分式方程专题

合集下载

专题16.3 解分式方程专练(30道)-解析版

专题16.3 解分式方程专练(30道)-解析版

2023-2024年数学八年级下册重难点专题提升【华师大版】专题16.3 解分式方程专练(30道)一、解答题(本卷共30道,总分120分)1.(八年级上·江苏南通·阶段练习)解下列分式方程: (1)21122x x x +=+--; (2)2227611x x x x x -=+--.2.(八年级下·重庆万州·阶段练习)化简或解方程:(1)2111x x x -++ (2)21233x x x+=+--3.(八年级下·全国·课后作业)解下列方程:(1)125210x x x x --=-- (2)214111x x x++=--因此1x =不是原分式方程的解,所以原分式方程无解.4.(八年级·全国·随堂练习)解方程:(1)23133x x x --=+-; (2)28124x x x -=--.5.(八年级下·江苏泰州·阶段练习)计算或解方程:(1)211x x x -++; (2)613x x x +=+6.(八年级上·山东青岛·期末)解方程(1)221011x x x -=--; (2)322112x x x=---. 13x 【详解】(1)1011x -=-13x 检验:当13x时,2所以13x 是原方程的解7.(八年级上·山东日照·期末)解下列方程(1)28124x x x -=-- (2)1111x x x-=++ 13x 【详解】(1)解:方程两边乘22)x x +-+13x, 检验:当13x 时,x 故原方程的解为13x. 8.(八年级下·四川内江·阶段练习)解下列方程:(1)233x x =- (2)214111x x x +-=-- 【答案】(1)9x =(2)无解【详解】(1)解:两边同时乘以()3x x -得:()233x x =-, 解得:9x =,经检验:9x =是原方程的解,∴原方程的解为9x =;(2)解:两边同时乘以()()11x x +-得:()22141x x +-=-,解得:1x =,经检验:1x =是原方程的增根, ∴原方程无解.9.(八年级·全国·随堂练习)(1)125210x x x x --=--; (2) 214111x x x ++=--.10.(八年级下·河南南阳·阶段练习)解分式方程:(1)11222x x x --=-- (2)11x --21x =+241x - 【答案】(1)无解(2)无解【详解】(1)解:方程两边同乘以()2x -得:()1221x x ---=-, 解得:2x =,检验:当2x =时,20x -=,所以2x =是增根,原方程无解;(2)解:方程两边同乘以()()11x x +-得:()1214x x +--=, 解得:=1x -,检验:当=1x -时,()()110x x +-=,所以=1x -是增根,原方程无解.11.(八年级上·山东淄博·阶段练习)解分式方程:(1)2233111x x x x +-=-+-; (2)1112x x x ++=-. 【答案】(1)无解;(2)1x =【详解】(1)分式两边都乘()()11x x +-得:2(1)3(1) 3.x x x +--=+解得:1x =检验:把1x =代入得()()110x x +-=,∴1x =是增根,∴分式方程无解;(2)分式两边都乘()2x x -得:()(1)(2)2x x x x x ++-=-解得:1x =检验:把1x =代入得()20x x -≠,∴分式方程的解为1x =;12.(八年级上·山东聊城·期末)解分式方程:(1)42122x x x x ++=--; (2)2162142x x x ++=--. 【答案】(1)3x =(2)无解13.(八年级上·海南三亚·期末)解分式方程:(1)132x x =+; (2)22142x x x +=--.14.(八年级上·内蒙古赤峰·期末)解分式方程:(1)233x x =-; (2)311(1)(2)x x x x -=--+ 【答案】(1)9x =(2)=1x -15.(八年级上·山东潍坊·阶段练习)解分式方程(1)3213 xx x--=-(2)932 33xx x+= --去括号得:9326x x -=-, 移项得:3269x x --=--,合并同类项得:515x -=-,系数化为1得:3x =,检验:当3x =时,30x -=,∴3x =不是原方程的解,∴原方程无解.16.(八年级下·江苏镇江·阶段练习)解分式方程:(1)11322x x x-+=-- (2)2231114x x x +=+--17.(八年级上·新疆喀什·期中)解方程(1)21212339x x x -=+-- (2)242111x x x ++=---18.(八年级上·广西桂林·阶段练习)解方程:(1)311122x x x -+=--- (2)221111x x x +-=--19.(八年级上·河北廊坊·期末)解分式方程:(1)2373226x x +=++; (2)2236111x x x +=+-- 210是原方程的增根,20.(八年级上·山东聊城·阶段练习)解分式方程:(1)522112x x x +=-- (2)214111x x x +-=--21.(八年级上·内蒙古通辽·期末)解方程:(1)131x x x x +=--; (2)2162142x x x ++=--22.(八年级上·河南周口·期末)解分式方程∴(1)22430x x x x-=-+ (2)241244x x x x -=--+ 【答案】(1)7x =-23.(八年级上·陕西商洛·期末)解下列分式方程:(1)21133x x x x =+--; (2)2162142x x x ++=---.(2)方程两边同乘()()22x x +-得:()()()()162222x x x x -++=-+- 整理得:16444x --=解方程得:2x =,把2x =代入最简公分母中检验得()()220x x +-=,∴2x =是方程的增根,舍去,∴原方程无解.24.(八年级上·山东泰安·期末)解下列方程:(1)532x x =-; (2)28142x x x +=--;25.(八年级上·河南商丘·期末)解分式方程(1)25231x x x x +=++ (2)212133x x x x -+=-- 【答案】(1)无解(2)1x =【详解】(1)解:方程两边同时乘以()1x x +得:523x x +=,解得:=1x -,检验:当=1x -时,()10x x +=,∴=1x -是原方程的增根, 故原方程无解.(2)方程两边同时乘以()3x x -得:()()123x x x x --=-,解得:1x =,检验:当1x =时,()320x x -=-≠,∴1x =是原方程的根.26.(八年级上·山东济宁·期末)解方程:(1)12122x x x -=--; (2)214111x x x --=+-.∴=1x -是原方程的增根,∴原方程无解.27.(八年级上·河北廊坊·期末)解方程:(1)131x x =-; (2)4322x x x x -+=--. 2x,得x 时,2x -=是增根,即原分式方程无解.28.(八年级上·江苏扬州·期末)解分式方程:(1)512552x x x +=--; (2)214111x x x +-=--. 【答案】(1)0x =(2)1x =是增根,方程无解【详解】(1)解:去分母得:525x x -=-,移项合并得:0x =,经检验0x =是分式方程的解;(2)去分母得:22(1)41x x +-=-,去括号得:222141x x x ++-=-,解得:1x =,经检验1x =是增根, 分式方程无解 .29.(八年级上·河南周口·期末)解分式方程:(1)2321x x =-+. (2)21212x x x x+=++. 【答案】(1)8x =(2)无解 【详解】(1)解:方程两边同乘()()21x x -+,得()()2132x x +=-. 解得8x =.检验:当8x =时,210x x .所以,原分式方程的解为8x =;(2)方程两边同乘()2x x +,得()()21222x x x x ++=++. 解得0x =.检验:当0x =时,()20x x +=.所以,原分式方程无解.30.(八年级上·湖南怀化·期末)解方程. (1)23133x x x-+=--; (2)221111x x x x --=--.方程两边同乘最简公分母()21x -,得2(1)(21)1x x x x +--=-,解得2x =,检验:当2x =时,210x ,2x ∴=是原分式方程的解.。

专题01 分式和分式方程(1)解析版

专题01 分式和分式方程(1)解析版

专题01 分式和分式方程(1)考点1:分式的定义1.下列各式是分式的是()A.B.C.2y D.【答案】A【解析】A、是分式,故本选项符合题意;B、是多项式,故本选项不符合题意;C、是单项式,故本选项不符合题意;D、是单项式,故本选项不符合题意.故选:A.2.下列各式x+y,,,,中,是分式的有()A.2个B.3个C.4个D.5个【答案】A【解析】,是分式,共2个,故选:A.3.下列式子中是分式的是()A.B.C.D.【答案】C【解析】A、它的分母中不含有字母,是整式,故本选项不符合题意;B、它的分母中不含有字母,是整式,故本选项不符合题意;C、它是分式,故本选项符合题意;D、它是分数,故本选项不符合题意;故选:C.4.下列各式中,是分式的是()A.x B.C.D.+1【答案】B【解析】的分母中含有字母,属于分式,x、、+1的分母中不含有字母,属于整式.故选:B.5.下列各式:,,,其中分式有_______.【答案】3个.【解析】,,的分母中含有字母,属于分式.共有3个分式.6.在有理式﹣π,中,分式有_______个.【答案】3.【解析】分式有,,,共3个,7.在代数式中,分式有2个.【答案】2.【解析】,的分母中含有字母,是分式.8.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,不属于“和谐分式”的是:_______(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.【答案】见解析【解析】(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.考点2:分式有意义的条件1.若分式有意义,则x的取值范围是()A.x≤3B.x<3C.x<3且x≠0D.x≠3【答案】D【解析】由题意得:3﹣x≠0,解得:x≠3,故选:D.2.代数式中的x取值范围是()A.x B.x C.x D.x【答案】C【解析】由题意得,2x﹣1≠0,解得,x≠,故选:C.3.若分式有意义,则a的取值范围是()A.a≠2B.a=2C.a≠﹣2D.a=﹣2【答案】C【解析】由题意得:a+2≠0,解得:a≠﹣2,故选:C.4.要使分式有意义,x的取值是()A.x≠2B.x≠﹣2C.x≠±2D.x≠±2且x≠﹣1【答案】B【解析】由题意可知:x+2≠0∴x≠﹣2故选:B.5.若分式有意义,则x的取值范围是_______.【答案】x≠3.【解析】要使分式有意义,必须x﹣3≠0,解得:x≠3,6.若分式在实数范围内有意义,则x满足的条件是_______.【答案】x≠2.【解析】由题意得:x﹣2≠0,解得:x≠2,7.若分式在实数范围内有意义,则实数x的取值范围是_______.【答案】x≠5.【解析】由题意得,x﹣5≠0,解得,x≠5,8.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.【答案】见解析【解析】∵式子无意义,∴3y﹣1=0,解得y=,原式=y2﹣x2+x2=y2=()2=.考点3:分式的值为零的条件1.若分式的值为0,则x的值是()A.±2B.﹣2C.0D.2【答案】D【解析】∵分式的值为0,∴x2﹣4=0,2x+4≠0,解得,x=2,故选:D.2.若分式的值为0,则x的值是()A.0B.1C.2D.﹣1【答案】B【解析】分式的值为0,则x﹣1=0,且2x≠0,解得:x=1.故选:B.3.若分式的值为0,则x的值为()A.0B.﹣2C.4D.4或﹣2【答案】C【解析】由分式的值为零的条件得x﹣4=0且x+2≠0,解得:x=4,故选:C.4.分式的值为0,则x的值为()A.﹣1或2B.2C.﹣1D.﹣2【答案】B【解析】依题意,得x2﹣x﹣2=(x﹣2)(x+1)=0且|x|﹣1≠0.解得x=2或x=﹣1且x≠±1.所以x=2符合题意.故选:B.5.分式的值等于0,则x=_______.【答案】﹣2.【解析】根据题意,得x2﹣4=(x+2)(x﹣2)=0且x﹣2≠0.所以x+2=0.所以x=﹣2.6.当x=﹣3时,分式的值为零.当x≠时,分式有意义.【答案】﹣3;.【解析】分式的值为零,则,解得x=﹣3;分式有意义,则1﹣2x≠0,解得x≠.7.分式的值为0时,x=2.【答案】2.【解析】∵分式的值为0,∴2x2﹣8=0,x+2≠0,解得,x=2,8.若a,b为实数,且=0,求3a﹣b的值.【答案】见解析【解析】∵=0,∴,解得,∴3a﹣b=6﹣4=2.故3a﹣b的值是2.考点4:分式的值1.若分式的值为正数,则x的取值范围是()A.x>B.x<C.x≥D.x取任意实数【答案】A【解析】∵分式的值为正数,∴x2+5>0,2x﹣1>0,解得:x>.故选:A.2.已知的值等于0,则x的大小为()A.1B.2C.±2D.﹣2【答案】D【解析】∵的值等于0,∴x2﹣4=0且(x﹣2)(x﹣1)≠0,解得:x=﹣2.故选:D.3.若分式的值为整数,则整数m可能值的个数为()A.2B.4C.6D.8【答案】C【解析】分式的值为整数,∴m﹣1=±1,±2,±4,解得:m=2,0,3,﹣1,5,﹣3,则整数m可取的值的个数是6个.故选:C.4.已知a=2016,则代数式的值为()A.2016B.2015C.D.【答案】C【解析】==,当a=2016时,原式=,故选:C.5.若分式的值是负整数,则整数m的值是_______.【答案】3.【解析】原式==﹣1+,由题意可知:m﹣4=﹣1,∴m=3,6.若分式的值为正数,x的取值范围是_______.【答案】x>.【解析】∵分式的值为正数,∴,解得x>.7.已知x,y,z都不为0,且,则式子的值为_______.【答案】.【解析】①﹣②,得2x﹣4z=0,∴x=2z.把x=2z代入①,得8z﹣3y﹣3z=0.解得y=z.把x=2z,y=z代入式子==.8.若x为整数,且的值也为整数,则所有符合条件的x的值之和.【答案】见解析【解析】==,∵x为整数,且的值也为整数,∴x﹣2的值为﹣4,﹣2,﹣1,1,2或4.∴x的值为:﹣2,0,1,3,4或6,经检验,当x=﹣2时,原式分母为0,不符合题意,故舍去.∴0+1+3+4+6=14.∴所有符合条件的x的值之和为14.考点5:分式的基本性质1.如果把分式中的x和y都扩大3倍,那么分式的值()A.不变B.缩小3倍C.扩大3倍D.扩大9倍【答案】C【解析】==3×,即如果把分式中的x和y都扩大3倍,那么分式的值扩大3倍,故选:C.2.下列化简正确的是()A.B.C.D.【答案】A【解析】A.==,故本选项符合题意;B.≠,故本选项不符合题意;C.=﹣,故本选项不符合题意;D.==﹣,故本选项不符合题意;故选:A.3.若把分式中的x,y都缩小2倍,则分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍【答案】B【解析】根据题意,得x和y的值都缩小2倍,即==,显然分式的值不变.故选:B.4.若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小3倍【答案】C【解析】把分式中的x和y都扩大3倍,则分式变为,而=,所以把分式中的x和y都扩大3倍,分式的值不变.故选:C.5.若分式的值为5,则x、y扩大2倍后,这个分式的值为_______.【答案】5.【解析】根据题意,得新的分式为==5.6.把分式的x和y都扩大3倍,分式的值_______.【答案】扩大3倍.【解析】==,即分式的值扩大3倍,7.若把分式中的x和y都扩大两倍,则分式的值_______.【答案】不变.【解析】分式中的x,y都扩大两倍,那么分式的值不变,即=,8.填空:==(a≠0,b≠0).【答案】见解析【解析】==(a≠0,b≠0).故答案为:a,ab2.考点6:约分1.分式可化简为()A.x﹣y B.C.x+y D.【答案】C【解析】原式==x+y.故选:C.2.计算的结果为()A.﹣a2B.﹣a C.a D.a2【答案】B【解析】原式=﹣=﹣a,故选:B.3.下列约分正确的是()A.B.C.D.【答案】D【解析】A、=x4,故原题计算错误;B、=1,故原题计算错误;C、=,故原题计算错误;D、=,故原题计算正确;故选:D.4.已知a,b两数在数轴上的位置如图所示,则化简的结果是()A.a﹣b﹣1B.a+b﹣1C.﹣a+b+1D.﹣a﹣b+1【答案】C【解析】原式=||=||=|a﹣b﹣1|,由数轴可得,a﹣b<0,原式=﹣(a﹣b﹣1)=﹣a+b+1.故选:C.5.小丽在化简分式=时,*部分不小心滴上了墨水,请你推测,*部分的代数式应该是x2﹣2x+1.【答案】x2﹣2x+1.【解析】∵==,∴*部分为:(x﹣1)2=x2﹣2x+1,6.化简:=_______.【答案】.【解析】=.7.化简:=_______.【答案】【解析】原式==.8.约分:(1);(2).【答案】见解析【解析】(1)原式==;(2)原式==.。

专题08 分式方程(学生版)

专题08 分式方程(学生版)

知识点01:解分式方程【高频考点精讲】1.解分式方程的步骤(1)去分母。

方程两边同时乘以最简公分母,将分式方程化为整式方程。

(2)去括号。

系数分别乘以括号里的数。

(3)移项。

含有未知数的式子移到方程左边,常数移到方程右边。

(4)合并同类项。

(5)系数化为1。

(6)检验。

把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;如果最简公分母不等于0,这个根就是原分式方程的根;如果解出的根是增根,那么原方程无解。

