必修3 第三章 第一节 随机事件的概率(教师版)
高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案
第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。
人教版高中数学必修三3.随机事件的概率PPT课件(共30)
八、知识迁移:
例、 为了估计水库中的鱼的尾数, 先从水库中捕出2 000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
课堂感悟
概率是一门研究现实世界中广泛存在的 随机现象的科学,正确理解概率的意义是认识 、理解现实生活中有关概率的实例的关键,学 习过程中应有意识形成概率意识,并用这种意 识来理解现实世界,主动参与对事件发生的概 率的感受和探索。
课堂小结
1.随机事件发生的不确定性及频率的稳定性. (对立统一)
2.随机事件的概率的统计定义:随机事件在相 同的条件下进行大量的试验时,呈现规律性, 且频率总是接近于常数P(A),称P(A)为事件的 概率.
3.随机事件概率的性质:0≤P(A)≤1.
作业:教材P123页T2,T3.
频率与概率的区别与联系:
√(2)明天本地下雨的机会是70%.
又例如生活中,我们经常听到这样的议论 :“天气预报说昨天降水概率为90%,结果根 本一点雨都没下,天气预报也太不准确了。” 学了概率后,你能给出解释吗?
解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此,“ 昨天没有下雨”并不说明“昨天的降水概率 为90%”的天气预报是错误的。
值. (2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
(3)概率是一个确定的数,是客观存在的,与 每次试验无关. 比如,如果一个硬币是质地均匀的,则掷硬币
高一数学必修3概率部分知识点总结及习题训练教师版
概率部分知识点总结事件:____________,确定性事件: _____________和____________随机事件的概率(统计定义):一般的,如果随机事件A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为____P A概率是频率的__________,频率是概率的_________概率必须满足三个基本要求:① 对任意的一个随机事件A ,有_________ ② ,__,__P P 用和分别表示必然事件和不可能事件则有③如果事件,:________A B P A B和互斥则有古典概率:① ___________ ② _______________满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是__,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为___P A求古典概型概率的方法:___________、___________、___________、___________几何概型:一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为P A__________(一般地,线段的测度为该线段的长度;平面多变形的测度为该图形的面积;立体图像的测度为其体积 )几何概型的基本特点:① ____________ ② _______________ 互斥事件:___________________________称为互斥事件对立事件:____________________________,则称两个事件为对立事件,事件A 的对立事件 记为:A注意:① 若, B , , B , 中最多有一个发生则为互斥事件A A 可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集 ② 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 ③ 对立事件一定是互斥事件 ④ 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集 ⑤ 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于1 ⑥ 若事件B A ,是互斥事件,则有()()()B P A P B A P +=+ ⑦ 一般地,如果n A A A ,...,,21 两两互斥,则有()()()()n n A P A P A P A A A P +++=+++......2121 ⑧ ()()A P A P -=1 ⑨ 在本教材中n A A A +++...21 指的是n A A A ,...,,21 中至少发生一个⑩在具体做题中,希望大家一定要注意书写过程,设处事件来,利用哪种概型解题,就按照那种概型的书写格式,最重要的是要设出所求的事件事件A 和事件B 的和:_______________________________________________________事件A 和事件B 的积:_______________________________________________________例题选讲:例1. 在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?【分析】题目所给的6个球中有4个红球,2个其它颜色的球,我们可以根据不同的思路有不同的解法解法1:(互斥事件)设事件 A 为“选取2个球至少有1个是红球” ,则其互斥事件为A 意义为“选取2个球都是其它颜色球”()()()1514151 - 1A P - 1 A P 151 2)56(1A P ===∴=⨯=答:所选的2个球至少有一个是红球的概率为 1514.