统计平均数课件
合集下载
平均数PPT课件
2022/3/8
21
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
– 二1级、求出的平均身高是每个队员的身高吗?
• 2三、级某个队员的身高能代表整支球队的平均身高吗?
– 四级
3、个»子五最级高的队员超出本队平均身高多少厘米?
4、个子最矮的队员低于本队平均身高多少厘米?
略。
2022/3/8
22
– 二级
56 - 30 26
• 三级
– 四级
50-30=20
» 五级
20+6=26
答:小青蛙比大青蛙少吃了__2_6__只虫子。
2022/3/8
38
单击此处编辑母版标题样式
• 单算击一算此,处说编一说辑。母版文本样式
– 二级
• 三级
– 四级
54
61
» 五级 36
70
2022/3/8
39
单击此处编辑母版标题样式
2022/3/8
(讲解源于《典中点》)
41
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
– 二级
• 三级
– 四级 » 五级
一共吃了多少只虫子?
2022/3/8
42
单击此处编辑母版标题样式
易错辨析(选题源于《典中点》)
• 单击此处编辑母版文本样式
–4.二填级表。
总分–是四2级46分。已知贝贝获得第三名,那么贝贝得了
» 五级
多少分?
90×3+246-86×5
=270+246-430
=86(分)
答:贝贝得了86分。
2022/3/8
28
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
五年级上册数学课件-3.2 统计(平均数的计算)▏沪教版 (共16张PPT)
游泳池水的平均深度为130 厘米, 小红的身高是145厘 米,他站在这个游泳池里不 会有危险。这句话说的对 吗?为什么?
平均数是一个虚拟数,不是真实数。
在这一段时间内哪位运动员表现的要好些?
球员 奥尼尔 姚明
场数 4 3
得分总数 84 66
奥尼尔:84÷4 =21(分) 姚明: 66÷3 =22(分)
求出以下几个数的平均数(用手势表示) (1)10和6两个数的平均数是( 8 ) (2)2、3和4三个数的平均数是( 3 ) (3)6、11和4三个数的平均数是(7 )
有一篮鸡蛋,每个鸡蛋的重量分别是: 56g、55g、54g、58g、55g、53g、 54g。这篮子鸡蛋平均重量可能是?克
平均数 在该组数据最大值和最小值之间
Hale Waihona Puke 总数÷个数=平均数。探究一 探究二
平均数是一个虚拟数,
(2+3+2+6+5+3)÷6 (2×2+2×3+6+5)÷6
=(4+6+6+5)÷6 =21÷6 =3.5(本)
(2×8+2×7+9+6)÷6 =(16+14+9+6)÷6 =45÷6 =7.5(个)
答:这一小队平均每人制作了7.5个动物模型。
★计算一组数据的平均数,不能删去该组资料中的 零值资料,零值资料也要作为数据进行计算。
小胖在体育比赛中投掷铅球的情况如下表
小胖平均每次投掷铅球多少米? (8.4+9.1+0+8.24+9.04)÷5 (8.4+9.1+8.24+9.04)÷5
本课小结
3.1 平均数 课件(共32张PPT) 鲁教版数学八年级上册
中国男子篮球职业联赛2011~2012赛季冠、亚军球 队队员身高、年龄如下:
课时导入
北京金隅队 号 身高 年龄/ 码 /cm 岁 3 188 35 6 175 28 7 190 27 8 188 22 9 196 22 10 206 22
广东东莞银行队 号 身高 年龄/ 码 /cm 岁 3 205 31 5 206 21 6 188 23 7 196 29 8 201 29 9 211 25
2 一组数据的和为87,平均数是3,则这组数据的 个数为( C ) A.87 B.3 C.29 D.90
知识点 2 加权平均数
感悟新知
想一想 小明是这样计算北京金隅队队员的平均年龄的:
年龄/岁 19 22 23 26 27 28 29 35 相应的队员数 1 4 2 2 1 2 2 1
平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29 ×2+ 35×1) ÷(1+4+2+2+1+2+2+1) =25.4 (岁). 你能说说小明这样做的道理吗?
感悟新知
总结
根据捐款总人数等于各部分人数之 和以及加权平均数公式建立方程组求 出未知量. 方程思想是解与平均数有 关的实际应用问题的一种常用方法.
