大一高数期末复习课提纲笔记
《高等数学Ⅰ》期末复习提纲——知识点分析
2022级《高等数学Ⅰ》期末复习提纲——知识点分析一、函数的定义域、复合函数的复合过程及其求导、函数的基本性质1.求函数的定义域:取满足函数的各方程解的交集,再把所有交集合并,如例P2例1.2.为了使定义域在数学上有意义(常见求函数的定义域主要应考虑的6点),要求: (1)分母不能为0。
如11()f x x −=时,10x −≠; (2)偶次根号下非负。
如()f x =时,20x −≥;(3)对数的真数大于0。
如()23()ln 2f x x =−时,2230x −>;(4)正切符号下的式子不等于ππ2k +,k Z ∈。
如n 2ta y x =,2ππ2x k ≠+; (5)余切符号下的式子不等于πk ,k Z ∈。
如t 2co y x =,2πx k ≠; (6)反正弦、反余弦符号下的式子绝对值小于等于1。
如()1arcsi 2n y x =+,211x +≤;()1arcco 2s y x =−,211x −≤.2.写复合函数的复合过程:把所给函数表示成基本初等函数与多项式函数的复合.(基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数). 基本方法:由外往里,逐层写出,直至多项式函数为止。
3.函数的基本性质:单调性、有界性、奇偶性、周期性P103例6.11(当结论用) 设()f x 是[],a a −上的连续函数,则 (1)若()f x 是奇函数,则()d 0aa f x x −=⎰;(2)若()f x 是偶函数,则()()0d 2d a aaf x x f x x −=⎰⎰.说明:定积分的计算符合该结论时,应用在定积分的计算中,可以简化运算.二、函数极限(两个重要极限、等价无穷小替换、微积分学基本定理)(1)第一个重要极限:00 sin lim 10x x x →⎧⎪=⎨⎪⎩①型②分子与分母同变量;一般形式:()()()0sin lim 1f x f x f x →=. 区别于sin lim0x xx ∞→=,π2sin 2lim πx x x →=. (2)第2个重要极限:()11lim 1e ,lim 1e xxx x x x →→∞⎛⎫+=+= ⎪⎝⎭() 10 ∞⎧+⎪⎪⎨⎪⎪⎩①型② 括号内变量部分与指数部分互为倒数一般形式()()()()()()101lim 1e ,lim 1e f x f x f x f x x f x f →∞→⎡⎤+=+=⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦.2.等价无穷小替换(1)常用等价无穷小量(当0x →时) 1)sin arcsin tan arctan x x x x x ;2)211cos 2x x −; 3)e 1x x −; 4)()ln 1x x +;511nx .1)∼∼∼∼2)1−122; 3)ln(14)−5)√1n3.极限(微积分学基本定理 P106) P108(1)运用公式:()()()()'d 'xax G f t t f x ==⎰,或结合()[]()()d '()'()u x af t t f u x u x =⋅⎰.(()f t 连续,()u x 可导)(2)求例6.16类的极限,通常使用洛必达法则处理. 三、反常积分的收敛与发散§6.5广义积分( P108)的例题及练习题 四、简单函数的求导与微分(一阶、二阶导)1.六类基本初等函数的求导公式:表3.1 六类基本初等函数求导公式211'x x ⎛⎫=− ⎪⎝⎭; '=.2.求一阶导数:(1)简单函数求导:P42定理3.1及例3.5定理3.1 设()(),u u x v v x ==在x 处可导,则(1)()'''u v u v ±=±, (2)()'''uv u v uv =+, (3)2'''u u v uv v v −⎛⎫= ⎪⎝⎭. ()y f x =的一阶导数一般记为'y ,()'f x ,d d y x ,()d d f x x(2)复合函数求导 (P42):()()()()()()''''''y f x f u x f x x ϕϕϕϕ===⎡⎤⎡⎤⎣⎦⎣⎦或d d d d d d y y ux u x=⋅或 '''x u x y y u =⋅. P44例3.7—3.9及相关练习题3.求二阶导数:先求一阶导数,再对一阶导数求导,第二次求得的即为二阶导数.4.求函数的微分(求微分先求导):先求导,再写成()'d 'd d xy y x y x == P52—P53例题及练习题(第2题——第4题)类型 五、函数的单调性、凹凸性及拐点、极值与最值1.求函数的单调(增减)区间方法:(1)指出函数的定义域;(2)求导()'f x ,且令()'0f x >或()'0f x ≥;(3)解不等式,求出不等式的解,并结合函数的定义域,即可求出函数的单调增减区间。
大一高数笔记全部知识点
大一高数笔记全部知识点第一章数列与极限1.1 数列1.1.1 数列的概念1.1.2 等差数列1.1.3 等比数列1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在的条件1.2.3 极限的性质1.3 极限运算法则1.3.1 无穷小量与无穷大量1.3.2 极限的四则运算第二章函数与连续2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的性质2.2 基本初等函数2.2.1 幂函数与指数函数2.2.2 对数函数与指数对数函数2.3 函数的极限与连续性2.3.1 函数的极限2.3.2 函数的连续性第三章导数与微分3.1 导数的概念与计算方法3.1.1 导数的定义3.1.2 常用函数的导数计算3.2 微分的概念与性质3.2.1 微分的定义3.2.2 微分的性质3.3 高阶导数与导数的应用3.3.1 高阶导数的定义3.3.2 导数的应用:切线与法线第四章积分与不定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的性质4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质4.3 积分的运算法则与应用4.3.1 积分的基本运算法则4.3.2 积分的应用:面积与曲线长度第五章多元函数与偏导数5.1 多元函数的概念与性质5.1.1 多元函数的定义5.1.2 多元函数的性质5.2 偏导数的概念与计算方法5.2.1 偏导数的定义5.2.2 常用函数的偏导数计算5.3 高阶偏导数与微分的应用5.3.1 高阶偏导数的定义5.3.2 微分的应用:切平面与法线以上是大一高数课程中的全部知识点。
通过学习这些知识,我们可以建立起数学的基础框架,为以后的学习打下坚实的基础。
每个知识点都有其重要性和实用性,在理解和掌握的过程中,我们要注重理论联系实际,通过例题和应用题的练习来提高解题能力。
希望同学们能够认真学习,并在课后进行适当的巩固和扩展。
加油!。
大一高数期末复习课提纲.