解法2:(古典概型)由题意知,所有的基本事件有15256=⨯种情况,设事件 A 为“选取2个球至少有1个是红球” ,而事件A 所含有的基本事件数有1423424=⨯+⨯所以()1514=A P 答:所选的2个球至少有一个是红球的概率为 1514.变式训练1: 在大小相同的6个球中,2个是红球,4 个是白球,若从中任意选取3个,求至少有1个是红球的概率?解法1:(互斥事件)设事件 A 为“选取3个球至少有1个是红球”,则其互斥事件为A , 意义为“选取3个球都是白球”()()()54 51 - 1A P - 1 A P 51425364 123)456(123234A P 3634===∴=⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==C C 答:所选的3个球至少有一个是红球的概率为54 . 解法2:(古典概型)由题意知,所有的基本事件有2012345636=⨯⨯⨯⨯=C 种情况,设事件 A为“选取3个球至少有1个是红球” ,而事件A 所含有的基本事件数有16234241224=⨯⨯=⨯+⨯C , 所以 ()542016==A P答:所选的3个球至少有一个是红球的概率为 54.变式训练2:盒中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率: (1)第1次抽到的是次品(2)抽到的2次中,正品、次品各一次解:设事件A 为“第1次抽到的是次品”, 事件B 为“抽到的2次中,正品、次品各一次”则 ()3162==A P ,()94664224=⨯⨯+⨯=B P (或者()9462646462=⨯+⨯=B P ) 答:第1次抽到的是次品的概率为31 ,抽到的2次中,正品、次品各一次的概率为94变式训练3:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率? 【分析】(1)由于是不放回的抽,且只抽两道题,甲抽到选择题而乙抽到填空题是独立的,所以可以用独立事件的概率(2)事件“至少1人抽到选择题”和事件“两人都抽到填空题”时互斥事件,所以可以用互斥事件的概率来解:设事件A 为“甲抽到选择题而乙抽到填空题”,事件B 为“至少1人抽到选择题”,则B 为“两人都抽到填空题”(1)()()⎪⎪⎭⎫ ⎝⎛=⨯⨯===⨯=1035633 1035363261313P P P A P A P 或者 (2)()()⎪⎪⎭⎫ ⎝⎛===⨯=51 5152632623P P B P B P 或者 则 ()()545111=-=-=B P B P 答:甲抽到选择题而乙抽到填空题的概率为103,少1人抽到选择题的概率为 54. 例2.将一颗骰子向上抛掷两次,所得点数分别为a 和b ,则函数()221y x a b x =-++在[]5,7上不是单调函数的概率是( )A.14B.16C.536D.12C.因为函数()221y x a b x =-++在[]5,7上不是单调函数,所以对称轴落在区间内,则有57a b <+<,而*a b N +∈,得6a b +=,这时(),a b 的取值有()()()()()5,1,4,2,3,3,2,4,1,5共5种,总数有36种,故所求的概率为536. 变式训练1:设关于x 的一元二次方程022=++b ax x ,若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.设事件A 为“方程022=++b ax x 有实根”。
北师大版必修三3.1随机事件的概率
3:某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 进球次数
8 6
0.75
10 8
0.80
15 12
0.80
20 17
0.85
30 25
0.83
40 30
0.75
50 40
0.80
进球频率
(1)计算表中进球的频率; (2)这位运动员投篮一次,进球的概率约是多少? 概率约是0.8 (3)这位运动员进球的概率是0.8,那么他投10次篮一定能 投中8次吗? 不一定. 投10次篮相当于做10次试验,每次试验的结果都是随 机的, 所以投10次篮的结果也是随机的. 但随着投篮次数的增 加,他进球的可能性为80%.
思考:在实际问题中,随机事件A发生 的概率往往是未知的(如在一定条件下 射击命中目标的概率),你如何得到事 件A发生的概率? 通过大量重复试验得到事件A发 生的频率的稳定值,即概率.
思考:在相同条件下,事件A在先后两次 试验中发生的频率fn(A)是否一定相等? 事件A在先后两次试验中发生的概率 P(A)是否一定相等? 频率具有随机性,做同样次数的重 复试验,事件A发生的频率可能不相同; 概率是一个确定的数,是客观存在的, 与每次试验无关.
练一练
1.抛掷100枚质地均匀的硬币,有下列一些说法: ①全部出现正面向上是不可能事件; ②至少有1枚出现正面向上是必然事件; ③出现50枚正面向上50枚正面向下是随机事件, 以上说法中正确说法的个数为 A.0个 B.1个 C.2个 D.3个 (B)
2.下列说法正确的是 ( C ) A.任何事件的概率总是在(0,1)之间 B.频率是客观存在的,与试验次数无关 C.随着试验次数的增加,频率一般会越来越接近概率 D.概率是随机的,在试验前不能确定
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件..(共15张PPT)
新课探究二
思考: 在这三类事件中,你认为哪一类最值得我 们探索与研究?
