鲁教版初二数学七年级上册期末测试题
【鲁教版】七年级数学上期末试题(带答案)(1)
一、选择题1.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm2.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .63.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒4.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD 的长为____cmA .2B .3C .5D .6 5.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( ) A .17号 B .18号 C .19号 D .20号 6.对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.7.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m 8.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( )A .2x -8=12(x +8)+3B .2x =12(x +8)+3C .2x -8=12x +3D .2x =12x +3 9.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次10.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --11.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯-12.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m二、填空题13.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.14.如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.15.方程2243x-=的解是__________16.若4a+9与3a+5互为相反数,则a的值为_____.17.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.18.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.19.把35.89543精确到百分位所得到的近似数为________.20.绝对值小于100的所有整数的积是______.三、解答题21.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?22.把一副三角板的直角顶点O重叠在一起.(1)问题发现:如图①,当OB平分∠COD时,∠AOD+∠BOC的度数是;(2)拓展探究:如图②,当OB不平分∠COD时,∠AOD+∠BOC的度数是多少?(3)问题解决:当∠BOC的余角的4倍等于∠AOD时,求∠BOC的度数.23.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.24.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?25.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?26.观察下列单项式:﹣x,2x2,﹣3x3,…,﹣9x9,10x10,…从中我们可以发现:(1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n个单项式是.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD ,又AB=4cm ,继而即可求出答案.【详解】∵点C 是线段AB 的中点,AB=20cm ,∴BC=12AB=12×20cm=10cm , ∵点D 是线段BC 的中点, ∴BD=12BC=12×10cm=5cm , ∴AD=AB-BD=20cm-5cm=15cm .故选A .【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.2.A解析:A【分析】根据题意可知BC=6,所以AC=18,由于D 是AC 中点,可得AD=9,从BD=AB-AD 就可求出线段BD 的长.【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =.因为点D 是线段AC 的中点, 所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=.故选A .【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.3.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG ,∴∠BEF=180°-50°=130°,又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=65°,∴∠2=65°.故选:B.【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.4.A解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.5.A解析:A【解析】【分析】设休假第一天日期为x号,则其余三天的日期为(x+1),(x+2),(x+3),根据四天的日期之和为74建立方程求出其解即可.【详解】解:设休假第一天日期为x号,由题意,得:x+(x+1)+(x+2)+(x+3)=74,解得:x=17,故选A.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用, 相邻两个整数之间相差1的关系的运用,解答时根据四天的日期之和为74建立方程是关键.6.D解析:D【分析】ax+b=0(a ,b 为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A 、当a≠0时,方程的解是x=-b a,故错误; B 、当a=0,b≠0时,方程无解,故错误;C 、当a=0,b=0,方程有无数解,故错误;D 、以上都不正确.故选D .【点睛】 此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.7.B解析:B【分析】设计划注入水的时间为x 小时,根据“比预定的时间提前了10分钟完成注水任务”列出方程并解答.【详解】设计划注入水的时间为x 小时,依题意得:()20105002+5001+2025006060x x ⎛⎫⨯⨯---= ⎪⎝⎭%, 解得x=5.5×500=2500,即计划注入水的体积为2500立方米.