感悟新知
1 (中考·无锡)某种蔬菜按品质分成三个等级销售, 销售情况如下表:
等级 一等
单价(元/kg) 销售量(kg)ຫໍສະໝຸດ 5.020二等
4.5
40
三等
4.0
感悟新知
例 3 某广告公司欲招聘广告策划人员一名,对A,B,C
三名候选人进行了三项素质测试.他们的各项测试成
课时导入
北京金隅队 号 身高 年龄/ 码 /cm 岁 3 188 35 6 175 28 7 190 27 8 188 22 9 196 22 10 206 22
广东东莞银行队 号 身高 年龄/ 码 /cm 岁 3 205 31 5 206 21 6 188 23 7 196 29 8 201 29 9 211 25
2 一组数据的和为87,平均数是3,则这组数据的 个数为( C ) A.87 B.3 C.29 D.90
知识点 2 加权平均数
感悟新知
想一想 小明是这样计算北京金隅队队员的平均年龄的:
年龄/岁 19 22 23 26 27 28 29 35 相应的队员数 1 4 2 2 1 2 2 1
平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29 ×2+ 35×1) ÷(1+4+2+2+1+2+2+1) =25.4 (岁). 你能说说小明这样做的道理吗?
感悟新知
总结
根据捐款总人数等于各部分人数之 和以及加权平均数公式建立方程组求 出未知量. 方程思想是解与平均数有 关的实际应用问题的一种常用方法.
感悟新知
1 (中考·无锡)某种蔬菜按品质分成三个等级销售, 销售情况如下表:
等级 一等
单价(元/kg) 销售量(kg)ຫໍສະໝຸດ 5.020二等
4.5
40
三等
4.0
感悟新知
例 3 某广告公司欲招聘广告策划人员一名,对A,B,C
三名候选人进行了三项素质测试.他们的各项测试成
第五章平均指标ppt课件(全)
• 其他求和的法则或公式 P62-63
第二节算术平均数
• 一、 算术平均数的基本公式
• 平均数是社会经济统计中最常用的一种平均指标。
▪计算公式
总体标志总量 算术平均数= ————————
总体单位总数
• 该基本公式具有两个特点: • ①分子和分母必须属于同一个总体。 • ②分子和分母有一一对应的数量关系。
• 在统计实践中,直接应用调和平均数的情况较少,大 多数情况下是将调和平均数作为算术平均数的变 形来应用的,即在计算平均指标时,由于掌握资料的 原因,不能直接按算术平均数的方法计算出平均数, 而以调和平均数的形式计算平均指标。
• 二、调和平均数的计算公式
• 调和平均数的计算公式也分为简单调和平均数 和加权调和平均数两种。
第五节中位数和众数
• 前面所讲的几种平均指标,都是根据统计总体中的 全部标志值或变量值计算的。当数列中出现极大 值或极小值时,它们最易受到极端值的影响,从而减 弱了平均指标在总体中的代表性。
• 众数和中位数则是另一种类型的平均指标,它们是 根据其在总体中所处的位置或地位确定的,故不受 数列中极端值的影响。
• 二、几何平均数的计算方法 • 1.简单几何平均数
• 简单几何平均数是n个变量值连乘积的n次方根
G nX 1•X 2•X 3• •X n n X
• 式中: 【Xi —数列中第i个变量值(i=1,2,…,n)
•
n —变量值个数
•
∏—连乘符号】 例如P72
• 2.加权几何平均数 • 当各个变量值出现的次数不相同时,计算几何
n —— 总体单位总数;
∑ —— 总和符号。
• 三、加权算术平均数
• 当总体单位数量较多时,统计资料 就需要整理成变量分配数列,或在 已编制好分配数列的条件下,计算 平均数就应采用加权算术平均数 的方法。
第二节算术平均数
• 一、 算术平均数的基本公式
• 平均数是社会经济统计中最常用的一种平均指标。
▪计算公式
总体标志总量 算术平均数= ————————
总体单位总数
• 该基本公式具有两个特点: • ①分子和分母必须属于同一个总体。 • ②分子和分母有一一对应的数量关系。
• 在统计实践中,直接应用调和平均数的情况较少,大 多数情况下是将调和平均数作为算术平均数的变 形来应用的,即在计算平均指标时,由于掌握资料的 原因,不能直接按算术平均数的方法计算出平均数, 而以调和平均数的形式计算平均指标。
• 二、调和平均数的计算公式
• 调和平均数的计算公式也分为简单调和平均数 和加权调和平均数两种。
第五节中位数和众数
• 前面所讲的几种平均指标,都是根据统计总体中的 全部标志值或变量值计算的。当数列中出现极大 值或极小值时,它们最易受到极端值的影响,从而减 弱了平均指标在总体中的代表性。
• 众数和中位数则是另一种类型的平均指标,它们是 根据其在总体中所处的位置或地位确定的,故不受 数列中极端值的影响。