随机事件
风采展示
活动探究:投掷10次硬币的试验
抛硬币的规则: (1)硬币统一(1元硬币) (2)规定:“1元”的一面为正面 (3)离桌面高度大约为一尺,自由落下;
频率 fn (A) 随着试验次数的增加稳定于概率 P(A),可以用频率估计概率
小组讨论
小试牛刀
例1、判断以下说法是否正确
(1)有人说,既然抛掷一枚硬币出现正面的概率为 0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是 一次正面朝上,一次反面朝上. 答:错.因为抛硬币是随机事件。 (2)如果某种彩票中奖率是 千分之一,那么买1000 张这种彩票一定能中奖.(假设该彩票有足够多的张数) 答:错.因为不是必然事件。
姓名
试验次数
正面朝上的次数 正面朝上的比例
试验
小组讨论
概念形成
概率的定义:
对于给定的随机事件A,如果随着试验 次数的增加,事件A发生的频率 fn (A) 稳定 在某个常数上,我们把这个常数记作P( A) , 并称为事件A的概率。
讨论:频率和概率有什么区别与联系?
频率与概率的关系
区别: 频率是变化的,而概率是确定的 联系:
小试牛刀
(3)某地气象局预报说,明天本地降水概率为70%, 则明天本地有70%的区域下雨,30%的区域不下雨. 答:错。70%的概率是说降水的概率,而不是说70% 的区域降水。 (4)对于随机事件A,B,P(A)=0.8,P(B)=0.3,
若对A,B各做10次试验,则A发生的频率一定 大于B发生的频率。 答:错。频率是变化的,与试验有关,概率是确定的。
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共14张PPT)
问题1:观察黑板上表格中 的数据,你们小组的试验结果和 其他组的一致吗?为什么会出现 这种情况?
问题2:如果再做一次试验, 试验结果还会是这样吗?
[活动2]:excel演示画折线图
历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示
抛掷次数(n)
2048 4040
正面朝上次数(m) 1061 2048
随着试验次数的增加, 事件出现的频率无限接近于该事件发生的概率.
——大数定律
表面上是偶然性在起雅作各用布的·贝地努方利,这种偶然 性始终是受内部的隐蔽(着瑞的士规数律学支家)配的!
——恩格斯·《马克思、恩格斯论历史科学》
1.通过自己举例及质疑的过程,提炼出随机事件、 必然事件和不可能事件概念中“在一定条件下”这一 关键词;
频率
fn ( A)=
nA n
[0,1]
确定事件 随机事件
稳 定 于概率Leabharlann ( A)得出结论事件
分析数据
不确定 次 数 增 加
趋于稳定 次 数 足 够 大
稳定于某 一个常数
[问题]:你能举出现实生活中 必然事件、不可能事件、随机 事件的实例吗?
全部是阳面朝上,姚督怎么会这 么巧哇?!
温度、水分、阳光
[活动1]:抛掷硬币试验
分组说明:全班共50位同学,每5人一组,共10组
实验步骤
思考问题
第一步,每人试验10次,记录正 面朝上的次数,并计算出正面朝上的 比例;
第二步,小组长统计本小组试验 结果,并将统计数据填在黑板的表格 里;
抽取球数 m
优等品数 n
50 100 200 500 1000 2000 45 92 194 470 954 1902
新人教版高中数学必修三 第三章概率教案:3.1 随机事件的概率
随机事件及其概率【知识要点】1、 随机事件:① 一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件,用字母Ω表示。
P (Ω)=1.② 在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件,用字母φ表示。
P (φ)=0.③ 在条件S 下,可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随见事件。
0P A 1≤≤()④ 必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件。
事件:对于某个现象,如果能让其条件实现一次,就是进行了一次试验,而试验的每一种可能的结果,都是一个事件。
2、 频率:在相同的条件S 下重复n 次试验,观察某一个事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 的出现频数,称事件A 出现的比例(A)=A n n f n 为事件A 出现的频率。
3、 概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率(A)n f 稳定在某个常数上,把这个常数记作(A)P ,称为事件A 的概率,简称为A 的概率。
(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
(2)频率本身是随机的,在试验前是不确定的。
(3)概率是一个确定的常数,是客观存在的,与试验的次数无关。