2.换元法解分式方程(1)将原分式方程中含有字母的整体用另一个字母代替,从而使问题得到简化,这种方法叫做换元法。

(2)常见类型①直接换元。

例如015)1(2)1(2=----x x ,设1-=x y 。

②配方换元。

例如1)1(31222=+-+x x x x )(,原方程配方,得05)1(3)1(22=-+-+x x x x ,设x x y 1+=。

③倒数换元。

例如2232=---x x x x ,设xx y 2-=。

④变形换元。

例如1221222-=--x x x x ,可变形为1212222-=---xx x x ,设x x y 22-=。

知识点02:由实际问题抽象出分式方程 【高频考点精讲】1.利用常见数量关系确定等量关系。

例如行程问题中的相遇时间、追击时间相等。

2.利用关键词确定等量关系。

例如“倍”“多”“少”等。

检测时间:90分钟 试题满分:100分 难度系数:0.56一.选择题(共10小题,满分20分,每小题2分) 1.(2分)(2023•哈尔滨)方程=的解为( )A .x =1B .x =﹣1C .x =2D .x =﹣22.(2分)(2023•德州)某次列车平均提速v 千米/小时,用相同的时间,列车提速前行驶s 千米,相同的时间,提速后比提速前多行驶50千米,根据以上信息,下列说法正确的是( ) A .若设提速后这次列车的平均速度为x 千米/小时,则可列方程为 B .若设提速后这次列车的平均速度为x 千米/小时,则可列方程为 C .若设提速前这次列车的平均速度为y 千米/小时,则可列方程为D .若设提速前这次列车的平均速度为y 千米/小时,则可列方程为3.(2分)(2023•大连)解方程去分母,两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x4.(2分)(2023•深圳)某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x吨,则所列方程正确的是()A.=B.=C.=D.=5.(2分)(2023•聊城)若关于x的分式方程+1=的解为非负数,则m的取值范围是()A.m≤1且m≠﹣1 B.m≥﹣1且m≠1 C.m<1且m≠﹣1 D.m>﹣1且m≠16.(2分)(2023•广元)近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a为全程10千米的普通道路,路线b包含快速通道,全程7千米,走路线b比路线a 平均速度提高40%,时间节省10分钟,求走路线a和路线b的平均速度分别是多少?设走路线a的平均速度为x千米/小时,依题意,可列方程为()A.B.C.D.7.(2分)(2023•东营)为扎实推进“五育”并举工作,加强劳动教育,东营市某中学针对七年级学生开设了“跟我学面点”烹饪课程.课程开设后学校花费6000元购进第一批面粉,用完后学校又花费9600元购进了第二批面粉,第二批面粉的采购量是第一批采购量的1.5倍,但每千克面粉价格提高了0.4元.设第一批面粉采购量为x千克,依题意所列方程正确的是()A.﹣=0.4 B.﹣=0.4C.﹣=0.4 D.﹣=0.48.(2分)(2023•云南)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是()A.B.C.D.9.(2分)(2023•辽宁)某校八年级学生去距离学校120km的游览区游览,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车的速度是x km/h,所列方程正确的是()A.+1=B.﹣1=C.=D.=10.(2分)(2023•黑龙江)已知关于x的分式方程+1=的解是非负数.则m的取值范围是()A.m≤2 B.m≥2 C.m≤2且m≠﹣2 D.m<2且m≠﹣2二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•青岛)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x元,则x满足的分式方程为.12.(2分)(2023•苏州)分式方程的解为x=.13.(2分)(2023•永州)若关于x的分式方程(m为常数)有增根,则增根是.14.(2分)(2023•绵阳)随着国家提倡节能减排,新能源车将成为时代“宠儿”.端午节,君君一家驾乘新购买的新能源车,去相距180km的古镇旅行,原计划以速度v km/h匀速前行,因急事以计划速度的1.2倍匀速行驶,结果就比原计划提前了0.5h到达,则原计划的速度v为km/h.15.(2分)(2023•建华区三模)若关于x的分式方程﹣1=有正数解,求m的取值范围.16.(2分)(2023•南海区模拟)分式方程的解是.17.(2分)(2023•高新区模拟)若关于x的分式方程的解为非负数,则a的取值范围是.18.(2分)(2023•眉山)关于x的方程的解为非负数,则m的取值范围是.19.(2分)(2023•重庆)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为.20.(2分)(2023•沙坪坝区校级二模)若关于x的一元一次不等式组的解集为x>2,且关于y的分式方程的解为非负整数,则所有满足条件的a的值之积为.三.解答题(共8小题,满分60分)21.(6分)(2023•镇江)(1)解方程:=+1;(2)解不等式组:.22.(6分)(2023•南通)为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:m2)每天施工费用(单位:元)甲x+300 3600乙x2200信息二甲工程队施工1800m2所需天数与乙工程队施工1200m2所需天数相等.(1)求x的值;(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于15000m2.该段时间内体育中心至少需要支付多少施工费用?23.(8分)(2023•长春)随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每天制作多少个摆件?24.(8分)(2023•宁夏)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:=+30,解得x=5,经检验x=5是原方程的解.乙:=1.6×,解得x=65,经检验x=65是原方程的解.则甲所列方程中的x表示,乙所列方程中的x表示(3)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?25.(8分)(2023•黑龙江)2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.26.(8分)(2023•荆州)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.(1)求A,B饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,①求x的取值范围;。

分式方程专项试题精选(含答案解析)

分式方程专项试题精选(含答案解析)

分式方程专项测试题一、选择题1.某市高校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =2.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. =﹣ B. =﹣20 C. =+D. =+203.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A. =B. =C. =D. =4.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.5.某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D. +=206.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A. =15% B. =15% C.90﹣x=15% D.x=90×15%8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2C. +=D.﹣=10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.12.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.﹣=5 B.﹣=5C.﹣=5 D.13.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A. =B. =C. =D. =14.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.15.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=316.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A. =B. =C. =D. =17.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A. =B. =C. =D. =18.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A. =×2 B. =﹣35C.﹣=35 D.﹣=3519.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =120.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题21.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.22.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为.23.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为.24.若分式方程﹣=2有增根,则这个增根是.25.若关于x的方程﹣1=0有增根,则a的值为.26.小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x袋牛奶,则根据题意列得方程为.27.分式方程的解x= .28.分式方程=的解为.三、解答题29.解分式方程:.30.解方程组和分式方程:(1)(2).参考答案与试题解析一、选择题1.某市高校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得: =,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.2.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. =﹣ B. =﹣20 C. =+D. =+20【考点】由实际问题抽象出分式方程.【分析】表示出汽车的速度,然后根据汽车行驶的时间等于骑车行驶的时间减去时间差列方程即可.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得, =+.故选C.【点评】本题考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解题的关键.3.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.【解答】解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x﹣5)个,由题意得, =,故选B.【点评】本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.4.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据题意B类玩具的进价为(m﹣3)元/个,根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.【解答】解:设A类玩具的进价为m元/个,则B类玩具的进价为(m﹣3)元/个,由题意得, =,故选:C.【点评】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.5.某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D. +=20【考点】由实际问题抽象出分式方程.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,由题意得:﹣=20,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得: =.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A. =15% B. =15% C.90﹣x=15% D.x=90×15%【考点】由实际问题抽象出分式方程.【分析】设这种玩具的成本价为x元,根据每件售价90元,可获利15%,可列方程求解.【解答】解:设这种玩具的成本价为x元,根据题意得=15%.故选A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数,根据利润率=(售价﹣成本)÷成本列方程.8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.【解答】解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选:A.【点评】本题考查了分式方程的增根,关于增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程,检验是否符合题意.9.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2C. +=D.﹣=【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,根据甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程.【解答】解:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,由题意得, =.故选:B.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,根据用相同的时间甲走40千米,乙走50千米,列出方程.【解答】解:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,由题意得, =.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.﹣=5 B.﹣=5C.﹣=5 D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.【解答】解:设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,﹣=5.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.13.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【专题】销售问题.【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.【解答】解:设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得, =.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.15.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.17.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据题意设出未知数,根据甲所用时间=乙所用时间列出分式方程即可.【解答】解:设甲每天完成x个零件,则乙每天完成(x﹣4)个,由题意得, =,故选:A.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.18.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A. =×2 B. =﹣35C.﹣=35 D.﹣=35【考点】由实际问题抽象出分式方程.【分析】设出未知数,根据客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,列出方程即可.【解答】解:设该客车由高速公路从甲地到乙地所需时间为x小时,那么由普通公路从甲地到乙地所需时间为2x,由题意得,﹣=35,故选:D.【点评】本题考查的是列分式方程解应用题,正确设出未知数、找出合适的等量关系是解题的关键.19.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =1【考点】由实际问题抽象出分式方程.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.20.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题21.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15 .【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.【解答】解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.22.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为=.【考点】由实际问题抽象出分式方程.【分析】设小芳每小时做x个零件,则小明每小时做(x+20)个零件,根据小明做220个零件与小芳做180个零件所用的时间相同,列方程即可.【解答】解:设小芳每小时做x个零件,则小明每小时做(x+20)个零件,由题意得, =.故答案为: =.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.23. A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为﹣=.【考点】由实际问题抽象出分式方程.【分析】设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,根据骑摩托车走完全程可比骑自行车少用小时,列方程即可.【解答】解:设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,由题意得,﹣=.故答案为:﹣=.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.24.若分式方程﹣=2有增根,则这个增根是x=1 .【考点】分式方程的增根.【专题】计算题.【分析】根据分式方程有增根,让最简公分母为0确定增根,得到x﹣1=0,求出x的值.【解答】解:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.25.(2014•天水)若关于x的方程﹣1=0有增根,则a的值为﹣1 .【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得。

专题35 分式与分式方程(常考知识点分类专题)(巩固篇)八年级数学下册基础知识专项讲练(北师大版)

专题35 分式与分式方程(常考知识点分类专题)(巩固篇)八年级数学下册基础知识专项讲练(北师大版)