• 二、几何平均数的计算方法 • 1.简单几何平均数
• 简单几何平均数是n个变量值连乘积的n次方根
G nX 1•X 2•X 3• •X n n X
• 式中: 【Xi —数列中第i个变量值(i=1,2,…,n)
•
n —变量值个数
•
∏—连乘符号】 例如P72
• 2.加权几何平均数 • 当各个变量值出现的次数不相同时,计算几何
n —— 总体单位总数;
∑ —— 总和符号。
• 三、加权算术平均数
• 当总体单位数量较多时,统计资料 就需要整理成变量分配数列,或在 已编制好分配数列的条件下,计算 平均数就应采用加权算术平均数 的方法。
平均数课件
计算平均数的方法:将一组数据中的所有数值相加,再除以这组数据的个数。用 数学公式表示为:平均数=总和÷数量。
用于反映一组数据的集中趋势
平均数是反映一组数据集中趋势的重要指标之一。在统计学中,我们通常会使用平均数来描述一组数 据的中心位置,从而揭示这组数据的集中趋势。例如,我们可以通过计算一组股票价格的平均值来了 解这组股票价格的总体趋势。
连续型随机变量的期望与方差
连续型随机变量的定义
01
连续型随机变量是指在一定范围内可以取任意数值的随机变量
,其取值具有连续无限的可能性。
连续型随机变量的期望
02
连续型随机变量的期望是指其概率密度函数与实数轴上的积分
值在正无穷与负无穷之间的差值。
连续型随机变量的方差与标准差
03
方差是随机变量取值与期望的平方差的平均值,标准差是方差
平均数课件
目录
• 平均数的定义与计算 • 平均数的应用 • 平均数的计算实例 • 平均数的拓展知识 • 平均数的实际应用案例 • 总结与展望
01
平均数的定义与计算
平均数的定义
01
02
平均数是描述一组数据集中程度的统计量,通常用这”趋势,可以用来比较不同组数据的 水平。
在社会调查中的应用
计算受访者的平均年龄
在社会调查中,计算受访者的平均年龄是评 估调查样本结构的重要指标之一。通过计算 受访者的平均年龄,调查人员可以更好地了 解调查样本的结构和特点,并采取措施提高 调查的代表性和准确性。
计算受访者的平均收入
在社会调查中,计算受访者的平均收入是评 估社会经济状况和消费水平的重要指标之一 。通过计算受访者的平均收入,调查人员可 以更好地了解社会经济状况和消费水平,并 采取措施提高调查的代表性和准确性。
用于反映一组数据的集中趋势
平均数是反映一组数据集中趋势的重要指标之一。在统计学中,我们通常会使用平均数来描述一组数 据的中心位置,从而揭示这组数据的集中趋势。例如,我们可以通过计算一组股票价格的平均值来了 解这组股票价格的总体趋势。
连续型随机变量的期望与方差
连续型随机变量的定义
01
连续型随机变量是指在一定范围内可以取任意数值的随机变量
,其取值具有连续无限的可能性。
连续型随机变量的期望
02
连续型随机变量的期望是指其概率密度函数与实数轴上的积分
值在正无穷与负无穷之间的差值。
连续型随机变量的方差与标准差
03
方差是随机变量取值与期望的平方差的平均值,标准差是方差
平均数课件
目录
• 平均数的定义与计算 • 平均数的应用 • 平均数的计算实例 • 平均数的拓展知识 • 平均数的实际应用案例 • 总结与展望
01
平均数的定义与计算
平均数的定义
01
02
平均数是描述一组数据集中程度的统计量,通常用这”趋势,可以用来比较不同组数据的 水平。
在社会调查中的应用
计算受访者的平均年龄
在社会调查中,计算受访者的平均年龄是评 估调查样本结构的重要指标之一。通过计算 受访者的平均年龄,调查人员可以更好地了 解调查样本的结构和特点,并采取措施提高 调查的代表性和准确性。
计算受访者的平均收入
在社会调查中,计算受访者的平均收入是评 估社会经济状况和消费水平的重要指标之一 。通过计算受访者的平均收入,调查人员可 以更好地了解社会经济状况和消费水平,并 采取措施提高调查的代表性和准确性。
五年级上册数学课件-3.2 统计(平均数的计算)▏沪教版 (共10张PPT)
星期
一 二三 四 五
人数
5
0
7
8
4
(人)
★ (5+7+8+4)÷4 =24 ÷4 =6(人)43;7+8+4)÷5
=24 ÷5 =4.8(人) 答:上周平均每天有4.8人在“班 级”借书。判断一下哪种方法正确?
在计算一组数据的平均数时,这些数据中的所有数(包括 零)都要参加计算。
(4 )
7-9月平均每天借书的有多少人?
(3 )
第2季度平均每月借书的有多少人?
(1 )
1、(143+136+138)÷3 2、(143+136+138+152)÷4
3 、152÷(31+31+30)
4、(143+136+138+152)÷6
四、拓展题
某酿造厂上半年生产料酒2.4万吨,下半年平均每月生产料酒0.6万 吨,这一年平均每月生产料酒多少万吨?