4、概率的基本性质:(1)事件的关系与运算①对于事件A 与事件B ,如果事件A 发生,事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B ),记作BA ⊇或AB ⊆ ② 一般地,若A B ⊆且B A ⊆,那么称事件A 与事件B 相等,记作A=B③ 若某事件发生当且仅当事件A 发生或者事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件),记作A B ⋃(或A+B )。
④ 若某事件发生当且仅当A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件),记作A B ⋂(或AB )⑤ 若A B ⋂为不可能事件,即=A B ⋂∅,那么我们称事件A 与事件B 互斥,其含义就是事件A 与事件B 在任何一次试验中都不会同时发生。
人教课标版高中数学必修三《随机事件的概率(第1课时)》教案-新版
第三章概率3.1 随机事件的概率第1课时一、教学目标1.核心素养通过随机事件概率的学习.初步形成数据分析能力与抽象概括的能力.2.学习目标(1)了解随机事件发生的不确定性.(2)理解随机事件的规律性.(3)进一步理解概率的意义.(4)利用概率的意义解释生活中的事例.3.学习重点频率与概率的关系,对概率含义正确理解.4.学习难点频率与概率的关系,对概率含义正确理解.二、教学设计(一)课前设计1.预习任务任务1阅读教材P108,思考:如何判定一个事件是必然事件、不可能事件还是随机事件?随机事件说法中“同样的条件下”能否去掉?请举例说明.任务2阅读教材P113—118. 明白概率的意义及其在生活中的指导性作用!2.预习自测1.指出下列事件哪些是必然事件.A.某地1月1日刮西北风;B.当x是实数时,x2≥0;C.手电筒的电池没电,灯泡发亮;D.一个电影院某天的上座率超过50%.解:B2.某种新药在使用的患者中进行调查的结果如下表:请填写表中有效频率一栏,则该药的有效概率是多少?A.84% B.87%C.88% D.90%解:C(二)课堂设计1.知识回顾(1)必然事件:有些事件我们事先能肯定其一定会发生;(2)不可能事件:有些事件我们事先能肯定其一定不会发生;(3)随机事件:有些事件我们事先无法肯定其会不会发生;(4)举出现实生活中随机事件,必然事件,不可能事件的案例.2.问题探究问题探究一创设情景,体会随机事件发生的不确定性(★▲)●活动一“麦蒂的35秒奇迹”在火箭队与马刺队的篮球比赛中,麦蒂在最后几十秒已经连续投进了三个三分球,并且在最后关头抢断成功,推进到前场,在距离比赛结束还有1.7秒时再次投出三分球! 为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进?●活动二“石头,剪刀,布”再看看我们身边的实例,两名同学想看同一本好书,于是采用“石头,剪刀,步”的方式来决定谁先看,那么能预测这两名同学认赢吗?问题探究二重复实验,体会随机事件的规律性.(★▲)●活动一抛掷硬币试验抛掷硬币试验结果表:当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动●活动二某批乒乓球产品质量检查试验:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动.●活动三某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,并在它附近摆动●活动四反思活动,感知随机事件的规律性.通过上述三个大量重复性实验,你能发现随机事件具有什么规律性吗?一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率.问题探究三创设生活实例,深化概率意义的理解.(▲)●活动一彩票中奖问题若某种彩票准备发行1000万张,其中1万张可以中奖,则买一张这种彩票的中奖的概率是多少?买1000张的话是否会中奖?分析:中奖的概率为1/ 1000;不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖,买彩票中奖概率为1/1000是指试验次数相当大,即随着购买彩票的数量增加,大约有1/1000的彩票中奖.●活动二游戏的公平性问题某中学在高一年级的二、三班中任选一个班参加社区服务活动,有人提议用如下方法选班:掷两枚硬币,正面朝上的记作2点,反面向上记作1点,两枚硬币的点数和是几,就选几班,你认为这种方法公平吗?分析:不公平,记(x,y)中的x,y分别代表两枚硬币的点数,则有(1,1),(1,2),(2,1), (2,2)。
2024-2025学年高中数学第3章概率§11.11.2随机事件的概率(教师用书)教案北师大版必修3
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调概率的重要性和意义。
过程:
简要回顾本节课的学习内容,包括概率的基本概念、组成部分、案例分析等。
强调概率在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用概率。
10.提高合作能力和解决问题的能力:通过小组讨论和案例分析,学生能够与他人合作,共同解决问题,提高合作能力和解决问题的能力。
内容逻辑关系
①随机事件的定义和分类:必然事件、不可能事件、随机事件
②概率的定义和性质:概率的计算方法,包括古典概率、几何概率和条件概率;概率的基本性质,如互斥事件的概率加法公式、独立事件的乘积公式等。
-互斥事件的概率加法公式:P(A+B) = P(A) + P(B)