1 2 1 lim+ ( x + C 2 = lim ( x + C1 , 即1 + C 2 = + C1 , x → 1 x → 1 2 2 1 2 1 lim ( x + C 3 = lim ( x + C 2 , 即+ C 3 = 1 + C 2 , x →1 + 2 x →1 2 1 联立并令 C1 = C , 可得 C 2 = +C , C 3 = 1 + C . 2 1 2 2 x + C , x < 1 1 故∫ max{1, x }dx = x + + C , 1 ≤ x ≤ 1.
2 1 2 2 x + 1 + C, x > 1 36
第五章定积分定积分的定义几何意义 , , 基本性质 (线性区间可加性比较性
质和求极限结合变上限函数及其导数(和求极限结合基本公式 b N L公式 f ( xdx = F( x b a a b m 定积分估值定理(b a ≤ a f ( xdx ≤ M(b a ∫ ∫ 37
b β 换元法f ( xdx x = (t f ((t′(tdt ∫a ∫α 计算 b b b 分部积分法∫ udv = uv a ∫ vdu a a 无穷限的广义积分基本概念无界函数的广义积分广义积分计算 38
第六章定积分的应用平面图形的面积直角参数极坐标 (直角 , , 旋转体体积几何应用体积截面面积已知立体的体积 (直角参数极坐标 , , 直角平面曲线的弧长
39。
大一高数知识点笔记整理
大一高数知识点笔记整理一、导数与微分1. 导数的定义在数学中,导数是用来描述函数某一点附近的变化率的概念。
导数的定义是函数在某一点的极限,即函数在该点的切线斜率。
2. 常见函数的导数公式- 常数函数:导数为0- 幂函数:导数为幂次减一乘以原幂次系数- 指数函数:导数等于指数函数的自变量乘以常数函数ln的导数- 对数函数:导数等于自变量倒数乘以常数函数ln的导数- 三角函数:导数等于三角函数的导函数3. 微分的概念微分是导数的另一种表示方式。
微分表示函数在某一点附近的近似线性变化。
4. 微分的性质- 微分可加性:如果f(x)和g(x)都在某一点可微分,则(f+g)'(x) = f'(x) + g'(x)- 常数倍法则:如果f(x)在某一点可微分,则(c · f(x))'(x) =c · f'(x),其中c为常数二、变化率与速度1. 平均变化率平均变化率是用来衡量函数值在一个区间内的平均变化程度的概念。
计算公式为函数在两个点上的差值除以自变量的差值。
2. 瞬时变化率瞬时变化率是用来衡量函数值在某一点上的瞬时变化程度的概念。
计算公式为函数在某一点的导数值。
3. 速度与加速度在物理学中,速度是描述物体位置变化的物理量。
速度的导数是加速度。
三、函数的极值与最值1. 函数的极值函数的极值是函数在定义域内取得的最大值和最小值。
极大值是函数在某一点局部最大的函数值,极小值是函数在某一点局部最小的函数值。
极值点是函数在该点的导数为0或不存在的点。
2. 求极值的方法求解函数的极值可以使用导数的概念。
具体步骤为:求出函数的导数,将导数等于0的解称为临界点,再利用导数的符号来分析临界点的性质,得出函数的极值。
3. 函数的最值函数的最值是函数在定义域内取得的最大值和最小值。
最大值是函数的最大函数值,最小值是函数的最小函数值。
四、不定积分与定积分1. 不定积分的概念不定积分是求函数的原函数的过程。
大一上学期 高数复习要点整理
高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
(高等数学、考研数学通用)高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。
大一高数知识点笔记Word
大一高数知识点笔记Word 大一高数知识点笔记一、函数与极限1. 函数概念函数是一种映射关系,将一个集合的元素对应到另一个集合的元素上。
在数学中,通常用f(x)表示函数,其中x为自变量,f(x)为对应的因变量。
2. 极限的定义与性质极限是函数在某点附近的局部行为的一种度量。
设函数f(x)在x=a的某个去心邻域内有定义,则当自变量x无限接近a时,对应的函数值f(x)趋近于某个常数L,记为lim[x→a] f(x) = L。
3. 基本初等函数的极限a) 幂函数:lim[x→a] x^n = a^n;b) 指数函数:lim[x→a] a^x = a^a;c) 对数函数:lim[x→a] logₐ(x) = logₐ(a);d) 三角函数:lim[x→a] sin(x) = sin(a)、lim[x→a] cos(x) =cos(a);e) 反三角函数:lim[x→a] arctan(x) = arctan(a)、lim[x→a] arcsin(x) = arcsin(a)。
