若21m -,m ,4m -这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是()A .2m <B .1m <C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m -<<-,解得:1m <;故选B .二、填空题16.(2024·内蒙古赤峰·小的整数满足条件的数为小于或等于17.(2024·四川广安·中考真题)3=.18.(2024·广西·大的整数是.19.(2024·内蒙古包头·()20241+-=.【答案】3【分析】本题考查实数的混合混算,先进行开方和乘方运算,再进行加法运算即可.【详解】解:原式213=+=;故答案为:3.20.(2024·四川成都·中考真题)若m ,n 为实数,且()240m +=,则()2m n +的值为.【答案】1【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()2450m n ++-=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.21.(2024·安徽·10,祖冲之给出圆周率的一种分数形式的近似值为22710227(填“>”或“<”).【答案】>【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵222484749⎛⎫= ⎪⎝⎭,()2490101049==,而4844904949<,∴()2222107⎛⎫< ⎪⎝⎭,∴22107>;故答案为:>22.(2024·黑龙江绥化·中考真题)如图,已知11,3A ,(23,3A -,()34,0A ,()46,0A ,53A ,(63A ,()710,0A ,(811,3A …,依此规律,则点2024A 的坐标为.【答案】()2891,3-【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,据此可求得2024A 的坐标.【详解】解:∵()11,3A -,()23,3A -,()34,0A ,()46,0A ,()57,3A ,()69,3A ,()710,0A ,()811,3A -…,,三、解答题24.(2024·甘肃临夏·中考真题)计算:10120253-⎛⎫-+ ⎪⎝⎭.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式2310=-+=.25.(2024·福建·中考真题)计算:0(1)5-+-【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式152=+-4=.26.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-【答案】1-【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+-=-27.(2024·江苏苏州·中考真题)计算:()0429-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.28.(2024·陕西·()()025723-+-⨯.【答案】2-【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解.【详解】解:()()025723--+-⨯516=--2=-.29.(2024·四川乐山·中考真题)计算:()03π20249-+-【答案】1【分析】本题考查了绝对值,零指数幂,算术平方根.熟练掌握绝对值,零指数幂,算术平方根是解题的关键.先分别计算绝对值,零指数幂,算术平方根,然后进行加减运算即可.【详解】解:()03π20249-+--313=+-1=.30.(2024·浙江·中考真题)计算:131854-⎛⎫-- ⎪⎝⎭【答案】7【分析】此题考查了负整数指数幂,立方根和绝对值,解题的关键是掌握以上运算法则.首先计算负整数指数幂,立方根和绝对值,然后计算加减.31.(2024·湖北·中考真题)计算:()201322024-⨯+-。