-独立事件的乘积公式:P(AB) = P(A) * P(B)
③概率的运用
-抽奖问题:计算获奖的概率
-概率论的基本问题:计算某个事件发生的概率
教学评价与反馈
1.课堂表现:通过观察学生在课堂上的参与程度、提问和回答问题的积极性,以及学生的反应和理解程度,评价学生对概率知识的掌握情况。
布置课后作业:让学生撰写一篇关于概率的短文或报告,以巩固学习效果。
学生学习效果
1.理解概率的基本概念:学生能够理解概率的定义,掌握概率的基本计算方法和性质,如互斥事件的概率加法公式、独立事件的乘积公式等。
2.掌握随机事件的分类:学生能够区分必然事件、不可能事件和随机事件,并能够运用这些概念解决实际问题。
2.数据分析:通过讲解概率的定义和性质,培养学生收集、整理、分析和处理数据的能力,使学生能够运用几何概率和条件概率的方法解决实际问题。
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。
高中数学必修3 第三章概率教案 苏教版 教案
某某大学附属中学高中数学必修3 第三章概率教案3.1随机事件及其概率教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率与事件A发生的概率的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.教学重点:事件的分类;概率的定义以及和频率的区别与联系教学难点:用概率的知识解释现实生活中的具体问题.教学过程:一、问题情境1.足球比赛用抛掷硬币的方式决定场地,这是否公平?2.某班的50名学生中,有两名学生的生日相同的可能性有多大?3.路口有一红绿灯,东西方向的红灯时间为45s,绿灯时间为60s.从东向西行驶的一辆汽车通过该路口,遇到红灯的可能性有多大?日常生活中,与此相关的问题还有很多。
例如:(1)在标准大气压下水加热到100℃,沸腾;(2)导体通电,发热;(3)同性电荷,互相吸引;(4)实心铁块丢入水中,铁块浮起;(5)买一X福利彩票,中奖;(6)掷一枚硬币,正面向上.二、建构数学在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验.而试验的每一种可能的结果,都是一个事件.在一定的条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件.在一定条件下,可能发生也可能不发生的事件叫做随机事件.必然事件与不可能事件反映的就是在一定条件下的确定性现象,而随机事件反映的则是随机现象.以后我们用A,B,C等大写英文字母表示随机事件,简称为事件.我们已经学习了用概率表示一个事件在一次试验或观测中发生的可能性的大小,它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.1.奥地利遗传学家孟德尔用豌豆进行杂交试验,通过进一步研究,他发现了生物遗传的基本规律;2.抛掷硬币的模拟试验;3. 的前n位小数中数字6出现的频率统计;4.鞋厂某种成品鞋质量检验结果优等品频率的统计.从以上几个实例可以看出:在相同条件下,随着试验的次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画该随机事件发生的可能性大小,而将频率作为其近似值.一般地,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率mn作为事件A发生的概率的近似值,即:()mP An.三、数学运用1.例题例1 试判断下列事件是随机事件、必然事件还是不可能事件:(1)我国东南沿海某地明年将3次受到热带气旋的侵袭;(2)若a为实数,则|a|≥0;(3)某人开车通过10个路口都将遇到绿灯;(4)抛一石块,下落;(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.例2 某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:(1)试计算男婴各年出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?例3 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?2.练习课本第88页练习 1,2,3课本第91页练习 1,2,3课本第92页习题 1,2备用:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件 B.随机事件C.不可能事件 D.无法确定2.下列说法正确的是()A.任一事件的概率总在(0.1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1 D.以上均不对3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学辅导教案1.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.①科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.①高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,①系统抽样,①分层抽样B.