专题5.35分式与分式方程(常考知识点分类专题)(巩固篇)(专项练习)一、单选题【考点一】构成分式的条件➼➻有意义★★无意义★★值为零1.若1x -有意义,则()A .32x ≤-B .32x ≥-且1x ≠C .23x ≤-D .32x ≤-且0x ≠2.对于分式2x x a--来说,当=1x -时,无意义,则a 的值是()A .1B .2C .1-D .2-3.若分式132x x +-的值为零,则x 的取值范围是()A .x =0B .x =-1且x ≠23C .x =-1D .x ≠23【考点二】分式相关概念➼➻最简分式★★约分★★最简公分母★★通分4.下列分式是最简分式的是()A .22x xy x-;B .222a ab b a b-+-;C .2211x x +-;D .211x x +-5.下列各式计算正确的是()A .33x x y y=B .632m m m =C .22a b a b a b+=++D .32()()a b a b b a -=--6.分式2x,21x x -,31x +的最简公分母是()A .21x -B .()21x x -C .2x x-D .()()11x x +-【考点三】分式方程相关概念➼➻增根★★无解7.已知关于x 的分式方程2111mx x x -=--无解,则m 的值是()A .1B .1或2C .0或2D .0或18.若关于x 的分式方程1122x n x x -+=++无解,则n =()A .1-B .0C .1D .329.若分式方程211x m x x-=--有增根,则m 的值为()A .1B .1-C .2D .2-【考点四】分式的运算➼➻分式的乘除法10.化简222222a ab a ab ab b a b b a ⎛⎫-÷÷ ⎪-+--⎝⎭的结果为()A .1B .abC .b aD .211.已知m ,n 是非零实数,设3m m n k n m+==,则()A .23k k=-B .23k k =-C .23k k =--D .23k k =+【考点五】分式的运算➼➻分式的加减法12.数学课上,老师让计算23a a b a b a b -+--.佳佳的解答如下:解:原式23a a b a b+-=-①33a ba b -=-②()3a b a b-=-③=3④对佳佳的每一步运算,依据错误的是()A .①:同分母分式的加减法法则B .②:合并同类项法则C .③:逆用乘法分配律D .④:等式的基本性质13.已知116a b a b+=+,则a b b a +的值为()A .4B .3C .2D .1【考点六】分式的运算➼➻分式的混合运算14.分式23111x x x x -⎛⎫÷-- ⎪--⎝⎭化简结果是()A .12x -+B .12x +C .12x --D .12x -15.若112()a b -÷的运算结果为整式,则“ ”中的式子可能为()A .a b -B .a b +C .abD .22a b -【考点七】分式的运算➼➻分式的化简求值16.若2310x x ++=,则221x x +=()A .4B .5C .6D .717.若12xy x=-,则232x xy y y xy x --+-的值为()A .13B .-1C .53-D .73-【考点八】分式方程➼➻解分式方程18.若21a aa-=,则222022a a -+的值为().A .2020B .2021C .2022D .202319.分式方程61222x x x-=---的解是()A .3x =-B .2x =-C .0x =D .3x =【考点九】分式方程➼➻正(负)数解★★非正(负)数解20.已知关于x 的分式方程412222m x x -=--的解为整数,则符合条件的整数m 可以是()A .1B .2C .3D .521.关于x 的分式方程22224x x m x x x +-=+--的解为正数,则m 的取值范围是()A .4m <-B .4m >-C .4m <-且16m ≠-D .4m >-且8m ≠22.若关于x 的方程2111m x x -=++的解为负数,则m 的取值范围是()A .2m <B .3m <C .2m <且31m ≠D .3m <且2m ≠【考点十】分式方程★★不等式(组)➼➻求参数23.若a 使得关于x 的不等式组12332145xa x a ⎧-≤-+⎪⎨⎪-+≥-⎩有解,且使得关于y 的分式方程42133a y y y --=--有非负整数解,则所有满足条件的a 的值的和是()A .24B .25C .34D .3524.已知关于x 的不等式组2521322x x x a +⎧>-⎪⎨⎪≥-⎩至少有三个整数解,且关于y 的分式方程99233y ay y y +-=---有正整数解,则所有满足条件的整数a 的和为()A .5-B .6-C .7-D .8-二、填空题【考点一】构成分式的条件➼➻有意义★★无意义★★值为零25.函数y x 的取值范围是_____.26.若32a +无意义,且分式11b b --的值等于零,那么a b =_____.27.若分式()()223m m m +-+的值为零,则m =______.【考点二】分式相关概念➼➻最简分式★★约分★★最简公分母★★通分28.约分:2336mnm n =-____________________.29.分式234x y -,212x y 的最简公分母是_________.30.21?11x x x -=+-,则?处应填上_________,其中条件是__________.【考点三】分式方程相关概念➼➻增根★★无解31.分式方程24111x k x x +-=--若有增根,则k 的值是_____________.32.若关于x 的方程3111mx x x=---无解,则m 的值是______.33.若关于x 的分式方程213339m mx x x ++=-+-无解,则m =___________.【考点四】分式的运算➼➻分式的乘除法34.计算:23423b a aa b b⎛⎫⎛⎫÷-⋅= ⎪ ⎪⎝⎭⎝⎭______.35.已知3a b =,2a c =,则32a b c a b c+++-的值为______.【考点五】分式的运算➼➻分式的加减法36.计算:2241442x x x x -+=-++__________.37.已知m >n >0,分式n m的分子分母都加上1得到分式11n m ++,则分式11n m ++_____n m.(填“<、>或=”)【考点六】分式的运算➼➻分式的混合运算38.化简:22211221x x x x x x x ++--÷++-的结果是___________.39.化简2121212a a a a a a +÷-=--++______.【考点七】分式的运算➼➻分式的化简求值40.已知115a b -=,则2325a ab b a ab b+---的值是________.41.已知16a a+=,且42321222a ma a ma a -+=++,则m =___________.【考点八】分式方程➼➻解分式方程42.代数式23x x -的值比代数式232x-的值大4,则x =______.43.定义一种新运算:()()aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪-<⎪-⎩※,若52x =※,则x 的值为______.【考点九】分式方程➼➻正(负)数解★★非正(负)数解44.关于x 的分式方程3211m x x +=--有正数解,则符合条件的负整数m 的和是______.45.若关于x 的分式方程33122x m mx x --=-+的解是负数,则m 的取值范围是_______.46.已知关于x 的分式方程3121m x -=+的解为负数,则m 的取值范围是______________.【考点十】分式方程★★不等式(组)➼➻求参数47.若关于x 的一元一次不等式组1231x x x a -⎧≥⎪⎨⎪+<⎩有解,且关于y 的分式方程1122a y y y --=--的解是正数,则所有满足条件的整数a 的值之和是__________.48.如果关于x 的不等式组()03321x mx x -⎧<⎪⎨⎪->-⎩的解集为x m <,且关于x 的分式方程2333m xx x-+=--有非负整数解,所有符合条件的m 的和是___________.参考答案1.B【分析】根据二次根式的被开方数是非负数,分式的分母不等于0即可得出答案.解:根据题意得:23010x x +≥⎧⎨-≠⎩,解得,32x ≥-且1x ≠,故选:B【点拨】本题考查了二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数,分式的分母不等于0是解题的关键.2.C【分析】根据分式无意义的条件求解即可.解:当分式2x x a--无意义时,x-a=0,而此时x=-1所以,-1-a=0解得,a=-1故选:C【点拨】本题考查了分式无意义的条件,能得出关于a 的方程是解此题的关键.3.C【分析】根据分式的值为0,就是分式的分子为0,分母不为0,即可以求解.解:∵132x x +-=0,∴10x +=,且320x -≠解得x =-1且x ≠23,∴x =-1,故选C ,【点拨】本题主要考查了分式的意义及解分式方程,掌握分式的值为0,就是分式的分子为0,分母不为0,是解题的关键.4.C【分析】直接利用最简分式的定义进而判断得出答案.解:A 、22x xy x-=()22x x y x yx --=,不是最简分式,不合题意;B 、222a ab b a b -+-=2()a b a b a b -=--,不是最简分式,不合题意;C 、2211x x +-无法化简,是最简分式,符合题意;D 、211x x +-=11(1)(1)1x x x x +=+--,不是最简分式,不合题意.故选:C【点拨】此题主要考查了最简分式,正确把握最简分式的定义是解题关键.5.D【分析】根据分式的基本性质进行判断即可得到结论.解:A 、33x y 是最简分式,所以33x x y y≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意;D 、3322()()()()a b a b a b b a a b --==---,正确,故选:D .【点拨】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.6.B【分析】依据最简公分母的含义和确定公分母的方法即可解答.解:∵2x 的分母是x ,21x x -的分母是(x 2-1),即(x +1)(x -1);31x +的分母是x +1,∴分式2x,21x x -,31x +的最简公分母是x (x +1)(x -1),即为x (x 2﹣1).故应选:B【点拨】本题考查了最简公分母的定义及求法,准确地将各个分式中的分母进行因式分解是解题的关键.7.B【分析】去分母,化分式方程为整式方程()11m x -=,根据分式方程产生增根1x =或10m -=,即可求解.解:2111mx x x -=--,方程两边同时乘以()1x -,得21mx x -=-,移项、合并同类项,得()11m x -=,∵方程无解,∴10x -=或10m -=,∴11m -=或1m =,∴2m =或1m =,故选:B .【点拨】本题考查了分式方程无解问题,分两种情况:一种是把分式方程化成整式方程后,整式方程无解;一种是把分式方程化成整式方程后,整式方程有解,但这个解使分式方程的分母为0,是增根,熟练掌握理解这两种情况是解题关键.8.A【分析】解分式方程,可得32n x -=,根据题意可知分式方程的增根为2x =-,即有322n -=,求解即可获得答案.解:1122x n x x -+=++,去分母,得21x x n ++=-,合并同类项、系数化为1,得32n x -=,由题意可知,分式方程的增根为2x =-,即有322n -=-,解得1n =-.故选:A .【点拨】本题主要考查了解分式方程以及分式方程的增根的知识,通过分析确定该分式方程的增根为2x =是解题关键.9.B【分析】先化分式方程为整式方程,令分母10x -=,代入整式方程计算m 的值.解:因为211x m x x-=--,去分母得:()21x m x +=-,解得:2m x =-因为分式方程211x m x x-=--有增根,所以10x -=,即:1x =是方程增根,所以21m x =-=-,故选B .【点拨】本题考查了分式方程的增根问题,解题的关键是熟练掌握分式方程中关于增根的解题方法.10.D【分析】先对式子的分子和分母因式分解,再将括号里的除号变为乘号运算,最后同样进行除法运算化简即可.解:原式2(2)2()2a a b a b a b a b a b ab ⎛⎫--=÷⨯ ⎪---⎝⎭(2)(2)()2()a ab a b a b a b b a b --=÷---(2)2()2()(2)a ab b a b b a b a b a --=⨯=---.故选:D .【点拨】本题主要考查分式的化简运算,属于基础题,注意计算的细节即可,熟练掌握运算法则是解题的关键.11.D【分析】根据分数除法的运算法则解答,用k 、n 表示出m 代入等式化简,即可得到关于k 的等式.解:∵=mk n,∴m kn =∵3=m nk m+,∴+33kn n k k kn k+==,∴2=+3k k ,故选:D .【点拨】本题主要考查了分式的乘除法,熟练掌握分式的乘除法法则是解答本题的关键.12.D【分析】根据分式的加减法法则计算即可.解:①:同分母分式的加减法法则,正确;②:合并同类项法则,正确;③:提公因式法,正确;④:分式的基本性质,故错误;故选:D .【点拨】此题考查了分式的加减,熟练掌握法则及运算律是解本题的关键.13.A【分析】先把分式进行化简,得到2()6a b ab+=,然后再把要求的分式化简,代入计算即可得到答案.解:∵116a b a b+=+,∴6a b ab a b+=+,∴2()6a b ab+=,∴2222()2()2624a b a b a b ab a b b a ab ab ab++-++===-=-=;故选:A .【点拨】本题考查了分式的化简求值,分式的加减混合运算,解题的关键是熟练掌握运算法则进行计算.14.A【分析】利用分式加减乘除混合运算计算即可.解:23111x x x x -⎛⎫÷-- ⎪--⎝⎭()()311211x x x x x x -----=÷--22114x x x x --=⨯--224x x -=-224x x -=--()()222x x x -=-+-12x =-+,故选A .【点拨】本题考查了分式的混合运算,熟练掌握运算顺序是解题的关键.15.C【分析】先代入,再根据分式的运算法则进行计算,最后根据求出的结果得出选项即可.解:A .221122==22b a a b a ab b a b a bab ab ---+⎛⎫-÷⋅- ⎪-⎝⎭,是分式,不是整式,故本选项不符合题意;B .22112==22b a a b b a a b a bab ab -+-⎛⎫-÷ ⎪+⎝⎭,是分式,不是整式,故本选项不符合题意;C .112==22b a ab b a a b ab ab --⎛⎫-÷⋅ ⎪⎝⎭,是整式,故本选项符合题意;D .()()()()222112==22a b a b a b a b b a a b a bab ab +-+--⎛⎫-÷⋅- ⎪-⎝⎭是分式,不是整式,故本选项不符合题意;故选:C .【点拨】本题考查了分式的混合运算和整式,能正确根据分式的运算法则进行计算是解此题的关键.16.D【分析】根据题意可得0x ≠,将已知等式两边同时除以x ,得到13x x+=-,进而根据完全平方公式的变形即可求解.解:∵2310x x ++=,且由题意可得0x ≠,∴2310x x x x x ++=,∴13x x +=-,∴()2222112327x x x x ⎛⎫+=+-=--= ⎪⎝⎭,故选D .【点拨】本题主要考查了等式,完全平方公式,分式求值,熟练掌握等式的性质,完全平方公式变形是解题的关键.17.D【分析】将12x y x =-变形得2y x xy -=,然后整体代入232x xy y y xy x --+-即可求解.解:∵12x y x=-,∴2y x xy -=,∵2322()3()x xy y x y xy y xy x y x xy----=+--+,∴()22323277233xy xy x xy y xy y xy x xy xy xy -----===-+-+故答案为:D .【点拨】本题考查代数式求值,解题关键是正确变形整体代入求解.18.C 【分析】由21a a a-=可得220a a -=,采用整体代入法,即可求解.解:21a a a-= ,220a a ∴-=,2220222022a a ∴-+=,故选:C .【点拨】本题考查了代数式求值问题,采用整体代入法是解决本题的关键.19.D【分析】解此方程即可判定.解:去分母,得:()6122x x -=---,去括号,得:6124x x -=--+,移项、合并同类项,得:39x =,解得:3x =,经检验:3x =是原方程的解,所以,原方程的解为3x =,故选:D .【点拨】本题考查了解分式方程,熟练掌握和运用解分式方程的步骤与方法是解决本题的关键.20.B【分析】解该分式方程得22m x --=,结合该分式方程的解为整数和分式有意义的条件,即得出m 为2的倍数且4m ≠-,即选B .解:412222m x x -=--,方程两边同时乘22x -,得:422m x --=-,解得:22m x --=,∵该分式方程的解为整数,∴2m --为2的倍数,∴m 为2的倍数.∵220x -≠,∴1x ≠,∴212m --≠,∴4m ≠-,综上可知m 为2的倍数且4m ≠-.∴只有B 选项符合题意.故选B .【点拨】本题考查解分式方程,分式方程有意义的条件.掌握解分式方程的步骤和注意分式的分母不能为0是解题关键.21.C 【分析】先解分式方程得46m x +=-,然后令406m +->,且426m +-≠±,计算求解即可.解:22224x x m x x x +-=+--,两边同时乘以()()22x x +-得,()()222x x x m --+=,去括号得,22244x x x x m ----=,移项合并得,64x m -=+,系数化为1得,46m x +=-,令406m +->,且426m +-≠±,解得4m <-,且16m ≠-,8m ≠,综上,4m <-,且16m ≠-,故选:C .【点拨】本题考查了解分式方程.解题的关键在于正确的运算并检验.22.D【分析】先银分式方程求得解为3x m =-,再根据方程银为负数和分式有意义条件列不等式求解即可.解:2111m x x -=++,21m x -=+,3x m =-,∵原方程解为负数,∴30m -<,∴3m <,∵10x +≠,∴310m -+≠,∴2m ≠,∴3m <且2m ≠,故选:D .【点拨】本题考查解分式方程,熟练掌握根据分式方程解的情况求参是解题的关键.23.B 【分析】先根据不等式组12332145x a x a ⎧-≤-+⎪⎨⎪-+≥-⎩有解,得出a 的取值范围,再解分式方程42133a y y y --=--,得出13a y -=,10a ≠,再根据y 为非负整数找出满足条件的a 的值,最后求和即可.解:解不等式1233x a -≤-+,得36x a ≥-,解不等式2145x a -+≥-,得32x a ≤-,解关于x 的不等式组12332145x a x a ⎧-≤-+⎪⎨⎪-+≥-⎩有解,∴3236a a -≥-,解得13a ≤;将分式方程42133a y y y --=--化为整式方程,得423a y y -+=-,解得13a y -=, 30y -≠,∴133a y -=≠,解得10a ≠,又 关于y 的分式方程42133a y y y --=--有非负整数解,∴当a 取13,7,4,1时,该分式方程有非负整数解,1374125+++=,∴所有满足条件的a 的值的和是25,故选B .【点拨】本题考查解一元一次不等式组、解分式方程,解题的关键是根据不等式组有解得出a 的取值范围,注意分式的分母不能为0.24.C【分析】先解两个不等式,再根据不等式组至少有3个整数解得到0a ≤,再解分式方程确定a 的值即可得到答案.解:解不等式25213x x +>-得:2x <,解不等式22x a ≥-得:22a x -≥,∵关于x 的不等式组2521322x x x a +⎧>-⎪⎨⎪≥-⎩至少有三个整数解,∴212a -≤-,∴0a ≤;99233y ay y y +-=---去分母得:()()9239y y ay +=---,去括号得:9269y y ay +=--+,移项得:2699y y ay -+=-+-,合并同类项得:()16a y -=-,∴61y a -=-,∵关于y 的分式方程99233y ay y y +-=---有正整数解,∴601a ->-,∴11a -=-或12a -=-或13a -=-或16a -=-,∴0a =或1a =-或2a =-或5a =-,又∵631y a -=≠-,∴1a ≠-∴()()257-+-=-,故选C .【点拨】本题主要考查了解分式方程,解一元一次不等式组,正确计算是解题的关键.25.2x >或1x ≤【分析】根据二次根式有意义的条件与分式有意义的条件,得出不等式组,解不等式组即可求解.解:由题意得,102x x -≥-,则1020x x -≥⎧⎨->⎩或1020x x -≤⎧⎨-<⎩,解得,2x >或1x ≤,故答案为:2x >或1x ≤.【点拨】本题考查了求自变量的取值范围,掌握二次根式有意义的条件与分式有意义的条件是解题的关键.26.2【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.解:∵32a +无意义,∴a+2=0,∴a =﹣2∵分式11b b --的值等于零,∴|b|﹣1=0,b ﹣1≠0,∴b =﹣1,∴a b =21--=2,故答案为2.【点拨】此题主要考查了分式的值为零的条件,正确解方程是解题关键.27.-2【分析】根据分式的值为零的条件(分子为零、分母不为零)可以求出m 的值.解:根据题意,得20m +=,且20m -≠、30m +≠;解得2m =-;故答案是:2-.【点拨】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可,熟记分式值为0的条件是解题的关键.28.212mn -【分析】首先确定分子与分母的公因式,系数是分子与分母的系数的最大公约数,相同的字母,取最小的次数作为公因式的字母的次数,确定公因式以后,把公因式约去即可.解:原式=221332-=-2mn mn m n mn ⋅.故答案是:212mn -【点拨】此题考查约分,解题关键在于掌握运算法则.29.12x 2y 2【分析】根据最简公分母的定义求解.解:分式234x y -,212x y的最简公分母为2212x y .故答案为:2212x y .【点拨】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.30.2(1)x -1x ≠【分析】将已知等式右边的分母利用平方差公式分解因式,观察两分母发现等式左边的分子分母同时乘以x ﹣1,即可得到?处应填的式子,条件是所乘的因式不能为0.解:∵x 2﹣1=(x +1)(x ﹣1),∴等式左边的分子分母同时乘的是x ﹣1,则?处应填(x ﹣1)2.∵x -1≠0,∴x ≠1.故答案为(x ﹣1)2,x ≠1.【点拨】本题考查了分式的约分逆运算,利用了分式的基本性质,即分式分子分母同时乘以或除以同一个不为0的数,分式的值不变.31.1【分析】首先根据解分式方程的方法求出方程的解,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行检验即可得解解:24111x k x x +-=--,()()41111x k x x x +-=-+-,公分母为:()()11x x +-,两边同时乘以()()11x x +-得:()()()()1114x k x x x ++-+-=,解得:31k x k -+=+,分式方程有增根,()()110x x ∴+-=,1x ∴=或=1x -,当1x =时,311k k -+=+,解得:1k =,此时方程有增根,当=1x -时,311k k -+=-+,得:31=-,无解,综上所述,1k =,故答案为:1.【点拨】本题考查对分式方程增根的理解和掌握,理解分式方程的增根的意义是解题关键.32.1或3/3或1【分析】将分式方程化为整式方程,可得21x m =-,根据分式方程无解,可得10x -=,或10m -=,分情况求解即可.解:3111mx x x =---,去分母,得13mx x =-+,解得21x m =-, 方程无解,∴10x -=,或10m -=,当10x -=时,211m =-,解得3m =;当10m -=时,1m =,即m 的值为1或3,故答案为:1或3.【点拨】本题主要考查了根据分式方程无解求参数的值,解题的关键是掌握分式方程无解的条件:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于零.33.1-或3或37-【分析】分式方程无解分两种情况分析:(1)原方程存在增根;(2)原方程去掉分母后,整式方程无解.解:213339m m x x x ++=-+-方程两边都乘()(33)x x +-,得(3)(3)3x m x m ++-=+,化简得,得:(1)4m x m +=,当1m =-时,方程无解;当3x =±时,分母为零,分式方程无解,把3x =代入整式方程,3m =;把3x =-代入整式方程,得37m =-;综上可得:1m =-或3或37-.故答案是:1-或3或37-.【点拨】本题考查了分式方程无解问题,解题关键是分情况分析:当分式方程有增根的情况和分式方程化简后的整式方程无解的情况.34.23a -/23a -【分析】根据分式的乘除运算法则即可求出答案.解:原式223344b b a a a b⎛⎫=⋅-⋅ ⎪⎝⎭333344b a a b=-⋅23a =-,故答案为:23a -.【点拨】本题考查分式的乘除运算,解题的关键是熟练运用分式的乘除运算法则,本题属于基础题型.35.157【分析】分别用含a 的代数式表示出b ,c ,再代入求值即可.解:∵3a b =,2a c =,∴3a b =,2a c =,∴32a b ca b c+++-332232a a a a a a +⨯+=+⨯-2232aa a a a a ++=+-22643666a a a a a +=+-422643666a a a a a +=+-5276a a =157=.故答案是:157.【点拨】此题主要考查了分式的化简,熟练掌握运算法则是解答此题的关键.36.22524x x x ++-【分析】先分子分母因式分解约分后,再通分并利用同分母分式的加法法则计算,即可得到结果.解:2241442x x x x -+-++2(2)(2)1(2)2x x x x +-+-+=2122x x x ++-+=2(2)2(2)(2)(2)(2)x x x x x x +-++-+-=2442(2)(2)(2)(2)x x x x x x x ++-++-+-=22524x x x ++-=.故答案为:22524x x x ++-.【点拨】本题考查了分式的加减混合运算,熟练掌握运算法则是解本题的关键.37.>【分析】根据题意,比较11n m ++﹣n m 的差与0的大小即可,然后根据m >n >0和分式的减法即可得到11n m ++﹣n m 的差与0的大小情况,从而可以解答本题.解:()()()11111m n n m n n m m m m +++=++﹣﹣()()=11mn m nm n m n m m m m +=++﹣﹣﹣∵m >n >0,∴m ﹣n >0,1m +>0,∴()01m n m m +﹣,即11n m ++>n m,故答案为:>.【点拨】本题考查分式的混合运算,熟练掌握分式混合运算的运算法则是解答本题的关键.38.12x -+【分析】首先把分式的分子进行因式分解,把除法转化成乘法,然后进行约分,最后根据同分母分式减法法则进行计算即可.解:22211221x x x x x x x ++--÷++-=()()()2111221x x x x x x x ++--÷++-=()()()2112211x x x x x x x +--⋅+++-=122x x x x +-++=12x -+,故答案为:12x -+【点拨】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.39.12a -+【分析】由题意利用分式约分化简的方法与技巧进行化简计算即可.解:2121212a a a a a a +÷---++()211122a a a a a -=⨯--++122a a a a -=-++12a aa --=+12a =-+,故答案为12a -+.【点拨】本题考查分式的化简,利用变除为乘、分式加减法则以及分式的约分化简是解题的关键.40.710/0.7【分析】由已知115a b -=得到5a b ab -=-,把这个式子代入所求的式子,进行化简就得到所求式子的值.解:由已知115a b -=得,5a b ab -=-,2325a ab b a ab b +-∴--()()235a b aba b ab-+=--()25355ab abab ab⨯-+=--710abab-=-710=,故答案为:710.【点拨】本题主要考查了分式的化简,发现已知与未知式子之间的联系是解题的关键.41.103【分析】根据16a a +=求出的值,4232122a ma a ma a -+++上下同时除以2a ,整理代入解方程即可.解: 16a a +=∴22211236a a a a ⎛⎫+=++= ⎪⎝⎭∴22134a a +=4232122a ma a ma a-+++上下同时除以2a 得:22422232111212222a m a m a ma a a a ma a a m a m a a -++--+==++⎛⎫++++ ⎪⎝⎭,将16a a +=,22134a a +=代入以上式子得:2213421122a m m a m a m a +--==+⎛⎫++ ⎪⎝⎭,解得:103m =.故答案为:103【点拨】本题考查了分式的化简求值,相关知识点有:完全平方公式,整体思想的利用是解题关键.42.2【分析】根据题意可得:242332x x x-=--,然后按照解分式方程的步骤,进行计算即可解答.解:由题意得:242332x x x -=--,去分母得:()2423x x +=-,解得:2x =,检验:当2x =时,230x -≠,2x ∴=是原方程的根,故答案为:2.【点拨】本题考查了解分式方程,一定要注意解分式方程必须检验.43.52【分析】根据题中所给新定义运算可分类进行求解.解:由题意可知:当5x <时,则525x =-,解得:52x =,经检验当52x =时,50x -≠,∴52x =是原方程的解;当5x >时,则25x x -=-,解得:103x =,经检验当103x =时,50x -≠,∵1053<,∴103x =不是原方程的解;故答案为52.【点拨】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.44.7-【分析】解出关于x 的分式方程3211m x x +=--的解为52m x +=,解为正数解,进而确定m 的取值范围,注意增根时m 的值除外,再根据m 为负整数,确定m 的所有可能的整数值,求和即可.解:去分母得,2(1)3m x -+-=,解得,52m x +=, 关于x 的分式方程3211m x x +=--有正数解,∴502m +>,5m ∴>-,又1x = 是增根,当1x =时,512m +=,即3m =-,3m ∴≠-,∴5m >-且3m ≠-,∴符合条件的负整数m 有4-,2-,1-,其和为4217---=-,故答案为:7-.【点拨】本题考查分式方程的解法,以及分式方程产生增根的条件等知识,理解正数解,负整数m 的意义是正确解答的关键.45.13m <且0m ≠【分析】首先求出关于x 的分式方程的解,然后根据解为负数,求出m 的取值范围即可.解:33122x m m x x --=-+去分母得:()()()()()3m 22232x x x x m x -+-+-=-,去括号得:22326436x mx x m x mx m -+--+=-,移项得:22323664x mx x x mx m m -+--=-+-合并同类项得:()264m x -=-,解得:231x m =-,∵分式方程的解是负数,2031x m =<-,310m ∴-<,∴13m <,20x -≠ 且20x +≠,即2x ≠±,2231x m =≠±- 解得:0m ≠且23m ≠∴13m <且0m ≠.故答案为:13m <且0m ≠.【点拨】此题主要考查了分式方程的解,要熟练掌握;解答此题的关键是正确得出分母不为0.46.4m <且3m ≠【分析】直接解分式方程,然后根据分式方程的解为负数,结合210x +≠求出答案.解:3121m x -=+,去分母得:321m x -=+,解得:42m x -=,∵分式方程的解是负数,∴0x <且210x +≠,即40m -<且410m -+≠,解得:4m <且3m ≠,故答案为:4m <且3m ≠.【点拨】本题考查了分式方程的解,正确解分式方程是解题的关键.47.1-【分析】先解不等式组,确定a 的取值范围3a <,再把分式方程去分母转化为整式方程,解得32a y +=,由分式方程有正数解,确定出a 的值,相加即可得到答案.解:1231x x x a -⎧≥⎪⎨⎪+<⎩①②,解不等式①得:2x ≥-解不等式②得:1x a <-,关于x 的一元一次不等式组1231x x x a -⎧≥⎪⎨⎪+<⎩有解,12a ∴->-,解得:3a <,分式方程1122a y y y--=--去分母得:12a y y +-=-,解得:32a y +=,y 是正数,且2y ≠,3a ∴>-且1a ≠,∴满足条件的整数a 的和为21021--++=-,故答案为:1-.【点拨】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.48.15-【分析】根据不等式组的解法及分式方程的解法求解即可得到答案.解:()03321x m x x -⎧<⎪⎨⎪->-⎩①②由①得x m <;由②得1x <-;关于x 的不等式组()03321x m x x -⎧<⎪⎨⎪->-⎩的解集为x m <,1m ∴≤-;由2333m x x x-+=--,解得72m x +=, 关于x 的分式方程2333m x x x -+=--有非负数解,∴702m +≥,且732m +≠,7m ∴≥-,1m ≠-;综上所述,71m -≤<-,关于x 的分式方程2333m x x x-+=--有非负整数解,7m ∴=-或5-或3-,∴所有符合条件的m 的和是75315---=-,故答案为:15-.【点拨】本题考查解一元一次不等式组及分式方程求参数,熟练掌握一元一次不等式组的解集求法及分式方程解法是解决问题的关键.。