故选B.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找到等量关系列出方程. 8.A解析:A【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,2x-8=12(x+8)+3, 故选:A .【点睛】 本题考查了由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.9.C解析:C【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般. 10.C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 11.A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 12.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题13.45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解【详解】解:∵OM 平分∠AOCON 平分∠BOC ∴∠MOC=∠AOC=60°∠CON=∠BOC=15°∴∠MON=∠MOC-∠CON=60 解析:45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解.【详解】解: ∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC=60°,∠CON=12∠BOC=15°, ∴∠MON=∠MOC-∠CON=60°-15°=45°;故答案为:45°;【点睛】 本题主要考查角平分线的性质,角的度数的计算,关键在于运用数形结合的思想推出∠MON=∠MOC-∠CON .14.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念解析:0 2【分析】利用正方体及其表面展开图的特点解题.【详解】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,0,2.故答案为1,0,2【点睛】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.15.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.16.-2【分析】利用相反数的性质求出a的值即可【详解】解:根据题意得:4a+9+3a+5=0移项合并得:7a=﹣14解得:a=﹣2故答案为﹣2【点睛】本题考查了解一元一次方程以及相反数熟练掌握运算法则是解析:-2【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.17.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n-;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.18.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.19.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.20.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.三、解答题21.(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.22.(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB平分∠COD得出∠BOC及∠AOC的度数,进而可得出结论;(2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.23.大正方形的面积是36cm2【分析】设小正方形的边长为x,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】设小正方形的边长为x,则大正方形的边长为4+(5−x)cm或(x+1+2)cm,根据题意得:4+(5−x)=(x+1+2),解得:x=3,∴4+(5−x)=6,∴大正方形的面积为36cm2.答:大正方形的面积为36cm2.【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.24.180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.25.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯, =97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.26.(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.。
鲁教版初一数学上册期末考试试卷
鲁教版初一数学上册期末考试试卷此刻打盹,你将做梦;而此刻学习,你将圆梦。
把你的实力全部发挥,祝你七年级数学期末考试成功!下面小编给大家分享一些鲁教版初一数学上册期末考试试卷,大家快来跟小编一起看看吧。
鲁教版初一数学上册期末考试题一、选择题(共15小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题3分,共45分,错选、不选或选出的答案超过一个,均记0分)1.下列计算正确的是( )A. =±3B. =﹣2C. =9D. =0.12.估算的大小,四舍五入到十分位是( )A.2.1B.2.2C.2.3D.2.43.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是( )A.3B.4C.5D.64.下列说法中,正确的是( )A. 的立方根是±B.立方根等于它本身的数是1C.负数没有立方根D.互为相反数的两个数的立方根也互为相反数5.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE 是AB的垂直平分线,若AD=3,则AC等于( )A.4B.4.5C.5D.66.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数( )A.46°B.44°C.36°D.22°7.下列命题中,是真命题的是( )A.角是轴对称图形,角平分线是它的对称轴B.线段是轴对称图形,并且只有一条对称轴C.三角形的一个外角等于它任意两个内角的和D.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半8.