①简单随机抽样,①分层抽样,①系统抽样C.①系统抽样,①简单随机抽样,①分层抽样D.①分层抽样,①系统抽样,①简单随机抽样【解答】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,①将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,①个体有了明显了差异,所以选用分层抽样法,分层抽样,故选:A.2.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12 C.13 D.14【答案】B第1页共23 页【解析】 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12(人).3.已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为________.【解析】 由x 1,x 2,…,x n 的均值x =5,得2x 1+1,2x 2+1,…,2x n +1的均值为2x +1=2×5+1=11. 【答案】 114.已知x 与y 之间的一组数据:x 0 1 2 3 ym35.57已求得关于y 与x 的线性回归方程$ 2.10.85y x =+,则m 的值为 .【解答】解:①2343210=+++=x ,45.15475.53+=+++=m m y , ①这组数据的样本中心点是)45.15,23(+m ,①关于y 与x 的线性回归方程85.01.2ˆ+=x y, ①85.0231.245.15+⨯=+m ,解得m =0.5,①m 的值为0.5. 故答案为:0.5.5.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5. (1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)估计在这次测试中,学生跳绳次数的中位数、众数及平均数.【解答】 (1)第四小组的频率=1-(0.1+0.3+0.4)=0.2;(2)设参加这次测试的学生人数是n ,则有n =第一小组频率第一小组频数=5÷0.1=50(人);(3)中位数在第三小组,设中位数为99.5+x ,5.0016.03.01.0=++∴x ,25.6=∴x ,所以中位数为105.75;估计众数约为:11225.1245.99=+(次)平均数约为:5.1042.025.1495.1244.025.1245.993.025.995.741.025.745.49=⨯++⨯++⨯++⨯+1.判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”;(2)“在标准大气压下且温度低于0①时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b ,那么a -b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”.【答案】根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件. 2.某射手在同一条件下进行射击,结果如下表所示:射击次数n 10 20 50 100 200 500 击中靶心次数m 819 44 92 178 455 击中靶心的频率nm(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?故选:B .5.猎人在相距100 m 处射击一野兔,命中的概率为12,如果第一次未击中,则猎人进行第二次射击,但距离已是150 m ,如果又未击中,则猎人进行第三次射击,但距离已是200 m ,已知此猎人命中的概率与距离的平方成反比,求射击不超过三次击中野兔的概率.【答案】射击不超过三次击中野兔的概率为6172.【解析】设距离为d ,命中的概率为P ,则有P =k d 2,将d =100,P =12代入,得k =Pd 2=5 000,所以P =5 000d 2. 设第一、二、三次击中野兔分别为事件A 1,A 2,A 3,则P (A 3)=12,P (A 2)=5 0001502=29,P (A 3)=5 0002002=18.所以P (A 1+A 2+A 3)=12+29+18=6172.故射击不超过三次击中野兔的概率为6172.【学科问题】随机事件的概率这节内容,在高中的概率方面属于开篇内容,主要是讲透有关的概念和方法.为后续相关知识的学习打好基础。
1.对频率与概率的区分与联系要讲清楚;2.对概率加法公式的讲解时,要注意强调是以事件的关系为互斥事件为前提条件才能应用;3.注意引导学生利用对立事件的概率公式求概率,培养学生间接分析问题的能力.【学生问题】1.学习风格(任课教师自行填写); 2.先行知识分析:(1)学生对于频率与概率的区分容易混淆;(2)学生对互斥事件、对立事件的判断容易分不清楚;(3)对概率的加法公式的理解容易忽视条件是事件互斥,对利用互斥事件的概率加法公式求概率的方法会比较模糊。