二、导数与微分1. 导数的定义与计算导数描述了函数在某一点的瞬时变化率,表示为f'(x)或dy/dx。
导数的定义为:f'(x) = lim[h→0] (f(x+h)-f(x))/h。
2. 基本初等函数的导数a) 幂函数:(x^n)' = nx^(n-1);b) 指数函数:(a^x)' = a^x * ln(a);c) 对数函数:(logₐ(x))' = 1 / (x * ln(a));d) 三角函数:(sin(x))' = cos(x)、(cos(x))' = -sin(x);e) 反三角函数:(arctan(x))' = 1 / (1 + x^2)、(arcsin(x))' = 1 /√(1 - x^2)。
3. 微分与微分近似微分是导数的微小改变量,表示为df(x)或dy。
高数大一上期末复习要点
高数大一上期末复习要点高等数学是一门大一上学期的重要课程,它是数学的一门基础性课程,也是理工科学生必修的一门课程。
本文将总结和归纳高等数学大一上学期的复习要点,以帮助同学们对这门课程进行有效的复习。
一、函数与极限1. 函数的概念、性质和表示法2. 函数的基本类型:多项式函数、指数函数、对数函数、三角函数等3. 函数的运算:和、差、积、商、复合函数4. 函数的单调性、奇偶性、周期性以及对称性5. 极限的定义、性质和相关定理6. 数列极限与函数极限的关系二、导数与微分1. 导数的概念、定义和几何意义2. 导数的计算法则:常数求导、幂函数求导、指数函数求导、对数函数求导、三角函数求导等3. 高阶导数的概念与计算4. 函数的微分与微分近似值的应用5. 函数的单调性与极值问题6. 函数的图像与导数的关系三、积分与不定积分1. 积分的概念、性质和计算方法2. 定积分的概念、性质和计算方法3. 牛顿-莱布尼茨公式与不定积分的概念4. 不定积分的基本性质和计算方法5. 不定积分的换元法与分部积分法6. 定积分的几何应用:面积、曲线长度、平均值等四、微分方程1. 微分方程的概念和基本形式2. 一阶微分方程的可分离变量、齐次方程和线性方程解法3. 一阶线性微分方程的常数变易法和伯努利方程解法4. 二阶齐次线性微分方程的特征方程解法5. 二阶非齐次线性微分方程的特解叠加法与待定系数法6. 微分方程的应用:变种种群模型、生命问题、机械振动等五、级数与幂级数1. 数列与级数的概念和性质2. 收敛与发散的判定:比较判别法、比值判别法、根值判别法等3. 常数项级数的和与收敛域4. 幂级数的收敛半径与收敛域5. 幂级数的运算:求导、求积等6. 幂级数的应用:函数展开、函数逼近等上述要点是大一上学期高等数学课程的重点内容,同学们在复习的过程中应该重点关注,并通过课堂笔记、教材、习题集等进行系统复习和巩固。
同时,在复习过程中要注重提高自己的问题解决能力和应用能力,培养数学思维和分析能力。
大一高数期末复习课提纲(很有用)
18
常用函数的麦克劳林公式
2 n+1 x 3 x5 x sin x = x − + − ! + ( −1)n + o( x 2 n+2 ) 3! 5! ( 2n + 1)! 2n x 2 x4 x6 x n 2n cos x = 1 − + − + ! + ( −1) + o( x ) 2! 4! 6! ( 2n)!
( a) 当 f ʹ′ʹ′( x0 ) < 0, f ( x )在 x0 处取得极大值 , ( b) 当 f ʹ′ʹ′( x0 ) > 0, f ( x )在 x0 处取得极小值 .
23
求极值的步骤:
a. 求导数 f ʹ′( x); b. 求驻点(方程 f ʹ′( x) = 0 的根) 及 f ʹ′( x)不存在 的点. c. 检查 f ʹ′( x) 在b中所有点左右的正负号, 或 f ʹ′ʹ′( x) 在该点的符号, 判断极值点. d . 求极值.
x x n x ln(1 + x ) = x − + − ! + ( −1) + o( x n+1 ) 2 3 n+1
2
3
n+1
19
1 2 n n = 1 + x + x + ! + x + o( x ) 1− x m( m − 1) 2 (1 + x ) = 1 + mx + x +! 2! m( m − 1)!( m − n + 1) n n + x + o( x ) n!