专题5.8 分式与分式方程章末八大题型总结(培优篇)

专题5.8 分式与分式方程章末八大题型总结(培优篇)

专题5.8分式与分式方程章末八大题型总结(培优篇)【北师大版】【变式1-3](2023上•上海浦东新•八年级上海市民办新竹园中学校考阶段练习)已知y=V-,无论X取Jx2+2x-c 任何实数,这个式子都有意义,则C的取值范围.【题型2利用分式的基本性质解决问题】【例2】(2023下•河南南阳•八年级统考期中)下列代数式变形正确的是()A2α+l2a r.x-y-x+y C 0.2X 2x aa2A.--=—B. ---------- = --------C. -------------------- =--------D.—=—b+lb x+yx+y 0.1x+2yx+2y bb2【变式2-1](2023下•重庆万州•八年级重庆市万州第一中学校联考期中)把分式守的彳、y均缩小为原来X y的10倍后,则分式的值()A.为原分式值的VB.为原分式值的工C.为原分式值的IO倍D.不变【变式2-3](2023下•江苏南京•八年级校联考期末)若分式空的值为6,当小),都扩大2倍后,所得分式x-y 的值是.【题型3分式的化简求值】【例3】(2023下•江苏盐城•八年级景山中学校考期中)先化简,再求值:(9+£)+麦£,其中X满足/+2x-2026=0【变式3-1](2023上•湖南岳阳•八年级统考期中)先化简,再求值:(岩+5τ)÷衰驾T其中一1≤%V2且X为整数.请你选一个合适的X值代入求值.【变式3-2](2013・重庆・中考真题)先化简,再求值:(F-E)+/",其中X是不等式3x+7>l的负整数解.【变式3・3】(2023上•广西柳州•八年级校考期中)已知第2-IOx+25与∣y-3|互为相反数,求供)•立A÷—的值.y s x+y【题型4比较分式的大小】【例4】(2023•河北石家庄•统考二模)要比较A=含与B=等中的大小(X是正数),知道A-8的正负就可以判断,则下列说法正确的是()A.A≥BB.A>BC.A≤BD.A<B【变式4-1](2023下•江苏扬州•八年级南海中学阶段练习)己知:4=安,8=Wα+2a+4(1)若A=I—”;,求m的值;Q+2(2)当a取哪些整数时,分式B的值为整数;(3)若a>0,比较A与B的大小关系.【变式4-2](2023上•河北唐山•八年级统考期末)由(点一3值的正负可以比较A=瞪与《的大小,下列正确的是()A.当c=-3时,力=1B.当C=O时,4≠C.当CV-3时,λ>|D.当CVO时,½<|【变式4-3](2023下,江苏泰州•八年级校考阶段练习)已知等式秒-2y-2=0(1)①用含工的代数式表示y;②若小y均为正整数,求%、y的值;(2)设P=,八:,°、,Q=中,%,力分别是分式之中的工取与、A(x z>%ι>2)时所对应的值,试比较(Xl-2)+g-2) 2 X-2p、q的大小,说明理由.【题型5解分式方程的一般方法】【例5】(2023上•湖北恩施•八年级统考期末)解下列方程:α⅛⅛=至Q脸T=(AI短2)•【变式5-1](2023下•浙江绍兴•八年级统考期末)如图所示的解题过程中,第①步出现错误,但最后所求得的值与原题的正确结果一样.则图中被污染掉的工的值是—.【变式5-2](2023上•湖南怀化•八年级校考期中)解下列分式方程(1篇=20:(2七+±=1.【变式5-3](2023上•河南省直辖县级单位•八年级校联考期末)同学们,在学习路上,我们犯各种各样的错误是在所难免的.其实,这些错误并不是我们学习路上的绊脚石.相反,如果我们能够聚焦错误、分析错误、发散错误以及归类错误,那么我们就能够以错误为梯,补齐短板,进而大幅提升学习效益.小王在复习时发现一道这样的错题:解方程:I-黑=三解:ι-⅛⅛=三®1—(x+3)=-4%②1-X-3=-4x@-X+4x=-1+3@3%=2⑤X=j©(1)请你帮他找出这道题从第步开始出错;(2)请完整地解答此分式方程;(3)通过解分式方程,你获得了哪些活动经验?(至少要写出两条)【题型6裂项相消法解分式方程】[例6](2023上•广东珠海•八年级统考期末)李华在计算时,探究出了一个“裂项”的方法,⅛11≈A÷A+A=1×Z 2×33×4I-;+Σ-1+|-I=I-Z=P利用上面这个运算规律解决以下问题:22334 44(D求+τ^z+的值;5×66×77×8(2)证明:~+---+…+~~—I--1—<1:1×2 2×3 3×4(n-l)nn(n+l)(3)解方程:;(X+98)(X+1OO)-X+100,【变式6・3】(2023上•上海浦东新•八年级校考阶段练习)化简下式:(I)X(X+1)+(x+l)(x+2)+ +(x÷2004)(x+2005)(2) —+√-÷-τ1—+-ξ-j—X2-4X+3X2-I X2+4X+3 X2+8X+15(3)分式方程』+,一]=1的解是_________________________ (请直接写出答案)x(x+2) (x+2)(x÷4)2X【题型7利用通分或约分代入求分式的值】ab a-2ab-b【题型8利用倒数法求分式的值】【例8】(2023上•湖北咸宁•八年级统考期末)【阅读理解】阅读下面的解题过程:己知:品二,求总的值. 解:由岛=1知%*0,,子=3,即%+:=3①.・.=1=/+∙⅛=(%+邛-2=32-2=7②,故圣的值为"X2X2∖X)X4+l 7(1)第①步由子=3得到"+:=3逆用了法则:;第②步/+妥=1+丁-2运用了公式:;(法则,公式都用式子表示)【类比探究】(2)上题的解法叫做“倒数法”,请你利用“倒数法”解决下面的问题:已知TJ=-1,求4I的值;X2-3X+1 X4-7X2+1【拓展延伸】(3)已知工+:=(,"U1+1=⅛求的值・ab6bc9ac15ab+bc+ac【变式8-1](2023•山东滨州•八年级期末)(1)已知实数。

培优专题18 分式方程应用题的常见类型-解析版

培优专题18 分式方程应用题的常见类型-解析版

专题18 分式方程应用题的常见类型◎类型一:工程问题1.(2022·四川成都·八年级期末)某车间加工1300个零件后,采用了新工艺,工效提升了30%,这样加工同样多的零件就少用10小时.若设采用新工艺前每小时加工x 个零件,则可列方程为( )A .()1300130010130%x x -=-B .()1300130010130%x x -=+C .()1300130010130%x x -=-D .()1300130010130%x x -=+2.(2022·浙江湖州·七年级期末)某帐篷生产企业承接生产7000顶帐篷的任务,原计划每天生产x 顶,但后因帐篷急需,该企业加大生产投入,提高生产效率,实际每天生产数量提高到原计划的1.4倍,结果提前4天完成任务.根据题意,下面所列方程正确的是( )A .7000700041.4x x x -=+B .7000700041.4x x =-C .7000700041.4x x x -=+D .7000700041.4x x-=【答案】D3.(2022·甘肃·武威第九中学八年级期末)建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x米,那么可得方程是________.4.(2022·江苏泰州·八年级期末)为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数比原计划多50%,结果提前4天完成任务,设原计划每天植树x 棵,根据题意列出方程________.5.(2022·河南信阳·八年级期末)在学习“分式方程应用”时,张老师板书了如下的问题,小明和小亮两名同学都列出了对应的方程.15.3分式方程例:有甲乙两个工程队,甲队修路800m与乙队修路1200m所用时间相等,乙队每天比甲队多修40m,求甲队每天修路的长度小明:800120040x x=+小亮:120080040y y-=根据以上信息,解答下列问题:(1)小明同学所列方程中x表示______,列方程所依据的等量关系是________________________________;小亮同学所列方程中y表示______,列方程所依据的等量关系是________________________________;(2)请你在两个方程中任选一个,解答老师的例题.6.(2022·福建·莆田二中八年级期末)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.求甲、乙两个工程队每天各修路多少千米?【答案】甲每天修路1.5千米,则乙每天修路1千米【分析】可设甲每天修路x千米,则乙每天修路(x-0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;【详解】解:设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,◎类型二:行程问题(1)基本数量关系:路程=速度×时间(2)常见应用题中的等量关系:①同一路程慢速-同一路程快速=时间差②顺水速度=船的速度+水速 逆水速度=船的速度-水速③一段路程原计划按甲速度行驶完,但行驶途中速度变为乙速度,则:全部路程甲速度=原计划时间,甲速度行驶路程+乙速度行驶路程=全部路程,全部路程甲速度-甲速度行驶路程甲速度-乙速度行驶路程乙速度=时间差7.(2022·浙江金华·七年级期末)某校组织七年级同学乘坐大巴到金华万福塔开展社会实践活动.该塔距离学校5千米.1号车出发4分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.5倍,求2号车的平均速度.设1号车的平均速度为x km/h ,可列方程为 ( )A .5541.5x x -=B .5541.5x x -=C .5541.560x x -=D .5541.560x x -=8.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是( )A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=309.(2022·山西·寿阳县教研室九年级期末)斑马线前“礼让行人”,不仅体现着对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段“A﹣B﹣C”横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用20秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小敏通过AB时的速度.设小敏通过AB时的速度是x米/秒,根据题意列方程为____.10.(2022·浙江浙江·二模)某班同学到距学校12千米的森林公园植树,一部分同学骑自行车先行,半小时后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是自行车速度的3倍,求自行车和汽车的速度.设自行车的速度为x千米/时,则根据题意可列方程为________.11.(2022·辽宁沈阳·一模)小明家距学校980m.(1)若他从家跑步上学,路上时间不超过490s,请直接写出小明跑步的平均速度至少为______m/s.(2)若他从家出发,先步行了350m后,发现上学要迟到了,因此换骑上了共享单车,达到学校时,全程共花了480s.已知小明骑共享单车的平均速度是步行平均速度的3倍,求小明骑共享单车的平均速度是多少?(转换出行方式时,所需时间忽略不计,假设家到学校随时都有共享单车).【点睛】本题考查实际运用题的求解,熟练掌握解实际应用题的步骤“设、列、解、答”,读懂题意,找到等量关系列出方程是解决问题的关键.12.(2022·山东潍坊·八年级期末)甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约为1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的43倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.◎类型三:打折销售问题总售价=单价×销售量总利润=单价利润×销售量=总售价-总成本1--%100成本售价成本成本售价成本利润利润率==⨯=利润率售价成本+=1利润=成本×利润率=售价-成本价(进价)售价=成本×(1+利润率)=标价×打折数(不打折时,售价=标价)=成本价+利润=成本价×(1+利润率)标价=成本价×(1+提高成数)成本价=售价-利润13.(2022·安徽合肥·七年级期末)母亲节前夕,某花店购进若干束花,很快售完,接着又在原总进价的基础上增加12.5%购进第二批花.已知第二批所购花束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少8元,设第一批花束每束的进价为x 元,依据题意可得方程( )A .1.5112.5%8x x +=-B .1.512.5%8x x =-C .1112.5%81.5x x+-=D .112.5%181.5x x +-=14.(2022·内蒙古巴彦淖尔·八年级期末)某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元,我们设乙图书每本价格为x 元,则可得方程( )A .8008002.5x x -=4B .8008002.5x x -=24C .800 2.5800x x ⨯-=24D .800800 2.5x x⨯-=24故答案为A.【点睛】本题主要考查了列分式方程,正确理解等量关系是解答本题的关键.15.(2022·贵州铜仁·八年级期末)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.求甲、乙两种消毒液的零售价分别是每桶多少元?设乙种消毒液零售价x元/桶,则可立方程为:________.16.(2022·辽宁·沈阳市第七中学八年级阶段练习)某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了5元.商厦销售这种衬衫时每件定价都是60元,最后剩下200件按7折销售,很快售完.在这两笔生意中,商厦共盈利______元.2760000840080000176000=+--=(元)28400∴在这两笔生意中,商厦共盈利28400元.故答案为:28400.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17.(2022·山东·济南市天桥区泺口实验学校八年级期中)购买甲、乙两种物品,已知乙种物品的单价比甲种物品的单价贵10元,用480元购买乙种物品的数量与用360元购买甲种物品的数量相同,求甲、乙两种物品的单价各是多少元?18.(2022·甘肃·民勤县第六中学八年级期末)列方程解应用题:某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?【答案】(1)20元(2)第一批购进100只,第二批购进300只(3)3400元【分析】(1)设第一批书包的单价为x元,然后可得到第二批书包的单价,最后依据第二所购书包的数量◎类型四:方案选择问题19.(2022·辽宁沈阳·八年级期末)某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程( )A.54015x-﹣540x=6B.540x﹣54015x+=6C.54015x+﹣540x=6D.540x﹣54015x-=620.(2013·山东泰安·九年级期末)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意得A.B.C.D.21.(2020·黑龙江哈尔滨·二模)为了配合新型冠状病毒的防控工作,某社区欲购进一批酒精对社区进行消毒,现有A、B 两种酒精可供选择,B 种酒精比 A 种酒精每瓶贵 2 元,用600 元购买 A 种酒精和用800 元购买B 种酒精的数量相同,现要求出A、B 两种酒精每瓶的价格.设A 种酒精每瓶的价格为x 元,则可列方程为__________.22.(2019·浙江温州·中考模拟)某校组织1080名学生去外地参观,现有A、B两种不同型号的客车可供选择.每辆B型客车的载客量比每辆A型客车多坐15人,若只选择B型客车比只选择A型客车少租12辆(每辆客车均坐满).设B型客车每辆坐x人,则列方程为_____.23.(2022·江苏·扬州市江都区第三中学八年级阶段练习)某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下:可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师进行技术指导,并担负每天25元的午餐补助,请帮公司需出一种既省时又省钱的加工方案,并说明理由.16a+24a=960∴a=24∴需要的总费用为:24×(80+120+25)=5400元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.24.(2022·浙江舟山·七年级期末)舟山市疫情防控工作领导小组在5月30日发布了常态化核酸检测工作的通知,6月3日起我市居民进入公共场所须凭7天内核酸采样或检测阴性证明.根据文件要求,学生在校期间每周要组织核酸检测一次,某校积极响应,安排校医甲和教师乙进行核酸采集培训.经过培训后,甲采集的速度是乙的两倍,且甲采集52人用时比乙采集30人用时少2分钟.(1)求甲、乙平均每分钟分别采集多少人?(2)该校七年级学生人数比八年级少18人,其中七年级有7个班,每班m人,8八年级有6个班,每班n 人,两名采集员各自用了87分钟完成了七、八年级学生核酸采集工作,求m和n的值;(3)该校教职工70人完成核酸采集后要放入10人试管或20人试管中,在保证每个试管不浪费情况下,有哪几种分装方案?【答案】(1)甲平均每分钟采集4人,乙平均每分钟采集2人;(2)3645 mn=ìí=î(3)有4种方案:①5个10人试管,1个20人试管;②3个10人试管,2个20人试管;③1个10人试管,3个20人试管;④7个10人试管,0个20人试管.【分析】(1)可设乙速度为平均每分钟采集x人,甲为2x人,根据所用的时间可列出方程,解方程即可;(2)根据题意列出关于m,n的二元一次方程组,解方程组即可;(3)设10人试管有x个,20人试管有y个,从而得到10x+20y=70,根据x与y都是正整数,从而可求解.(1)解:设乙速度为平均每分钟采集x人,则甲为每分钟采集2x人,。