一、选择正确的算式:
1、小亚在投篮比赛中的情况如下表:
第几次 1
2
34
56
得分(分) 12 20
0
10 5 15
小亚平均每次得分是( C )分。 A:(12+20+10+5+15)÷5 B: (12+20+0+10+5+15)÷5 C:(12+20+0+10+5+15)÷6
2、小胖踢毽子比赛情况如下表:
月份
4
5
6
7
8
9
人数
2
3
7
8
5
3
(人)
(2+3+7+8+5+3)÷6
=28 ÷6
心理统计学PPT课件2:平均数和标准差
无偏性
当数据量足够大时,平均 数的期望值等于其真实值, 因此平均数具有无偏性。
02
CHAPTER
标准差
定义
01
描述数据分布的离散程度
标准差是用来描述数据分布离散程度的统计量,它表示各数值与其平均
数之间的偏差程度。
02
计算每个数值与平均数的差的平方
标准差的计算方法是将每个数值与平均数之间的差的平方,然后求和,
04
CHAPTER
平均数和标准差的局限性和 注意事项
平均数的局限性
平均数易受极端值影响
01
当数据集中存在极端值时,平均数会受到较大影响,导致结果
偏离实际。
平均数难以反映数据分布
02
平均数只能描述数据集的中心趋势,无法反映数据的离散程度
和分布形态。
不同数据集的平均数难以比较
03
由于不同数据集的单位、量级可能不同,直接比较两个数据集
03
CHAPTER
平均数和标准差在心理统计 中的应用
描述数据分布
平均数
描述数据集中趋势,计算所有数值的 和除以数值的数量,反映数据“中心 ”或“典型值”。
标准差
描述数据离散程度,计算各数值与平 均数之差的平方和的平均数,再取平 方根,反映数据分布的“宽度”或“ 波动范围”。
比较两组数据
平均数差异检验
的平均数可能导致误解。
标准差的注意事项
标准差并非绝对标准
标准差的大小受数据量级和单位的影响,因此需要结合实际情境 进行解释。
标准差并非越小越好
标准差小表示数据离散程度较小,但这并不意味着数据质量就高。
标准差并非适用于所有情况
对于非正态分布的数据,标准差可能无法准确反映数据的离散程度。
课件《平均数》优秀PPT课件 _人教版1
72分
D.
乙:(80×4+70×3+80×3)÷(4+3+3)=77(分);
某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:
第六章 数据的分析
(2)根据实际需要,学校将笔试、面试、民主测评三项得分按照4∶3∶3的比例确定个人成绩,三人中谁的得分最高?
估计这次数学竞赛的平均成绩是( )
估计这次数学竞赛的平均成绩是( )
C. 37.7件 乙:(80×4+70×3+80×3)÷(4+3+3)=77(分);
36件
如果将创新能力、计算机能力、公关能力三项得分按5∶3∶2的比例确定各人的最终得分,则本次招聘中应试者
将被录用(填
D. 38件 “甲”或“乙”).
电( C )
A. 41度 B. 42度 C. 45.5度 D. 46度
4. 统计某车间一周里加工一种零件的日产量的情况:有
8
D.
根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示,每得一票记1分(没
有89弃分权2,天每位是同学只3推5荐件1人,). 有1天是41件,有4天是37件,这周里平均日
“甲”或“乙”).
将被录用(填
如果将创新能力、计算机能力、公关能力三项得分按5∶3∶2的比例确定各人的最终得分,则本次招聘中应试者
将被录用(填
“甲”或“乙”).
(2)甲:(75×4+93×3+50×3)÷(4+3+3)=72.
解:根据已知条件,得小红家4月初连续7天的每天用电量分别为3度,4度,5度,6度,3度,4度,3度.
人教版《平均数》PPT精品课件
平均每棵苹果树上的苹果为 154 个.
(2)为了进一步估计果园中苹果的总产量(单位:kg), 果农从这 10 棵苹果树的每一棵树上分别随机摘取 4 个苹 果,这些苹果的质量分布如下表:
苹果的质量 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 0.5≤x<0.6
频数
4
12
16
8
请你估计出这批苹果的平均质量. 平均每个苹果的质量约为 0.42kg.
12
17
6
分析:抽出的 50 只灯泡的使用寿命组成了一个 样本,我们可以利用样本的平均使用寿命来估计 这批灯泡的平均使用寿命.
你能确定各小组的“组中值”和 “权”吗?
解:由表可以得出每组数据的组中值,则抽出 的 50 只灯泡的平均使用寿命为
从计算结果来看,样本的平均数为 1672,则估计这 批灯泡的平均使用寿命大约是 1672h.
成绩
组中值
6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.
频数(人数)
(2)求该班本次考试的平均成绩.
(1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分
使用了节水龙头20天的日用水量频数分布表:
49.5~59.5
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71 91 111
频数(班次)
3 5 20 22 18 15
思考1 表格中的组中值指什么?如何确定呢?