lim f ( x ) = f ( x0 )
6
大一高数笔记知识点总结
大一高数笔记知识点总结一、导数与微分1.1 定义与性质在数学中,导数(derivative)是一个用于衡量函数变化率的概念。
对于函数f(x),它在某一点x处的导数可以通过求函数在该点处的切线斜率来定义,记作f'(x) 或 dy/dx。
1.2 求导法则求导法则是用于计算导数的一些基本规则。
常见的求导法则包括:1.2.1 常数法则如果f(x)为常数,则其导数为0。
即对于任意常数c,有d(c)/dx = 0。
1.2.2 基本函数法则对于基本函数(如幂函数、指数函数、对数函数、三角函数等),我们可以通过一些特定的求导公式来计算其导数。
1.2.3 和、差、积、商法则这些法则提供了计算复合函数导数的方法。
其中,和差法则可用于计算两个函数之和或差的导数,积法则可用于计算两个函数的乘积的导数,商法则可用于计算两个函数的商的导数。
1.2.4 链式法则链式法则是求导中的一个重要工具,可以用于计算复合函数的导数。
它将复合函数的导数与内外函数的导数联系起来。
1.3 微分微分指的是对函数的导数进行操作。
在微积分中,微分可以用来衡量函数对自变量变化的敏感程度。
根据微分的定义,我们有dx = f'(x)dx。
这里,dx表示自变量的一个小增量,f'(x)表示函数在x处的导数。
二、极限与连续2.1 极限极限是描述函数趋近某一值的概念。
对于函数f(x),当x无限接近于某个值a时,函数的极限可以用lim(x→a)f(x)来表示。
2.2 极限的性质极限具有许多重要的性质,其中一些常见的性质包括极限的唯一性、极限的四则运算、复合函数的极限等。
2.3 连续性连续性是数学中一个重要的概念。
如果函数在某一点x=a处的极限等于该点处的函数值,即lim(x→a)f(x) = f(a),则称函数在该点处连续。
2.4 连续函数性质连续函数具有一些重要的性质,如连续函数的和、差、积、商仍然是连续函数,以及复合函数的连续性等。
三、导数应用3.1 切线与法线对于函数f(x),导数f'(x)可以用于求解函数曲线上某点处的切线斜率。
大一期末高数(同济第六版)复习提纲(精选5篇)
大一期末高数(同济第六版)复习提纲(精选5篇)第一篇:大一期末高数(同济第六版)复习提纲高数一期末考试复习大纲题型:解答题(共12小题)类型:求极限、求导数及微分(包括导数的应用)、求不定积分、求定积分(包括定积分的应用)、求解微分方程具体知识点第一章数列的极限、函数的极限(以上只需掌握求极限方法、极限定义了解即可)无穷小与无穷大、极限运算法则、极限存在准则,两个重要极限无穷小的比较、函数的连续性、连续函数的运算和初等函数的连续性第二章导数定义及几何意义、函数的求导法则、高阶导数、隐函数导数、参数方程所确定的函数的导数(会求二阶导数)、函数的微分公式第三章洛必达法则、函数的单调性与曲线的凹凸性、函数的极值与最值第四章求不定积分(换元法、分部积分法)、有理函数的积分第五章微积分基本公式、定积分的换元法和分部积分法第六章定积分在几何学上的应用第七章可分离变量微分方程、齐次方程、一阶线性微分方程第二篇:高数复习提纲第一章1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、五章不定积分:1、两类换元法2、分部积分法(注意加C)定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第三篇:高数(上)(复习提纲)《高等数学I》复习提纲一、基本概念、公式、法则:“极限,连续,导数,微分,积分”的定义、性质--------基础1、导数(微分)部分:无穷小之间的比较(高阶、同阶、等价、k 阶),常见的等价无穷小(x→0),两个重要极限,初等函数的连续性,闭区间上连续函数的介值定理,基本初等函数的求导公式,复合函数求导的链式法则,求极限的洛必达法则,微分中值定理(Rolle、Lagrange、Cauchy),泰勒公式(特别地,麦克劳林公式),函数的单调性与凹凸性,极值存在的必要条件与充分条件,曲线的水平(竖直)渐近线,平面曲线(直角坐标系、极坐标系、参数方程)的曲率公式、弧微分公式;求极限夹逼准则,可导与连续的关系,可导与可微的关系。
大一高数期末复习课提纲笔记[优质ppt]
2
当x0,
ax 1 ~ xlna arcsinx ~ x arctaxn~ x (1x) 1 ~ x taxn sixn~ x 3
2
大学生学术君QQ:10831431
2
(1) 消去零因子法; (2) 同除最高次幂; (3) 通分;
洛必达法则+变上限积分求导
大学生学术君QQ:10831431
3
例
1taxn 1sinx
lim
x0
etan xes ixn
ta x n sixn lim
x 0(1 ta x n1 six) n(ta x e nesixn )
12lxi m 0teatan xnx essiinnxx1 2lx i0 m es itxna(etn xa n xss iixnn x1)
(4) 同乘共轭因式; (5) 利用无穷小运算性质
函 (6) 复合函数求极限法则
数 极
(7) 利用左、右极限求分段函数极限;
限 (8) 利用夹逼定理;
的 求
(9)
利用两类重要极限;
法 (10) 利用等价无穷小代换;
(11) 利用连续函数的性质(代入法);
(12) 利用洛必达法则.
洛必达法则+等价无穷小代换
1
1
(a1) limax 0, lim a x ,
x0
x0
limarct1an, limarcta1n.
x0
x 2 x0
x2
一类需要注意的极限
x2 1
lim
1,
x2 1
lim
1.
