人教A版必修5数学导学案:1.2应用举例—①

合集下载

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)
BC DC = sin ∠BDC sin ∠DBC
求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°

新人教A版必修5高中数学学案教案:《1.2 应用举例(二)》

新人教A版必修5高中数学学案教案:《1.2  应用举例(二)》

数学必修五《1.2 应用举例(二)》教案教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学过程:一、复习准备:1. 讨论:测量建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?2. 讨论:怎样测量底部不可到达的建筑物高度呢?二、讲授新课:1. 教学高度的测量:① 出示例1:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:测量方法→ 计算方法 师生一起用符号表示计算过程与结论.AC =sin sin()a βαβ-,AB = AE +h =AC sin α+h =sin sin sin()a αβαβ-+h . ② 练习:如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440︒',在塔底C 处测得A 处的俯角β=501︒'. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m ) ③ 出示例2:如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .分析:已知条件和问题分别在哪几个三角形中? 分别选用什么定理来依次解各三角形? → 师生共同解答.解答:在∆ABC 中, ∠A =15︒,∠C = 25︒-15︒=10︒,根据正弦定理,sin BC A = sin AB C , BC =sin sin AB A C=5sin15sin10︒︒≈7.4524(km ),CD =BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m ). 2. 练习:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.解法:画图分析,标出各三角形的有关数据,再用定理求解. 关键:角度的概念3. 小结:审题;基本概念(方位角、俯角与仰角);选择适合定理解三角形;三种高度测量模型(结合图示分析).三、巩固练习:1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ? 答案:20+2033(m ) 2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高. (答案:230米)3. 作业:P17 练习1、3题.。

高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_28

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课教案_28

《秦九韶-海伦公式》教案【教学内容】人教版数学必修五《秦九韶-海伦公式》【教学对象】高一学生【教材分析】本节内容是高中数学必修五的第一章,是阅读与思考部分中的内容,本节课的主要意在引领学生运用所学知识对“秦九韶-海伦公式”进行证明,并进行有效的应用,让同学们从中体会到数学之美。

【知识背景】海伦公式与秦九韶公式古希腊的几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式“如果一个三角形的三边长分别为a,b,c,记那么三角形的面积为:..这一公式称为海伦公式;海伦公式又译作希伦公式、海龙公式、希罗公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式。

中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。

它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。

所以他们想到了三角形的三条边。

如果这样做求三角形的面积也就方便多了。

但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。

“术”即方法。

三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。

相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。

我国南宋时期数学家秦九韶也曾提出利用三角形的三边长求面积的秦九韶公式:.其实这两个公式实质是一致的,聪明的你能够推导出来吗?对比这两个公式,我们发现海伦公式形式漂亮,便于记忆,但是如果一个三角形的三边长是无理数的时候,还是秦九韶公式处理比较方便,现在请您选择适当的公式解决一些问题吧。

【学情分析】高二学生在进入本节课的学习之前,需要熟悉前面已学过的余弦定理、三角形面积公式以及平方差公式和完全平方公式。

新人教A版必修5高中数学第一章1.2应用举例(一)导学案

新人教A版必修5高中数学第一章1.2应用举例(一)导学案

§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题 1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°.由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45° 解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为()A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin∠ACBsin ∠ABC =50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x 2-57x )+100=28⎝⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小.二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BC sin ∠CAB =ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24(n mile).(2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).答 河对岸A 、B 两点间距离为64km.能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得: (20t )2+402-2×20t ×40·cos 45°=302. 化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2,由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.。

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_31

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课教案_31

海伦和秦九韶教学设计教材分析《海伦和秦九韶》是人教A版2003课标版必修5第一章第二节的阅读与思考,是学生学习了正弦和余弦定理,推导了已知三角形的两边及其夹角求三角形面积之后,对求三角形面积的进一步拓展学习。

海伦公式和秦九韶的“三斜求积”公式弥补了已知三角形三边求三角形面积的空白,并在生产实际中的应用很广泛。

本阅读材料可以作为一个引子可以激起学生进一步了解他们二位的兴趣,从而激发起学习数学的兴趣。

学情分析我校处于西南地区,我们班学生一半以上是留守儿童,由于家庭和学习压力等因素,网上学习机会少,自学能力相对较差。

在学生眼中的数学学习大多就是定义、定理、公式的学习,还有就是练习。

这一节课对于学生来说是新颖的,不只是公式学习,还有人文文化的学习。

高一年级的学生有一定的解三角形的基础与类比学习的能力,但是学生计算能力和计算技巧比较差。

教学目标1.知识与能力:(1)了解“三斜求积”公式,记忆海伦公式,掌握公式推导的方法;(2)能较熟练选择、应用海伦或“三斜求积”公式计算三角形的面积。

(3)数学语言转化能力。

(3)掌握基本量思想。

2.过程与方法:回顾旧知,接着问题引入,引发学生学习的兴趣,整个公式推导用类比的学习手法,学生很容易入手,在推导过程中,培养学生的计算能力以及计算技巧。

3.情感态度与价值观:在公式的推导过程,采用小组讨论的形式进行,既培养学生的运算能力,又培养学生的团体合作精神。

通过海伦和秦九韶的人物介绍,学生可以学习他们身上勇于探索的精神。

激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。

教学重难点海伦和“三斜求积”公式的推导突破重难点运用基本量思想,采用类比的学习方法,从一般到特殊的学习方法,计算过程中仔细分析式子结构,运用平方差公式和完全平方公式。

设计理念以学生为主体,知识由浅入深、层层深入,增强学生学好数学的心里体验,产生学习数学的兴趣,体验在学习中获得成功。

高中数学新人教A版必修5学案 1.2 应用举例(第3课时)

高中数学新人教A版必修5学案 1.2 应用举例(第3课时)

1.2 应用举例(第3课时)学习目标1.能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.2.本节课是在学习了相关内容后的第三节课,在对解法有了基本了解的基础上,通过综合训练强化相应的能力.3.提升提出问题、正确分析问题、独立解决问题的能力,并在学习过程中发扬探索精神. 合作学习一、设计问题,创设情境提问:前面我们学习了如何测量距离和高度,这些实际上都可转化为已知三角形的一些边和角求其余边的问题.然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题.二、信息交流,揭示规律在实际的生活中,人们又会遇到新的问题,仍然需要用我们学过的解三角形的知识来解决,大家身边有什么例子吗?三、运用规律,解决问题【例1】如图,一艘海轮从A出发,沿北偏东75°的方向航行67.5n mile后到达海岛B,然后从B出发,沿北偏东32°的方向航行54.0n mile后到达海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01n mile)问题1:要想解决这个问题,首先应该搞懂“北偏东75°的方向”这指的是什么?【例2】某巡逻艇在A处发现北偏东45°相距9海里的C处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多长时间才追赶上该走私船?问题2:你能否根据题意画出方位图?问题3:以上是用正弦定理、余弦定理来解决的,我们能不能都用余弦定理来解决呢?四、变式训练,深化提高【例3】如图,海中小岛A周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里到C处,在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?练习:如图,有两条相交成60°角的直线XX',YY',交点是O,甲、乙分别在OX,OY上,起初甲在离O点3千米的A点,乙在离O点1千米的B点,后来两人同时以每小时4千米的速度,甲沿XX'方向,乙沿Y'Y方向步行.(1)起初,两人的距离是多少?(2)用包含t的式子表示t小时后两人的距离;(3)什么时候两人的距离最短?五、限时训练1.在某电场中,一个粒子的受力情况如图所示,则粒子的运动方向为( )A.南偏西B.北偏西C.北偏东D.南偏东2.如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则cosθ=.3.一辆汽车从A点出发,沿一条笔直的海岸公路以100km/h向东匀速行驶,汽车开动时,在点A的南偏东方向距点A 500km的B处的海上有一快艇,此时,快艇所在B处距海岸300km.现快艇上有一快递要送给汽车的司机,求快艇以最小速度行驶时的行驶方向与AB所成的角,并求出快艇的最小速度.六、反思小结,观点提炼解三角形应用题的一般步骤:参考答案三、运用规律,解决问题【例1】解:在△ABC中,∠ABC=180°-75°+32°=137°,根据余弦定理,AC=≈113.15(n mile),根据正弦定理,,sin∠CAB=≈0.3255,所以∠CAB≈19.0°,75°-∠CAB=56.0°.答:此船应该沿北偏东56.0°的方向航行,需要航行113.15n mile.问题1:这是方位角,这实际上就是解三角形,由方位角的概念可知,首先根据三角形的内角和定理求出AC边所对的角∠ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB,就可以知道AC的方向和路程.【例2】解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x,AB=14x,AC=9,∠ACB=75°+45°=120°,则由余弦定理,可得(14x)2=92+(10x)2-2×9×10xcos120°,化简得32x2-30x-27=0,即x=或x=-(舍去).所以BC=10x=15,AB=14x=21.又因为sin∠BAC=,所以∠BAC=38°13',或∠BAC=141°47'(钝角不合题意,舍去).所以38°13'+45°=83°13'.答:巡逻艇应沿北偏东83°13'的方向追赶,经过1.5小时追赶上该走私船.问题2:在解三角形中有很多问题都要画出平面示意图,图画的好坏有时也会影响到解题,这是建立数学模型的一个重要方面.问题3:同例2中解得BC=15,AB=21,在△ABC中,由余弦定理,得cos∠CAB=≈0.7857,所以∠CAB≈38°13',38°13'+45°=83°13'.所以巡逻艇应沿北偏东83°13'的方向追赶,经过1.5小时追赶上该走私船.四、变式训练,深化提高【例3】解:在△ABC中,BC=30,B=30°,∠ACB=180°-45°=135°,则A=15°.由正弦定理知,即.所以AC==60cos15°=15+15.所以A到BC所在直线的距离为AC·sin45°=(15+15)×=15(+1)≈40.98>38(海里).答:不改变航向,继续向南航行,无触礁的危险.练习:解:(1)因为甲、乙两人起初的位置是A,B,则AB2=OA2+OB2-2OA·OBcos60°=32+12-2×3×1×=7,所以起初,两人的距离是千米.(2)设甲、乙两人t小时后的位置分别是P,Q,则AP=4t,BQ=4t,当0≤t≤时,PQ2=(3-4t)2+(1+4t)2-2(3-4t)(1+4t)cos60°=48t2-24t+7;当t>时,PQ2=(4t-3)2+(1+4t)2-2(4t-3)(1+4t)cos120°=48t2-24t+7,所以,PQ=48t2-24t+7.(3)PQ2=48t2-24t+7=48+4,所以当t=时,即在第15分钟末,PQ最短.答:在第15分钟末,两人的距离最短.五、限时训练1.D2.解析:如图所示,在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理,知BC2=AB2+AC2-2AB·AC·cos120°=2800,即得BC=20(海里).由正弦定理,,所以sin∠ACB=sin∠BAC=.由∠BAC=120°,知∠ACB为锐角,cos∠ACB=.由θ=∠ACB+30°,则cosθ=cos(∠ACB+30°)=cos∠ACBcos30°-sin∠ACBsin30°=.3.分析:设快艇在B处以v km/h的速度出发,在△ABC中,由正弦定理求解.解:如图,设快艇在B处以v km/h的速度出发,沿BC方向航行t小时与汽车相遇(在C点). 在△ABC中,AB=500km,BQ=300km,AC=100t,BC=vt.则sin∠BAC=.在△ABC中,由正弦定理得,即,则v=≥60,当且仅当∠ABC=90°时等号成立.故快艇最小速度为60km/h且行驶方向与AB成直角.六、反思小结,观点提炼①根据题意作出示意图;②明确所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案.。