(2)求该班本次考试的平均成绩. 这天 5 路公共汽车平均每班的载客量是多少(结果取整数)? 1000≤x<1400 (结果精确到个位)是( ) 绘制了频数分布直方图(如图,满分120分). (1)该班有____名学生; 当要考察的对象很多,或者对考察对象带有破坏性时,统计中常常通过用样本估计总体的方法来获得对总体的认识. 6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19. (1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分 绘制了频数分布直方图(如图,满分120分). 现在你能总结出用样本平均数估计总体平均数的一般步骤吗? -10,+5,0,+5,0,0,-5,0,+5,+10. (1)果农从 100 棵苹果树中任意选出 10 棵,分别数出10棵苹果树上苹果的个数,得到以下数据:150,157 ,154 ,155 ,152 ,153 ,150 , 159,155 ,155,你能估算出 平均每棵树上苹果的个数吗? 1800≤x<2200 5 m3 D.260 m3
(2)为了进一步估计果园中苹果的总产量(单位:kg), 果农从这 10 棵苹果树的每一棵树上分别随机摘取 4 个苹 果,这些苹果的质量分布如下表:
苹果的质量 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 0.5≤x<0.6
频数
4
12
16
8
请你估计出这批苹果的平均质量. 平均每个苹果的质量约为 0.42kg.
12
17
6
分析:抽出的 50 只灯泡的使用寿命组成了一个 样本,我们可以利用样本的平均使用寿命来估计 这批灯泡的平均使用寿命.
你能确定各小组的“组中值”和 “权”吗?
解:由表可以得出每组数据的组中值,则抽出 的 50 只灯泡的平均使用寿命为
从计算结果来看,样本的平均数为 1672,则估计这 批灯泡的平均使用寿命大约是 1672h.
成绩
组中值
6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.
频数(人数)
(2)求该班本次考试的平均成绩.
(1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分
使用了节水龙头20天的日用水量频数分布表:
49.5~59.5
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71 91 111
频数(班次)
3 5 20 22 18 15
思考1 表格中的组中值指什么?如何确定呢?
(2)求该班本次考试的平均成绩. 这天 5 路公共汽车平均每班的载客量是多少(结果取整数)? 1000≤x<1400 (结果精确到个位)是( ) 绘制了频数分布直方图(如图,满分120分). (1)该班有____名学生; 当要考察的对象很多,或者对考察对象带有破坏性时,统计中常常通过用样本估计总体的方法来获得对总体的认识. 6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19. (1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分 绘制了频数分布直方图(如图,满分120分). 现在你能总结出用样本平均数估计总体平均数的一般步骤吗? -10,+5,0,+5,0,0,-5,0,+5,+10. (1)果农从 100 棵苹果树中任意选出 10 棵,分别数出10棵苹果树上苹果的个数,得到以下数据:150,157 ,154 ,155 ,152 ,153 ,150 , 159,155 ,155,你能估算出 平均每棵树上苹果的个数吗? 1800≤x<2200 5 m3 D.260 m3
移多补少(平均数)课件
移多补少(平均数)课件
目 录
• 平均数的定义与计算 • 移多补少法 • 平均数在ห้องสมุดไป่ตู้活中的应用 • 平均数的优缺点分析 • 平均数与中位数、众数的比较
contents
01
平均数的定义与计算
平均数的定 义
01
02
03
平均数的定义
平均数是所有数据之和除 以数据的个数,表示一组 数据的总体“平均水平”。
对异常值进行处理
在计算平均数之前,可以对异常值进 行处理,例如使用 winsorization 方 法将极端值替换为较接近的数据点。
考虑数据的离散程度
在分析平均数时,可以同时考虑数据 的离散程度,例如使用标准差来衡量 数据的波动性。
提供全面的数据分析
在报告分析结果时,除了平均数外, 还可以同时提供其他统计指标,如中 位数、众数、方差、标准差等,以全 面反映数据的特征。
05
平均数与中位数、众数的 比较
平均数与中位数的比 较
平均数是一组数据的总和除以数据的个数,表示数据的平均 水平;中位数是将一组数据从小到大排列后,位于中间位置 的数值。
平均数与中位数都是描述数据集中趋势的统计量,但它们的 计算方法和适用场景有所不同。平均数更适用于数据量较大、 数据分布较为均匀的情况,而中位数更适用于数据量较小、 数据分布不均或存在异常值的情况。
微小变化。
02
移多补少法
移多补少法的概念
总结词
移多补少法是一种通过移动多出来的部分并补充到缺少的部分,以实现整体平 衡的方法。
详细描述