如图所示,已知在三角形纸片ABC中,BC=3,AC=4,∠BCA=90°,在AC上取一点E,BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CD的长度为( )A.1B.2C.3D.59.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:510.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.2个C.3个D.4个11.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=115°,则∠A的度数是( )A.50°B.57.5°C.60°D.65°12.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限13.将直线y=﹣2x+1向上平移1个单位,得到一个新的函数是( )A.y=﹣2x+2B.y=2x+1C.y=﹣2x﹣1D.y=﹣2x14.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系( )A. B.C. D.15.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A. B.C. D.二、填空题(共5小题,每小题4分,满分20分,只要求填写最后结果)16. 的平方根是__________.17.已知a、b、c是△ABC的三边长,且满足关系c2﹣a2﹣b2+|a ﹣b|=0,则△ABC的形状为__________.18.命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”的题设是__________,它是__________命题(填“真”或“假”).19.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于__________.20.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为__________米.三、解答题(共7小题,满分55分.解答要写出必要的文字说明、证明过程或演算步骤)21.解下列方程组:(1)(2) .22.如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求线段AD的长度;(3)求四边形ABCD的面积.23.已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.24.如图,在△ABC中,BD、CD分别平分∠ABC和∠ACB,过点D 作平行于BC的直线EF,分别交AB、AC于E、F,若BE=2,CF=3,若BE=2,CF=3,求EF的长度.25.长沙市某公园的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?26.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.27.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为__________千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?鲁教版初一数学上册期末考试试卷参考答案一、选择题(共15小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题3分,共45分,错选、不选或选出的答案超过一个,均记0分)1.下列计算正确的是( )A. =±3B. =﹣2C. =9D. =0.1【考点】立方根;算术平方根.【分析】根据平方根、立方根,即可解答.【解答】解:A、 =3,故错误;B、 =2,故错误;C、 =3,故错误;D、,故正确;故选:D.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.2.估算的大小,四舍五入到十分位是( )A.2.1B.2.2C.2.3D.2.4【考点】估算无理数的大小;近似数和有效数字.【分析】由4<5<9可知2< <3,然后由2.22<5<2.32,可知2.2< <2.3,然依据上述方法进行估算即可.【解答】解:∵4<5<9,∴2< <3.∵2.22=4.84,2.32=5.29,∴2.22<5<2.32,∴2.2< <2.3.∵2.232=4.9729,2.242=5.0176,∴2.232<5<2.242.∴2.23< <2.24.∴ ≈2.2.故选:B.【点评】本题主要考查的是估算无理数的大小,明确被开方数越大,对应的算术平方根越大是解题的关键.3.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是( )A.3B.4C.5D.6【考点】点的坐标.【分析】根据勾股定理,可得答案.【解答】解:PO= =5,故选:C.【点评】本题考查了点的坐标,利用勾股定理是解题关键.4.下列说法中,正确的是( )A. 的立方根是±B.立方根等于它本身的数是1C.负数没有立方根D.互为相反数的两个数的立方根也互为相反数【考点】立方根.【分析】根据立方根的定义,即可解答.【解答】解:A、的立方根是,故本选项错误;B、立方根等于它本身的数是1、﹣1、0,故本选项错误;C、负数有立方根,故本选项错误;D、互为相反数的两个数的立方根也互为相反数,正确;故选:D.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.5.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE 是AB的垂直平分线,若AD=3,则AC等于( )A.4B.4.5C.5D.6【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠A=∠ABD,然后根据角平分线的定义与直角三角形两锐角互余求出∠CBD=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出CD,然后求解即可.【解答】解:∵点D在AB的垂直平分线上,∴AD=BD=4,∴∠A=∠ABD,∵BD是角平分线,∴∠ABD=∠CBD,∵∠C=90°,∴∠A+∠ABD+∠CBD=90°,∴∠CBD=30°,∴CD= BD= ×3=∴AC=AD+CD=3+ = .故选B.【点评】本题考查了角平分线的定义,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,题目难度稍微复杂,熟记性质是解题的关键.6.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数( )A.46°B.44°C.36°D.22°【考点】平行线的性质.【分析】由l1∥l2,可得:∠1=∠3=44°,由l3⊥l4,可得:∠2+∠3=90°,进而可得∠2的度数.