高中数学人教A版必修5 1.2.2三角形中的几何计算学案

高中数学人教A版必修5 1.2.2三角形中的几何计算学案

高中数学人教A版必修5第一章解三角形1.2解三角形的实际应用举例1.2.2三角形中的几何计算学案【课前自主学习】预习课本P16~18,思考并完成以下问题(1)已知三角形的两边及内角怎样求其面积?(2)已知三角形的面积如何求其他量?【新知探究•夯实知识基础】三角形的面积公式(1)S=12a·h a(h a表示a边上的高).(2)S=12ab sin C=12bc sin A=12ac sin B.[点睛]三角形的面积公式S=12ab sin C与原来的面积公式S=12a·h(h为a边上的高)的关系为:h=b sin C,实质上b sin C就是△ABC中a边上的高.【学练结合】1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)公式S=12ab sin C适合求任意三角形的面积()(2)三角形中已知三边无法求其面积()(3)在三角形中已知两边和一角就能求三角形的面积()解析:(1)正确,S=12ab sin C适合求任意三角形的面积.(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正弦值,进而求面积.(3)正确.已知两边和两边的夹角可直接求得面积,已知两边和一边的对角,可求得其他边和角,再求面积.答案:(1)√ (2)× (3)√2.在△ABC 中,已知a =2,b =3,C =120°,则S △ABC =( ) A.32 B.332 C. 3D .3解析:选B S △ABC =12ab sin C =12×2×3×32=332.3.已知△ABC 的面积为32,且b =2,c =3,则A 的大小为( ) A .60°或120° B .60° C .120°D .30°或150°解析:选A 由S △ABC =12bc sin A 得 32=12×2×3×sin A , 所以sin A =32, 故A =60°或120°,故选A.4.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 解析:由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A =1,解得sin 2A +⎝ ⎛⎭⎪⎫1-sin A 42=1,sin A =817.答案:817【学以致用•探究解题方法】题型一 三角形面积的计算[典例] 已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. [解] 由正弦定理,得sin C =AB sin B AC =23sin 30°2=32.∵AB >AC ,∴C=60°或C=120°.当C=60°时,A=90°,S△ABC =12AB·AC=23;当C=120°时,A=30°,S△ABC =12AB·AC sin A= 3.故△ABC的面积为23或 3.[解题规律总结][活学活用]△ABC中,若a,b,c的对角分别为A,B,C,且2A=B+C,a=3,△ABC的面积S△ABC=32,求边b的长和B的大小.解:∵A+B+C=180°,又2A=B+C,∴A=60°.∵S△ABC =12bc sin A=32,sin A=32,∴bc=2.①又由余弦定理得3=b2+c2-2bc cos A=b2+c2-2×2×1 2,即b2+c2=5.②解①②可得b=1或2.由正弦定理知asin A=bsin B,∴sin B=b sin Aa=b2.当b=1时,sin B=12,B=30°;当b=2时,sin B=1,B=90°.题型二三角恒等式证明问题[典例]在△ABC中,求证:a-c cos Bb-c cos A=sin Bsin A.证明:[法一化角为边]左边=a-c(a2+c2-b2)2acb-c(b2+c2-a2)2bc=a2-c2+b22a·2bb2-c2+a2=ba=2R sin B2R sin A=sin Bsin A=右边,其中R为△ABC外接圆的半径.∴a-c cos Bb-c cos A=sin Bsin A.[法二化边为角]左边=sin A-sin C cos Bsin B-sin C cos A=sin(B+C)-sin C cos Bsin(A+C)-sin C cos A=sin B cos Csin A cos C=sin Bsin A=右边(cos C≠0),∴a-c cos Bb-c cos A=sin Bsin A.[解题规律总结][活学活用]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .求证:cos B cos C =c -b cos Ab -c cos A .证明:法一:由正弦定理,得c -b cos Ab -c cos A=2R sin C -2R sin B cos A 2R sin B -2R sin C cos A =sin (A +B )-sin B cos A sin (A +C )-sin C cos A =sin A cos B sin A cos C =cos Bcos C .法二:由余弦定理,得c -b cos Ab -c cos A =c -b 2+c 2-a 22c b -b 2+c 2-a 22b=a 2+c 2-b 22c b 2+a 2-c 22b =a 2+c 2-b 22ac b 2+a 2-c 22ab=cos B cos C.题型三 与三角形有关的综合问题命题点一:与三角形面积有关的综合问题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a cos B -c =b 2. (1)求角A 的大小;(2)若b -c =6,a =3+3,求BC 边上的高. 解:(1)由a cos B -c =b2及正弦定理可得, sin A cos B -sin C =sin B2,因为sin C =sin(A +B )=sin A cos B +cos A sin B , 所以sin B2+cos A sin B =0. 因为sin B ≠0,所以cos A =-12, 因为0<A <π,所以A =2π3. (2)由余弦定理可知,a 2=b 2+c 2-2bc cos 2π3=b 2+c 2+bc ,所以(3+3)2=b 2+c 2+bc =(b -c )2+3bc =6+3bc , 解得bc =2+2 3.设BC 边上的高为h ,由S △ABC =12bc sin A =12ah , 得12(2+23)sin 2π3=12(3+3)h, 解得h =1. 命题点二:三角形中的范围问题2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B -b cos A =0.(1)求角B 的大小;(2)求3sin A +sin ⎝ ⎛⎭⎪⎫C -π6的取值范围.解:(1)由正弦定理得:(2sin C -sin A )cos B -sin B cos A =0, 即sin C (2cos B -1)=0,∵sin C ≠0,∴cos B =12,∵B ∈(0,π),∴B =π3. (2)由(1)知B =π3,∴C =2π3-A , ∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6=3sin A +cos A =2sin ⎝ ⎛⎭⎪⎫A +π6.∵A ∈⎝ ⎛⎭⎪⎫0,2π3,∴A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴2sin ⎝ ⎛⎭⎪⎫A +π6∈(1,2], ∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6的取值范围是(1,2].命题点三:三角形中的最值问题3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知sin (A -B )sin (A +B )=b +cc .(1)求角A 的大小;(2)当a =6时,求△ABC 面积的最大值,并指出面积最大时△ABC 的形状. 解:(1)由sin (A -B )sin (A +B )=b +cc ,得sin (A -B )sin (A +B )=sin B +sin Csin C .又sin(A +B )=sin(π-C )=sin C , ∴sin(A -B )=sin B +sin C , ∴sin(A -B )=sin B +sin(A +B ).∴sin A cos B -cos A sin B =sin B +sin A cos B +cos A sin B , ∴sin B +2 cos A sin B =0, 又sin B ≠0,∴cos A =-12. ∵A ∈(0,π),∴A =2π3.(2)S =12bc sin A =34bc =34×2R sin B ·2R sin C =3R 2sin B ·sin C =3R 2sin B ·sin ⎝ ⎛⎭⎪⎫π3-B=32R 2sin ⎝ ⎛⎭⎪⎫2B +π6-34R 2,B ∈⎝ ⎛⎭⎪⎫0,π3. 由正弦定理2R =a sin A =6sin 2π3=43,∴R =2 3.当2B +π6=π2,即B =C =π6时,S max =33,∴△ABC 面积的最大值为33,此时△ABC 为等腰钝角三角形. 题点四:多边形面积问题4.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .解:如图,连接BD ,则S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C . ∵A +C =180°,∴sin A =sin C ,∴S=12sin A(AB·AD+BC·CD)=16sin A.在△ABD中,由余弦定理得BD2=AB2+AD2-2AB·AD cos A=20-16cos A,在△CDB中,由余弦定理得BD2=CD2+BC2-2CD·BC cos C=52-48cos C,∴20-16cos A=52-48cos C.又cos C=-cos A,∴cos A=-12,∴A=120°,∴S=16sin A=8 3.[解题规律总结]高中数学人教A版必修5第一章解三角形1.2应用举例1.2.2三角形中的几何计算同步检测基础达标题1.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.12 B.32 C.3 D.2 32.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为()A.-78 B.78C.-87 D.873.在△ABC中,已知面积S=14(a2+b2-c2),则角C的大小为()A.135°B.45°C.60°D.120°4.在△ABC中,若cos B=14,sin Csin A=2,且S△ABC=154,则b=()A.4 B.3 C.2 D.15.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为()A.40 3 B.20 3 C.40 2 D.20 26.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为________.7.如图,在△ABC中,已知B=45°,D是BC边上一点,AD=5,AC=7,DC =3,则AB=________.8.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.9.在△ABC中,求证:b2cos 2A-a2cos 2B=b2-a2.10.如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.能力达标题1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( )A .5B .6C .7D .82.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152 B.15 C .2 D .33.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( )A. 3 B . C .2 3 D .4 4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403 5.已知△ABC 的面积S =3,A =π3,则AB ·AC =________. 6.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B=________. 7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin A sin B =sin C tan C .(1)求a2+b2c2的值;(2)若a=22c,且△ABC的面积为4,求c的值.8.在△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2B+C2+sinA=4 5.(1)若满足条件的△ABC有且只有一个,求b的取值范围;(2)当△ABC的周长取最大值时,求b的值.高中数学人教A版必修5第一章解三角形1.2应用举例1.2.2三角形中的几何计算同步检测解析基础达标题1.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.12 B.32 C.3 D.2 3解析:选B S△ABC =12AB·AC·sin A=32.2.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为()A.-78 B.78C.-87 D.87解析:选B设等腰三角形的底边长为a,顶角为θ,则腰长为2a,由余弦定理得,cos θ=4a2+4a2-a28a2=78.3.在△ABC中,已知面积S=14(a2+b2-c2),则角C的大小为()A.135°B.45°C.60°D.120°解析:选B∵S=14(a2+b2-c2)=12ab sin C,由余弦定理得:sin C=cos C,∴tan C=1.又0°<C<180°,∴C=45°.4.在△ABC中,若cos B=14,sin Csin A=2,且S△ABC=154,则b=()A.4 B.3 C.2 D.1解析:选C依题意得,c=2a,b2=a2+c2-2ac cos B=a2+(2a)2-2×a×2a×14=4a2,所以b=c=2a.因为B∈(0,π),所以sin B=1-cos2B=154,又S△ABC =12ac sin B=12×b2×b×154=154,所以b=2,选C.5.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为()A.40 3 B.20 3 C.40 2 D.20 2解析:选A设另两边长为8x,5x,则cos 60°=64x2+25x2-14280x2,解得x=2或x=-2(舍去).故两边长分别为16与10,所以三角形的面积是12×16×10×sin 60°=40 3.6.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为________.解析:∵cos C=13,0<C<π,∴sin C=223,∴S△ABC =12ab sin C=12×32×23×223=4 3.答案:4 37.如图,在△ABC中,已知B=45°,D是BC边上一点,AD=5,AC=7,DC =3,则AB=________.解析:在△ADC中,cos C=AC2+DC2-AD22·AC·DC=72+32-522×7×3=1114.又0°<C<180°,∴sin C=53 14.在△ABC中,ACsin B=ABsin C,∴AB=sin Csin B·AC=5314×2×7=562.答案:56 28.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.解析:不妨设b=2,c=3,cos A=1 3,则a2=b2+c2-2bc·cos A=9,∴a=3.又∵sin A=1-cos2A=22 3,∴外接圆半径为R=a2sin A=32·223=928.答案:92 89.在△ABC 中,求证:b 2cos 2A -a 2cos 2B =b 2-a 2.证明:左边=b 2(1-2sin 2A )-a 2(1-2sin 2B )=b 2-a 2-2(b 2sin 2A -a 2sin 2B ), 由正弦定理a sin A =bsin B ,得b sin A =a sin B , ∴b 2sin 2A -a 2sin 2B =0,∴左边=b 2-a 2=右边, ∴b 2cos 2A -a 2cos 2B =b 2-a 2.10.如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.解:在△ABC 中,AB =5,AC =9,∠BCA =30°, 由正弦定理,得AB sin ∠BCA =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BCA AB =9×sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°, 由正弦定理,得AB sin ∠ADB =BDsin ∠BAD,解得BD =922,故BD 的长为922.能力达标题1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( )A .5B .6C .7D .8 解析:选C 如图,由题意得 ⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40, ∴a =7.2.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152 B.15 C .2 D .3 解析:选A 因为b 2-bc -2c 2=0, 所以(b -2c )(b +c )=0,所以b =2c .由a 2=b 2+c 2-2bc cos A ,解得c =2,b =4, 因为cos A =78,所以sin A =158,所以S △ABC =12bc sin A =12×4×2×158=152.3.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( )A. 3 B . C .2 3 D .4 解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°, ∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,设△ABC 外接圆的半径为R ,∴2R =a sin A =2332=4,∴R =2.4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403 解析:选D ∵c sin C =a sin A =403, ∴c =403sin C .∴0<c ≤403.5.已知△ABC的面积S=3,A=π3,则AB·AC=________.解析:S△ABC =12·|AB|·|AC|·sin A,即3=12·|AB|·|AC|·32,所以|AB|·|AC|=4,于是AB·AC=|AB|·|AC|·cos A=4×12=2.答案:26.在锐角三角形ABC中,角A,B,C的对边分别是a,b,c,若ba+ab=6cos C,则tan Ctan A+tan Ctan B=________.解析:∵ba+ab=6cos C,∴a2+b2ab=6×a2+b2-c22ab,∴2a2+2b2-2c2=c2,又tan Ctan A+tan Ctan B=sin C cos Asin A cos C+sin C cos Bsin B cos C =sin C(sin B cos A+cos B sin A)sin A sin B cos C=sin C sin(B+A)sin A sin B cos C=sin2Csin A sin B cos C=c2ab cos C=c2aba2+b2-c22ab=2c2a2+b2-c2=4.答案:47.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知sin A sin B=sin C tan C.(1)求a2+b2c2的值;(2)若a=22c,且△ABC的面积为4,求c的值.解:(1)由已知sin A sin B =sin C tan C 得cos C =c 2ab . 又cos C =a 2+b 2-c 22ab ,故a 2+b 2=3c 2,故a 2+b2c 2的值为3.(2)由a =22c, a 2+b 2=3c 2得b =102c . 由余弦定理得cos C =255,故sin C =55. 所以12×22c ×102c ×55=4,解得c =4.8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =2,2cos 2 B +C2+sinA =45.(1)若满足条件的△ABC 有且只有一个,求b 的取值范围; (2)当△ABC 的周长取最大值时,求b 的值. 解:2cos 2B +C 2+sin A =45⇒1+cos(B +C )+sin A =45⇒sin A -cos A =-15. 又0<A <π,且sin 2A +cos 2A =1,有⎩⎪⎨⎪⎧sin A =35,cos A =45.(1)若满足条件的△ABC 有且只有一个,则有a =b sin A 或a ≥b ,则b 的取值范围为(0,2]∪⎩⎨⎧⎭⎬⎫103.(2)设△ABC 的周长为l ,由正弦定理得 l =a +b +c =a +asin A (sin B +sin C ) =2+103[sin B +sin(A +B )]=2+103[sin B +sin A cos B +cos A sin B ] =2+2(3sin B +cos B ) =2+210sin(B +θ),其中θ为锐角,且⎩⎪⎨⎪⎧sin θ=1010,cos θ=31010 ,l max =2+210,当cos B =1010,sin B =31010时取到. 此时b =asin A sin B =10.。