移多补少法是一种数学和逻辑推理方法,其基本思想是将多余的部分移动到缺 少的部分,以使整体达到平衡或平均状态。这种方法在解决各种问题时非常有 效,尤其是在数学、统计学和经济学等领域中。
目 录
• 平均数的定义与计算 • 移多补少法 • 平均数在ห้องสมุดไป่ตู้活中的应用 • 平均数的优缺点分析 • 平均数与中位数、众数的比较
contents
01
平均数的定义与计算
平均数的定 义
01
02
03
平均数的定义
平均数是所有数据之和除 以数据的个数,表示一组 数据的总体“平均水平”。
对异常值进行处理
在计算平均数之前,可以对异常值进 行处理,例如使用 winsorization 方 法将极端值替换为较接近的数据点。
考虑数据的离散程度
在分析平均数时,可以同时考虑数据 的离散程度,例如使用标准差来衡量 数据的波动性。
提供全面的数据分析
在报告分析结果时,除了平均数外, 还可以同时提供其他统计指标,如中 位数、众数、方差、标准差等,以全 面反映数据的特征。
05
平均数与中位数、众数的 比较
平均数与中位数的比 较
平均数是一组数据的总和除以数据的个数,表示数据的平均 水平;中位数是将一组数据从小到大排列后,位于中间位置 的数值。
平均数与中位数都是描述数据集中趋势的统计量,但它们的 计算方法和适用场景有所不同。平均数更适用于数据量较大、 数据分布较为均匀的情况,而中位数更适用于数据量较小、 数据分布不均或存在异常值的情况。
微小变化。
02
移多补少法
移多补少法的概念
总结词
移多补少法是一种通过移动多出来的部分并补充到缺少的部分,以实现整体平 衡的方法。
详细描述
移多补少法是一种数学和逻辑推理方法,其基本思想是将多余的部分移动到缺 少的部分,以使整体达到平衡或平均状态。这种方法在解决各种问题时非常有 效,尤其是在数学、统计学和经济学等领域中。
平均数平均数课件ppt
公式
$(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$
调和平均数
定义
将一组数据的倒数和的倒数称为调和平均数。
公式
$(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})^{-1}$
03
平均数的应用
国民经济核算
国民经济核算体系
财务管理
投资收益
在投资领域,平均数被用来衡量投资组合的收益水平,帮助投资者做出理性的投 资决策。
财务分析
通过计算财务比率、制作财务比率图表等手段,利用平均数对企业的偿债能力、 盈利能力、营运能力和发展能力进行分析和评价。
市场调研
消费者调查
在市场调研中,平均数常被用来反映消费者对产品或服务的 整体评价和满意度。
市场分割
通过计算各个市场部分的平均收入、平均消费水平等指标, 帮助企业更好地了解市场需求和消费者行为。
04
平均数的局限与不足
不能反映极端值
平均数不能真实反映数据分布的实际情况。当数据集中存在 极端值时,平均数会受到极大影响,导致结果失真。
例如,在衡量收入水平时,如果一个国家中只有极少数人拥 有极高收入,而大多数人的收入较低,那么平均收入会受到 这些高收入人群的影响,不能真实反映全国人民的收入水平 。
平均数平均数课件ppt
xx年xx月xx日
contents
目录
• 什么是平均数 • 平均数的计算方法 • 平均数的应用 • 平均数的局限与不足 • 平均数与其他统计指标的关系 • 平均数的实际案例分析
01
什么是平均数
定义与计算
平均数的定义
平均数是一组数据的总和除以数据个数,是表示数据集中趋 势的统计量。
$(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$
调和平均数
定义
将一组数据的倒数和的倒数称为调和平均数。
公式
$(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})^{-1}$
03
平均数的应用
国民经济核算
国民经济核算体系
财务管理
投资收益
在投资领域,平均数被用来衡量投资组合的收益水平,帮助投资者做出理性的投 资决策。
财务分析
通过计算财务比率、制作财务比率图表等手段,利用平均数对企业的偿债能力、 盈利能力、营运能力和发展能力进行分析和评价。
市场调研
消费者调查
在市场调研中,平均数常被用来反映消费者对产品或服务的 整体评价和满意度。
市场分割
通过计算各个市场部分的平均收入、平均消费水平等指标, 帮助企业更好地了解市场需求和消费者行为。
04
平均数的局限与不足
不能反映极端值
平均数不能真实反映数据分布的实际情况。当数据集中存在 极端值时,平均数会受到极大影响,导致结果失真。
例如,在衡量收入水平时,如果一个国家中只有极少数人拥 有极高收入,而大多数人的收入较低,那么平均收入会受到 这些高收入人群的影响,不能真实反映全国人民的收入水平 。
平均数平均数课件ppt
xx年xx月xx日
contents
目录
• 什么是平均数 • 平均数的计算方法 • 平均数的应用 • 平均数的局限与不足 • 平均数与其他统计指标的关系 • 平均数的实际案例分析
01
什么是平均数
定义与计算
平均数的定义
平均数是一组数据的总和除以数据个数,是表示数据集中趋 势的统计量。
《平均数》ppt课件
男生套圈成绩统计图
(个)
10月18日
11
10
9
8
7
6
5
4
3
2
1
0
李
张
王
陈
小
晓
钢
明
宇
杰
学生活动: 观察男生成绩统计图,
想一想,怎样使他们每人套 中的个数相等?