(完整word版)大一高数笔记
导数与极限(一)极限 1. 概念(1)自变量趋向于有限值的函数极限定义(δε-定义) Ax f ax =→)(lim ⇔0>∀ε,0>∃δ,当δ<-<||0a x 时,有ε<-|)(|A x f 。
(2)单侧极限左极限: =-)0(a f Ax f a x =-→)(lim ⇔0>∀ε,0>∃δ,当δ<-<x a 0时,有ε<-|)(|A x f 。
右极限: =+)0(a f Ax f a x =+→)(lim ⇔0>∀ε,0>∃δ,当δ<-<a x 0时,有ε<-|)(|A x f 。
(3)自变量趋向于无穷大的函数极限定义1:0,0>∃>∀X ε,当X x >,成立()ε<-A x f ,则称常数A 为函数()x f 在x 趋于无穷时的极限,记为()Ax f x =∞→lim 。
A y =为曲线()x f y =的水平渐近线。
定义2:00>∃>∀X ,ε,当X x >时,成立()ε<-A x f ,则有()Ax f x =+∞→lim 。
定义3:00>∃>∀X ,ε,当X x -<时,成立()ε<-A x f ,则有()A x f x =-∞→lim 。
运算法则:1) 1) 若()A x f =lim ,()∞=x g lim ,则()()[]∞=+x g x f lim 。
2) 2) 若()()∞≠=但可为,0lim A x f ,()∞=x g lim ,则()()∞=•x g x f lim 。
3) 3) 若()∞=x f lim ,则()01lim=x f 。
注:上述记号lim 是指同一变化过程。
(4)无穷小的定义0>∀ε,0>∃δ,当δ<-<||0a x 时,有ε<|)(|x f ,则称函数)(x f 在a x →时的无穷小(量),即 0)(lim =→x f a x 。
大一下高数笔记期末知识点
大一下高数笔记期末知识点一、函数与极限1. 函数概念与表示函数是一种对应关系,将一个变量的值映射到另一个变量的值。
常用的函数表示方法有解析式、图像、数据表等。
2. 极限的引入与定义极限是数学中非常重要的概念,用于描述函数在某点附近的趋势。
对于函数f(x),当自变量x无限接近某一值a时,如果函数值f(x)无限接近于L,那么称函数f(x)在点a处的极限为L,记作lim(f(x))=L。
3. 极限的运算法则- 极限的四则运算法则:加法、减法、乘法、除法;- 极限的乘方法则:幂函数求极限时的运算法则;- 极限的复合法则:复合函数求极限时的运算法则。
二、导数与微分1. 导数的定义与性质导数是描述函数在某一点上的变化率,可通过极限的方法定义。
若函数f(x)在点x=a处存在导数,则称函数f(x)在点x=a处可导。
2. 常用函数的导数- 幂函数的导数;- 指数函数的导数;- 对数函数的导数;- 三角函数的导数;- 反三角函数的导数。
3. 微分与微分公式微分是导数的一种形式。
当一个函数在某点可导时,可以用微分来近似表示函数在该点附近的变化。
常见的微分公式有: - 微分的四则运算法则;- 微分的链式法则。
三、不定积分与定积分1. 不定积分的概念与性质不定积分是对函数的原函数进行求解的过程。
若函数F(x)在区间[a, b]上是f(x)的一个原函数,则称F(x)是f(x)在区间[a, b]上的一个不定积分。
2. 基本积分公式- 幂函数的积分;- 指数函数的积分;- 对数函数的积分;- 三角函数的积分;- 反三角函数的积分。
3. 定积分的定义与性质定积分描述了曲线与坐标轴之间所夹的面积。
对于函数f(x),在区间[a, b]上的定积分表示为∫[a, b]f(x)dx。
4. 定积分的计算方法常见的定积分计算方法包括:- 几何法求定积分;- 积分表法求定积分;- 换元法求定积分。
四、级数与幂级数1. 级数与部分和级数是由一列数按一定的顺序相加所得到的无穷和。
笔记整理大一高数知识点
笔记整理大一高数知识点在大一的高等数学课程中,学生们需要掌握和理解许多重要的数学知识点。
为了帮助同学们更好地学习和记忆这些知识点,本文将对大一高数的重要知识进行整理和总结。
1. 极限与连续1.1 极限的定义与性质- 数列极限的定义- 函数极限的定义- 极限的性质(四则运算、复合函数)1.2 无穷大与无穷小- 无穷大的定义- 无穷小的定义- 无穷小的比较- 高阶无穷小1.3 连续性与间断点- 函数的连续性定义- 连续函数的性质- 间断点的分类和判断- 可导与连续的关系2. 导数与微分2.1 导数的概念与计算- 导数的定义- 导数的四则运算法则- 高阶导数与Leibniz公式2.2 常见函数的导数- 幂函数、指数函数、对数函数的导数 - 三角函数的导数- 反三角函数的导数- 复合函数的导数2.3 微分学的应用- 极值与最值问题- 弧长与曲率- 泰勒展开式3. 不定积分与定积分3.1 不定积分与原函数- 不定积分的定义- 基本积分公式- 积分方法与换元法3.2 定积分的概念与性质- 定积分的定义- 定积分的性质(线性性、区间可加性等) - 牛顿-莱布尼茨公式3.3 定积分的计算- 分部积分法- 曲线的长度与面积- 广义积分的收敛性4. 无穷级数4.1 无穷级数的定义与收敛性 - 无穷级数的定义- 收敛级数与发散级数的判断 - 收敛级数的性质4.2 常见的数项级数- 等比级数- 幂级数- 正项级数的审敛法4.3 函数项级数- 函数项级数的收敛性- 一致收敛性与点态收敛性 - 幂级数的收敛半径5. 多元函数微分学5.1 偏导数的定义与计算- 偏导数的定义- 偏导数的计算方法- 高阶偏导数5.2 全微分与导数- 全微分的定义- 导数的定义- 隐函数与显函数的导数5.3 多元函数的极值与条件极值- 多元函数的极值判断- 条件极值问题的求解通过对以上知识点的整理与总结,相信同学们可以更好地理解和记忆大一高等数学中的重要知识,为后续学习打下坚实的基础。