【解答】解:如图,∵l1∥l2,∴∠1=∠3=44°,∵l3⊥l4,∴∠2+∠3=90°,∴∠2=90°﹣44°=46°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.7.下列命题中,是真命题的是( )A.角是轴对称图形,角平分线是它的对称轴B.线段是轴对称图形,并且只有一条对称轴C.三角形的一个外角等于它任意两个内角的和D.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半【考点】命题与定理.【分析】利用对称轴及轴对称的定义、线段和角的对称性,三角形的外角的性质及直角三角形的性质分别判断后即可确定正确的选项.【解答】解:A、角是轴对称图形,角平分线所在直线是它的对称轴,故错误,为假命题;B、线段是轴对称图形,它有两条对称轴,故错误,为假命题;C、三角形的一个外角等于与其不相邻的两个内角的和,故错误,为假命题;D、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半,正确,为真命题,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解称轴及轴对称的定义、线段和角的对称性,三角形的外角的性质及直角三角形的性质,属于基础定义,难度较小,但也应重点掌握.8.如图所示,已知在三角形纸片ABC中,BC=3,AC=4,∠BCA=90°,在AC上取一点E,BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CD的长度为( )A.1B.2C.3D.5【考点】翻折变换(折叠问题).【分析】先在Rt△ABC中根据勾股定理求得AB=5,然后由翻折的性质可知BD=AB=5,最后根据CD=BD﹣BC求解即可.【解答】解:∵BC=3,AC=4,∠BCA=90°,∴AB= =5.由翻折的性质可知:BD=AB=5.∴CD=BD﹣BC=5﹣3=2.故选:B.【点评】本题主要考查的是翻折变换、勾股定理的应用,由翻折的性质求得BD=AB=5是解题的关键.9.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理及勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形,故正确;B、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;C、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;D、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选D.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理或三角形的内角和定理来判定.10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.【解答】解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.故选C.【点评】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.11.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=115°,则∠A的度数是( )A.50°B.57.5°C.60°D.65°【考点】三角形内角和定理.【分析】先根据三角形内角和定理得出∠BCF+∠CBF的度数,再由角平分线的性质得出∠ABC+∠ACB的度数,根据三角形内角和定理即可得出结论.【解答】解:∵∠BFC=115°,∴∠BCF+∠CBF=180°﹣115°=65°.∵BF平分∠ABC,CF平分∠ACB,∴∠ABC+∠ACB=2(∠BCF+∠CBF)=130°,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣130°=50°.故选A.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.12.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】根据y随x的增大而减小得:k<0,又kb>0,则b<0.再根据k,b的符号判断直线所经过的象限.【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.【点评】能够根据k,b的符号正确判断直线所经过的象限.13.将直线y=﹣2x+1向上平移1个单位,得到一个新的函数是( )A.y=﹣2x+2B.y=2x+1C.y=﹣2x﹣1D.y=﹣2x【考点】一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将直线y=﹣2x+1向上平移1个单位所得直线的解析式为:y=﹣2x+1+1,即y=﹣2x+2.故选A.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系( )A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设馒头每颗x元,包子每颗y元,根据题意王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=52,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y)=90,联立方程即可得到所求方程组.【解答】解:设馒头每颗x元,包子每颗y元,伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=50+2,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y)=90,故可列方程组为,故选B.【点评】本题主要考查由实际问题抽象出的二元一次方程组的知识点,解答本题的关键是理解题意,找出题干中的等量关系,列出等式,本题难度一般.15.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A. B.C. D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是 .故选:D.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.二、填空题(共5小题,每小题4分,满分20分,只要求填写最后结果)16. 的平方根是±3.【考点】算术平方根;平方根.【分析】直接根据平方根的定义即可求解.【解答】解:的平方根是±3,故答案为:±3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.17.