04
任务二
男生套圈成绩统计图
(个)
11
10 9
9
8
77
6
7 6
6
5
4
3
2
1
0
李
张
王
陈
小
晓
钢
明
宇
杰
可以把多的补给 少的。
男生平均每人套 中7个。
作业设计
【知识技能类作业】
必做题:
2.学校象棋队七名队员的体重如下表,求出七名队员的平均身高。
姓名 王强 刘平 李海 孙亮 陈冬 肖俊 赵斌
体重/kg 52
29 48
33 37
32 35
(52+29+48+33+37+32+35)÷7
=266÷7
=38(kg)
答:七名队员的平均身高是38kg。
06
23×4+35×4-29×7
=92+140-203
=232-203
=29
答:中间那个数是29。
06
作业设计
【知识技能类作业】
必做题:
1.把第5次的( 1 )个给第1次,第5次的( 2
第2次,再把多出来的
( 1 )个给第4次,
5次的数量同样多。
平均数课件(浙教版)
98
78
80
90
82
83
(1)如果根据三项得分的平均成绩从高到低确定名 次,那么三个班级的排名顺序怎样?
(1)解:三个班得分的平均数分别为:
x1 80 84 87 83.7(分) 3
x2 98 78 80 85.3(分) 3
x3 90 82 83 85(分) 3
答:三个班的排名顺序为802班,803班,801班
在小学我们就知道平均数
小明有12本书,小军有20本书,小明和小军平 均每人有几本书?
二(3)班做好事36件,二(4)班做好事28件,二(5) 班做好事29件,平均每个班做好事多少件?
某果农种植的100棵苹果树即将收获.果品 公司在付给果农定金前,需要对这些果树 的苹果总产量进行估计.
(1)果农任意摘下20个苹果,称得这20个苹果的总 质量为4千克.这20个苹果的平均质量是多少千克?
4÷20=0.2(千克)
某果农种植的100棵苹果树即将收获.果品 公司在付给果农定金前,需要对这些果树 的苹果总产量进行估计.
(2)果农从100棵苹果树中任意选出10棵,数出这10 棵苹果树上的苹果数,得到以下数据(单位:个): 154,150,155,155,159,150,152,155, 153,157.你能估计出平均每棵树的苹果个数吗?
x
1 n
( x1
x2
xn )
1 n
( x1
a)
( x2
a)
(ቤተ መጻሕፍቲ ባይዱxn
a)
1 n
( x1
x2
xn
)
na)
1 n
( x1
x2
xn
)
1 n
na
x a
北师大版八年级数学上册 第六章 6.1 平均数 课件(共18张PPT)
C、71
( C)
D、72
2、甲、乙、丙三种饼干售价分别为3元、4元、
5元,若将甲种10斤、乙种8斤、丙种7斤混到
一起,则售价应该定为每斤
( A)
A、3.88元 B、4.3元 C、8.7元 D、8.8元
3、某次考试A、B、C、D、E五名学生平均分
为62分,除A以外四人平均分为60分,则A得
分为
(C )
14 2 2 1 2 2 1
平均年龄=(19×1+22×4+23 × 2+ 26 × 2 +27 ×1 +28 × 2+29 ×2+35 ×1 ) ÷(1+4 +2+2 + 1+2 + 2 + 1)
= 25.4 (岁)
你能说说小明这样做的道理吗?
仿照小明的做法计算广东东莞银行队的 平均年龄:
年龄/岁 19 21 22 23 25 27 29 31
❖ You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
❖
例、某广告公司欲招聘广告策划人员一名, 对A,B,C三名候选人进行了三项素质测试,他 们的各项测 试成绩如下 表所示:
(1)如果根据三项测试的平均成绩决定录用人 选,那么谁将被录用?
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/82021/9/82021/9/82021/9/89/8/2021 ❖14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月8日星期三2021/9/82021/9/82021/9/8 ❖15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/82021/9/82021/9/89/8/2021 ❖16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/82021/9/8September 8, 2021 ❖17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/82021/9/82021/9/82021/9/8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:平均每个笔 筒里有6支。
14cm 24cm 16cm
这三条丝带的平均长度是多少?
14+24+16=54(cm) 54÷3=18(cm)
答:这三条丝带的平均长度为54厘米。
下面是华江果品店上星期5天卖出苹果和橘子 下面是沂源果品店上星期5天卖出苹果和橘子的数量。 的数量。
11 11
6
6 6
7 7
平均数可以反映一组数据 的总体情况。 (1)先求出总数
把各个部分数加起来
(2)再求平均数
总数÷份数=平均数
我的收获
智慧城堡
加油啊!