大一上学期高数期末知识点
大一上学期高数期末知识点高等数学是大学数学的重要组成部分,也是理工科学生必修的一门基础课程。
下面将对大一上学期高等数学的期末考试中可能涉及的重要知识点进行总结和梳理,供同学们参考复习。
1. 函数与极限- 函数的定义及性质- 极限的概念和性质- 极限的运算法则- 无穷小与无穷大- 函数连续性及其判定2. 导数与微分- 导数的定义及性质- 常见函数求导法则- 高阶导数和隐函数求导- 微分的定义及性质- 泰勒展开与近似计算3. 微分中值定理与应用- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 应用题中的最值和最优化问题4. 不定积分与定积分- 不定积分的基本概念- 常见函数的不定积分- 定积分的定义及性质- 牛顿-莱布尼茨公式- 定积分的应用5. 微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 常系数线性齐次微分方程- 高阶线性齐次微分方程及特征方程6. 多元函数及偏导数- 多元函数的定义及性质- 偏导数的概念和计算方法- 隐函数求导- 多元函数的极值及条件极值7. 重积分- 重积分的定义及性质- 二重积分的计算方法- 三重积分的计算方法- 坐标变换与重积分的应用8. 曲线与曲面积分- 第一类曲线积分的计算- 第二类曲线积分的计算- 曲面积分的计算- 格林公式及其应用9. 空间解析几何- 点、直线、平面的坐标表示 - 空间曲线和空间曲面的方程 - 空间曲线的切向量和法平面 - 直线与平面的位置关系10. 数列和级数- 数列的定义和性质- 数列极限的概念和性质- 常见数列极限的计算方法 - 级数的概念和性质- 收敛级数和发散级数的判定以上是大一上学期高等数学的重要知识点总结,同学们可以根据自己的学习进度和实际情况进行有针对性的复习。
希望大家在期末考试中取得好成绩!。
高数大一知识点笔记整理
北师版《梯形》说课稿第一课时
梯形第一课时说课稿
——北师大版数学八年级上册说课稿
各位老师:大家好,今天我将从教材分析,教法、学法的选择,教学目标的确定,教学程序几个方面说明自已的教学设想。
教材的地位与作用:
在八年级上学期的第四章平行四边形其后我们与梯形不期而遇。
以往经验告诉我许多学生认为梯形是平行四边形的一种,那幺刚刚学过的平行四边形对马上要展开的梯形的学习有什幺帮助?反之学了梯形对四边形的进一步理解又有何作用?其实从知识结构看如果把四边形看作一树干,那幺这二者是两个树叉,而且它们又各有自已的分枝。
从知识之间的联系上来看梯形是平行四边形与三角形知识的整合,在探索它的概念、性质、基本本辅助线的过程中体现了化归的思想。
从这节在本章节的作用上看,它对整章节教学起承上启下的作用。
通过类比的思想方法循序渐进地为学生呈现出要探索的问题,符合辩证法认识事物的规律。
一、教学目标与重点:
教学目标:1、经历探索掌握梯形的有关概念,性质和五种基本辅助线。
初步体会平移,轴对称的有关知识在研究梯形性质中的运用。
2、在简单的操作活动中发展学生的说理意识,主动探讨的习惯。
3、让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦。
教学重点:本节分成三个层次1、介绍梯形的概念,认识梯形的相关底,。
大一高数知识点笔记
大一高数知识点笔记一、函数与极限1. 函数的概念函数是一种特殊的关系,它将一个数集映射到另一个数集。
在数学中,我们用f(x)表示函数,其中x表示自变量,f(x)表示与x对应的函数值。
2. 极限的定义在函数的定义域内,当自变量趋近于某个值时,如果函数的函数值趋近于一个确定的值,那么这个确定的值就是极限。
数学上用lim表示极限。
3. 重要的极限公式- 极限四则运算法则- 基本初等函数的极限- 夹逼定理- 无穷小量与无穷大量的极限二、导数与微分1. 导数的定义导数是描述函数在某一点的变化率。
对于函数f(x),其导数可以通过极限的方法定义为f'(x) = lim((f(x+h)-f(x))/h),其中h趋近于0。
2. 常见函数的导数- 幂函数的导数- 指数函数与对数函数的导数- 三角函数的导数3. 导数的基本运算法则- 常数乘法法则- 和差法则- 乘法法则- 除法法则- 复合函数的导数4. 微分的概念微分是导数的一种形式,它是函数在某一点的线性逼近。
微分可以表示为df(x) = f'(x)dx。
三、积分与应用1. 积分的定义积分是导数的逆运算,用来求解曲线下的面积、求解函数的原函数等。
数学上用∫表示积分。
2. 定积分与不定积分- 定积分是求解函数在一定区间上曲线下的面积,可以用定积分符号表示∫[a,b]f(x)dx。