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_29

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课教案_29

《海伦——秦九韶公式》教案【教学内容】人教A版普通高中课程标准试验教科书必修5 第一章“阅读与思考”海伦与秦九韶.【教学对象】高一学生.【教材分析】本节内容选自高中数学必修五的第一章,是阅读与思考部分的内容,在《高中数学新课程标准》中并没有做要求,教材中只占用一篇幅叙述了海伦公式与秦九韶公式(“三斜求积”公式)的记载历史,并未给出证明和应用.本节内容之前学生已经学习了解三角形,从而这节课是三角形面积公式的延续与拓展.本节课的主要设计对象为数学学习程度较好的学生——在完成《高中数学新课程标准》中要求的学习之后仍有余力的学生,意在引领学生了解数学文化史,同时启发学生运用所学知识由“三斜求积”公推导海伦公式,并让学生从中体会数学之美.【学情分析】高一学生在进入本节课的学习之前,需要熟悉前面已学过的三角形面积公式,余弦定理的推论,同角三角函数的平方关系以及平方差公式和完全平方公式.【教学目标】∙知识与技能:(1)会推导秦九韶公式与海伦公式,并理解海伦公式的本质;(2)理解秦九韶公式与海伦公式的本质相同.(3)会用海伦公式解决简单的涉及到三角形三边与面积之间关系的问题.∙过程与方法:(1)经历推导秦九韶公式与海伦公式的全过程,培养学生严谨的的数学逻辑思维;(2)提高学生会应用海伦公式解决涉及到三角形三边与面积之间关系问题的能力.∙情感态度与价值观:(1)体会公式书写的简洁美;(2)体会数学以不变应万变的魅力.【教学重点】秦九韶公式与海伦公式的推导及其应用.【教学难点】秦九韶公式与海伦公式的本质.【教学方法】引导探究、实力应用.【教学过程】(一)旧知回顾1.三角形的面积公式:(1)ah S ABC 21=∆(h 为边a 上的高); (2)==∆C ab S ABC sin 21 = . 2.余弦定理的推论:bca cb A 2cos 222-+=;=B cos ;=C cos . 3.同角三角函数的平方关系:+α2sin 1=.[师生活动]通过提问,让学生回答出本节课涉及到的已经学习过的公式.(二)新课引入【引例】问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里。