辨一辨
• (1)金星小学的老师平均年龄是38岁, 那么每个老师一定都是38岁。( ) • (2)金星小学全体同学助残献爱心捐款, 平均每人捐款5元。不可能有同学捐6元。 ( )
小篮球队
西里镇金星小学小学 赵洪礼
7号、8号运动员在小组赛中得分情况统计表
(个) 11 10 9 8 7 6 5 4 3 2 1 0
7号成绩统计图
9 7 6
7
6
第 一 场
第 二 场
第 三 场
第 四 场
移 多 补 少
8号成绩统计图
6
第 一 场
第 二 场
第 三 场
第 四 场
第 五 场
(个) 11 10 9 8 7 6 5 4 3 2 1 0
三年级第一小组的男、女生进行套圈比赛,每人套15个圈。
男生套圈成绩统计图
(个) 11 10 9 8 7 6 5 4 3 2 1 0
女生套圈成绩统计图
(个) 11 10 9 8 7 6 5 5 4 3 2 1 0
6
6
6
6
5
5
5
一 号
二 号
三 号
四 号
一 号
二 号
三 号
四 号
男生套得准一些还是女生套得准一些?
7号成绩统计图
9
7
6
6
第 一 场
第 二 场
第 三 场
第 四 场
7号的平均成绩
6+9+7+6=28(个) 28÷4=7(个)
(个) 11 10 9 8 7 6 5 4 3 2 1 0
8号成绩统计图
10
7
4 5 4
第 一 场
第 二 场
第 三 场
第 四 场
第 五 场
8号的平均成绩是
10+4+7+5+4=30(个) 30÷5=6(个)
学校篮球队队员的平 均身高是160厘米。 (1)李强是学校篮球队队 员,他的身高155厘米,可 能吗? (2)学校篮球队 可能有身 高超过160厘米的队员吗? (3)学校篮球队一定有身 高等于160厘米的队员吗?
移动笔筒里的铅笔,看看平 均每个笔筒里有多少支。 6支
7支
5支
6支
7支
5支
6+7+5=18(支) 18÷3=6(支)
9 9
10 10
哪两天卖出的苹果同样多? 哪一天卖出的苹果和橘子同样多?
6
14cm 24cm 16cm
这三条丝带的平均长度是多少?
14+24+16=54(cm) 54÷3=18(cm)
答:这三条丝带的平均长度为54厘米。
下面是华江果品店上星期5天卖出苹果和橘子 下面是沂源果品店上星期5天卖出苹果和橘子的数量。 的数量。
11 11
6
6 6
7 7
平均数可以反映一组数据 的总体情况。 (1)先求出总数
把各个部分数加起来
(2)再求平均数
总数÷份数=平均数
我的收获
智慧城堡
加油啊!
辨一辨
• (1)金星小学的老师平均年龄是38岁, 那么每个老师一定都是38岁。( ) • (2)金星小学全体同学助残献爱心捐款, 平均每人捐款5元。不可能有同学捐6元。 ( )
小篮球队
西里镇金星小学小学 赵洪礼
7号、8号运动员在小组赛中得分情况统计表
(个) 11 10 9 8 7 6 5 4 3 2 1 0
7号成绩统计图
9 7 6
7
6
第 一 场
第 二 场
第 三 场
第 四 场
移 多 补 少
8号成绩统计图
6
第 一 场
第 二 场
第 三 场
第 四 场
第 五 场
(个) 11 10 9 8 7 6 5 4 3 2 1 0
三年级第一小组的男、女生进行套圈比赛,每人套15个圈。
男生套圈成绩统计图
(个) 11 10 9 8 7 6 5 4 3 2 1 0
女生套圈成绩统计图
(个) 11 10 9 8 7 6 5 5 4 3 2 1 0
6
6
6
6
5
5
5
一 号
二 号
三 号
四 号
一 号
二 号
三 号
四 号
男生套得准一些还是女生套得准一些?
7号成绩统计图
9
7
6
6
第 一 场
第 二 场
第 三 场
第 四 场
7号的平均成绩
6+9+7+6=28(个) 28÷4=7(个)
(个) 11 10 9 8 7 6 5 4 3 2 1 0
8号成绩统计图
10
7
4 5 4
第 一 场
第 二 场
第 三 场
第 四 场
第 五 场
8号的平均成绩是
10+4+7+5+4=30(个) 30÷5=6(个)
学校篮球队队员的平 均身高是160厘米。 (1)李强是学校篮球队队 员,他的身高155厘米,可 能吗? (2)学校篮球队 可能有身 高超过160厘米的队员吗? (3)学校篮球队一定有身 高等于160厘米的队员吗?
移动笔筒里的铅笔,看看平 均每个笔筒里有多少支。 6支
7支
5支
6支
7支
5支
6+7+5=18(支) 18÷3=6(支)
9 9
10 10
哪两天卖出的苹果同样多? 哪一天卖出的苹果和橘子同样多?
6