- 不定积分是求解函数的原函数,可以用不定积分符号表示∫f(x)dx。
3. 积分的基本公式- 常数乘法法则- 和差法则- 分部积分法- 替换变量法4. 积分的应用- 面积与曲线长度的计算- 物理学中的应用:质量、能量、功等- 经济学中的应用:消费、生产函数等四、级数与收敛性1. 级数的定义级数是由一列数按照一定规律相加得到的无穷数列。
数学上用∑表示级数。
2. 数项级数与部分和数项级数是级数中的每一项,部分和是前n项的和。
3. 收敛与发散如果数项级数的部分和能够在某个值上趋于有限的数,那么该级数就是收敛的;否则,该级数就是发散的。
高数大一期末知识点
高数大一期末知识点在大一高等数学课程的学习过程中,我们接触了许多重要的数学知识点。
这些知识点对于我们建立数学基础、理解高数的思想方法以及解决实际问题起到了至关重要的作用。
本文将对大一高数期末考试中常见的知识点进行概括性总结,以帮助我们复习和回顾。
1. 函数与极限1.1 函数的定义与性质函数是一种映射关系,将输入的值映射到输出的值。
常见的函数类型包括多项式函数、指数函数、对数函数、三角函数等。
函数的性质包括定义域、值域、奇偶性与周期性等。
1.2 极限的概念与性质极限是函数在某一点或无穷远处的趋近值。
我们需要掌握函数极限的定义,以及常见的极限性质,如四则运算法则、夹逼定理、无穷小量与无穷大量等。
2. 导数与微分2.1 导数的定义与计算导数是函数变化率的一种度量方式,定义为函数在某一点处的极限。
我们需要学习导数的定义与计算方法,包括基本函数的导数、常用导数公式以及导数的四则运算法则等。
2.2 函数的最值与最值点函数的最值是指函数在定义域内取得的最大值或最小值。
最值点是函数极大值或极小值所对应的自变量值。
3. 积分与微分方程3.1 不定积分与定积分不定积分是原函数的概念,也叫反导函数。
定积分是函数在一段区间上的累积量。
我们需要学习不定积分的计算方法和性质,以及定积分的定义和计算方法。
3.2 微分方程的基本概念微分方程是含有导数的方程,常见的微分方程类型包括一阶微分方程和二阶线性齐次微分方程。
我们需要学习微分方程的解法和常见的一阶微分方程解法技巧,如分离变量法、齐次方程的解法等。
4. 无穷级数与幂级数4.1 无穷级数无穷级数是无穷个数项的和,常见的无穷级数类型包括等比级数、调和级数等。
我们需要学习无穷级数的求和公式和性质。
4.2 幂级数幂级数是以自变量为变量的无穷级数,常见的幂级数类型包括幂函数级数、三角函数级数等。
我们需要学习幂级数的收敛域、求和公式以及幂级数在函数展开中的应用。
5. 多元函数与偏导数5.1 多元函数的概念与性质多元函数是含有多个自变量的函数,我们需要学习多元函数的定义域、值域以及函数的性质。
大一高等数学的知识点纲要
大一高等数学的知识点纲要
一、函数与极限
1. 函数的概念与性质
2. 极限的定义与性质
3. 常见函数的极限计算方法
4. 连续与间断的判断与性质
二、导数与微分
1. 导数的定义与性质
2. 常用函数的导数计算方法
3. 高阶导数与隐函数求导
4. 微分的概念与应用
三、积分与定积分
1. 不定积分的概念与计算方法
2. 定积分的概念与性质
3. 牛顿—莱布尼茨公式与换元积分法
4. 定积分的应用:曲线长度、曲线面积、旋转体体积等
四、级数与一元函数级数
1. 数列与级数的概念与性质
2. 收敛级数与发散级数的判定方法
3. 常见级数的求和方法
4. 函数展开为级数与幂级数的应用
五、多元函数与偏导数
1. 多元函数的概念与性质
2. 偏导数的定义与计算方法
3. 雅可比矩阵与梯度的应用
4. 高阶偏导数与泰勒展开
六、多重积分与曲线曲面积分
1. 二重积分的概念与计算方法
2. 三重积分与累次积分的计算顺序
3. 曲线积分的概念与计算方法
4. 曲面积分的概念与计算方法
七、常微分方程与线性代数
1. 一阶常微分方程的基本概念与求解方法
2. 高阶线性常微分方程的解法
3. 线性代数的基本概念与性质
4. 线性方程组的解法与矩阵的应用
八、数学物理方程与概率统计
1. 波动方程与热传导方程的解法
2. 概率与统计的基本概念与性质
3. 随机变量与概率分布函数
4. 参数估计与假设检验
以上是大一高等数学中涉及的主要知识点纲要,通过学习这些内容,可以打下坚实的数学基础,为进一步深入学习数学打下基础。
希望本文对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学生学术君QQ:10831431
4
两对重要的单侧极限
( a 1 )
x 0
l i m a 0 ,
1 x
1 1 arctan . l i m arctan , lim 0 x 0 x 2 x 2 x
x0
lim a ,
1 x
一类需要注意的极限
x2 1 lim 1 , x x
1
大学生学术君QQ:10831431
常用等价无穷小
ex 1
当 x 0 ,
a ax 1 ~ xln
~x sinx ~ x tan x~ x ln( 1x )~
~x arctan x~ x
arcsin x
x
x 2
2
x ( 1x ) 1 ~
1 cos x~
tan x sin x ~
所以 x 1 是函数的第一类间断点 ,且是可去间 .