【创新设计】2022-2021学年高二数学人教A必修5学案:1.2 应用举例(二) Word版含答案

【创新设计】2022-2021学年高二数学人教A必修5学案:1.2 应用举例(二) Word版含答案

1.2 应用举例(二)[学习目标] 1.能够运用正弦定理、余弦定理等学问和方法解决一些有关底部不行到达的物体高度测量的问题.2.巩固深化解三角形实际问题的一般方法,养成良好的争辩、探究习惯.3.进一步培育同学学习数学、应用数学的意识及观看、归纳、类比、概括的力量.[学问链接] 现实生活中,人们是怎样测量底部不行到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?要点一 测量仰角求高度问题例1 如图所示,A 、B 是水平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 点是点C 到水平面的垂足,求山高CD .解 由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD . 因此只需在△ABD 中求出AD 即可,在△ABD 中,∠BDA =180°-45°-120°=15°, 由AB sin 15°=ADsin 45°, 得AD =AB ·sin 45°sin 15°=800×226-24=800(3+1) (m).即山的高度为800(3+1) m.规律方法 在运用正弦定理、余弦定理解决实际问题时,通常都依据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.和高度有关的问题往往涉及直角三角形的求解. 跟踪演练1 如图,地平面上有一旗杆OP ,为了测得它的高度h ,在地面上选一基线AB ,AB =20 m ,在A 点处测得P 点仰角∠OAP =30°,在B 点处测得P 点的仰角∠OBP =45°,又测得∠AOB =60°,求旗杆的高度h .(结果保留两个有效数字)解 在Rt △AOP 中,∠OAP =30°,OP =h , ∴OA =OP ·1tan 30°=3h .在Rt △BOP 中,∠OBP =45°,∴OB =OP ·1tan 45°=h .在△AOB 中,AB =20,∠AOB =60°,由余弦定理得AB 2=OA 2+OB 2-2×OA ×OB ·cos 60°, 即202=(3h )2+h 2-2·3h ·h ·12,解得h 2=4004-3≈176.4,∴h ≈13(m).答 旗杆高度约为13 m. 要点二 测量俯角求高度问题例2 如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求出山高CD . 解 在△ABC 中, ∠BCA =90°+β, ∠ABC =90°-α, ∠BAC =α-β,∠CAD =β. 依据正弦定理得AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BCsin (α-β),∴AC =BC cos αsin (α-β)=h cos αsin (α-β).在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β).答 山的高度为h cos αsin βsin (α-β).规律方法 利用正弦定理和余弦定理来解题时,要学会审题及依据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练2 江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案 30解析 设两条船所在位置分别为A 、B 两点,炮台底部所在位置为C 点,在△ABC 中,由题意可知AC =30tan 30°=303,BC =30tan 45°=30,C =30°, AB 2=(303)2+302-2×303×30×cos 30°=900,所以AB =30. 要点三 测量方位角求高度问题例3 如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,求塔AB 的高度.解 在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°, 由正弦定理,得BC sin 45°=CDsin 30°, BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=ABBC,AB =BC tan 60°=10 6. 答 塔AB 的高度为10 6 m.规律方法 利用正弦定理和余弦定理来解题时,要学会审题及依据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练3 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________ km.答案 30 2解析 如图,由已知条件, 得AC =60 km ,∠BAC =30°, ∠ACB =105°,∠ABC =45°.由正弦定理得BC =AC sin ∠BAC sin B=302(km)1.已知两座灯塔A ,B 与海洋观看站C 的距离相等,灯塔A 在观看站C 的北偏东40°,灯塔B 在观看站C 的南偏东60°,则灯塔A 在灯塔B 的( ) A .北偏东10° B .北偏西10°C .南偏东10°D .南偏西10°答案 B解析 如右图,因△ABC 为等腰三角形,所以∠CBA =12(180°-80°)=50°,60°-50°=10°,故选B.2.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为( ) A .2h 米 B.2h 米 C.3h 米D .22h 米答案 A解析 如图所示, BC =3h , AC =h , ∴AB =3h 2+h 2=2h (米).3.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________. 答案 20 3 m ,4033 m 解析 甲楼的高为20tan 60°=20×3=203; 乙楼的高为203-20tan 30°=203-20×33=4033.1.在争辩三角形时,机敏依据两个定理可以查找到多种解决问题的方案,但有些过程较烦琐,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式.2.测量底部不行到达的建筑物的高度问题.由于底部不行到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.一、基础达标1.为了测某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶的仰角为30°,塔基的俯角为45°,那么塔AB 的高为( ) A .20⎝⎛⎭⎫1+33 mB .20⎝⎛⎭⎫1+32 mC .20(1+3) mD .30 m答案 A解析 如图,h =20tan 30°+20tan 45°=20⎝⎛⎭⎫1+33(m),故选A.2.在某个位置测得某山峰仰角为θ,对着山峰在地面上前进600 m 后测得仰角为2θ,连续在地面上前进200 3 m 以后测得山峰的仰角为4θ,则该山峰的高度为( ) A .200 m B .300 m C .400 m D .100 3 m 答案 B解析 法一 如图,△BED ,△BDC 为等腰三角形,BD =ED =600,BC =DC =200 3.在△BCD 中,由余弦定理可得cos 2θ=6002+(2003)2-(2003)22×600×2003=32,∴2θ=30°,4θ=60°.在Rt △ABC 中,AB =BC ·sin 4θ=2003×32=300,故选B. 法二 由于△BCD 是等腰三角形,12BD =DC cos 2θ,即300=2003cos 2θ.cos 2θ=32,2θ=30°,4θ=60°. 在Rt △ABC 中,AB =BC ·sin 4θ=2003×32=300,故选B.3.一架飞机在海拔8 000 m 的高度飞行,在空中测出前下方海岛两侧海岸俯角分别是30°和45°,则这个海岛的宽度为________m. 答案 5 856.4 解析 宽=8 000tan 30°-8 000tan 45°=5 856.4(m). 4.为测量某塔的高度,在A ,B 两点进行测量的数据如图所示,求塔的高度.解 在△ABT 中,∠ATB =21.4°-18.6°=2.8°,∠ABT =90°+18.6°,AB =15(m). 依据正弦定理,AB sin 2.8°=ATcos 18.6°,AT =15×cos 18.6°sin 2.8°.塔的高度为AT ·sin 21.4°=15·cos 18.6°sin 2.8°sin 21.4°≈106.19(m).所以塔的高度为106.19 m.5.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D处时,再看灯塔B 在货轮的南偏东60°. 求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°,由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24 (n mile).所以A 处与D 处的距离为24 n mile. (2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos 30°=192, 解得CD =8 3 n mile.即灯塔C 与D 处的距离为8 3 n mile. 二、力量提升6.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为( )A .15 mB .5 mC .10 mD .12 m答案 C解析 如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h .在Rt △AOD 中,∠ADO =30°,则OD =3h . 在△OCD 中,∠OCD =120°,CD =10,由余弦定理得OD 2=OC 2+CD 2-2OC ·CD cos ∠OCD , 即(3h )2=h 2+102-2h ×10×cos 120°, ∴h 2-5h -50=0,解得h =10或h =-5(舍).7.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m ,则电视塔在这次测量中的高度是( )A .100 2 mB .400 mC .200 3 mD .500 m 答案 D解析 由题意画出示意图,设高AB =h ,在Rt △ABC 中,由已知BC =h , 在Rt △ABD 中,由已知BD =3h ,在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD 得,3h 2=h 2+5002+h ·500,解之得h =500 m .故选D. 8.如图,在山脚A 测得山顶P 的仰角为α,沿倾斜角为β的斜坡向上走a 米到B ,在B 处测得山顶P 的仰角为γ,求证:山高h =a sin αsin (γ-β)sin (γ-α).解 在△ABP 中,∠ABP =180°-γ+β,∠BP A =180°-(α-β)-∠ABP =180°-(α-β)-(180°-γ+β)=γ-α. 在△ABP 中,依据正弦定理,AP sin ∠ABP =AB sin ∠APB ,AP sin (180°-γ+β)=αsin (γ-α),AP =a ×sin (γ-β)sin (γ-α)所以山高h =AP sin α=a sin αsin (γ-β)sin (γ-α).9.如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.摸索究图中B 、D 间距离 km ,2≈1.414,与另外哪两点间距离相等,然后求B 、D 的距离(计算结果精确到0.01 6≈2.449).解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,∴CD =AC =0.1,又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,∴BD =BA ,在△ABC 中,AB sin ∠BCA =AC sin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620.因此,BD =32+620≈0.33 km ,故B 、D 的距离约为0.33 km.三、探究与创新10.为保障高考的公正性,高考时每个考点都要安装手机屏蔽仪,要求在考点四周1千米处不能收到手机信号,检查员抽查青岛市一考点,在考点正西约1.732千米有一条北偏东60°方向的大路,在此处检查员用手机接通电话,以每小时12千米的速度沿大路行驶,问最长需要多少分钟检查员开头收不到信号,并至少持续多长时间该考点才算合格?解 如图所示,考点为A ,检查开头处为B , 设大路上C ,D 两点到考点的距离为1千米. 在△ABC 中,AB =3≈1.732(千米),AC =1(千米), ∠ABC = 30°,由正弦定理sin ∠ACB =sin 30°AC ·AB =32,∴∠ACB =120°(∠ACB =60°不合题意), ∴∠BAC =30°, ∴BC =AC =1(千米),在△ACD 中,AC =AD ,∠ACD =60°,∴△ACD 为等边三角形,∴CD =1(千米).∵BC12×60=5,∴在BC上需5分钟,CD上需5分钟.所以最长需要5分钟检查员开头收不到信号,并持续至少5分钟才算合格.。

新人教A版必修5高中数学第一章1.1.2余弦定理(二)导学案

新人教A版必修5高中数学第一章1.1.2余弦定理(二)导学案

1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c .2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角.3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=a b,则∠C的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( )A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等边三角形答案 D解析∵2b=a+c,∴4b2=(a+c)2,即(a-c)2=0.∴a=c.∴2b=a+c=2a.∴b=a,即a=b=c.5.在△ABC中,角A,B,C所对的边长分别为a,b,c,若C=120°,c=2a,则( )A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案 A解析在△ABC中,由余弦定理得,c2=a2+b2-2ab cos 120°=a2+b2+ab.∵c=2a,∴2a2=a2+b2+ab.∴a2-b2=ab>0,∴a2>b2,∴a>b.6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.由增加的长度确定答案 A解析设直角三角形三边长为a,b,c,且a2+b2=c2,则(a+x)2+(b+x)2-(c+x)2=a2+b2+2x2+2(a+b)x-c2-2cx-x2=2(a+b-c)x+x2>0,∴c+x所对的最大角变为锐角.二、填空题7.在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C =60°,则边c=________.答案19解析由题意:a+b=5,ab=2.由余弦定理得:c2=a2+b2-2ab cos C=a2+b2-ab=(a+b)2-3ab=52-3×2=19,∴c=19.8.设2a+1,a,2a-1为钝角三角形的三边,那么a的取值范围是________.答案2<a<8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________.答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A =AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC , ∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=A -Bsin C.证明 右边=sin A cos B -cos A sin B sin C =sin Asin C·cos B -sin Bsin C·cos A =a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边.所以a 2-b 2c 2=A -B sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且·=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵·=-21,∴·=21.∴· = ||·||·cosB = accosB = 21.∴ac=35,∵cosB = 53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54 = 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B. ∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设· = 23,求a+c 的值.解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =A +C sin 2 B=sin B sin 2B =1sin B =477. (2)由· = 23得ca ·cosB = 23 由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.。

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_24

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课教案_24

海伦公式探究如右图,假设有一个三角形,边长分别为a 、b 、c ,三角形的面积S 可由图下公式求得。

证明Ⅰ:与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。

设三角形的三边a 、b 、c 的对角分别为A 、B 、C ,则余弦定理为:abc b a 2cosC 222-+= C ab S sin 21⨯=① C ab 2cos 121-⨯=② 2222224)(121ba cb a ab ⨯-+-⨯=③ )(44122222c b a b a -+-=④ )2)(2(41222222c b a ab c b a ab +---++=⑤ ])(][)[(412222b a c c b a ---+=⑥ ))()()((41b b a c b a c b a c b a ++-+--+++=⑦ 设2b b a p ++=则,2,2,2c b a c p c b a b p c b a a p -+=-+-=-++-=- 上式16))()()((c b a c b a c b a c b a ++-+--+++= ))()((c p b p a p p ---=所以,))()((ABC c p b p a p p S ---=△证明Ⅱ:我国著名的数学家九韶在《数书九章》提出了“三斜求积术”。

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。

“术”即方法。

三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。

相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。

所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。

以△、a,b,c表示三角形面积、大斜、中斜、小斜。

定理:若三角形的三条边分别是:大斜、中斜、小斜,则三角形面积为:原文见<数书九章>卷五第二题:以小斜幂并大斜幂,减中斜幂,余,半之.同乘于上,以小斜幂并大斜幂,减上.余,四约之为实,开平方,得积.证明:如图,a=u+v,b2=h2+u2,c2=h2+v2所以,u2-v2=b2-c2(u+v)(u-v)=(b+c)(b-c)a(u-v)=(b+c)(b-c)(u-v)=(b+c)(b-c)/a因(u+v)=a,所以又 h2=b2-u2,三角形面积=a.h/2此即:,其中c>b>a.将根号下的多项式分解因式,便成为可见,三斜求积术与古希腊海伦公式是等价的所以这一公式也被称为“海伦-秦九韶公式”。