已知a、b、c是△ABC的三边长,且满足关系c2﹣a2﹣b2+|a ﹣b|=0,则△ABC的形状为等腰直角三角形.【考点】三角形三边关系.【分析】根据题意得出c2=a2+b2,a=b进而得出△ABC的形状.【解答】解:∵c2﹣a2﹣b2+|a﹣b|=0,∴c2﹣a2﹣b2=0,|a﹣b|=0,∴c2=a2+b2,a=b,∴△ABC的形状为等腰直角三角形.故答案为:等腰直角三角形.【点评】直接利用绝对值以及偶次方的性质,得出a,b,c之间的关系是解题关键.18.命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”的题设是两三角形两边分别相等且其中一组等边的对角相等,它是假命题(填“真”或“假”).【考点】命题与定理.【分析】改写成“如果…,那么…”的形式后即可确定其题设和结论,判断正误后即可确定真假.【解答】解:命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”改写成“如果…,那么…”为:如果两三角形两边分别相等且其中一组等边的对角相等,那么这两个三角形全等,所以题设是:两三角形两边分别相等且其中一组等边的对角相等,为假命题,故答案为:两三角形两边分别相等且其中一组等边的对角相等,假.【点评】本题考查了命题与定理的知识,解题的关键是能够将原命题写成“如果…,那么…”的形式,难度不大.19.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于20°.【考点】平行线的性质.【分析】先根据AB∥CD求出∠BCD的度数,再由EF∥CD求出∠ECD的度数,由∠BCE=∠BCD﹣∠ECD即可得出结论.【解答】解:∵AB∥CD,∠ABC=46°,∴∠BCD=∠ABC=46°,∵EF∥CD,∠CEF=154°,∴∠ECD=180°﹣∠CEF=180°﹣154°=26°,∴∠BCE=∠BCD﹣∠ECD=46°﹣26°=20°.故答案为:20°.【点评】本题考查的是平行线的性质,熟知两直线平行,内错角相等;同旁内角互补是解答此题的关键.20.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200米.【考点】一次函数的应用.【专题】数形结合.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.【点评】本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.三、解答题(共7小题,满分55分.解答要写出必要的文字说明、证明过程或演算步骤)21.解下列方程组:(1)(2) .【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1) ,①×3+②×2得:13x=﹣11,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为 ;(2)方程组整理得:,①﹣②得:5y=150,即y=30,把y=30代入①得:x=28,则方程组的解为 .【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求线段AD的长度;(3)求四边形ABCD的面积.【考点】坐标与图形性质;三角形的面积;勾股定理.【分析】(1)根据图象可以直接写出A、B、C、D的坐标.(2)把AD作为斜边,利用勾股定理解决.(3)把四边形分割成3个直角三角形和一个正方形来求面积.【解答】解:(1)由图象可知A(﹣2,3),B(﹣3,0),C(3,0),D(1,4);(2)AD= = ;(3)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF= ×1×3+ ×1×3+ ×2×4+3×3=13.【点评】本题目考查了已知点写坐标以及勾股定理,三角形的面积有关知识,应该掌握分割法求面积.23.已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.【考点】平行线的判定与性质.【专题】证明题.【分析】根据垂直的定义得到∠ADF=∠EFC=90°,再根据同位角相等,两直线平行得到AD∥EF,利用直线平行的性质有∠2=∠DAC;由∠4=∠C,根据同位角相等,两直线平行得到DG∥AC,再利用直线平行的性质得∠1=∠DAC,最后利用等量代换即可得到结论.【解答】解:∵AD⊥BC,EF⊥BC,∴∠ADF=∠EFC=90°,∴AD∥EF,∴∠2=∠DAC,又∵∠4=∠C,∴DG∥AC,∴∠1=∠DAC,∴∠1=∠2.【点评】本题考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.24.如图,在△ABC中,BD、CD分别平分∠ABC和∠ACB,过点D 作平行于BC的直线EF,分别交AB、AC于E、F,若BE=2,CF=3,若BE=2,CF=3,求EF的长度.【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】证明:∵BD为∠ABC的平分线,∴∠EBD=∠CBD,又∵EF∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,同理FC=FD,又∵EF=ED+DF,∴EF=EB+FC=5.【点评】此题考查了等腰三角形的判定,平行线的性质,利用了等量代换的思想,熟练掌握性质与判定是解本题的关键.25.长沙市某公园的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?【考点】二元一次方程组的应用.【专题】图表型.【分析】本题等量关系有:甲班人数×8+乙班人数×10=920;(甲班人数+乙班人数)×5=515,据此可列方程组求解.【解答】解:设甲班有x人,乙班有y人.由题意得:解得: .答:甲班55人,乙班48人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题按购票人数分为三类门票价格.26.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.【考点】翻折变换(折叠问题);坐标与图形性质.【分析】先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.【解答】解:依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△A BE中,AE=AO=10,AB=8,BE= = =6,∴CE=4,∴E(4,8).在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(8﹣OD)2+42=OD2,∴OD=5,∴D(0,5),综上D点坐标为(0,5)、E点坐标为(4,8).【点评】本题主要考查了翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.27.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【考点】一次函数的应用.【专题】应用题.【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s= t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣ t+12= t,解得t=当t= 时,S= × =3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。