大学生学术君QQ:10831431
10
例 设函数
f ( x)
a (1 cos x ) x2
x0 x0 x0
1,
ln ( b x 2 ) ,
在x = 0连续,则a=
2
, b=
e .
a (1 cos x ) a 提示: f (0 ) lim 2 x 0 2 x
x 1 lim 1 . x x
2
5
大学生学术君QQ:10831431
x x0 连续的定义 左连续、右连续 第一类间断 (可去型, 跳跃型) 间断点的分类 第二类间断 (无穷型, 振荡型) 最大,最小值定理 闭区间连续函数的性质 有界性 零点定理 介值定理,
tan x sin x 1 tan x si x n 1 lim lim s ix n ta x n s ix n tan x sin x x 0 x 0 2 e ( e 1 ) 2 e e
ta x n s ix n x sin x , 当 x 0 , e 1 ~ tan 1 tan x sin x 故原 式 lim si x n tan si x n x 0 2 e ( ex 1 ) 1 1 tan x sin x lim s i x n x 0 2 e (tan x sin x ) 2
x 2
3
大学生学术君QQ:10831431
2
(1) 消去零因子法; (2) 同除最高次幂; (3) 通分; 函 数 极 限 的 求 法
(4) 同乘共轭因式; (5) 利用无穷小运算性质 (6) 复合函数求极限法则
(7) 利用左、右极限求分段函数极限; (8) 利用夹逼定理;
(9) 利用两类重要极限;
(10) 利用等价无穷小代换;
(11) 利用连续函数的性质(代入法); (12) 利用洛必达法则.
洛必达法则+等价无穷小代换 洛必达法则+变上限积分求导 大学生学术君QQ:10831431
3
1 tan x 1 sin x 例 lim tan x si x n x 0 e e tan x sin x lim tan x sx x 0 (1 tan x 1 sin x )(e ein )
极限存在准则
单调有界必有极限
sin x 1 lim x 0 x 两类重要极限 1 x lim (1 ) e x x
有限个无穷小的和,积仍是无穷小 无穷小性质 无穷小与有界量的积仍是无穷小
与 无穷大 比较 低阶,同阶, 等价, k
2 1 并判断其类型 .
1 sin( x 1) sin 的间断点, x 1
解 : 可知 x 0,x 1是可能的间断点 . (1) 在x 0处,
x 0 2 2 lim y 1 sin ( 1 ) , lim y 1 sin ( 1 ) x 0
x = –1为第一类可去间断点
f ( x) , x 1, lim x 1
x = 1为第二类无穷间断点
x 0, lim f ( x ) 1 , lim f ( x ) 1 .
x 0 x 0
x = 0为第一类跳跃间断点 大学生学术君QQ:10831431
8
例 求y
f (0 ) lim ln (b x 2 ) ln b
因在x 0处的左右极限都存在 , 但不相等,
9
所以 x 0 为函数的第一类间断点 ,且是跳跃间 .
大学生学术君QQ:10831431
(2 )在 x1 处,
lim y lim[
x 1 x 1
2 1 2 1
1 x
1 x
1 1 sin( x 1) sin ] x 1 3
即在x 1处函数的左右极限都存 在且相等,
大学生学术君QQ:10831431
7
(1 x ) sin x 的间断点, 例求 f ( x) 并判别其类型. x ( x 1)( x 1)
是间断点, 1 , x 1 , x 0 解 x
1 (1 x ) sin x sin 1 , x 1, xlim 1 x ( x 1)( x 1) 2
lim f ( x ) f ( x0 )
大学生学术君QQ:10831431
6
例 求 f(x )
1
x 1 x
的间断点 , 并指出其类型.
1e 解当 x 0 ,x 1 时 , 函数无定义, 是函数的间断点. 1 f ( x) lim , x 0, 由于 lim x x0 x0 1 x 1 e 所以 x0是函数的第二类间断点, 且是无穷型. 1 x 1, 由于 lim f ( x ) lim 0 x x1 x1 1x 1 e 1 lim f ( x ) lim 1 x x1 x1 1x 1 e 所以 x 1是函数的第一类间断点, 且是跳跃型.