(新人教A版)高中数学第一章解三角形1.2应用举例第1课时距离问题练习必修5

(新人教A版)高中数学第一章解三角形1.2应用举例第1课时距离问题练习必修5

A 级 基础巩固一、选择题1.已知A 、B 两地的距离为10 km ,B 、C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为( D )A .10 kmB . 3 kmC .10 5 kmD .107 km[解析] 在△ABC 中,AB =10,BC =20,∠ABC =120°,则由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =100+400-2×10×20cos120° =100+400-2×10×20×(-12)=700,∴AC =107,即A 、C 两地的距离为107 km .2.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( D )A .γ,c ,αB .b ,c ,αC .c ,α,βD .b ,α,γ[解析] 本题中a 、c 、β这三个量不易直接测量,故选D .3.一船向正北航行,看见正西方向有相距10 n mlie 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( C )A .5 n mlieB .5 3 n mlieC .10 n mlieD .10 3 n mlie[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5, ∴这艘船的速度是50.5=10(n mlie/h).4.某观察站C 与两灯塔A 、B 的距离分别为300 m 和500 m ,测得灯塔A 在观察站C 北偏东30°,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为( C )A .500 mB .600 mC .700 mD .800 m[解析] 根据题意画出图形如图.在△ABC 中,BC =500,AC =300,∠ACB =120°, 由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos120° =3002+5002-2×300×500×(-12)=490 000,∴AB =700(m).5.要直接测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A 、B 两点,观察对岸的点C ,测得∠CAB =45°,∠CBA =75°,且AB =120 m 由此可得河宽为(精确到1m)( C )A .170 mB .98 mC .95 mD .86 m[解析] 在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45°sin60°=406.设△ABC 中,AB 边上的高为h ,则h 即为河宽, ∴h =BC ·sin ∠CBA =406×sin75°≈95(m).6.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15 min 时,两船的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理,得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13 km .二、填空题7.在相距2km 的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离是__6__km .[解析] 如图所示,由题意易知C =45°,由正弦定理得AC sin60°=2sin45°,从而AC =222·32=6(km).8.一只蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =__1063__cm .[解析] 如图,由题意知,∠BAC =75°,∠ACB =45°.∠B =60°, 由正弦定理,得x sin ∠ACB =10sin B ,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.三、解答题9.如图,我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知CD =6 000 m .∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°.求炮兵阵地到目标的距离.(结果保留根号)[解析] 在△ACD 中,∠CAD =60°, AD =CD ·sin45°sin60°=63CD .在△BCD 中,∠CBD =135°,BD =CD ·sin30°sin135°=22CD ,∠ADB =90°.在Rt △ABD 中,AB =AD 2+BD 2=426CD =1 00042(m).10.一艘船以32.2 n mile/h 的速度向正北航行.在A 处看灯塔S 在船的北偏东20°的方向,30 min 后航行到B 处,在B 处看灯塔在船的北偏东65°的方向,已知距离此灯塔6.5 n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?[解析] 在△ASB 中,∠SBA =115°,∠S =45°.由正弦定理,得SB =AB sin20°sin45°=16.1sin20°sin45°≈7.787(n mile).设点S 到直线AB 的距离为h ,则h =SB sin65°≈7.06(n mile).∵h >6.5 n mile ,∴此船可以继续沿正北方向航行.B 级 素养提升一、选择题1.已知船A 在灯塔C 北偏东85°且到C 的距离为2 km ,船B 在灯塔C 西偏北25°且到C 的距离为 3 km ,则A 、B 两船的距离为( D )A .2 3 kmB .3 2 kmC .15 kmD .13 km[解析] 如图可知∠ACB =85°+(90°-25°)=150°,AC =2,BC =3,∴AB 2=AC 2+BC 2-2AC ·BC ·cos150°=13, ∴AB =13.2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( A )A .1762 n mile/hB .34 6 n mile/hC .1722n mile/hD .34 2 n mile/h[解析] 如图所示,在△PMN 中,PM sin45°=MNsin120°,∴MN =68×3222=346,∴v =MN 4=1762(n mile/h).3.如图,货轮在海上以40 km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为140°的方向航行.为了确定船的位置,船在B 点观测灯塔A 的方位角为110°,航行12 h 到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是( B )A .10 kmB .10 2 kmC .15 kmD .15 2 km[解析] 在△ABC 中,BC =40×12=20( km),∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,则A =180°-(30°+105°)=45°. 由正弦定理,得AC =BC ·sin ∠ABC sin A =20·sin30°sin45°=102( km).二、填空题4.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90 n mile.此时海盗船距观测站107 n mile ,20 min 后测得海盗船距观测站20 n mlie ,再过__403__min ,海盗船到达商船.[解析] 如下图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20 min 后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理,得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中,由已知得∠ABD =30°, ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(min).5.如图,一艘船上午8∶00在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8∶30到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距4 2 n mile ,则此船的航行速度是__16__n mile/h .[解析] 在△ABS 中,∠A =30°,∠ABS =105°, ∴∠ASB =45°,∵BS =42,BS sin A =ABsin ∠ASB ,∴AB =BS ·sin ∠ASBsin A =42×2212=8,∵上午8∶00在A 地,8∶30在B 地, ∴航行0.5小时的路程为8 n mile , ∴此船的航速为16 n mile/h . 三、解答题6.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.[解析] 由题意可得DE 2=502+1202=1302, DF 2=1702+302=29 800, EF 2=1202+902=1502, 由余弦定理,得cos ∠DEF =1665.C 级 能力拔高1.为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如图).能够测量的数据有俯角和A 、B 间的距离.请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.[解析] 方案一:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算AM ,由正弦定理,得AM =d sin α2sin α1+α2;第二步:计算AN ,由正弦定理,得AN =d sin β2sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =AM 2+AN 2-2AM ·AN cos α1-β1.方案二:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算BM ,由正弦定理,得BM =d sin α1sin α1+α2;第二步:计算BN ,由正弦定理,得BN =d sin β1sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =BM 2+BN 2+2BM ·BN cos β2+α2.2.已知海岛B 在海岛A 的北偏东45°方向上,A 、B 相距10 n mile ,小船甲从海岛B 以2 n mile/h的速度沿直线向海岛A 移动,同时小船乙从海岛A 出发沿北偏西15°方向也以2 n mile/h 的速度移动.(1)经过1 h 后,甲、乙两小船相距多少海里?(2)在航行过程中,小船甲是否可能处于小船乙的正东方向?若可能,请求出所需时间,若不可能,请说明理由.[解析] 经过1 h 后,甲船到达M 点,乙船到达N 点, AM =10-2=8,AN =2,∠MAN =60°,所以MN 2=AM 2+AN 2-2AM ·AN cos60°=64+4-2×8×2×12=52.所以MN =213.所以经过1 h 后,甲、乙两小船相距213海里.(2)设经过t (0<t <5)h 小船甲处于小船乙的正东方向,则甲船与A 距离为AE =(10-2t )n mile ,乙船与A 距离为AF =2t n mile ,∠EAF =60°,∠EF A =75°,则由正弦定理,得AF sin45°=AE sin75°,即2tsin45°=10-2t sin75°,则t =10sin45°2sin75°+2sin45°=103+3=53-33<5.答:经过53-33小时小船甲处于小船乙的正东方向.。

人教a版必修5学案:1.2应用举例(含答案)

人教a版必修5学案:1.2应用举例(含答案)