广东省各市中考数学试题分类汇编 专题1 实数问题-人教版初中九年级全册数学试题

广东省各市中考数学试题分类汇编 专题1 实数问题-人教版初中九年级全册数学试题

专题1:实数问题1. (2015年某某某某3分)12的相反数是【】 A. 2 B. 2- C. 12 D. 12-【答案】D. 【考点】相反数.【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此,12的相反数是12-. 故选D. 2. (2015年某某某某3分)3-的倒数是【】A. 13- B. 13C. 3D. 3- 【答案】A. 【考点】倒数.【分析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以,3-的倒数为()1133÷-=-. 故选A.3. (2015年某某某某3分)四个数 3.14012- ,,,中为负数的是【】A. 3.14-B. 0C. 1D. 2 【答案】A.【考点】正数和负数.【分析】根据“比0小的数是负数”的定义,四个数 3.14012- ,,,中为负数的是 3.14-. 故选A. 4. (2015年某某某某3分)15-的相反数是【】A. 15B. 15-C. 115D. 115- 【答案】A. 【考点】相反数.【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此,15-的相反数是15.故选A.5.(2015年某某某某3分)用科学计数法表示316000000为【】A. 73.1610⨯B. 83.1610⨯C. 731.610⨯D. 631.610⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵316000000一共9位,∴8316000000 3.1610=⨯. 故选B.6. (2015年某某某某3分)解不等式21x x ≥-,并把解集在数轴上表示【】A. B. C. D.【答案】B.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】由21x x ≥-解得1x ≥-. 不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 因此不等式1x ≥-在数轴上表示正确的是B. 故选B.7. (2015年某某3分)2-=【 】A.2B.2-C.12D.12- 【答案】A. 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以,22-=.故选A.8.(2015年某某3分)据国家统计局2014年12月4日发布消息,2014年某某省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为【 】A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵13 573 000一共8位,∴713573000 1.357310=⨯. 故选B.9. (2015年某某3分)在0,2,0(3)-,5-这四个数中,最大的数是【 】A. 0B. 2C.0(3)-D.5- 【答案】B.【考点】零指数幂;有理数的大小比较. 【分析】∵()031-=,∴根据有理数“正数大于0,0大于负数,两个负数相比,绝对值大的反而小”的大小比较法则,得()053-<0<-<2.∴最大的数是2. 故选B.10. (2015年某某某某4分)12的相反数是【】 A. 2 B. 2- C. 12 D. 12-【答案】D. 【考点】相反数.【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此,12的相反数是12-. 故选D.11. (2015年某某某某4分)今年五月份某某举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为【】A. ×106B. ×105C. ×107D. ×105【答案】A.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵121万=1 210 000一共7位,∴121万=1 210 000=1.21×106.故选A.12. (2015年某某某某3分)12的倒数是【】A. 12B.12- C. 2 D. 2-【答案】C. 【考点】倒数.【分析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以,12的倒数为1122÷=. 故选C.1. (2015年某某某某3分)据统计,2014年我市常住人口约为4320000人,这个数用科学计数法表示感谢为▲ .【答案】×106.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵432000一共7位,∴4320000=×106.2. (2015年某某某某3分)地球半径约为6 400 000m ,这个数字用科学计数法表示为 ▲ m 【答案】6.4×106. 【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵6 400 000一共7位,∴6 400 000=6.4×106.3. (2015年某某4分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 ▲ . 【答案】1221. 【考点】探索规律题(数字的变化类).【分析】观察得该组数的排列规律为:分母为奇数,分子为自然数,第n 个数为21+nn ,所以,第10个数是1012210121=⨯+.1. (2015年某某某某7分)(1018223201523-⎛⎫--+ ⎪⎝⎭.【答案】解:原式 = 22322311--=-.【考点】实数的运算;二次根式化简;绝对值;负整数指数幂;零指数幂.【分析】针对二次根式化简,绝对值,负整数指数幂,零指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.2. (2015年某某某某6分)()320152sin 60+-+.【答案】解:原式=318431+-+=-+=- 【考点】实数的运算;二次根式化简;零指数幂;有理数的乘方;特殊角的三角函数值.【分析】针对二次根式化简,零指数幂,有理数的乘方,特殊角的三角函数值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.3. (2015年某某某某5分)计算:1122sin 602o -⎛⎫+-⎪⎝⎭.【答案】解:原式=2221332⨯+-==. 【考点】实数的运算;绝对值;特殊角的三角函数值;负整数指数幂;零指数幂.【分析】针对绝对值,特殊角的三角函数值,负整数指数幂,零指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.4. (2015年某某某某7分)(101320153-⎛⎫--+ ⎪⎝⎭.【答案】解:原式 = 3311--=-.【考点】实数的运算;二次根式化简;绝对值;负整数指数幂;零指数幂.【分析】针对二次根式化简,绝对值,负整数指数幂,零指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.5. (2015年某某某某6分)计算:212953.【答案】解:原式=16133.【考点】实数的运算;有理数的乘方;二次根式化简;零指数幂;绝对值.【分析】针对有理数的乘方,二次根式化简,零指数幂,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.。

押广东卷第16题实数计算解方程或不等式组化简求值(原卷版)