专题5.23 分式与分式方程(全章基本概念与性质专题)八年级数学下册基础知识专项讲练(北师大版)

专题5.23 分式与分式方程(全章基本概念与性质专题)八年级数学下册基础知识专项讲练(北师大版)

专题5.23分式与分式方程(全章基本概念与性质专题)(专项练习)一、单选题【性质】分式基本性质1.如果将分式xx y2+中的字母x 与y 的值分别扩大为原来的5倍,那么这个分式的值()A .扩大为原来的5倍B .扩大为原来的10倍C .缩小为原来的15D .不改变2.如果把分式22x x y-中的x ,y 的值都扩大2倍,那么此分式的值()A .扩大2倍B .扩大4倍C .扩大6倍D .不变【概念一】分式3.下列代数式中,属于分式的是()A .23-x B .xπC .23x +D .124.在式子1a ,2xy π,2334a b c,56x +,109x y +,78x y +中,分式的个数是()A .2B .3C .4D .5【概念二】最简分式5.下列分式中是最简分式的是()A .221x x +B .42xC .211x x --D .11x x --6.下列各分式中是最简分式的是()A .()()1215x y x y -+B .2222x y x y xy ++C .()222x y x y -+D .22x y x y-+【概念三】约分7.化简222a b a ab--的结果为()A .2a b a-B .a b a-C .a b a+D .a b a b-+8.将分236x xy-约分的结果是()A .12y-B .2x y-C .2xy-D .x y-【概念四】最简公分母9.分式1x y +、1x y-、221x y -的最简公分母是()A .()()x y x y +-B .()()()22x y x y x y +--C .()()22x y x y +-D .()()22x y x y --10.212a b与2a b ab c +的最简公分母为()A .222a b cB .abC .222a b D .2abc【概念五】通分11.把12x -,1(2)(3)x x -+,22(3)x +通分的过程中,不正确的是()A .最简公分母是2(2)(3)x x -+B .221(3)2(2)(3)x x x x +=--+C .213(2)(3)(2)(3)x x x x x +=-+-+D .22222(3)(2)(3)x x x x -=+-+12.把2121a a a -++与211a -通分后,2121a a a -++的分母为()()211a a -+,则211a -的分子变为()A .1a -B .1a +C .1a --D .1a-+【概念六】分式方程的增根13.若分式方程311x mx x -=--有增根,则m 等于()A .3B .3-C .2D .2-14.关于x 的方程31111x mx x --=++有增根,则方程的增根是()A .1-B .4C .4-D .2【概念七】分式方程的无解15.关于x 的方程6122=---ax x x无解,则a 的值为()A .1B .3C .1或3-D .1或316.已知关于x 的分式方程2322x mm x x+=--无解,则m 的值是()A .1或13B .1或3C .13D .1二、填空题【性质】分式基本性质17.已知32m n =,则m n n+的值为__________.18.不改变分式10.4210.35-+a ba b 的值,若把其分子与分母中的各项系数都化成整数,其结果为______.【概念一】分式19.下列各式:2a b -,3x x -,5y π+,a ba b+-,1()m x y -中,是分式的共有____个.20.将分式121x x ++写成除法的形式:____________________.【概念二】最简分式21.将分式2244x x +-化为最简分式,所得结果是_______.22.下列分式:①233a a ++;②22x y x y --;③22m m n;④21m +,最简分式有______(填序号).【概念三】约分23.约分:222315a ba b =________.24.约分:22abc b c=____________.【概念四】最简公分母25.分式22a b ,1ab ,3abc的最简公分母是______________;26.分式212a b 与31ab 的最简公分母是________.【概念五】通分27.2121a a a -++与251a -通分的结果是_______.28.把分式22111221(1)x x x ⋅⋅+--通分,最简公分母是_________________.【概念六】分式方程的增根29.若关于x 的分式方程5233x mx x +=---有增根,则常数m 的值是_________.30.若关于x 的分式方程1222x mx x-=---有增根,则m 的值是_______.【概念七】分式方程的无解31.已知关于x 的分式方程11235a xx x --=+-无解,则a 的值为_____.32.若关于x 的方程301ax x+=-无解,则a 的值为______.参考答案1.D 【分析】将xx y2+的字母x 与y 的值分别扩大为原来的5倍,与原式比较即可.【详解】解:xx y2+的字母x 与y 的值分别扩大为原来的5倍得:()25522555x x xx y x y x y⨯⨯==+++所以,分式的值不变.故选D【点拨】本题考查了分式的基本性质,熟练运用分式的基本性质是解题关键.2.A【分析】根据分式的基本性质进行计算即可得出结果.【详解】解:由题意得:()()2222822==2222x x x x y x yx y ⨯---,∴把x ,y 的值都扩大2倍,分式的值扩大了2倍,故选:A .【点拨】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.3.C【分析】根据分式的定义逐个判断即可.【详解】解:A .23-x 分母中不含字母,不是分式,故本选项不符合题意;B .xπ分母中不含字母,不是分式,故本选项不符合题意;C .23x +分母中含字母,是分式,故本选项符合题意;D .12分母中不含字母,不是分式,故本选项不符合题意;故选:C .【点拨】本题考查了分式的定义,能熟记分式的定义是解此题的关键,式子AB(A 、B 是整式)中,分母B 中含有字母,则AB叫分式.4.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】式子2xyπ,2334a b c,78x y +中的分母中均不含有字母,因此它们是整式,而不是分式;1a ,56x+,109x y +中分母中含有字母,因此是分式.故选B .【点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以2xyπ不是分式,是整式,掌握分母里含有字母是分式区别于整式的标志是解题的关键.5.A【分析】直接利用最简分式的定义,一个分式的分子与分母没有公因式时叫最简分式,进而分析得出答案.【详解】解:A .221xx +的分子、分母都不能再分解,且不能约分,是最简分式,故此选项符合题意;B .422x x=,故此选项不符合题意;C .()()21111111x x x x x x +---==-+,故此选项不符合题意;D .()11111x x x x ---==---,故此选项不符合题意.故选:A .【点拨】本题考查最简分式,正确掌握最简分式的定义是解题的关键.6.B【分析】最简分式是分子,分母中不含有公因式,不能再约分的分式.判断的方法是把分子、分母分解因式,并且观察有无公因式.如果有互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】解:A 、()()()()124155x y x y x y x y --=++,不是最简分式,不符合题意;B 、2222x y x y xy ++是最简分式,符合题意;C 、()()()()2222x y x y x y x yx y x y x y +---==+++,不是最简分式,不符合题意;D 、()()22x y x y x y x y x y x y+--==-++,不是最简分式,不符合题意;故选B .【点拨】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.C【分析】分子、分母分别因式分解,约分即可得到结论.【详解】解:()()()222a b a b a b a ba ab a a b a+--+==--,故选:C .【点拨】本题考查了分式的化简,解决问题的关键是熟练应用平方差公式.8.C【分析】依据分式的性质约分即可.【详解】解:2362x xxy y-=-故选:C .【点拨】本题考查了分式的约分;熟练掌握分式的性质是解题的关键.9.A【分析】先把分母因式分解,再找出最简分母即可.【详解】解:221x y-的分母为:()()22x y x y x y -=+-,∴最简公分母为:()()x y x y +-,故选:A .【点拨】本题主要考查最简公分母的定义,熟练掌握最简公分母的定义是解决本题的关键.10.A【分析】根据最简公分母的确定方法:各分母系数的最小公倍数与字母因式的最高次幂的积,进行判断即可.【详解】解:212a b与2a b ab c +的最简公分母为222a b c ;故选A .【点拨】本题考查最简公分母.熟练掌握最简公分母的确定方法,是解题的关键.11.D【分析】按照通分的方法依次验证各选项,找出不正确的答案.【详解】A 、最简公分母为2(2)(3)x x -+,正确,该选项不符合题意;B 、221(3)2(2)(3)x x x x +=--+,通分正确,该选项不符合题意;C 、213(2)(3)(2)(3)x x x x x +=-+-+,通分正确,该选项不符合题意;D 、通分不正确,分子应为()222224(3)(2)(3)x x x x x --=+-+,该选项符合题意;故选:D .【点拨】本题考查根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.解题的关键是通分保证(1)各分式与原分式相等;(2)各分式分母相等.12.B【分析】直接利用已知进行通分运算,进而得出答案.【详解】解∶221111(1)(1)(1)(1)aa a a a a +==--+-+,故211a -的分子为1a +.故选∶B .【点拨】此题主要考查了通分,正确进行通分运算是解题关键.13.D【分析】方程两边都乘以最简公分母,把分式方程化为整式方程,再求出分式方程的增根,然后代入整式方程,解关于m 的方程即可得解.【详解】解:311x mx x -=--,去分母,得3x m -=,由分式方程有增根,得到10x -=,即1x =,把1x =代入3x m -=,并解得2m =-.故选:D .【点拨】本题考查了分式方程的增根问题,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.C【分析】由分式方程有增根,得到10x +=,求出x 的值,将原方程去分母化为整式方程,将x 的值代入即可求出m 的值.【详解】由分式方程有增根,得到10x +=,解得:=1x -,分式方程31111x m x x --=++,去分母得311x m x --=+,将=1x -代入311x m x --=+中,得:3111m ---=-+,解得:4m =-,故选:C .【点拨】本题考查了分式方程的增根,关键是求出增根的值,代入到分式方程化简后的整式方程中去求未知数参数的值.15.D【分析】分式方程去分母转化为整式方程,再分整式方程无解和整式方程的解是分式方程的增根两种情况进行讨论,即可得出答案.【详解】解:分式方程去分母得:26ax x =-+,整理得:()14a x -=,当a −1=0,即a =1时,此时整式方程无解,分式方程无解;当a −1≠0,即a ≠1时,由()14a x -=得x =41a -,若此时分式方程无解,则分式方程有增根,即20x -=,增根为x =2,∴421a =-,解得:a =3,∴关于x 的方程6122=---ax x x无解时,则a 的值为1或3,故选:D .【点拨】本题考查了分式方程无解问题,理解分式方程无解有整式方程无解和整式方程的解是分式方程的增根两种情况是解决问题的关键.16.A【分析】根据分式方程无解,需要对化简之后的整式进行讨论,可能是整式方程无解,也可能是整式方程的解是原分式方程的增根,即可求解.【详解】解:去分母得,23(2)x m m x -=-,去括号得,236x m mx m -=-,移项得,326x mx m m -=-,合并同类项得,(13)4m x m -=-,∵分式方程2322x m m x x+=--无解,∴1-3m =0或x =2,∴13m =,将x =2代入(13)4m x m -=-,得2(13)4m m -=-,解得m =1,综上,m 的值是1或13.故选A .【点拨】本题主要考查的是利用分式方程无解求参数的值,理解分式方程无解的解题方法是解题关键.17.52【分析】设3,2m k n k ==,代入m nn+约分化简.【详解】∵32m n =,∴设3,2m k n k ==,∴32522m n k k n k ++==.故答案为:52.【点拨】本题考查了分式的约分,设3,2m k n k ==是解答本题的关键.18.4523a b a b-+【分析】根据分式的性质“分子分母同时扩大或缩小相同的倍数,分式的值不变”,分子和分母同时乘以10,即可获得答案.【详解】解:分式2110.45221130.35510a b a ba b a b --=++,分子、分母同时乘以10,则有原式4523a b a b -=+.故答案为:4523a ba b-+.【点拨】本题主要考查了分式的性质,理解并掌握分式的性质是解题关键.19.3【详解】解析:判断式子是否是分式就是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.由此可知3x x -,a ba b+-,1()m x y -是分式,共3个.答案:3易错:4错因:误认为π是字母,错误判断5yπ+是分式.满分备考:区分整式与分式的唯一标准就是看分母,分母中不含字母的是整式,分母中含有字母的是分式.注意π是一个数,而不是字母.20.()()121x x +÷+【分析】根据分式的意义将分式写成除法形式即可.【详解】解:将分式121x x ++写成除法的形式为()()121x x +÷+.故答案为:()()121x x +÷+【点拨】本题考查了分式的意义,AB表示A B ÷,其中分数线表示相除的意思.21.22x -【分析】先把分式的分子、分母因式分解,再约分即可.【详解】解:2244x x +-()()()2222x x x +=+-22x =-.故答案为:22x -.【点拨】本题考查的是最简分式,掌握分式的约分法则是解题的关键.22.①④##④①【分析】根据最简分式的定义逐式分析即可.【详解】①233a a ++是最简分式;②22x y x y --=1x y +,不是最简分式;③22m m n =12mn,不是最简分式;④21m +是最简分式.故答案为:①④.【点拨】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.23.15b【分析】根据分式的基本性质解答即可.【详解】解:22231155a b a b b=;故答案为:15b.【点拨】本题考查了分式的约分,属于基础题型,熟练掌握分式的基本性质是解题的关键.24.acb【分析】根据分式的性质,分子分母同时乘以或除以相同因式时分式的值不变即可解题解答.【详解】解:22abc ac bc ac b c b bc b== 故答案为:acb【点拨】本题考查了分式的约分,熟悉分式的性质是解题关键,约分的方法是:若分子分母都是单项式,则直接求取分子分母的公因式再化简;若分子或分母是多项式,需要将分子分母因式分解后求取分子分母的公因式再化简25.2a bc【分析】各分母系数的最小公倍数和所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母,据此即可求解.【详解】解:22a b ,1ab ,3abc的最简公分母是2a bc ,故答案为:2a bc .【点拨】本题考查了最简公分母,解题的关键是掌握最简公分母.26.232a b 【分析】根据确定最简公分母的步骤找出最简公分母即可.【详解】解:2、1的最小公倍数为2,a 的最高次幂为2,b 的最高次幂为3,所以最简公分母为232a b .故答案为:232a b .【点拨】本题考查了分式的基本性质,掌握分式的基本性质是关键.27.222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-【分析】找到最简公分母,根据分式的结伴行知进行通分即可;【详解】221121(1)a a a a a --=+++ ,225511a a -==--5(1)(1)a a -+-,∴最简公分母为()()211a a +-,∴通分后分别为222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-.故答案为:222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-.【点拨】本题主要考查了分式的通分,准确计算是解题的关键.28.22(1)(1)x x +-【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】解:∵()2221x x +=+()()2111x x x -=-+,故22x +,21x -,()21x -的最简公分母为:22(1)(1)x x +-.故答案为22(1)(1)x x +-.【点拨】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.29.8【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到30x -=,据此求出x 的值,代入整式方程求出m 的值即可.【详解】解:去分母,得:() 523x x m+=-+由分式方程有增根,得到30x -=,即3x =,把3x =代入整式方程,可得: 8m =.故答案为:8.【点拨】此题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.30.1【分析】先把分式方程去分母变为整式方程,然后把2x =代入计算,即可求出m 的值.【详解】解:∵1222x m x x-=---,去分母,得:12(2)x m x -=---;∵分式方程有增根,∴2x =,把2x =代入12(2)x m x -=---,则122(22)m -=---,解得:1m =;故答案为:1.【点拨】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.31.5或112【分析】根据分式方程的解法步骤,结合分式方程无解的情况即可得到参数a 的值.【详解】解:11235a x x x --=+-,去分母得()()()()()523235x x a x x x --+-=+-,∴()112310a x a -=-,关于x 的分式方程11235a x x x --=+-无解,∴①当1120a -=时,即112a =,此时()112310a x a -=-无解;②当1120a -≠时,即112a ≠,解()112310a x a -=-得310112a x a -=-,此时分式方程无解,必须有32x =-或5x =,则31031122a x a -==--或3105112a x a-==-,i 当31031122a x a -==--时,方程无解;ii 当3105112a x a-==-时,解得5a =;综上所述,a 的值为5或112,故答案为:5或11 2.【点拨】本题考查解分式方程及由分式方程无解求参数问题,熟练掌握分式方程的解法步骤以及无解情况的分类讨论是解决问题的关键.32.0或-3【分析】先去分母化为整式方程,根据分式方程无解得到x=0或x=1或3+a=0,将解代入整式方程求出a即可.【详解】解:去分母,得3x+a(x-1)=0,∴(3+a)x-a=0,∵原分式方程无解,∴x=0或x=1或3+a=0,当x=0时,a=0;当x=1时,3+0=0,无解;∴a=0,当3+a=0时,解得a=-3,故答案为:0或-3.【点拨】此题考查了根据分式方程解的情况求参数,正确掌握解分式方程的解法是解题的关键.。