1.2 应用举例材拓展1.常见的有关名词、术语 名词、术语 意义仰角与俯角与目标视线同在一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角;目标视线在水平视线下方时叫俯角.如图1 方位角一般是指北方向线顺时针到目标方向线的水平角.如方位角60°是指北偏东60°坡角 坡面与水平面的夹角坡比坡面的铅直高度与水平宽度之比,即i =hl =tan α(i 为坡比,α为坡角),如图22.测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法 用余弦定理 用正弦定理在△ACD 中用正弦定理求AC在△BCD 中用正弦定理求BC在△ABC 中用余弦定理求AB 结论AB =a 2+b 2-2ab cos CAB =a sin C sin (B +C )①AC =a sin ∠ADCsin (∠ACD +∠ADC )②BC =a sin ∠BDCsin (∠BCD +∠BDC );3.测量高度的基本类型及方案 类别 点B 与点C 、D 共线点B 与C 、D 不共线图形方法 先用余弦定理求出AC 或AD ,再解直角三角形求出AB在△BCD 中先用正弦定理求出BC ,在△ABC 中∠A 可知,再用正弦定理求出AB结论AB =a ⎝⎛⎭⎫1tan ∠ACB -1tan ∠ADBAB =a sin ∠BDC ×tan ∠ACB sin (∠BCD +∠BDC )4.解三角形应用题的一般步骤(1)读懂题意,理解问题的实际背景,明确已知与所求,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)正确选择正、余弦定理求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位、近似计算的要求. 可用下图描述:法突破一、测量距离问题方法链接:测量平面距离时,往往把要测量的距离化为某一个三角形的一条边,再运用正弦定理或余弦定理加以求解.当涉及的三角形较多时,应寻求最优解法.例1如图所示,某炮兵阵地位于A 点,两观察所分别位于C ,D 两点.已知△ACD 为正三角形,且DC = 3 km ,当目标出现在B 时,测得∠CDB =45°,∠BCD =75°,求炮兵阵地与目标的距离是多少?(结果保留根号)分析 要求AB 的长,可转化为解△ABC 或△ABD ,不管在哪个三角形中,AB 边所对的角∠ACB 或∠ADB 都是确定的,AC =AD =CD =3,所需要的是BC 边(或BD 边),所以需先求BC 边(或BD 边),可在△BCD 中,结合余弦定理求解.解 在△BCD 中,∠CDB =45°,∠BCD =75°, ∴∠CBD =180°-∠BCD -∠CDB =60°.由正弦定理,得BD =CD sin 75°sin 60°=12(6+2).在△ABD 中,∠ADB =45°+60°=105°, 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos 105°=3+14(6+2)2+2×3×12(6+2)×14(6-2)=5+2 3.∴AB =5+2 3 (km).∴炮兵阵地与目标的距离是5+2 3 km. 二、测量高度问题方法链接:1.与测量高度有关的实际应用题主要有两类:一类是与铅垂线有关的问题,解决这类问题的关键是勾画出平面图形,再分析有关三角形中哪些边与角已知,要求高度,需要知道哪些边与角,其次要注意正弦定理、余弦定理以及解直角三角形的应用;另一类是立体问题,解决这类问题的关键是依据题意画好立体图形.2.与测量高度有关的问题多数会涉及到直角三角形中线段的计算,注意直角三角形中边角关系的运用.3.解决测量高度应用题易错的地方是:对有关术语没有正确理解,从而无法画出有关图形.例2 (1)如图所示,在山底测得山顶仰角∠CAB =45°,沿倾斜角为30°的斜坡走1 000米至S 点,又测得山顶仰角∠DSB =75°,求山高BC ;(2)某人在塔的正东沿着南偏西60°的方向前进40米以后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.解 (1)∵∠SAB =∠CAB -∠CAS =45°-30°=15°, ∠SBA =∠ABC -∠SBC =45°-15°=30°, ∴∠ASB =180°-30°-15°=135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002(米).∴BC =AB ·sin 45°=1 0002×22=1 000(米).答 山高BC 为1 000米. (2)依题意画出图,某人在C 处,AB 为塔高,沿CD 前进,CD =40米,此时∠DBF =45°,从C 到D 测塔的仰角,只有B 到CD 最短时,仰角才最大,这是因为tan ∠AEB =ABBE,AB为定值,要求出塔高AB ,必须先求BE ,而要求BE ,须先求BD (或BC ).在△BDC 中,CD =40(米), ∠BCD =30°,∠DBC =135°.由正弦定理得CD sin ∠DBC =BDsin ∠DCB ,∴BD =40sin 30°sin 135°=202(米).在Rt △BED 中,∠BDE =180°-135°-30°=15°.∴BE =DB sin 15°=202×6-24=10(3-1) (米).在Rt △ABE 中,∠AEB =30°,∴AB =BE tan 30°=103(3-3)(米).故所求的塔高为103(3-3)米.三、测量角度问题方法链接:对于有些与角度有关的实际问题,我们无法直接测量其角度,则需要在实际问题中构造相关三角形,通过解三角形,求出相关角度.例3 一缉私艇发现在北偏东45°方向且距离12 n mile 的海面上有一走私船正以10 n mile/h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14 n mile/h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追及所需的时间和α角的正弦值.解 设A ,C 分别表示缉私艇,走私船的位置,设经过x 小时后在B 处追上,则有AB =14x ,BC =10x ,∠ACB =120°.∴(14x )2=122+(10x )2-240x cos 120°,∴x =2,AB =28,BC =20,sin α=20sin 120°28=5314.∴所需时间为2小时,sin α=5314.四、三角形中的求值问题方法链接:涉及三角形中的计算问题时,一些基本关系式经常用到,这些关系式是: (1)A +B +C =π,A =π-(B +C ); (2)A +B 2+C 2=π2,B +C 2=π2-A 2;(3)sin C =sin (A +B ),cos(A +B )=-cos C ; (4)tan(A +B )=-tan C ,tan A +tan B +tan C =tan A tan B tan C ;(5)sin C 2=cos A +B 2,cos C2=sin A +B 2,tan A +B 2·tan C 2=1;(6)A >B >C ⇔sin A >sin B >sin C . 例4 (2009·北京昌平区期末)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足(2a -c )cos B =b cos C .(1)求角B 的大小;(2)若b =7,a +c =4,求△ABC 的面积. 解 (1)在△ABC 中,由正弦定理得 a =2R sin A ,b =2R sin B ,c =2R sin C , 代入(2a -c )cos B =b cos C ,整理得2sin A cos B =sin B cos C +sin C cos B , 即2sin A cos B =sin(B +C )=sin A , 在三角形中,∵sin A >0,∴2cos B =1, ∵B 是三角形的内角, ∴B =60°.(2)在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac ·cos B =(a +c )2-2ac -2ac ·cos B ,将b =7,a +c =4,代入整理,得ac =3.故S △ABC =12ac sin B =32sin 60°=334.五、证明平面几何问题 方法链接:正弦定理和余弦定理是研究三角形的重要工具,在处理平面几何问题中有着广泛的应用.一些三角形中重要线段的求解和著名定理的证明都离不开正、余弦定理的综合运用.例5 已知凸四边形的边长分别为a 、b 、c 、d ,对角线相交成45°角,若S 为四边形的面积,求证:S =14(a 2-b 2+c 2-d 2).证明 设凸四边形ABCD 的对角线相交于点O ,设AO 、CO 、BO 、DO 分别为m 、n 、p 、q ,则由面积公式得:S =12(mp +pn +nq +qm )sin 45° 由余弦定理得a 2=m 2+p 2+2mp cos 45°① b 2=n 2+p 2-2np cos 45°② c 2=n 2+q 2+2nq cos 45°③ d 2=q 2+m 2-2qm cos 45°④ 由①-②+③-④得:a 2-b 2+c 2-d 2=2(mp +pn +nq +qm )cos 45° ∵(mp +pn +nq +qm )sin 45°=2S . ∴a 2-b 2+c 2-d 2=4S ,即S =14(a 2-b 2+c 2-d 2).区突破1.忽略角的隐含范围而致错例1 在△ABC 中,B =3A ,求ba的取值范围.[错解] 由正弦定理得b a =sin B sin A =sin 3Asin A=sin (A +2A )sin A =sin A cos 2A +cos A sin 2A sin A=cos 2A +2cos 2A =4cos 2A -1.∵0≤cos 2A ≤1,∴-1≤4cos 2A -1≤3, ∵b a >0,∴0<b a≤3. [点拨] 忽略了三角形内角和为180°,及角A 、B 的取值范围,从而导致b a取值范围求错.[正解] 由正弦定理得b a =sin B sin A =sin 3Asin A=sin (A +2A )sin A =sin A cos 2A +cos A sin 2Asin A=cos 2A +2cos 2A =4cos 2A -1 ∵A +B +C =180°,B =3A . ∴A +B =4A <180°,∴0°<A <45°.∴22<cos A <1,∴1<4cos 2 A -1<3,∴1<b a<3. 温馨点评解三角问题,角的取值范围至关重要.一些问题,角的取值范围隐含在题目的条件中,若不仔细审题,深入挖掘,往往疏漏而导致解题失败.2.忽略角的大小隐含关系而致错例2 在△ABC 中,已知cos A =513,sin B =35,则cos C 的值为( )A.1665B.5665C.1665和5665 D .-1665[错解] ∵cos A =513,0<A <π2,∴sin A =1213.∵sin B =35,0<B <π,∴cos B =±45.当cos B =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1213×35-513×45=1665.当cos B =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B=1213×35-513×⎝⎛⎭⎫-45=5665,选C. [点拨] 本题解答中关键一步是sin A >sin B ⇒∠A >∠B .从而确定cos B =45而不是cos B=±45,否则会错选C.事实上,在△ABC 中,我们可以由正弦定理可证得sin A >sin B 的充要条件是A >B .[正解] ∵cos A =513,0<A <π2,∴sin A =1213.∵sin A >sin B ,从而a >b ,故∠A >∠B ,∴cos B =45,∴cos C =-cos(A +B )=sin A sin B -cos A cos B =1665,∴选A.3.忽略审题环节,画图不准而致错例3 在湖面上高h m 处,测得云C 的仰角为α,而湖中云之影(即云在湖中的像)的俯角为β,试证:云高为h ·sin (α+β)sin (β-α)m.[点拨] 本题常因审题不准,题意不清画不出合乎题意图形而放弃或因画错图形而致错.[正解] 分析 因湖面相当于一平面镜,故云C 与它在湖中的影D 关于湖面对称.设云高为CM =x ,则由△ADE 可建立含x 的方程,解出x 即可.解 如图所示,设在湖面上高为h m 处的A ,测得C 的仰角为α,而C 在湖中的像D 的俯角为β,CD 与湖面交于M ,过A 的水平线交CD 于E ,设云高CM =x ,则CE =x -h ,DE =x +h ,AE =(x -h )cot α.又AE =(x +h )cot β,所以(x -h )cot α=(x +h )cot β.解得x =tan β+tan αtan β-tan α·h =h ·sin (α+β)sin (β-α)(m).题多解 例在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图1所示)的东偏南θ (cos θ=210)方向300 km 的海面P 处,并以20 km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km/h 的速度不断增大.问几小时后该城市开始受到台风的侵袭?解 方法一 (构建三角形,解三角形)设在时刻t (h)台风中心为Q ,此时台风侵袭的圆形区域半径为10t +60 (km),如图2所示.若在时刻t 城市O 受到台风的侵袭,则OQ ≤10t +60. 由余弦定理知OQ 2=PQ 2+PO 2-2·PQ ·PO ·cos ∠OPQ . 由于PO =300,PQ =20t , cos ∠OPQ =cos(θ-45°) =cos θcos 45°+sin θsin 45°=210×22+ 1-2102×22=45, 故OQ 2=(20t )2+3002-2×20t ×300×45=202t 2-9 600t +3002.因此202t 2-9 600t +3002≤(10t +60)2, 即t 2-36t +288≤0,解得12≤t ≤24.答 12小时后该城市开始受到台风的侵袭. 方法二 (构建动圆,利用点圆关系)如图3所示,建立坐标系,以O 为原点,正东方向为x 轴正向.在时刻t (h)台风中心P (x t ,y t )的坐标为 ⎩⎨⎧x t =300×210-20×22t ,y t=-300×7210+20×22t .此时台风侵袭的区域是(x -x t )2+(y -y t )2≤[r (t )]2, 其中r (t )=10t +60.若在t 时刻城市O 受到台风的侵袭,则有 (0-x t )2+(0-y t )2≤(10t +60)2,即⎝⎛⎭⎫300×210-20×22t 2+⎝⎛⎭⎫-300×7210+20×22t 2≤(10t +60)2,即t 2-36t +288≤0,解得12≤t ≤24.答 12小时后该城市开始受到台风的侵袭.题赏析1.(2009·宁夏,海南)如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.分析 为求∠DEF 的余弦值,应先求出线段DE 、DF 、EF 的长,求这三条线段的长时要充分构造直角三角形.解 作DM ∥AC 交BE 于点N ,交CF 于点M . DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m)EF =(BE -FC )2+BC 2=902+1202=150(m)在△DEF 中,由余弦定理的变形公式,得 cos ∠DEF=DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.赏析 本题是2009年宁夏、海南高考试题,有一定计算量,但难度不大,涉及到的三条线段DE 、DF 、EF 均可以借助直角三角形计算.2.(2009·福建)如图,某市拟在长为8 km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数y =A sin ωx (A >0,ω>0),x ∈[0,4]的图象,且图象的最高点为S (3,23);赛道的后一部分为折线段MNP ,为保证参赛运动员的安全,限定∠MNP =120°.(1)求A ,ω的值和M ,P 两点间的距离;(2)应如何设计,才能使折线段赛道MNP 最长?解 (1)依题意,有A =23,T4=3,又T =2πω,∴ω=π6.∴y =23sin π6x .当x =4时,y =23sin 2π3=3,∴M (4,3).又P (8,0),∴MP =42+32=5. (2)在△MNP 中, ∠MNP =120°,MP =5. 设∠PMN =θ,则0°<θ<60°. 由正弦定理得 MP sin 120°=NP sin θ=MNsin (60°-θ),∴NP =1033sin θ,MN =1033sin(60°-θ),∴NP +MN =1033sin θ+1033sin(60°-θ)=1033⎝⎛⎭⎫12sin θ+32cos θ=1033sin(θ+60°). ∵0°<θ<60°, ∴60°<θ+60°<120°, ∴当θ=30°时,折线段赛道MNP 最长. 即将∠PMN 设计为30°时,折线段赛道MNP 最长.赏析 本题考查了三角函数的图象与性质以及解三角形等基础知识,旨在引导学生利用所学知识分析和解决实际问题.。

必修五正弦定理,余弦定理(2节5课时)

必修五正弦定理,余弦定理(2节5课时)