【鲁教版】初一数学上期末试题(及答案)(1)
一、选择题1.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12ABD .AD=12(CD+AB ) 2.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南3.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 5.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-6.若│x -2│+(3y+2)2=0,则x+6y 的值是( )A .-1B .-2C .-3D .32 7.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣68.下列运用等式的性质对等式进行的变形中,错误的是( )A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=- 9.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个10.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 11.下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位 12.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题13.某公司员工分别在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C ,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在_____区.14.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.15.若关于x 的方程2mx+3m=-1与3x+6x=-3的解相同,则m 的值为_____.16.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.17.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.18.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
鲁教版2022-2023学年七年级数学上册期末模拟测试题(附答案)
鲁教版2022-2023学年七年级数学上册期末模拟测试题(附答案)一、选择题(共48分)1.在,π,,3.,,0,1010010001…(每两个1之间,逐次多一个0)中,无理数的个数有()A.2个B.3个C.4个D.5个2.下列曲线中,表示y是x的函数的是()A.B.C.D.3.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25B.25或20C.20D.154.已知函数y=(m﹣2)+1是一次函数,则m的值为()A.±B.C.±2D.﹣25.如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°6.如图,AC∥BD,AB交CD于点O,过O的直线EF分别交AC、BD于E、F,DF=CE,则图中全等的三角形的对数共有()A.1对B.2对C.3对D.4对7.一次函数y=kx+b的图象如图所示,则一次函数y=bx﹣k的图象所过象限为()A.一、三、四象限B.二、三、四象限C.一、二、三象限D.一、二、四象限8.已知点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)9.如图,在平面直角坐标系中,点A的坐标是(﹣3,0),点B的坐标是(0,4),点M是OB上一点,将△ABM沿AM折叠,点B恰好落在x轴上的点B'处,则点M的坐标为()A.(,0)B.(0,)C.(,0)D.(0,)10.如图,AB=AC,点B关于AD的对称点E恰好落在CD上,∠BAC=124°,AF为△ACE中CE边上的中线,则∠ADB的度数为()A.24°B.28°C.30°D.38°11.如图,矩形ABCD的顶点A(﹣3,0),B在x轴的负半轴上,顶点C(﹣1,3),D在第二象限内,对角线AC与BD的交点为M.将矩形ABCD沿x轴正方向滚动(无滑动),使其一边保持落在x轴上,点M的对应点分别为M1,M2,M3,…,则M2021的坐标为()A.(5050,1)B.(5050,)C.(5050,1)D.(5050,)12.如图,在△ABC中,∠ACB=45°,AD⊥BC,BE⊥AC,AD与BE相交下点F,连接并延长CF交AB于点G,∠AEB的平分线交CG的延长线于点H,连接AH.则下列结论:①∠EBD=45°;②AH=HF;③△ABD≌△CFD;④CH=AB+AH;⑤BD=CD﹣AF.其中正确的有()个.A.5B.4C.3D.2二、填空题(共24分)13.如图,将三角形纸片ABC沿着中线AD折叠,使点B落在点B′处,交BC于点E,若△AEC的面积为S1,△DEB′的面积为S2,则S1S2(填“>“、“<“或“=”)14.如图,Rt△ABC中,AB=4,BC=3,以Rt△ABC的三边为直径画3个半圆,则阴影部分的面积为.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为.16.在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向下平移3个单位后,得到一个正比例函数的图象,则m的值为.17.如图,小明站在堤岸的A点处,正对他的S点停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿堤岸走到电线杆B旁,接着再往前走相同的距离,到达C点.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于D点.小明测得C、D间的距离为90米,则在A点处小明与游艇的距离为米.18.若a、b、c为三角形的三边长,且a、b满足|a﹣3|+(b﹣2)2=0,则第三边长c的取值范围是.三、解答题(共78分)19.计算与求值:(1)(﹣2+x)3=﹣216;(2);(3)若2a﹣4与3a+1是同一个正数的平方根,求a的值.20.