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。

分式方程应用题专题

分式方程应用题专题

分式方程应用题专题一、行程问题1、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.2、轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度.3、一辆汽车开往距离出发地180千米的目的地,出发后第1小时内按原计划的速度行使,1小时后加速为原来速度的1.5倍,并比原计划提前40分到达目的地,求前1小时的平均行使速度。

二、营销类应用性问题1、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每0.5kg 少3元,比乙种原料每0.5kg 多1元,问混合后的单价每0.5kg 是多少元?2、先阅读下列文字,再解答下列问题:初中数学课本中有这样一段叙述:“要比较与的大小,可先求出与的差,再看这个差是正数、a b a b 负数还是零。

”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以了。

试问:甲乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购粮用去100元。

(1)假设、分别表示两次购粮的单价(单位:元/千克)。

试用含、的代数式表示:甲两次x y x y 购买粮食共需付款 元;乙两次共购买 千克的粮食;若甲两次购粮的平均单价为每千克元,乙两次购粮的平均单价为每千克元,则= ;= 。

1Q 2Q 1Q 2Q (2)规定:谁两次购粮的平均单价低,谁的购粮方式就更合算,请你判断甲乙两人的购粮方式哪一个更合算些?并说明理由。

3、A 、B 两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A 每次购买1000千克,采购员B 每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?三、工程问题1、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两45个施工队单独完成此项工程各需多少天?2、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用为元、乙队2201000每天的工作费用为元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队550费用多少元?3、某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天? 4、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。

专题10 分式方程(解析版)

专题10 分式方程(解析版)

专题10分式方程【考查题型】【知识要点】解分式方程的一般步骤:1)去分母(方程两边同乘最简公分母,约去分母,把分式方程化成整式方程)。

2)解整式方程。

3)验根(把整式方程的解代入最简公分母,情况一:最简公分母为0,则该根不是分式方程的解,这个根叫原分式方程的增根;情况二:若最简公分母不为0,则该根是分式方程的解。

分式的化简求值:1)分式通过化简后,代入适当的值解决问题,注意代入的值要使分式的分母不为0;2)灵活应用分式的基本性质,对分式进行通分和约分,一般要先分解因式;3)化简求值时,一要注意整体思想,二要注意解题技巧,三要注意代入的值要使分式有意义。

分式方程解决实际问题的步骤:1)根据题意找等量关系2)设未知数3)列出方程4)解方程,并验根(对解分式方程尤为重要)5)写答案考查题型一解分式方程题型1.(2022·辽宁营口·中考真题)分式方程322x x =-的解是()A .2x =B .6x =-C .6x =D .2x =-【答案】C【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可.题型1-1.(2022·海南·中考真题)分式方程101x -=-的解是()A .1x =B .2x =-C .3x =D .3x =-题型1-2.(2022·山东济南·中考真题)代数式2x +与代数式1x -的值相等,则x =______.()()3122x x -=+,去括号号3324x x -=+,解得7x =,检验:当7x =时,()()210x x +-≠,∴分式方程的解为7x =.故答案为:7.【名师点拨】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.题型1-3.(2022·四川内江·中考真题)对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x的值为_____.题型1-4.(2022·湖南永州·中考真题)解分式方程01x x -=去分母时,方程两边同乘的最简公分母是______.故答案为:x (x +1).【名师点拨】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键.题型1-5.(2022·湖南常德·中考真题)方程()21522xx x x+=-的解为________.【答案】4x =【提示】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解故答案为:4x =【名师点拨】本题考查了解分式方程,解分式方程一定要注意检验.题型1-6.(2022·浙江台州·中考真题)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-题型1-7.(2022·四川泸州·中考真题)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.题型1-8.(2022·浙江宁波·中考真题)定义一种新运算:对于任意的非零实数a ,b ,ba b a ⊗=+.若21(1)++⊗=x x x x,则x 的值为___________.【答案】12-##0.5-题型1-9.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【名师点拨】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.题型1-10.(2022·广西梧州·中考真题)解方程:24133x x -=题型1-11.(2022·青海·中考真题)解分式方程:21244x x x -=.方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x =4,检验:当x =4时,220x ≠(﹣).所以原方程的解为x =4.【名师点拨】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.考查题型二根据分式方程解的情况求值题型2.(2022·四川德阳·中考真题)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是()A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2题型2-1.(2022·内蒙古通辽·中考真题)若关于x 的分式方程:222x x--=--的解为正数,则k 的取值范围为()A .2k <B .2k <且0k ≠C .1k >-D .1k >-且0k ≠∴2k <,∵分母不能为0,∴2x ≠,∴22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【名师点拨】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.题型2-2.(2022·黑龙江·中考真题)已知关于x 的分式方程23111x m x x--=--的解是正数,则m 的取值范围是()A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠题型2-3.(2022·重庆·中考真题)关于x 的分式方程133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【答案】A【提示】先通过分式方程求出a 的一个取值范围,再通过不等式组的解集求出a 的另一个取值范围,两个范围结合起来就得到a 的有限个整数解.题型2-4.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y ay y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-13题型2-5.(2022·湖北黄石·中考真题)已知关于x 的方程1(1)x ax x x x +=++的解为负数,则a 的取值范围是__________.考查题型三分式方程无解的情况题型3.(2022·四川遂宁·中考真题)若关于x 的方程221mx x =+无解,则m 的值为()A .0B .4或6C .6D .0或4【答案】D【提示】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=,题型3-1.(2021·内蒙古呼伦贝尔·中考真题)若关于x 的分式方程233x x++=--无解,则a 的值为()A .3B .0C .1-D .0或3题型3-2.(2021·四川宜宾·中考真题)若关于x 的分式方程322x x -=--有增根,则m 的值是()A .1B .﹣1C .2D .﹣2【答案】C【提示】先把分式方程化为整式方程,再把增根x =2代入整式方程,即可求解.题型3-3.(2021·西藏·中考真题)若关于x的分式方程1x-﹣1=1x-无解,则m=___.考查题型四列分式方程题型4.(2022·辽宁阜新·中考真题)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x万人,根据题意,所列方程正确的是()A.3030201.2x x-=B.3030 1.220x x-=-C.3030201.2x x-=D.3030 1.220x x-=-【答案】A1.2题型4-1.(2022·山东淄博·中考真题)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x元,则下列方程中正确的是()A.2000020000(115%)10x x⨯-=-B.2000020000(115%)10x x⨯-=-C.2000020000(115%)10x x⨯-=D.2000020000(115%)10x x⨯-=题型4-2.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是()A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=30【答案】A,根据基地距学校题型4-3.(2022·贵州黔西·中考真题)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为()A .363024x x=⨯B .363024x x=⨯C .363024x x =⨯D .363024x x =⨯题型4-4.(2022·山东潍坊·中考真题)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是()A .4271100%14.0%4271x -⨯=-B .4271100%14.0%4271x-⨯=-C .4271100%14.0%x x-⨯=-D .4271100%14.0%xx-⨯=-题型4-5.(2022·湖北恩施·中考真题)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是()A .144963030v v =+-B .1449630v v=-C .144963030v v=D .1449630v v=题型4-6.(2022·广西·中考真题)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程()A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+【答案】D(2.4+2题型4-7.(2022·湖北荆州·中考真题)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min...到达基地,求甲、乙的速度.设甲的速度为3x km/h....,则依题意可列方程为()A.6110334x x+=B.6102034x x+=C.6101343x x-=D.6102034x x-=题型4-8.(2022·四川广元·中考真题)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是()A.960010x-=1600xB.960010x+=1600xC.9600x=160010x-D.9600x=1600x+10【答案】B【提示】设该药店购进的一次性医用外科口罩的单价是x元,则购进N95口罩的单价是(x+10)元,利用数量=总价÷单价,结合购进两种口罩的只数相同,即可得出关于x的分式方程.【详解】解:设该药店购进的一次性医用外科口罩的单价是x元,则购进N95口罩的单价是(x+10)元,题型4-9.(2022·山东临沂·中考真题)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为()A .0.9850.75x ⨯=B .0.9850.755x ⨯=+C .0.7550.98x ⨯=D .0.7550.985x⨯=-题型4-10(2022·浙江丽水·中考真题)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示()A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量题型4-11(2022·湖北襄阳·中考真题)《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为()A.900900213x x=⨯+-B.900900213x x⨯=+-C.900900213x x=⨯-+D.900900213x x⨯=-+题型4-12.(2022·山东青岛·中考真题)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.考查题型五分式方程的实际应用题型5.(2022·重庆·中考真题)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.题型5-1.(2022·西藏·中考真题)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?解得:x=10,经检验:x=10是原方程的解,故笔记本的单价为:10+2=12(元),答:笔记本每本12元,钢笔每支10元.(2)设购买y本笔记本,则购买钢笔(50﹣y)支,依题意得:12y+10(50﹣y)≤540,解得:y≤20,故最多购买笔记本20本.【名师点拨】本题考查了用分式方程和一元一次不等式解决问题,找到题目中的等量关系并列出关于未知数的方程或不等式,仔细计算是本题的解题关键.题型5-2.(2022·宁夏·中考真题)某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?题型5-3.(2022·山东东营·中考真题)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?由题意得:()()()6485150450y a a a =-+--=-+,∵-1<0,∴y 随a 的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴()2150a a -≥,解得:100a ≥,∴当100a =时,y 取最大值,此时100450350y =-+=,15050a -=,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【名师点拨】本题考查了分式方程的应用,一次函数与一元一次不等式的应用,正确理解题意,找出合适的等量关系列出方程和解析式是解题的关键.题型5-4.(2022·贵州安顺·中考真题)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A 块种植杂交水稻,B 块种植普通水稻,A 块试验田比B 块试验田少4亩.(1)A 块试验田收获水稻9600千克、B 块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B 块试验田的一部分改种杂交水稻,使总产量不低于17700题型5-5.(2022·贵州铜仁·中考真题)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?题型5-6.(2022·湖南益阳·中考真题)在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?题型5-7.(2022·吉林长春·中考真题)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?【名师点拨】本题考查了分式方程的应用,明确题意列出分式方程是解答本题的关键.题型5-8.(2022·山东聊城·中考真题)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?题型5-9.(2022·重庆·中考真题)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.题型5-10.(2022·山西·中考真题)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.【答案】这款电动汽车平均每公里的充电费为0.2元.元,则燃油车平均每公里的充电费为题型5-11.(2022·四川自贡·中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.。

专题09 分式方程(归纳与讲解)(解析版)

专题09 分式方程(归纳与讲解)(解析版)

专题09 分式方程【专题目录】技巧1:分式的意义及性质的四种题型 技巧2:分式运算的八种技巧技巧3:巧用分式方程的解求字母的值或取值范围 技巧4:分式求值的方法 【题型】一、分式有意义的条件 【题型】二、分式的运算 【题型】三、分式的基本性质 【题型】四、解分式方程 【题型】五、分式方程的解 【题型】六、列分式方程 【考纲要求】1、理解分式、最简分式、最简公分母的概念,掌握分式的基本性质,能熟练地进行约分、通分.2、能根据分式的加、减、乘、除的运算法则解决计算、化简、求值等问题,并掌握分式有意义、无意义和值为零的约束条件.3、理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个)。

4、了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论. 【考点总结】一、分式形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.A A【考点总结】二、分式方程【注意】1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式 分式混合运算的运算运算顺序:1.先把除法统一成乘法运算;2.分子、分母中能分解因式的多项式分解因式;3.确定分式的符号,然后约分;4.结果应是最简分式.【技巧归纳】分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即a b ·c d =acbd .分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a b ÷c d =a b ·d c =adbc在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.技巧1:分式的意义及性质的四种题型 【类型】一、分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( )A .1个B .2个C .3个D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 【类型】二、分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a>4C .a<4D .a≠4 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.【类型】三、分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( )A .x <-2B .x <1C .x >-2且x≠1D .x >1 7.若分式3x -42-x 的值为负数,则x 的取值范围是________.8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.【类型】四、分式的基本性质及其应用 9.下列各式正确的是( )A .a b =a 2b 2B .a b =ab a +bC .a b =a +c b +cD .a b =ab b 2 10.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2 B .x =-2 C .x <-2 D .x≠-2 11.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.12.已知x +y +z =0,xyz≠0,求x |y +z|+y |z +x|+z|x +y|的值. 参考答案1.C 点拨:4x -25,2m ,x 2π+1不是分式.2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式. 3.D 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1. 7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1.9.D 10.D11.解:设x 4=y 6=z7=k(k≠0),则x =4k ,y =6k ,z =7k.所以x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =3722.12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z|-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1. 值的分式消元求值. 技巧2:分式运算的八种技巧 【类型】一、约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.【类型】二、整体通分法 2.计算:a -2+4a +2.【类型】三、顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.【类型】四、换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m3m -2n -1.【类型】五、裂项相消法⎝⎛⎭⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).【类型】六、整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.【类型】七、倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.【类型】八、消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.参考答案1.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程. 2.解:原式=a -21+4a +2=a 2-4a +2+4a +2 =a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减. 3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1)=4n -6m(3m -2n +1)(3m -2n -1).5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项. 6.解:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.解:由xx 2-3x +1=-1,知x≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x =2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.8.解:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z. 因为xyz≠0,所以z≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.点拨:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.技巧3:巧用分式方程的解求字母的值或取值范围 【类型】一、利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.【类型】二、利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=mx -3+2有解,求m 的取值范围.【类型】三、利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-44.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.【类型】四、利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.6.已知关于x 的方程x -4x -3-m -4=m3-x 无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 参考答案1.解:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解. 3.D4.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3, 解得m =12.综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.5.1或-16.解:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程的根是原方程的增根,则4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3的解.综上所述,m 的值为-3或1.7.解:原方程去分母并整理,得(3-a)x =10.(1)因为原方程的增根为x =2,所以(3-a)×2=10.解得a =-2. (2)因为原分式方程有增根,所以x(x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a)x =10的解,所以原分式方程的增根为x =2.所以(3-a)×2=10.解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a)x =10无解,则原分式方程也无解; ②当3-a≠0时,要使原方程无解,则由(2)知,a =-2.综上所述,a 的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解. 技巧4:分式求值的方法 【类型】一、直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.【类型】二、活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.【类型】三、整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.【类型】四、巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.【类型】五、设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.参考答案1.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x 4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527 点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答. 3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想. 5.解:∵4x 2-4x +1=0,∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726. 【题型讲解】【题型】一、分式有意义的条件例1x 的取值范围是( ) A .x≥4 B .x >4C .x≤4D .x <4【答案】D【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4 即x 的取值范围是:x <4故选D . 【题型】二、分式的运算 例2、分式222111a a a a++---化简后的结果为( ) A .11a a +-B .31a a +-C .1a a --D .2231a a +--【答案】B【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算. 【详解】解:222111a a a a++--- ()()()()()21221111a a a a a a ++=-+--+ ()()()222111a a a a +++=+-()()2222111a a a a a ++++=+-()()()()3111a a a a +=++- 31a a +=- 故选:B .【题型】三、分式的基本性质 例3、若b a b -=14,则ab的值为( ) A .5B .15C .3D .13【答案】A 【解析】因为b a b -=14, 所以4b=a -b .,解得a=5b① 所以a b ①55b b=. 故选A.【题型】四、解分式方程 例4、方程2152x x =+-的解是( ) A .1x =- B .5x =C .7x =D .9x =【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解. 【详解】 解:方程可化简为()225x x -=+ 245x x -=+9x =经检验9x =是原方程的解 故选D【题型】五、分式方程的解 例5、关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2, 由分式方程有增根,得到x ﹣2=0,即x =2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【题型】六、列分式方程例6、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000420080x x=-B.3000420080x x+=C.4200300080x x=-D.3000420080x x=+【答案】D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x=+,故选:D.分式方程(达标训练)一、单选题1.(2022·广西·富川瑶族自治县教学研究室模拟预测)关于x的分式方程3122m xx x++=--有解,则实数m应满足的条件是()A.m=-1B.m≠-1C.m=1D.m≠1【答案】D【分析】解分式方程得:m + x-3=2-x即x=52m,由题意可知x≠2,即可得到m.【详解】解:31 22m xx x++= --方程两边同时乘以2-x得:m+x-3=2-x, 2x=5-m,x=52m①分式方程有解① x ≠2, 即52m≠2, ①m ≠1. 故选D .【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.2.(2022·海南省直辖县级单位·二模)分式方程211x =+的解为( ) A .1- B .0 C .1 D .2【答案】C【分析】按照分式方程的解法求解判断即可. 【详解】①211x =+, 去分母,得2=x +1, 移项,得 x =2-1=1,经检验,x =1是原方程的根 故选C .【点睛】本题考查了分式方程的解法,熟练掌握分式方程的解法是解题的关键. 3.(2022·天津南开·二模)化简2222432x y x yx y y x -----的结果是( )A .5x y- B .5x y+ C .225x y -D .223x yx y +-【答案】B【分析】利用同分母分式的加法法则计算,约分得到最简结果即可.【详解】解:2222432x y x yx y y x ----- 2222432x y x yx y x y --=+--55()()x yx y x y -=+-5()()()x y x y x y -=+-5x y=+,【点睛】本题主要考查了分式的加减,解题的关键是掌握分式混合运算顺序和运算法则. 4.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2 B .-2C .1D .-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可. 【详解】解:221222m m m m m --==---, 故选:C .【点睛】本题考查了分式的减法,正确运算是解题关键,注意运算后需要约分化简. 5.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x >- D .2x ≥-【答案】B【分析】根据分式有意义的条件:分母不为0即可得到. 【详解】要分式2xx +有意义,则20x +≠, 解得:2x ≠-. 故选:B【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是解题的关键.二、填空题6.(2022·四川省遂宁市第二中学校二模)分式方程31311x x x -=-+的解为 ______. 【答案】x =-2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:3x (x +1)-(x -1)=3(x +1)(x -1), 解得:x =-2,经检验x =-2是分式方程的解, 故答案为x =-2.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.三、解答题8.(2022·浙江丽水·一模)解方程:13233x x-=--. 【答案】=5x【分析】这是一道可化为一元一次方程的分式方程,根据解分式方程的一般步骤:去分母,转化为求解整式方程,然后检验得到的解是否符合题意,最后得出结论. 【详解】两边同时乘以(3)x -,得132(3)x +=-, 去括号,得426x =-, 化简,得=5x ,检验:当=5x 时,30x -≠, ∴原分式方程的解为=5x .【点睛】此题考查可化为一元一次方程的分式方程,熟练掌握解分式方程的方法与步骤是解此题的关键,但是要特别注意:检验是不可少的环节.分式方程(提升测评)一、单选题1.(2022·辽宁葫芦岛·一模)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱.某特许零售店准备购进一批吉祥物销售.已知用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“冰墩墩”的单价为x 元,则列出方程正确的是( )A .60050010x x=+ B .60050010x x =+ C .60050010x x=- D .60050010x x =- 【答案】D【分析】设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元,然后根据用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同即可列出方程.【详解】解:设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元, 根据题意,得60050010x x =-。