人教A版高中数学必修5全册导学案目录1.1.1正弦定理(2)1.1.2余弦定理(2)1.2.1解三角形应用举例(一)1.2.2解三角形应用举例(二)1.2.3解三角形应用举例(三)1.2.3解三角形应用举例(四)2.1.1数列的概念与简单表示法(一)2.1.2数列的概念与简单表示法(二)2.2.1等差数列(一)2.2.2等差数列(二)2.3.1等差数列的前n项和(一)2.3.2等差数列的前项和(二)2.4.1等比数列(一)2.4.2等比数列(二)2.5.1等比数列的前n项和(一)2.5.2等比数列的前n项和(二)3.1.1不等关系与不等式(一)3.1.2不等关系与不等式(二)3.2.1 一元二次不等式及其解法(一)3.2.2一元二次不等式及其解法(二)3.2.3一元二次不等式及其及解法(三)3.3.1.1二元一次不等式(组)与平面区域(一)3.3.2.1简单的线性规划问题(一)3.3.2.2简单的线性规划问题(二)3.3.2.3简单的线性规划问题(三)3.3.2二元一次不等式(组)与平面区域(二)3.4.1基本不等式(一)3.4.2基本不等式(二)3.4.3基本不等式(三)学案序号: 1 \2 课型: 新授课 时间: 2018/8/ 禄丰一中高 二年级标题 §1.1.1正弦定理【学习目标】1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题. 【重难点】1、会运用正弦定理解斜三角形的两类基本问题.2、掌握正弦定理的证明方法 【自主学习指导】阅读教材第1页-第4页,思考下列问题: 1、 正弦定理还可以怎样推导? 2、 正弦定理用途有哪些?【学习过程】一、 新知:1、 正弦定理文字语言:在一个三角形中,各边和它所对角的 的比相等, 符号语言:sin sin a bA B =sin c C =. 2、 解三角形一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.注意:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c bC B =,sin a A =sin c C . 3、正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin aA B b=;sin C = .二、典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.三、总结提升1. 正弦定理:sin sin a bA B =sin c C = 知识拓展sin sin a b A B =2sin cR C==,其中2R 为外接圆直径.2. 正弦定理的证明方法:①三角函数的定义, 还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;②已知两边和其中一边的对角. 【当堂检测】1. 在ABC ∆中,若cos cos A bB a=,则ABC ∆是( ).A .等腰三角形B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定 4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a sin sin sin a b cA B C++++= .6. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.【知识构建】学案序号: 3\4课型: 新授课 时间:2018/8 禄丰一中高 二年级 班标题§1.1.2余弦定理【学习目标】学习目标1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题. 【重难点】1、运用余弦定理解决两类基本的解三角形问题. 【自主学习指导】复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.【学习过程】 一、新知阅读教材第5—7页内容,然后回答问题(余弦定理)<1>余弦定理及其推导过程?<2>余弦定理及余弦定理的应用?思考:已知两边及夹角,如何解此三角形呢?在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵AC = , ∴AC AC ∙=同理可得: 2222c o s a b c b c A =+-, 2222cos c a b ab C =+-. 余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , . [理解定理](1)若C =90︒,则cos C = ,这时222c ab =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角. 二、典型例题例1. 在△ABC 中,已知a =b =45B =,求,A C 和c变式:在△ABC 中,若AB,AC =5,且cos C =910,则BC =________.例2. 在△ABC 中,已知三边长3a =,4b =,c =,求三角形的最大内角.变式:在∆ABC 中,若222a b c bc =++,求角A .三、学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: ① 已知三边,求三角;② 已知两边及它们的夹角,求第三边.※ 知识拓展在△ABC 中,若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角. 【当堂检测】(1)△ABC中,a =2c =,150B =,求b . (2)△ABC 中,2a =,b =,1c ,求A . 1. 已知ac =2,B =150°,则边b 的长为( ).A.B.C.D. 2. 已知三角形的三边长分别为3、5、7,则最大角为( ). A .60 B .75 C .120 D .1503. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ). A13x << B .13x <5 C . 2<x <5 D <x <54. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________.5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .6、在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.7、在△ABC 中,AB =5,BC =7,AC =8,求AB BC ⋅的值.【知识构建】学案序号: 5课型: 习题课 时间:2018/8 禄丰一中高 二年级 班 标题正余弦定理【学习目标】1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形. 【自主学习指导】 复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理. 二、典型例题探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =② A =6π,a,b =A =6π,a =50,b =思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A 为锐角时).已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA试试:1. 用图示分析(A 为直角时)解的情况?2.用图示分析(A 为钝角时)解的情况?例1. 在∆ABC 中,已知80a =,100b =,45A ∠=︒,试判断此三角形的解的情况.变式:在∆ABC 中,若1a =,12c =,40C ∠=︒,则符合题意的b 的值有_____个.学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※知识拓展在∆ABC中,已知,,a b A,讨论三角形解的情况:①当A为钝角或直角时,必须a b>才能有且只有一解;否则无解;②当A为锐角时,如果a≥b,那么只有一解;如果a b<,那么可以分下面三种情况来讨论:(1)若sina b A>,则有两解;(2)若sina b A=,则只有一解;(3)若sina b A<,则无解.当堂检测(时量:5分钟满分:10分)计分:1. 已知a、b为△ABC的边,A、B分别是a、b的对角,且sin2sin3AB=,则a bb+的值=().A. 13B.23C.43D.532. 已知在△ABC中,sin A∶sin B∶sin C=3∶5∶7,那么这个三角形的最大角是().A.135°B.90°C.120°D.150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为().A.锐角三角形B.直角三角形C.钝角三角形D.由增加长度决定4. 在△ABC中,sin A:sin B:sin C=4:5:6,则cos B=.5. 已知△ABC中,cos cosb Cc B=,试判断△ABC的形状.一、选择题1.在中,已知角则角A的值是()A.15°B.75°C.105°D.75°或15°2.中,则此三角形有()A.一解 B.两解 C.无解 D.不确定3.若是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在中,已知则AD长为()A.B. C.D.5.在,面积,则BC长为()A.B.75 C.51 D.496.钝角的三边长为连续自然数,则这三边长为()A.1、2、3、B.2、3、4 C.3、4、5 D.4、5、67.在中,,则A等于()A.60°B.45° C.120°D.30°8.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D.等边三角形9.在中,,则等于()A.B.C.D.10.在中,,则的值为()A.B.C.D.11.在中,三边与面积S的关系式为则角C为()A.30°B.45°C.60°D.90°12.在中,是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题13.在中,,则14.若的三个内角成等差数列,且最大边为最小边的2倍,则三内角之比为________。

正余弦定理地应用举例教案设计

正余弦定理地应用举例教案设计

天津职业技术师范大学人教A版数学必修51.2正弦定理余弦定理的应用举例理学院数学0701田承恩一、教材分析本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。

因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。

本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。

同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。

这节课我们就跟同学们共同研究这个问题。

(一)重点1.正弦定理、余弦定理各自的公式记忆。

2.解斜三角形问题的实际应用以及全章知识点的总结归纳。

(二)难点1.根据已知条件如何找出最简单的解题方法。

2.用应用数学的思想解决实际问题。

(三)关键让学生灵活运用所学正弦定理、余弦定理。

并具备解决一些基本实际问题的能力。

二、学情分析学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。

因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。

让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。

三、学习目标(一)知识与技能1.熟练掌握正弦定理、余弦定理的公式2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤(二)过程与方法1.通过应用举例的教学,培养学生的推理能力,优化学生的思维品质2.通过教学中的不断设问,引导学生经历探索、解决问题的过程(三)情感、态度与价值观让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。

四、教学手段计算机,ppt,黑板板书。

五、教学过程(设计)65.7()m ≈新课讲解答:A、B两点间的距离为65.7m。

(值得注意的是在解决实际问题中某些角度和长度我们是可以通过测角仪器和米尺测量的,这些条件通常默认为是已知条件)例二:如图,A.B点都在河的对岸(不可到达),设计一种测量A,B两点间距离的方法。