押广东卷第16题实数计算解方程或不等式组化简求值(原卷版)
29.(2023·广东东莞·校考一模)计算:
30.(2023·广东东莞·校考一模)化简: .
31.(2023·广东深圳·统考二模)先化简,再求值: ,其中 .
32.(2023·广东江门·统考一模)计算:
33.(2023·广东江门·统考一模)解分式方程: .
1.(2021·广东·统考中考真题)解不等式组 .
2.(2022·广东·统考中考真题)先化简,再求值: ,其中 .
3.(2020·广东·统考中考真题)先化简,再求值: ,其中 , .
4.(2022·广东·统考中考真题)解不等式组: .
5.(2022·广东深圳·统考中考真题)
6.(2022·广东深圳·统考中考真题)先化简,再求值: 其中
押广东卷第16题
实数计算,解方程或不等式组,化简求值
广东中考在17题中考查的内容都是计算为主,对学生知识掌握要求不高,基本属于基础题。如:2020年~2020年是整式运算与分式化简求值运算,解不等式的考查,预计2023年变化不大。
在备考要求考生熟练掌握:一是实数的运算,分式运算与整式运算法则,平方差与完全平方公式、二次根式化简等;二是掌握解三大方程与不等式(组).
13.(2021·广东东莞·东莞市茶山中学校考二模)先化简,再求值: ,其中
14.(2023·广东深圳·深圳市南山外国语学校校联考二模)计算;
15.(2023·广东深圳·深圳市南山外国语学校校联考二模)先化简,再求值; ,其中
16.(2023·广东深圳·深圳大学附属中学校考一模)解不等式组: .
17.(2023·广东东莞·东莞中学南城学校校联考一模)解不等式组: .
7.(2023·广东珠海·校考一模)先化简,再求值: ,其中 .
8.(2023·广东深圳·校联考模拟预测)计算: .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(07 年广东)计算: (
3 0 1 ) 4 sin 45 tan 45 ( ) 1 2 7 2
(08 年广东)计算: 3 3 tan30 3 8 (2008 ) 0
(09 年广东)计算 : cos60 2 1 (2008 ) 0 .
2 2
C。 (2a)3 6a3 】
D 。 a 6 a 2 a3
7. (2014 广东珠海 3 分)计算﹣2a +a 的结果为【 A.﹣3a B.﹣a
3
C.﹣3a ▲
2n
2
D.﹣a
2
2. (2014 广东广州 3 分)分解因式:a ﹣8a=
6
. ▲ .
3. (2014 广东梅州 3 分)若代数式﹣4x y 与 x y 是同类项,则常数 n 的值为
(10 年广东)计算
1 0 9 sin30°+ 3 . 2
(11 年广东) 4 2 cos600 2 .
0
1 2
1
(12 年广东) )计算:
﹣2sin45°﹣(1+
) +2 .
0
﹣1
(13 年广东)6tan2 30°- 3 sin 60°-2sin 45°
x y
2012
的值是


. ▲ .
4. (2014 广东湛江 4 分) 若二次根式 x 1 有意义,则 x 的取值范围是 5. (2014 广东肇 庆 3 分)计算 20 1. (2014 广东佛山 3 分) a 2 a 3 等于【 A. a 5 B. a 6 C. a 8
1 的结果是 5
(14 年广东)计算: 2 ( 3 1) 2sin 30 ( ) ;
0
1 2
1
6. (2014 广东广州 3 分)已知 a 1 + 7+b=0 ,则 a+b=【 A.﹣8 B.﹣6 C.6 D.8

1. (2014 广东省 4 分) 若 x, y 为实数, 且满足 x 3 + y 3=0 , 则 2. (2014 广东梅州 3 分)使式子 m 2 有意义的最 (2014 广东广州 3 分)下面的计算正确的是【 A.6a﹣5a=1 B.a+2a =3a
2 3
C.﹣(a﹣b)=﹣a+b 】
D.2(a+b)=2a+b
4. (2014 广东深圳 3 分)下列运算正确的是【 A, 2 a 3b 5ab B。 a 2 a 3 a 5
相关文档
最新文档