在平面直角坐标系中,A(0,2),B(6,1),C(5,3),如图所示:(1)以x轴为对称轴,作△ABC的轴对称图形△DEF;(2)求△ABC的面积;(3)在x轴上找一点M,使M点到A、B两点的距离之和最小,请你通过作图观察,直接写出点M的坐标;21.如图,△ABC中,∠ABC=2∠C,BE平分∠ABC交AC于E、AD⊥BE于D,求证:(1)AC﹣BE=AE;(2)AC=2BD.22.如图,在长方形ABCD中,DC=9.在DC上找一点E,沿直线AE把△AED折叠,使D点恰好落在BC上,设这一点为F,若△ABF的面积是54,求DE的长.23.某公司要印制产品宣传材料,甲印刷厂提出:每份材料收2元印制费,另收1500元制版费;乙印刷厂提出:每份材料收3.5元印制费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印制数量x(份)之间的关系式;(2)若公司需印制800份宣传材料,通过计算说明选择哪家印刷厂比较合算?(3)若该公司拟拿出7000元用于印制宣传材料.选择哪家印刷厂印制宣传材料多些?24.如图,在△ABC中,∠A=90°,AB=AC,点D在射线AC上(点D不与点A重合)(1)若点D在边AC时,延长AC至点G,CG=AD,过点D作DE⊥BD,交BC于点E,过G作HG⊥AG交DE延长线于点H.求证:BD=DH.(2)过点A作AF⊥BD,垂足为F,射线AF交BC于点N,点Q在射线CA上,且∠QNC=∠ANB.求证:AQ=CD.25.如图,一次函数y=x+3的图象分别与x轴和y轴交于C,A两点,且与正比例函数y =kx的图象交于点B(﹣1,m).(1)求正比例函数的表达式;(2)若点D是x轴上的点,且△OBD的面积和△OBA的面积相等,求满足条件的点D 的坐标.参考答案一、选择题(共48分)1.解:,3.,,0是有理数,π,,1010010001…(每两个1之间,逐次多一个0)是无理数,故选:B.2.解:在某个变化过程中,有两个变量x、y,一个量变化,另一个量也随之变化,当x每取一个值,y就有唯一的值与之相对应,这时我们就把x叫做自变量,y叫做因变量,y 是x的函数,只有选项C中的“x每取一个值,y不是唯一值与之相对应”,其它选项中的都不是“有唯一相对应”的,所以选项C中的y表示x的函数,故选:C.3.解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选:A.4.解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.5.解:∵CD平分∠BCA,∴∠ACD=∠BCD=∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,6.解:全等三角形有△AEO≌△BFO,△CEO≌△DFO,△ACO≌△BDO,共3对,故选:C.7.解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,﹣k>0,∴一次函数y=bx﹣k图象第一、二、三象限,故选:C.8.解:∵点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,∴a﹣1=﹣2,解得a=﹣1,所以,a+5=﹣1+5=4,所以,点P的坐标为(4,﹣2).故选:A.9.解:∵将△ABM沿AM折叠,∴AB=AB',又A(﹣3,0),B(0,4),∴AB=5=AB',∴点B'的坐标为:(2,0),设M点坐标为(0,b),则B'M=BM=4﹣b,∵B'M2=B'O2+OM2,∴(4﹣b)2=22+b2,∴b=,∴M(0,),故选:B.10.解:如图,∵△AED与△ABD关于AD对称,∴AB=AE,∠ADB=∠ADE,∠BAD=∠DAE,∴AC=AE,∵AF是△ACE的中线,∴∠CAF=∠EAF,AF⊥CE,∴∠DAF=∠BAC=62°,∵∠AFD=90°,∴∠ADF=90°﹣62°=28°,∴∠ADB=∠ADF=28°,故选:B.11.解:∵长方形ABCD的顶点A(﹣3,0),顶点C(﹣1,3),∴M1的坐标为(,1),M2的坐标为(+,),M3的坐标为(+,1),M4的坐标为(+,),•M2021的坐标为(,1),∴M2021的坐标为(5050,1).故选:A.12.解:设EH与AD交于点M,如图,∵∠ACB=45°,BE⊥AC,∴∠EBD=90°﹣∠ACD=45°.故①正确;∵AD⊥BC,∠EBD=45°,∴∠BFD=45°.∴∠AFE=∠BFD=45°.∵BE⊥AC,∴∠F AE=∠AFE=45°.∴△AEF为等腰直角三角形.∵EM是∠AEF的平分线,∴EM⊥AF,AM=MF.即EH为AF的垂直平分线.∴AH=HF.∴②正确;∵AD⊥BC,∠ACD=45°,∴△ADC是等腰直角三角形,∴AD=CD.同理,BD=DF.在△ABD和△CFD中,,∴△ABD≌△CFD(SAS).∴③正确;∵△ABD≌△CFD,∴CF=AB.∵CH=CF+HF,由②知:HF=AH.∴CH=AB+AH.∴④正确;∵BD=DF,CD=AD,又∵DF=AD﹣AF,∴BD=CD﹣AF.∴⑤正确.综上,正确结论的个数为5个.故选:A.二、填空题(共24分)13.解:∵AD是△ABC的中线,∴S△ABD=S△ADC,由折叠的性质可知,S△AB′D=S△ABD,∴S△ADC=S△AB′D,∴S1=S2,故答案为:=.14.解:设分别以BC,AB,AC三边为直径的三个半圆面积分别表示为S1、S2、S3,则有:S1=π()2=,同理,S2=,S3=,∵BC2+AB2=AC2,∴S1+S2=S3;∴S阴影=S1+S2+S△ABC﹣S3=S△ABC,则S阴影=S△ABC=AB•BC=×4×3=6.故答案为6.15.解:(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y随x的增大而减小,因此,2﹣m<0,解得,m>2,故答案为:m>2.16.解:将一次函数y=2x+m﹣1的图象向下平移3个单位后,得到y=2x+m﹣1﹣3,把(0,0)代入,得到:0=0+m﹣1﹣3,解得m=4.故答案为:4.17.解:在△ABS与△CBD中,,∴△ABS≌△CBD(ASA),∴AS=CD,∵CD=90米,∴AS=CD=90米,答:在A点处小明与游艇的距离为90米,故答案为:90米.18.解:∵a、b满足|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,∴a=3,b=2.∵a、b、c为三角形的三边长,∴3﹣2<c<3+2,即1<c<5.故答案为:1<c<5.三、解答题(共78分)19.解:(1)∵(﹣2+x)3=﹣216,∴﹣2+x=﹣6,解得x=﹣4;(2)∵,=4,∴2x+1=±2,解得x=或﹣;(3)∵2a﹣4与3a+1是同一个正数的平方根,∴2a﹣4+3a+1=0或2a﹣4=3a+1,∴解得:a=或a=﹣5.20.