【创新设计】2022-2021学年高二数学人教A必修5学案:1.2 应用举例(一) Word版含答案

【创新设计】2022-2021学年高二数学人教A必修5学案:1.2 应用举例(一) Word版含答案

1.2 应用举例(一)[学习目标] 1.利用正、余弦定理解决生产实践中的有关距离的测量问题.2.利用正、余弦定理解决生产实践中的有关高度的测量问题.3.培育同学提出问题、正确分析问题、独立解决问题的力量,并激发同学的探究精神.[学问链接]在本章“解三角形” 引言中,我们遇到这么一个问题,“遥不行及的月亮离我们地球到底有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么奇特的方法探究到这个奇特的呢? [预习导引]1.基线的定义:在测量上,我们依据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高. 2.仰角和俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如下图所示)要点一 测量可到达点与不行到达点间的距离例1 如下图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是a ,∠BAC =α,∠ACB =β.求A 、B 两点间的距离.解 在△ABC 中,依据正弦定理,得AB sin C =ACsin B ,AB =AC sin C sin B =a sin βsin (π-α-β)=a sin βsin (α+β).答 A 、B 两点间的距离为a sin βsin (α+β).规律方法 解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解. 跟踪演练1 如图,在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离为________千米. 答案6解析 由题意知C =180°-A -B =45°,由正弦定理得AC sin 60°=2sin 45°,∴AC =222·32= 6.要点二 测量两个不行到达点间的距离相距为3a 2的军例2 在某次军事演习中,红方为了精确 分析战场形势,在两个事基地C 和D 测得蓝方两支精锐部队分别在A 处和B 处,且∠ADB =30°,∠BDC =30°,∠DCA =60°,∠ACB =45°,如图所示,求蓝方这两支精锐部队之间的距离.解 ∵∠ADC =∠ADB +∠CDB =60°, 又∠DCA =60°,∴∠DAC =60°. ∴AD =CD =AC =32a . 在△BCD 中,∠DBC =45°, ∴BC sin 30°=CD sin 45°,∴BC =64a . 在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34a 2+38a 2-2×32a ×64a ×22=38a 2. ∴AB =64a . ∴蓝方这两支精锐部队之间的距离为64a . 规律方法 测量两个不行到达的点之间的距离问题.首先把求不行到达的两点A ,B 之间的距离转化为应用余弦定理求三角形的边长问题,然后在相关三角形中利用正弦定理计算其他边.跟踪演练2 如下图,A 、B 两点都在河的对岸(不行到达),若在河岸选取相距40米的C 、D 两点,测得∠BCA =60°,∠ACD =30°,∠CDB =45°,∠BDA =60°,那么此时A 、B 两点间的距离是多少?解 应用正弦定理得AC =40sin (45°+60°)sin[180°-(30°+45°+60°)]=40sin 105°sin 45°=40sin 75sin 45°=20(1+3),BC =40sin 45°sin[180°-(60°+30°+45°)]=40sin 45°sin 45°=40.在△ABC 中,由余弦定理得 AB =AC 2+BC 2-2AC ×BC cos ∠BCA =20 6 m.∴A 、B 两点间的距离为206米.1.如图,在河岸AC 上测量河的宽度BC ,测量下列四组数据,较适宜的是( ) A .a ,c ,α B .b ,c ,α C .c ,a ,β D .b ,α,γ答案 D解析 由α、γ可求出β,由α、β、b ,可利用正弦定理求出BC .故选 D.2.某人向东方向走了x 千米,然后向右转120°,再朝新方向走了3千米,结果他离动身点恰好13千米,那么x 的值是________. 答案 4解析 由余弦定理:得x 2+9-3x =13,整理得:x 2-3x -4=0,解得x =4(x =-1舍去).3.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,求A 、B 两点的距离. 解 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin ∠ACBsin ∠ABC=50×2212=502(m).答 A 、B 两点间的距离为50 2 m.1.解三角形应用题常见的两种状况(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上)三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求出其他三角形中的解,有时需设出未知量,从几个三角形中列出方程,解方程得出所要求的解.2.正、余弦定理在实际测量中的应用的一般步骤: (1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:依据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.一、基础达标1.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( ) A .10 3 n mile B.1063 n mileC .5 2 n mileD .5 6 n mile答案 D解析 由题意知,在△ABC 中AB =10,A =60°,B =75°,则C =180°-A -B =45°. 由正弦定理,得BC =AB sin A sin C =10sin 60°sin 45°=56(n mile).2.甲骑电动自行车以 24 km/h 的速度沿着正北方向的大路行驶,在点A 处望见电视塔在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .6 km B .3 3 km C. 3 2 km D .3 km答案 C解析 由题意知,AB =24×14=6 km ,∠BAS =30°,∠ASB =75°-30°=45°.由正弦定理,得BS =AB sin ∠BAS sin ∠ASB=6sin 30°sin 45°=3 2.3.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______m. 答案 60解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC . ∴AC =AB =120(m).如图,作CD ⊥AB ,垂足为D ,则CD 即为河的宽度. 由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,∴120sin 90°=CD sin 30°,∴CD =60(m). ∴河的宽度为60 m.4.如图,一艘船以32.2 n mile/h 的速度向正北航行.在A 处看灯塔S 在船的北偏东20°的方向,30 min 后航行到B 处,在B 处看灯塔在船的北偏东65°的方向,已知距离此灯塔6.5 n mile 以外的海区为航行平安区域,这艘船可以连续沿正北方向航行吗? 解 在△ABS 中,AB =32.2×0.5=16.1 (n mile),∠ABS =115° , 依据正弦定理,AS sin ∠ABS =AB sin (65°-20°),AS =AB ×sin ∠ABS sin (65°-20°)=AB ×sin ∠ABS ×2=16.1×sin 115°×2,S 到直线AB 的距离是d =AS ×sin 20°=16.1×sin 115°×2×sin 20°≈7.06(n mile).由于7.06>6.5,所以这艘船可以连续沿正北方向航行.5.要测量对岸两点A 、B 之间的距离,选取相距 3 km 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离. 解 如图所示,在△ACD 中,∠ACD =120°, ∠CAD =∠ADC =30°, ∴AC =CD = 3 (km).在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°. ∴BC =3sin 75°sin 60°=6+22(km).在△ABC 中,由余弦定理,得 AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23×6+22×cos 75° =3+2+3-3=5,∴AB = 5 (km).∴A 、B 之间的距离为 5 km. 二、力量提升6.一架飞机从A 地飞到B 地,两地相距700 km.飞行员为了避开某一区域的雷雨云层,从机场起飞后,就沿与原来的飞行方向成21°角的方向飞行,飞行到中途,再沿与原来的飞行方向成35°夹角的方向连续飞行直到终点.这样飞机的飞行路程比原来路程700 km 远了多少?解 在△ABC 中,AB =700 km ,∠ACB =180°-21°-35°=124°, 依据正弦定理,700sin 124°=AC sin 35°=BCsin 21°,AC =700·sin 35°sin 124°,BC =700·sin 21°sin 124°,AC +BC =700·sin 35°sin 124°+700·sin 21°sin 124 °≈786.89(km),786.89-700=86.89(km).答 所以路程比原来远了约86.89 km.7.某人在M 汽车站的北偏西20°的方向上的A 处,观看到点C 处有一辆汽车沿大路向M 站行驶.大路的走向是M 站的北偏东40°.开头时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米.问汽车还需行驶多远,才能到达M 汽车站?解 由题设,画出示意图,设汽车前进20千米后到达B 处.在△ABC 中,AC =31,BC =20,AB =21, 由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =2331,则sin 2C =1- cos 2C =432312, sin C =12331,所以sin ∠MAC =sin(120°-C )=sin 120°cos C -cos 120°sin C =35362.在△MAC 中,由正弦定理,得MC =AC sin ∠MAC sin ∠AMC =3132×35362=35.从而有MB = MC -BC =15.答 汽车还需要行驶15千米才能到达M 汽车站. 三、探究与创新8.如右图,一人在C 地看到建筑物A 在正北方向,另一建筑物B 在北偏西45°方向,此人向北偏西75°方向前进30 km 到达D 处,看到A 在他的北偏东45°方向,B 在北偏东75°方向,试求这两座建筑物之间的距离. 解 依题意得,DC =30, ∠ADB =∠BCD =30°=∠BDC ,∠DBC =120°,∠ADC =60°,∠DAC =45°. 在△BDC 中,由正弦定理可得, BC =DC sin ∠BDC sin ∠DBC =30·sin 30°sin 120°=10,在△ADC 中,由正弦定理可得, AC =DC sin ∠ADC sin ∠DAC=30·sin 60°sin 45°=3 5.在△ABC 中,由余弦定理可得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB =(35)2+(10)2-2×35×10×cos 45°=25,∴AB =5.答 这两座建筑物之间的距离为5 km.。

(人教版)高中数学 第一章1.2应用举例(二)学案课件 新人教A版必修5

(人教版)高中数学 第一章1.2应用举例(二)学案课件 新人教A版必修5
例 2 如图,在四边形 ABCD 中,BC=a, DC=2a,四个内角 A、B、C、D 的度数之 比为 3∶7∶4∶10,求 AB 的长.

1.2(二)
本 课 栏 目 开 关
设四个内角 A、B、C、D 的大小为 3x、7x、4x、10x(x>
0),由四边形内角和为 360° 可得,
3x+7x+4x+10x=360° ,∴x=15° ,
=AB2+AD2- 2AB· AD.
练一练· 当堂检测、目标达成落实处
1.2(二)
同理,在△ABC 中有 AC2=AB2+BC2-2AB· BC· cos ∠ABC =AB2+BC2-2AB· BC· cos 135° =AB2+AD2+ 2AB· AD
AC2· BD2=(AB2+AD2+ 2AB· AD)· (AB2+AD2- 2AB· AD) =(AB2+AD2)2-2AB2· AD2 =AB4+AD4.
在△CBD 中, 利用正弦定理, BC sin∠BDC = .② CD sin∠DBC
研一研· 问题探究、课堂更高效
1.2(二)
∵BD 是角 B 的平分线,
∴∠ABD=∠CBD,
又∵∠ADB+∠CDB=180° ,
本 课 栏 目 开 关
∴sin∠ADB=sin∠CDB, AB BC BA AD 所以①=②,得 = .即 = 成立. AD CD BC DC
∴20-16cos A=52-48cos C.
本 课 栏 目 开 关
又 cos C=-cos A, 1 ∴cos A=-2.∴A=120° . ∴S=16sin A=8 3.
小结 本题将四边形面积转化为三角形面积问题,将实际问
题转化为数学问题,是转化与化归思想的应用.

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_1

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课教案_1

我国南宋著名数学家秦九韶也发现了与海伦公式等价的从三角形三边求面积的公式,他把这种方法称为“三斜求积”. 在他的著作《数书九章》里有一个题目:“问有沙田一段,有三斜,其小斜一十二里,中斜一十四里,大斜一十五里. 里法三百步. 欲知为田几何? 答曰:田积三百一十五顷.” 这道题实际上是已知三角形的三边长,求三角形面积. 《数书九章》中的求法是:“以小斜幂并大斜幂减中斜幂 ,余半之,自乘于上. 以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方,得积.” 译成现代式子是])2([41222222b a c a c S -+-= 这个式子称为秦九韶“三斜求积”公式.通过上述证明可以看出:秦九韶公式与海伦公式的本质是一样的! 从中充分说明我国古代已具有很高的数学水平.秦九韶 (约公元 1 2 0 2~ 1 2 61年 ) ,字道古,字道古,祖籍为鲁郡(今山东兖州),与李冶、杨辉、朱世杰并称宋元数学四大家,是我国古代数学家杰出代表之一. 著有《数书九章》,全书为十八卷,共 81题,分九大类. 系统总结和发展了高次方程的数值解法(在必修三《算法初步》中有“秦九韶算法”)和一次同余问题的解法,提出了相当完备的“正负开方术”和“大衍求一术”,对数学发展产生了广泛的影响,奠定了其时人难以望其项背的数学地位.他被外国科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”. 如果将秦九韶和意大利文艺复兴时期的风云人物相比,竟有几分相似:他多才多艺,懂得星占、数学、音乐、建筑,还擅长诗文,会骑术、剑术、踢球等.4. 海伦公式的应用示例海伦公式除了可以解决“已知三角形三边长求面积”的问题外,还有什么应用呢?例1 三边长a ,b ,c 的三角形,满足c>a>b ,2a=b+c ,且它的周长是12,面积是6,试判断这个三角形的形状.分析:由已知得,a=4,b+c=8,p=6,于是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2应用举例—①
班级姓名学号
能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题
复习1:在△ABC中,∠C=60°,a+b=2,c=A为.
复习2:在△ABC中,sin A=sin sin
cos cos
B C
B C
+
+
,判断三角形的形状.
二、新课导学
※典型例题
例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是a,∠BAC=α,∠ACB=β. 求A、B两点的距离.
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题
例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.
例3、坡度、仰角、俯角、方位角
探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.
例4. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.
1. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ).
A .0.5小时
B .1小时
C .1.5小时
D .2小时
2. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
3.在ABC ∆中,已知4a =,6b =,120C = ,则sin A 的值是 .
4.在∆ABC 中,cos 5cos 3
A b
B a ==,则∆AB
C 的形状是
、c 分别为∠A 、∠B 、∠C 的对边,若::a b c A:B:C 的值.
1. 隔河可以看到两个目标,但不能到达,的C 、D 两点,并测得∠ACB
=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,A、B、C、D在同一个平面,求两目标A、B间的距离.
2. 在∆ABC中,b=2
a=,且三角形有两解,则A的取值范围是.。

相关文档
最新文档