(专题精选)初中数学方程与不等式之分式方程全集汇编附答案

(专题精选)初中数学方程与不等式之分式方程全集汇编附答案

(专题精选)初中数学方程与不等式之分式方程全集汇编附答案一、选择题1.若关于x的分式方程233x mx x-=--有增根,则m的值是()A.1-B.1 C.2 D.3【答案】B【解析】【分析】根据分式方程的增根的定义得出x-3=0,再进行判断即可.【详解】去分母得:x-2=m,∴x=2+m∵分式方程233x mx x-=--有增根,∴x-3=0,∴x= 3,∴2+m=3,所以m=1,故选:B.【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.2.方程10020x+=6020x-的解为()A.x=10 B.x=﹣10 C.x=5 D.x=﹣5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.3.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程( )A.240024008(120%)x x-=+B.240024008(120%)x x-=+C.240024008(120%)x x-=-D.240024008(120%)x x-=-【答案】A【解析】【分析】求的是原计划的工效,工作总量为2400,根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间-实际用的时间=8.【详解】原计划用的时间为:2400x,实际用的时间为:()2400120%x+.所列方程为:2400 x -()2400120%x+=8.故选A【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.4.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m.求该市今年居民用水的价格.设去年居民用水价格为x元/3m,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A 【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.5.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.6.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x个零件,根据题意可列方程为()A.60045025x x=-B.60045025x x=-C.60045025x x=+D.60045025x x=+【答案】C【解析】【分析】原计划平均每天生产x个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个,∴60045025x x=+,【点睛】此题考查分式方程的实际应用,正确理解题意是列方程的关键.7.方程24222x x x x =-+-- 的解为( ) A .2 B .2或4C .4D .无解【答案】C 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】去分母得:2x=(x ﹣2)2+4,分解因式得:(x ﹣2)[2﹣(x ﹣2)]=0, 解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4, 故选C . 【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.8.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( ) A .4 1.2540800x x ⨯-=B .800800402.25x x -= C .800800401.25x x -= D .800800401.25x x-= 【答案】C 【解析】 【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 【详解】小进跑800米用的时间为8001.25x 秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒,方程是800800401.25x x-=, 故选C .本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A、B两种汾阳月饼共1500个,已知购进A种月饼和B种月饼的费用分别为3000元和2000元,且A种月饼的单价比B种月饼单价多1元.求A、B两种月饼的单价各是多少?设A种月饼单价为x元,根据题意,列方程正确的是( )A.3000200015001x x+=+B.2000300015001x x+=+C.3000200015001x x+=-D.2000300015001x x+=-【答案】C【解析】【分析】设A种月饼单价为x元,再分别表示出A种月饼和B种月饼的个数,根据“购进A、B两种汾阳月饼共1500个”,列出方程即可.【详解】设A种月饼单价为x元,则B种月饼单价为(x-1)元,根据题意可列出方程3000200015001x x+=-,故选C.【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x公里,根据题意列出的方程正确的是()A.60(125%)6060x x⨯+-=B.6060(125%)60x x⨯+-=C.606060(125%)x x-=+D.606060(125%)x x-=+【答案】D 【解析】设原计划每天修路x 公里,则实际每天的工作效率为(125%)x +公里,根据题意即可列出分式方程. 【详解】解:设原计划每天修路x 公里,则实际每天的工作效率为(125%)x +公里, 依题意得:606060(125%)x x-=+. 故选:D . 【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行列方程.11.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( )A .12B .14C .16D .18【答案】C 【解析】 【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论. 【详解】解分式方程26344ax x x -+=---得:x=43a -,因为分式方程的解为正数,所以43a ->0且43a -≠4, 解得:a <3且a≠2,解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7,∵不等式组有解, ∴a+7>1, 解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为: |-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16, 故选:C .本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.12.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x=- D .120100x 10x=+ 【答案】A 【解析】 【分析】 【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-. 故选A.13.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a =【答案】D 【解析】 【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系. 【详解】根据作图方法可得点P 在第二象限角平分线上, 则P 点横纵坐标的和为0, 故11+423a a -+=0, 解得:a=13. 故答案选:D. 【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.14.为有效落实党中央“精准扶贫”战略决策,某市对农村实施“户户通”修路计划,已知该市计划在某村修路5000m ,在修了1000m 后,由于引入新技术,工作效率提高到原来的1.2倍,结果提前5天完成了任务.若设原来每天修路 m x ,则可列方程为( ) A .50004000100051.2x x x=+- B .5000100040005 1.2x x x+=+ C .5000400010005 1.2x x x -=+ D .5000100040005 1.2x x x-=+ 【答案】D 【解析】 【分析】本题依题意可知等量关系为原计划工作时间-实际工作时间=5,根据等量关系列出方程即可.【详解】设原来每天修路xm ,引入新技术后每天修路1.2xm ,实际工作天数为(100040001.2x x+),原计划工作天数为5000x天,根据题意得, 5000100040005 1.2x x x -=+, 故选D. 【点睛】本题考查了由实际问题抽象出分式方程,理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.15.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2C .x =﹣1D .无解【答案】D【分析】观察式子确定最简公分母为(x+1)(x﹣1),再进一步求解可得.【详解】方程两边同乘以(x+1)(x﹣1),得:x(x+1)﹣(x2﹣1)=2,解方程得:x=﹣1,检验:把x=﹣1代入x+1=0,所以x=﹣1不是方程的解.故选:D.【点睛】此题考查分式方程的解,掌握运算法则是解题关键16.为保证某高速公路在2019年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用30天,如果甲乙两队合作,可比规定时间提前20天完成任务.若设规定的时间为x 天,由题意可以列出的方程是()A.111103020+=--+x x xB.111103020+=++-x x xC.111103020-=++-x x xD.111102030+=-+-x x x【答案】B【解析】【分析】设规定的时间为x天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+30)天.根据甲、乙两队合作,可比规定时间提前20天完成任务,列方程为111103020+=++-x x x.【详解】设规定时间为x天,则甲队单独一天完成这项工程的110 +x,乙队单独一天完成这项工程的130x+,甲、乙两队合作一天完成这项工程的120 x-.则111103020+=++-x x x.故选B.此题考查分式方程,解题关键在于由实际问题抽象出分式方程.17.方程31144xx x--=--的解是()A.-3 B.3 C.4 D.-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.故选:B.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.19.若整数a使得关于x的方程3222ax x-=--的解为非负数,且使得关于y的不等式组3221223y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a的和为().A .17B .18C .22D .25【答案】C【解析】【分析】 表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:32212203y y y a --⎧+>⎪⎪⎨-⎪⎪⎩„, 不等式组整理得:1y y a>-⎧⎨⎩„, 由不等式组至少有四个整数解,得到-1<y ≤a ,解得:a ≥3,即整数a =3,4,5,6,…,2-322a x x=--, 去分母得:2(x -2)-3=-a ,解得:x =72a -, ∵72a -≥0,且72a -≠2, ∴a ≤7,且a ≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为4,5,6,7,之和为22. 故选:C .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.。

人教版2023中考数学专题复习:分式方程精讲精练

人教版2023中考数学专题复习:分式方程精讲精练

分式方程精讲精练学校:___________姓名:___________班级:___________考号:___________知识点精讲1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.4.分式方程的应用(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.针对训练一、单选题1.下列方程中是分式方程的是( )A .212x x -=B .223x x =-C .122x =-D .312x π+=2.分式方程61222x x x -=---的解是( ) A .3x =- B .2x =- C .0x = D .3x =3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.若关于x 的方程221m x x =+无解,则m 的值为( ) A .0 B .4或6 C .4 D .0或45.已知关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是( ) A .4m ≥- B .4m ≥-且3m ≠- C .4m >-D .4m >-且3m ≠- 6.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x =-+B .72072054848x -=+C .72072054848x -=-D .72072054848x -=- 7.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .900900231x x =⨯+-B .900900231x x =⨯-+C .900900213x x =⨯-+D .900900213x x =⨯+- 8.某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x =-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量D .篮球的数量 9.《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 10.若关于x 的不等式组52111322x a x x +≤⎧⎪⎨⎛⎫-<+ ⎪⎪⎝⎭⎩有且仅有四个整数解,关于y 的分式方程26121ay y y -=+--有整数解,则符合条件的所有整数a 的和是( )A .2B .5C .10D .12二、填空题11.解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 12.分式方程522x x=+的解为_______. 13.若关于x 的分式方程25k x x =+的解为10x =-,则k =_______. 14.代数式32x +与代数式21x -的值相等,则x =______. 15.设m ,n 为实数,定义如下一种新运算:39n m n m =-☆,若关于x 的方程()(12)1a x x x =+☆☆无解,则a 的值是______.16.若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是____________. 17.对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x 的值为 _____. 18.若关于x 的分式方程3211x m x x+=--的解为正数,则m 的取值范围是 ______. 19.甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km /h .若甲、乙两船在静水中的速度相同,则可求得两船在静水中的速度为___________km /h .20.开学之际,学校需采购部分课桌,现有A ,B 两个商家供货,A 商家每张课桌的售价比B 商家优惠20元,若该校花费1500元在A 商家购买课桌的数量与花费2500元在B 商家购买课桌的数量一样多,设A 商家每张课桌的售价为x 元,则可列方程为________.三、解答题21.解下列方程:(1)2131x x=+-(2)11222xx x-=---(3)2134412142xx x x+=--+-22.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?23.我县教育局新建了一栋办公楼,需要内装修,甲工程队单独施工需要80天完工,由甲乙两工程队同时施工,那么16天完成了总工程的13 25.(1)如果乙工程队单独施工,则需要多少天完成?(2)如果甲工程队单独施工一天的工钱是5000元,乙工程队单独施工一天的工钱是8100元,为了节约工钱,应选用哪个工程队单独施工比较划算?24.某商场用5000元购进了一批服装,由于销路好,商场又用18600元购进了第二批这种服装,所购数量是第一批同进量的3倍,但单价贵了24元,商场在出售该服装时统一按照每件200元的标价出售,卖了部分后,对剩余的40件,商场按标价的6折进行了清仓处理并全部售完.求:(1)商场两次共购进了多少件服装?(2)两笔生意中商场共盈利多少元?25.小明的爸爸出差回家后,小明发现爸爸的通信大数据行程卡上显示爸爸去过西安、成都、重庆.已知西安到成都的路程为770公里,比西安到重庆的路程少230公里,小明爸爸驾车从西安到重庆的平均车速和西安到成都的平均车速比为8:7,从西安到重庆的时间比从西安到成都的时间多1.5 小时.(1)求小明爸爸从西安到重庆的平均车速;(2)从西安到成都时,若小明的爸爸比之前到达的时间至少要提前1小时,则平均车速应满足什么条件?26.金师傅近期准备换车,看中了价格相同的两款国产车.(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)。

重难专题16 分式方程的解法专项训练(解析版)

重难专题16 分式方程的解法专项训练(解析版)