【学习目标】1.随机事件、必然事件、不可能事件;2.频率与概率;3.事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件;4.概率的基本性质.【目标分解】1.理解随机事件、必然事件、不可能事件的概念并能够加以区分;2.理解频率与概率的区别与联系;3.会区分事件的关系,包括事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件;4.会利用互斥事件的加法公式求概率;5.会利用对立事件的概率公式求概率.知识点一必然事件、不可能事件、随机事件1.在条件S下,一定会发生的事件叫做相对于条件S的必然事件,简称必然事件.2.在条件S下,一定不会发生的事件叫做相对于条件S的不可能事件,简称不可能事件.3.必然事件和不可能事件统称为叫做相对于条件S的确定事件,简称确定事件.4.在条件S下,可能发生也可能不发生的事件叫做相对于条件S的随机事件,简称随机事件.5.确定事件和随机事件统称为事件,一般用大写字母A、B、C、…表示.题型一判断必然事件、不可能事件、随机事件【例1】下列事件:(1)口袋里有伍角、壹角、壹元的硬币若干枚,随机地摸出一枚是壹角;(2)在标准大气压下,水在90①沸腾;C .随着试验次数的增加,事件发生的频率一般会稳定于概率D .概率是随机的,在试验前不能确定【解答】解:在A 中,任何事件的概率总是在[0,1]之间,故A 错误;在B 中,频率是客观存在的,与试验次数有关,试验次数越多,频率越稳定,故B 错误;在C 中,由频率的性质知:随着试验次数的增加,事件发生的频率一般会稳定于概率,故C 正确;在D 中,概率是客观的,在试验前能确定,故D 错误. 故选:C .知识点三 事件的关系 1.事件的关系 事件的关系 定义与集合类比记忆包含关系若事件A 发生时,事件B 一定发生,则事件B 包含事件A ,记作B A ⊆相等事件若B A ⊆,且A B ⊆,则事件A 与事件B 相等,记作A =B并(和)事件 若某事件C 发生当且仅当事件A 发生或事件B 发生,则称事件为事件A 与事件B 的并事件(或和事件),记作B A C Y =(或B A +)交(积)事件 若某事件C 发生当且仅当事件A 发生且事件B 发生,则称事件为事件A 与事件B 的交事件(或积事件),记作B A C I =(或AB )互斥事件若B A I 为不可能事件,则事件A 与事件B 互斥对立事件 若B A I 为不可能事件,B A Y 为必然事件,则事件A 与事件B 互为对立事件2.互斥事件与对立事件的区别(1)互斥事件和对立事件都不可能同时发生的事件,对立事件是互斥事件的特殊情况,对立事件必是互斥事件,但互斥事件不一定是对立事件;对立事件有且只有一个发生,而互斥事件有可能都不发生.(2)互斥事件和对立事件的交集都是空集,但对立事件的并集是全集,而互斥事件的并集并不一定是全集. 题型三 判断事件的关系【例3】从一批产品中取出三件产品,设A ={三件产品全是正品},B ={三件产品全是次品},C ={三件产品不全是次品},则下列结论不正确的是( ) A .A 与B 互斥且为对立事件B .B 与C 为对立事件C .A 与C 存在着包含关系D .A 与C 不是互斥事件【解答】解:A 为{三件产品全不是次品},指的是三件产品都是正品,B 为{三件产品全是次品},C 为{三件产品不全是次品},它包括一件次品,两件次品,三件全是正品三个事件,由此知:A 与B 是互斥事件,但不对立;A 与C 是包含关系,不是互斥事件,更不是对立事件;B 与C 是互斥事件,也是对立事件. 故选:A .【变式3-1】下列各组事件中,不是互斥事件的是( ) A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班级数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C .播种菜籽100粒,发芽90粒与发芽80粒D .检查某种产品,合格率高于70%与合格率为70%【解答】解:A 中,一个射手进行一次射击,命中环数大于8与命中环数小于6,不可能同时发生,故A 中两事件为互斥事件.B 中,当平均分等于90分时,两个事件同时发生,故B 中两事件不为互斥事件.C 中,播种菜籽100粒,发芽90粒与发芽80粒,不可能同时发生,故C 中两事件为互斥事件.【解答】解:由题意知本题是一个对立事件的概率,①抽到的不是一等品的对立事件是抽到一等品,P(A)=0.65,①抽到不是一等品的概率是1﹣0.65=0.35,故选:C.1.(对应题型一)下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;①某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;①异性电荷,相互吸引;①某人购买体育彩票中一等奖.A.①①B.①①①C.①①①①D.①①①【解答】解:由随机事件的意义知,本题所给的4个事件中,只有①是一个必然事件,其他的事件都是随机事件,故选:B.2.(对应题型一)在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均不正确【解答】解:从10个数字中取3个数字,这三个数字的和可能等于6,也可能大于6,①是否大于6,需要取出数字才知道,①这三个数字的和大于6”这一事件是随机事件,故选:C.3.(对应题型二)下列叙述随机事件的频率与概率的关系中正确的是()A.频率就是概率B.频率是客观存在的,与试验次数无关6.(对应题型四)P(A)=0.1,P(B)=0.2,则P(A①B)等于()A.0.3 B.0.2 C.0.1D.