专题16 分式方程的解法专项训练1.解方程:2122x x x =+--.【分析】两边同时乘以()2x -,将分式方程化为整式方程,解整式方程,然后检验,即可求出分式方程的解.【详解】解∶ 方程两边同时乘以()2x -,得:22x x =+-,解得2x =,检验∶当2x =时,20x -=,∴原方程无解.2.解方程:2123111x x x x-=+--.【分析】先去分母,把方程化为整式方程,再解整式方程并检验即可.【详解】解:2123111x x x x-=+--,去分母得:()1231x x x --=-+,整理得:22x =-,解得:=1x -,检验:把=1x -代入()()11x x +-可得()()110x x +-=,∴=1x -是增根,原方程无解.3.解分式方程13122--=--:x x x x【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】13122x x x x--=--去分母得:()123x x x---=-移项,合并同类项得:31x =-∴13x =-.经检验, 13x =-是原分式方程的解,故原方程的解是:13x =-4.解方程:11322x x x-+=---.【分析】方程两边同时乘以()2x -,化为整式方程,解方程即可求解.【详解】解:方程两边同时乘以()2x -,得()()1132x x --=--解得:2x =,当2x =时,20x -=∴2x =是原方程的增根,原方程无解.5.解分式方程26124x x x -=--【答案】1x =【详解】解:去分母得:()()()2622x x x x +-=+-,去括号得:22264x x x +-=-,解得1x =,检验:当1x =时,240x -¹∴原方程的根是1x =.6.解方程:241111x x x +=---.【答案】3x =-【详解】解:方程两边同乘()()11x x +-,得:()()()24111x x x =-+-+-,去括号,可得:224211x x x =----+,移项、合并同类项,可得;26x -=,系数化为1,可得:3x =-,检验:当3x =-时,()()110x x +-¹,∴原分式方程的解为3x =-.7.解方程:3x x -253169x x x --=-+【答案】3x =-【详解】解:2531369x x x x x --=--+,()253133x x x x --=--,方程两边都乘2(3)x -,得()()23353x x x x ---=-,解得:3x =-,检验:当3x =-时,()230x -¹,所以3x =-是原方程的解,即原方程的解是3x =-.8.解方程:43(1)1x x x x +=--【分析】方程两边同乘最简公分母(1)x x -化为整式方程,然后求解,再进行检验.【详解】解:方程两边同乘最简公分母(1)x x -,得43+=x x ,解得2x =,检验:当2x =时,(1)2(21)20x x -=´-=¹,2x \=是原方程的根,故原分式方程的解为2x =.9.解方程:22122x x x-=--.【分析】两边都乘以2x -,化为整式方程求解,求出x 的值后再检验即可.【详解】解:22122x x x-=--,两边都乘以2x -,得:222x x +=-解得4x =-,检验:当4x =-时,最简公分母20x -¹,∴4x =-是原分式方程的解.10.解分式方程:315155x x x+=--.【分析】观察可得最简公分母是5x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:由原方程可得:315155x x x -=--,方程两边同乘以5x -,得:3155x x -=-,解得:5x =,经检验:5x =是原方程的增根,所以原方程无解.11.解方程:235011x x x --=--.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:235011x x x --=--去分母得:()()3150x x +--=,整理得:280x +=,解得:4x =-,经检验4x =-是分式方程的解.12.解方程:2121x x x+=+.【分析】根据解分式方程的解法步骤求解,最后检验即可.【详解】解:去分母,得()()22121x x x x ++=+去括号,得222122x x x x++=+移项、合并同类项,得1x -=-化系数为1,得1x =检验:当1x =时,()10x x +¹∴原分式方程的解为1x =.13.解分式方程:21142x x x =---【分析】先两边同时乘以各分母的最小公分母转化为整式方程,再解这个整式方程即可.【详解】解:两边同乘以24x -得21(2)(4)x x x =+--,22124x x x =+-+解方程得3:2x =-,经检验,32x =-是原方程的解\原分式方程的解为32x =-.14.解分式方程:14322x x x--=--【分析】先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可.【详解】解:14322x x x--=--,去分母得:()1432x x +-=-,去括号得:1436x x +-=-,移项得:3641x x -=-+-,合并同类项得:23x -=-,化x 系数化为1得:32x =,检验:把32x =代入2x -得:312022-=-¹,∴ 32x =是原方程的解.15.解方程:121133x x x =-++.【分析】先去分母,将分式方程转化成整式方程求解,再检验即可.【详解】解:方程两边同时乘以()31x +,得()3231x x =-+,解得:6x =-,检验:把6x =-代入()31x +得()361150-+=-¹,∴原方程的解为:6x =-.16.解方程:(1)313221x x +=--;(2)22111y y y -=--.【分析】(1)方程两边同时乘以()21x -,化为整式方程,求出方程的根并检验即可得出答案;(2)去分母()()11y y +-化为整式方程,求出方程的根并检验即可得出答案.【详解】(1)解:()313211x x -=--,()3261x -=-,67x =,76x =,检验:当76x = 时,()210x -¹,∴原分式方程的解是:76x =;(2)解:()()21111y y y y -=-+-,()()()1211y y y y +-=+-,2221y y y +-=-,1y =,检验:当1y =时,()()110y y +-=,∴原分式方程无解.17.解方程.(1)143x x =+;(2)31244x x x-=---.【分析】(1)按照解分式方程的步骤,进行计算即可解答;(2)按照解分式方程的步骤,进行计算即可解答.【详解】(1)解:143x x =+,34x x +=,解得:1x =,检验:当1x =时,(3)0x x +¹,1x \=是原方程的根;(2)解:31244x x x-=---,312(4)x x -=---,解得:4x =,检验:当4x =时,40x -=,4x \=是原方程的增根,\原方程无解.18.解分式方程:(1)143x x =+.(2)31222x x x +=+--.【分析】(1)先分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)先分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:143x x =+,方程两边都乘()3x x +,得34x x +=,整理,得33x =,解得:1x =,当1x =时,()30x x +¹,所以原方程的解是1x =.(2)解:31222x x x +=+--,方程两边都乘2x -,得()3122x x =++-,整理,得36x =,解得:2x =,当2x =时,20x -=,故2x =是原方程增根,原方程无解.19.解方程:(1)5113x x =+-(2)21233x x x-+=--【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:5113x x =+-,方程的两边同乘()()13x x +-得,()531x x -=+,解得,4x =,检验,把4x =代入最简公分母()()130x x +-¹,所以4x =是原方程的解;(2)解:21233x x x-+=--,方程的两边同乘()3x -得,()2231x x -+-=-,解得,3x =,检验,把3x =代入最简公分母30x -=,所以3x =是原方程的增根,∴原方程无解.20.解方程:(1)232x x =+;(2)11322x x x-=---.【分析】(1)方程两边都乘()2x x +得出()223x x +=,求出方程的解,再进行检验即可;(2)方程两边都乘2x -得出()()1132x x =----,求出方程的解,再进行检验即可.【详解】(1)解:方程两边都乘()2x x +,得()223x x +=,解得:4x =,检验:当4x =时,()246240x x +=´=¹,\4x =是原方程的解,\原方程的解是4x =;(2)解:方程两边都乘2x -,得()()1132x x =----,解得:2x =,检验:当2x =时,20x -=,\2x =是增根,\原方程无解.21.解方程(1)322112x x x =---(2)214111x x x +-=--【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母得到:423x x =-+,解得:13x =-,经检验13x =-是分式方程的解;(2)去分母得:222141x x x ++-=-,解得:1x =,经检验1x =是增根,分式方程无解.22.解方程(1)132x x =-(2)21233y y y-=---【分析】(1)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程,然后检验即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程,然后检验即可.【详解】(1)解:132x x=-去分母得:()32x x =-,去括号得:36x x =-,移项得:36x x -=-,合并同类项得:26x -=-,系数化为1得:3x =,检验,当3x =时,()20x x -¹,∴原方程的解为3x =;(2)解:21233y y y-=---去分母得:()2231y y -=-+,去括号得:2261y y -=-+,移项得:2612y y -=-++,合并同类项得:3y -=-,系数化为1得:3y =,检验,当3y =时,30y -=,∴3y =是原方程的增根,∴原方程无解.23.解方程(1)3222x x =+-(2)29472393x x x x +-=+--【分析】(1)先去分母变为整式方程,然后再解整式方程,得出x 的值,最后进行检验;(2)先去分母,再去括号,然后移项合并同类项,将未知数系数化为1,最后进行检验即可.【详解】(1)解:去分母得:()()3222x x -=+,去括号得:3624x x -=+,移项合并同类项得:10x =,经检验10x =是原方程的解;(2)解:去分母得:()()29347233x x x +=-+´-,去括号得:291221618+=-+-x x x ,移项合并同类项得:1648-=-x ,将未知数系数化为1得:3x =,检验:把3x =代入()33x -得:()3330´-=,∴3x =是原方程的增根,∴原方程无解.24.解方程:(1)33122x x x -+=--;(2)23321x x =--.【分析】(1)根据去分母,移项,合并同类项,系数化为1求出方程的解,并检验即可;(2)根据去分母,去括号,移项,合并同类项,系数化为1求出方程的解,并检验即可.【详解】(1)解:方程两边都乘以2x -,得323x x +-=-,移项,合并,得22x =系数化为1,得1x =,检验:当1x =时,210x -=-¹,∴原分式方程的解为1x =;(2)解:方程两边都乘以()()321x x --,得()()33221x x -=-,去括号,得3942x x -=-移项,合并,得7x -=系数化为1,得7x =-,检验:当7x =-时,()()3210x x --¹,∴原分式方程的解为7x =-.25.解方程:(1)312x x x -=-.(2)2114232349x x x x -=+--.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:312x x x-=-,去分母得:()()2322x x x x --=-,解得:6x =,检验:()()26620x x -=´-¹,∴方程的解为6x =;(2)2114232349x x x x -=+--,去分母得:()23234x x x --+=,解得:32x =-,检验:223494902x æö-=´--=ç÷èø,是增根,∴方程无解.26.解分式方程:(1)23211x x x +=+-;(2)21233x x x-=---.【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:由23211x x x +=+-则去分母得:()()()()2131211x x x x x -++=+-,去括号得:22223322x x x x -++=-,移项合并同类项得:5x =-,经检验:5x =-是原分式方程的解;(2)解:由21233x x x-=---,则去分母得:()()()()233233x x x x x --=----,去括号得:2265321218x x x x x -+=-+-+,移项合并同类项得:3x =,因为330-=,经检验:3x =是增根,原分式方程无解.27.解分式方程:(1)3513x x =++;(2)214111x x x +-=--.【分析】(1)先去分母,解得到的整式方程,再检验,即可得到答案;(2)先去分母,解得到的整式方程,再检验,即可得到答案.【详解】(1)3513x x =++解:两边同乘以()()13x x ++得,()()3351x x +=+,解得,2x =,当2x =时,()()130x x ++¹,∴2x =是分式方程的解;(2)214111x x x +-=--解:两边同乘以()()11x x +-得,()()()21411x x x +-=+-,解得,1x =,当1x =时,()()110x x +-=,经检验1x =是增根,∴原分式方程无解.28.解方程:(1)121x x x+-=(2)21111x x x -=++【分析】(1)方程两边都乘x 得出()12x x -+=,求出方程的解,再进行检验即可;(2)方程两边都乘1x +得出()211x x -+=,求出方程的解,再进行检验即可.【详解】(1)解:121x x x+-=,去分母得:()12x x -+=,解得:12x =-,检验:当12x =-时,0x ¹,∴12x =-是原方程的解;(2)21111x x x -=++,去分母得:()211x x -+=,解得:2x =,检验:当2x =时,10x +¹,∴2x =是原方程的解.29.解方程:(1)3211x x =+-;(2)29472393x x x x +-=+--.【分析】(1)先去分母变为整式方程,然后再解整式方程,得出x 的值,最后进行检验;(2)先去分母,再去括号,然后移项合并同类项,将未知数系数化为1,最后进行检验即可.【详解】(1)解:3211x x =+-,3322x x -=+,5x =,检验:把5x =代入()()11x x -+得:()()5151200-+=¹,∴5x =是原方程的解.(2)解:29472393x x x x +-=+--,()()29347233x x x +=-+´-,291221618+=-+-x x x ,1648-=-x ,3x =,检验:把3x =代入()33x -得:()3330´-=,∴3x =是原方程的增根,∴原方程无解.30.解分式方程:(1)100307x x =+;(2)21212339x x x -=+--.【分析】(1)两边同时乘以(7)x x +去分母,然后再整理成一元一次方程进行计算即可;(2)两边同时乘以()(33)x x +-去分母,然后再整理成一元一次方程进行计算即可.【详解】(1)方程两边都乘以(7)x x +,得100(7)30x x +=.解这个一元一次方程,得10x =-.检验:当10x =-,(7)0x x +¹.所以,10x =-是原分式方程的根.(2)方程两边都乘以()(33)x x +-,得32(3)12x x -++=.解这个一元一次方程,得3x =.检验:当3x =时,(3)(3)0x x +-=.因此,3x =是原分式方程的增根,所以,原分式方程无解.31.阅读与思考阅读下面的材料,解答后面的问题.解方程:1401x x x x --=-.解:设1x y x -=,则原方程可化为40y y -=,方程两边同时乘y 得240y -=,解得2y =±,经检验:2y =±都是方程40y y -=的解,\当2y =时,12x x-=,解得=1x -,当=2y -时,12x x-=-,解得13x =,经检验:=1x -或13x =都是原分式方程的解,\原分式方程的解为=1x -或13x =.上述这种解分式方程的方法称为“换元法”.问题:(1)若在方程中1021x x x x --=-,设1x y x -=,则原方程可化为________________.(2)模仿上述换元法解方程:1279021x x x ---=+-.【分析】(1)设1x y x-=,则111,221x x y x x y -==-,据此求解即可;(2)先把方程变形为19(2)021x x x x -+-=+-,再用换元法求解即可.【详解】(1)解:设1x y x -=,原方程可化为1102y y -=,故答案为:1102y y -=(2)解:∵12712719(2)9(9)212121x x x x x x x x x x ---+--=-+=-+-+-+-,∴原方程为19(2)021x x x x -+-=+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程专题一、分式通分六大技巧例1、逐步通分2411241111x x x x ----+++ 例2、整体通分)225(423---÷--a a a a例3、分组通分:2m 11-m 21m 22-m 1+--++例4、分解简化通分:4x 2x 1x x 1xx x x 22223-+-+-+--例5、裂项相消()()()()()()10099132121111--+⋅⋅⋅+--+--+-a a a a a a a变式训练:化简341651231222++++++++x x x x x x例6、活用乘法公式:))(x )(x x)(x x )(x x )(x x )(x x (x 111111121616884422≠-+++++分式方程专题二、解分式方程例1、去分母法解分式方程()()113116=---+x x x变式训练:1、22416222-+=--+-x x x x x 2、22412212362x x x x x x x -+++=++---3、64534275--+--=--+--x x x x x x x x例2、整体换元与倒数型换元:(1)6151=+++x x x x (2)12221--=+--x x x x变式训练:1、已知关于x 的方程3)1(2122-=+++x x xx ,求11++x x 的值2、222226124044444x x x x x x x x +--+=++-+-变式练习:(上海)用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C.2310y y -+= D .2310y y --=(一)分式方程的特殊解法例1、交叉相乘法:231+=x x 例2、化归法:012112=---x x例3、左边通分法:87178=----x x x 例4、分子对等法:)(11b a x b b x a a ≠+=+变式训练:bx a 211+=)2(a b ≠例5、观察法:417425254=-+-x x x x 例6、分离常数法:87329821+++++=+++++x x x x x x x x变式训练:(1)65322176+++++=+++++x x x x x x x x (2)6811792--+-+=--+-x x x x x x x x例7、分组通分法:41315121+++=+++x x x x变式训练:(1)111102846x x x x +--=---- (2)41215111+++=+++x x x x例8、裂项相消法:569108967+++++=+++++x x x x x x x x变式训练:解方程()()()81212121111=-+⋅⋅⋅+++++x x x x )x(x(二)无理方程拓展训练例1、13166322=+-+-x x x )(例2、031224212=++---+x x x x例3、x x x ++=+32131例4、x xx x x 221212222=-++++变式训练:已知x>0,且满足02228)1(52=+++-+x x x x , 求代数式xx x x x x x x ++-+--+++1111的值课后练习题 1、解方程:(1)275-=x x (2)32121---=-x x x (3)x x 413=-(4)13223311-=--x x (5)2.06.03.0101.003.002.0-=--x x2、(1)13132=-+--x x x (2)216213=---x x x (3)2441231412--+=-+x x x x(4)x x x x x x x 22222222--=-+-+(5)14221--=--x x x x (6)12422=-+-x x x3、(1)x x 332=- (2)2211-=-x x (3)87178=----x x x(4)1843631+-=-x x (5)1613122-=-++x x x(6)48122-=--x x x (7)23112-+=--x x x x分式方程专题二、挑错改错例1、在解方程0126=-+-⊗x x 时,“⊗”表示一个数,但已模糊不清,已知该方程无解,则“⊗”表示的数字为例2、在解分式方程23132--=--xx x 时,小亮的解法如下: 解:方程两边都乘以212,3--=--x x 得移项,得221---=-x解得:5=x(1)你认为小亮在哪一步出现了错误?错误的原因是什么?(2)小亮的解题步骤完整吗?如果不完整,缺少哪一步?(3)请你解这个方程分式方程专题三、定义新运算1、对于非零实数b a 、,规定的值为,则若x x ab b a 1)12(2.11=-⊗-=⊗ 2、规定为则,若x x x x b a b a ,2)2(*11*=+-= 分式方程四、方程中的参数例1、若关于x 的方程122-=-+x a x 的解是最小的正整数,求a 的值变式练习:1、已知1=x 是分式方程x k x 311=+的根,求k 的值2、若5=x 是分式方程0152=--x x a 的根,求a 的取值范围3、关于x 的方程4332=-+x a ax 的解为x=1, 则._____=a例2、已知关于x 的分式方程111+=--++x k x k x 的解为负数,求k 的取值范围变式训练:1、已知关于x 的分式方程x m m x x -=----3434无解,求m 的值2、若分式方程a x a x =+-1无解,求a 的值4、已知关于x 的分式方程323-=--x m x x 有一个正数解,求m 的取值范围5、已知关于x 的分式方程111=--++x k x k x 的解为负数,求k 的取值范围6、若关于x 的分式方程x x x m 2132=--+无解,求m 的值7、若关于x 的分式方程x m x x 21051-=--无解,求m 的值8、若关于x 的分式方程322=-+x m x 的解是正数,求m 的取值范9、若关于x 的分式方程111=-+++x k x x k 的解为负数,求k 的取值范围10、若k 是正整数,关于x 的分式方程122=-+++xk x k x 的解为非负数,求k 的值11、若关于x 的分式方程6523212+-=---x x x ax 总无解,求a 的值。

12、若关于的分式方程在实数范围内无解,则实数。

13、若关于x 的分式方程3232-=--x m x x无解,则m 的值为__________。

例3、当a 为何值时,关于x 的分式方程53221+-=-+a a x x 的解为0?变式训练:1、已知关于x 的分式方程2332-+=+x mxx x。

(1)当m 为何值时,方程无解?(2)当m 为何值时,方程的解为负数?2、当m 为何值时,关于x 的分式方程234222-=-+-x x mx x 无解 x 3131+=-+x ax =a例4、若关于x 的分式方程x a x x --=--5351无解,求代数式)1()1112(2-∙+--a a a 的值例5、关于x 的分式方程301156652+-=-----x x k x x x x 的解不大于13,求k 的取值范围分式方程专题五、与有理数、一次函数等的结合1、点A 、B 在数轴上,它们所对应的数分别是5322,4-+-x x ,且点A 、B 到原点的距离相等,求x 的值。

2、若分式3131+-x x 与互为相反数,则x=3、已知点P )221(--a a ,关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程21=-+a x x 的解是4、已知一次函数b kx y +=的图像经过(1,3)和(-2,0)两点,关于x 的方程0=--+bx b k x k 的根是多少?分式方程专题六、增根问题例1、若分式方程:024122=+-+-x x a 有增根,求a 的值变式训练:1、若方程11)1)(1(6=---+x m x x 有增根,则它的增根是 2、解关于x 方程x m x -=+-1111时不会产生增根,求m 得取值范围3、已知关于x 的方程121=+-x a 有增根,则a= 4、关于x 的方程2112=-+-+xx x k x 有增根1-=x ,则k= 5、关于x 的方程02142=+--x x m 有增根,则m= 例2、(牡丹江)关于x 的分式方程131=---x x a x 无解,则a=_________。

变式练习:当m 为时,分式方程()01163=-+--+x x m x x x 有根课后练习题:1、当m 为何值时,关于x 的方程234222+=-+-x x mx x 会产生增根?2、若方程255x m x x =---有增根5x =,则m =_________.3、当a 为时,解关于x 的方程2212212--+=+----x x a x x x x x 时会出现增根。

4、关于x 的分式方程的解为正数,则m 的取值范围是 5、关于x 的方程223242mx x x x +=--+会产生增根,则m 为____________ 6、若关于x 的方程2111x m x x ++=--产生增根,则 m =____________ 7、取何值时,方程xx k x x x x +=+-+2112会产生增根?8、若分式方程:024122=+-+-x x a 有增根,求a 的值9、若分式方程xa x a x +-=+-321有增根,则a 的值是多少?10、若关于x 的方程11122+=-+-x x x k x x 不会产生增根,求k 的值。

分式方程专题七、与方程、不等式综合例1、关于x 的分式方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的一个解,求m 的取值范围例2、当x 为何值时,分式x x --23的值比分式21-x 的值大3? 1131=-+-x x m k例3、已知n m n m +=+711,求nm m n +的值例4、已知关于x 的方程3)1(2122-=+++x x x x ,求11++xx 的值。

分式方程专题八、规律题1、观察分析下列方程:①32=+x x ②56=+x x ③712=+xx ,请利用它们所蕴含的规律,求关于x 的方程)(4232为正整数n n x n n x +=-++的根2、41314313121321211211-=⨯-=⨯-=⨯,,,根据你所发现的规律,回答下列问题: (1)写出第n 个式子;(2)利用规律计算:)3)(2(1)2)(1(1)1(1+++++++x x x x x x (3)利用规律计算:)3)(2(1)2)(1(1)1(1--+--+-x x x x x x3、数学的美无处不在。

相关文档
最新文档