不确定【答案】D【解析】由于不能确定A与B互斥,则P(A①B)的值不能确定.7.(对应题型五)根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为()A.0.65 B.0.55 C.0.35 D.0.75【答案】C【解析】设该地6月1日下雨为事件A,阴天为事件B,晴天为事件C,则事件A,B,C两两互斥,且A①B与C是对立事件,则P(C)=1-P(A①B)=1-P(A)-P(B)=1-0.45-0.20=0.35.8.(对应题型五)经统计某储蓄所一个窗口等候的人数及相应的概率如下:排队人数012345人及5人以上概率t0.30.160.30.10.04(1)t=________;(2)至少3人排队等候的概率是________.【答案】(1)0.1(2)0.44【解析】(1)①t+0.3+0.16+0.3+0.1+0.04=1,①t=0.1.(2)至少3人包括3人,4人,5人以及5人以上,且这三类是互斥的,①概率为0.3+0.1+0.04=0.44【查漏补缺】1.在8件同类产品中,有5件正品,3件次品,从中任意抽取4件,下列事件中的必然事件是()A.4件都是正品B.至少有一件次品C.4件都是次品D.至少有一件正品【解答】解:①在8件同类产品中,有5件正品,3件次品,从中任意抽取4件,4件都是正品是随机事件;至少有一件次品是随机事件;4件都是次品是不可能事件;至少有一件正品是必然事件,立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.【答案】(1) A与C不是互斥事件;(2)B与E是对立事件;(3)B与D不是互斥事件;(4)B与C不是互斥事件;(5)C与E不是互斥事件.【解析】(1)由于事件C“至多买一种产品”中有可能只买甲产品,故事件A与事件C 有可能同时发生,故事件A与C不是互斥事件.(2)事件B“至少买一种产品”与事件E“一种产品也不买”是不可能同时发生的,故事件B与E是互斥事件.又由于事件B与E必有一个发生,所以事件B与E还是对立事件.(3)事件B“至少买一种产品”中有可能买乙产品,即与事件D“不买甲产品”有可能同时发生,故事件B与D不是互斥事件.(4)若顾客只买一种产品,则事件B“至少买一种产品”与事件C“至多买一种产品”就同时发生了,所以事件B与C不是互斥事件.(5)若顾客一件产品也不买,则事件C“至多买一种产品”与事件E“一种产品也不买”就同时发生了,事实上事件C与E满足E①C,所以二者不是互斥事件.4.从一箱产品中随机地抽取一件产品,设事件A=“抽到的是一等品”,事件B=“抽到的是二等品”.事件C=“抽到的是三等品”且已知P(A)=0.7,P (B)=0.1,P(C)=0.05,求下列事件的概率:(1)事件D=“抽到的是一等品或二等品”(2)事件E=“抽到的是二等品或三等品”(3)事件F=“抽到的是一等品或二等品或三等品”【解答】解:(1)从一箱产品中随机地抽取一件产品,设事件A=“抽到的是一等品”,事件B=“抽到的是二等品”.事件C=“抽到的是三等品”,且A、B、C互斥,P(A)=0.7,P (B)=0.1,P(C)=0.05,①事件D=“抽到的是一等品或二等品”的概率P(D)=P(A①B)=P(A)+P(B)=0.7+0.1=0.8.(2)事件E=“抽到的是二等品或三等品”的概率P(B①C)=P(B)+P(C)=0.1+0.05=0.15.(3)事件F=“抽到的是一等品或二等品或三等品”的概率P(F)=P(A①B①C)=P(A)+P(B)+P(C)=0.7+0.1+0.05=0.85.【解析】本题主要考查互斥事件的概念.由题意得事件A 与事件B 不可能同时发生,是互斥事件;事件A 与事件C 不可能同时发生,是互斥事件;当事件B 发生时,事件C 一定发生,所以事件B 与事件C 不是互斥事件,故选B .5.如果事件A 与B 是互斥事件且事件A +B 的概率是0.8,事件A 的概率是事件B 的概率的3倍,则事件A 的概率是( )A .0.4B .0.6C .0.8D .0.2 【答案】B【解析】事件A 与事件B 互斥,所以P (A +B )=P (A )+P (B )=0.8.又因为P (A )=3P (B ),所以P (A )=0.6,P (B )=0.2.6.抛掷一枚骰子,观察掷出骰子的点数,设事件A 为“出现奇数点”,事件B 为“出现2点”,已知P (A )=12,P (B )=16,出现奇数点或2点的概率之和为( )A .12B .56C .16D .23【答案】D【解析】记“出现奇数点或2点”为事件C ,因为事件A 与事件B 互斥,所以P (C )=P (A )+P (B )=12+16=23.故选D .7.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .1 【答案】C【解析】设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ①B ,且事件A 与B 互斥,所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.【第1天】1.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与B B .B 与C C .A 与D D .C 与D。