解:(1)如图,△DEF即为所求;(2)△ABC的面积=3×6﹣×1×6﹣×1×2﹣×1×5=;(3)如图点M即为所求,点M的坐标(4,0).21.证明:(1)∵BE平分∠ABC,∴∠CBE=∠ABC,∵∠ABC=2∠C,∴∠EBC=∠C,∴BE=CE,∴AC﹣BE=AC﹣CE=AE;(2)延长BD至N,使DN=BD,连接AN.∵AD⊥BE,∴AD垂直平分BN,∴AB=AN,∴∠N=∠ABN=∠NBC=∠C,∴AN∥BC,∴∠C=∠NAC,∴∠NAC=∠N,∴AE=EN,∵BE=EC,∴AC=BN=2BD.22.解:在长方形ABCD中,DC=9,所以,AB=DC=9,∵△ABF的面积为54,∴×9•BF=54,解得BF=12,由勾股定理得,AF===15,∵△AED沿AE折叠点D落在BC上点F处,∴AD=AF=15,DE=EF,∴CF=BC﹣BF=15﹣12=3,设DE=x,则EF=x,EC=9﹣x,在Rt△CEF中,由勾股定理得,CF2+EC2=EF2,即32+(9﹣x)2=x2,解得x=5,∴DE=5.23.解:(1)由题意可得,y甲=2x+1500,y乙=3.5x;(2)当x=800时,y甲=2×800+1500=3100,y乙=3.5×800=2800,∵3100>2800,∴若公司需印制800份宣传材料,选择乙印刷厂比较合算;(3)当y甲=7000时,7000=2x+1500,得x=2750,当y乙=7000时,7000=3.5x,得x=2000,∵2750>2000,∴若该公司拟拿出7000元用于印制宣传材料.选择甲印刷厂印制宣传材料多些.24.(1)证明:∵CG=AD,∴CG+DC=AD+DC,∴DG=AC=AB,∵DE⊥BD,∴∠BDE=∠A=90°,∴∠ADB+∠GDH=∠ADB+∠ABD,∴∠ABD=∠GDH,在△ABD和△GDH中,,∴△ABD≌△GDH(ASA),∴BD=DH;(2)证明:如图,过C作CE⊥AC交AN延长线于点E,∴∠ECQ=90°,∵∠BAC=90°,AB=AC,∴∠ACB=45°,∴∠ECN=45°,∴∠QCN=∠ECN,∵∠QNC=∠ANB.∠ENC=∠ANB.∴∠QNC=∠ENC.在△QNC和ENC中,,∴△QNC≌ENC(ASA),∴CQ=CE,∵AF⊥BD,∴∠AFD=∠BAC=90°,∴∠ADB+∠F AD=∠ADB+∠ABD,∴∠ABD=∠F AD,在△ABD和△CAE中,,∴△ABD≌△CAE(ASA),∴AD=CE;∵CQ=CE,∴AD=CQ,∴AD+DQ=CQ+CQ,∴AQ=CD.25.解:(1)由一次函数与正比例函数交于点B(﹣1,m),当x=﹣1时,得出y=2,即m=2,将B(﹣1,2)代入y=kx,得﹣k=2,即k=﹣2.答:y=﹣2x.(2)∵A为y=x+3与y轴的交点,∴A为(0,3),∵B(﹣1,2),∴△OBA的面积为3×1÷2=1.5;又∵△OBD的面积与△OBA的面积相同,∴△OBD的面积为1.5,∵△OBD的高为2,∴OD=1.5×2÷2=1.5;答:D(1.5,0)或(﹣1.5,0).。
【鲁教版】初一数学上期末试卷附答案(1)
一、选择题1.下列调查方式,你认为最合适的是()A.调查市场上某种白酒的塑化剂的含量,采用全面调查方式B.调查鞋厂生产的鞋底能承受的弯折次数,采用全面调查方式C.调查端午节期间市场上粽子的质量,采用抽样调查方式D.“长征﹣3B火箭”发射前,检查其各零部件的合格情况,采用抽样调查的方式2.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是()A.这栋居民楼共有居民125人B.每周使用手机支付次数为28~35次的人数最多C.有25人每周使用手机支付的次数在35~42次D.每周使用手机支付不超过21次的有15人3.希望中学七年级四个班的学生去阳光公园义务植树,已知在每小时内,5个女生种3棵树,3个男生种5棵树,各班学生人数如图所示,则植树最多的班级是()A.七(1)班B.七(2)班C.七(3)班D.七(4)班4.某校甲、乙、丙三个班为“希望工程”捐款,甲班捐的钱数是另外两个班捐款总和的一半,乙班捐的钱数是另外两个班捐款总和的13,丙班共捐了160元,求这三个班捐款数的总和()A.440 B.384 C.382 D.364 5.下列解方程过程中,变形正确的是()A .由213x -=得231x =-B .由56-=x 得56x =-C .由132x x -=得-=236x xD .由310.240.1x x +=+得310.24x x =++ 6.使得关于x 的方程44163ax x x -+-=-的解是正整数的所有整数a 的积为( ) A .21- B .12-C .6-D .12 7.下列说法正确的是( ).A .两点之间,直线最短B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线 8.下列四个图中,能用1∠、O ∠、MON ∠三种方法表示同一个角的是( ) A . B . C .D .9.如图,点C 在线段AB 上,且13AC AB =.点D 在线段AC 上,且13CD AD =.E 为AC 的中点,F 为DB 的中点,且11EF =,则CB 的长度为( )A .15B .16C .17D .1810.元旦,是公历新一年的第一天“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正逆元旦之春”.中国古代间以腊月、十月等的月首为元旦.1949年中国华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x 元(100x >),则购买该商品实际付款的金额(单位:元)是( )A .80%20x -B .()80%20x -C .20%20x -D .()20%20x - 11.下列图形是正方体展开图的是( )A .B .C .D . 12.有理数p ,q ,r ,s 在数轴上的对应点的位置如图所示.若10p r -=,12p s -=,9q s -=,则q r -的值是( )A.5 B.6 C.7 D.10二、填空题13.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是_____ (写出全部正确说法的序号).①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少14.近日,广州市教育局出台《广州市教育局关于加强中小学(幼儿园)劳动教育指导意见》和《广州市中小学劳动教育指导纲要》,明确学生会抄自家的电表等.小海6月初连续几天在同一时刻记录家里电表显示的度数如下表,根据小海的记录,请你估计小海家6月(30天)的用电量约为_____千瓦·时.15.如图所示,两个天平都平衡,那么与6个球体质量相等的正方体的个数为_____.∠的平分线,且16.如图,点O是直线AB上一点,OC垂直于OD,OE是AOD∠∠=,则BOECOB AOD:3:8∠=________.17.如图,已知点D 在线段AB 上,且:7:3,6cm AD DB DB ==,若点M 是线段AD 的中点,求线段BM 的长.18.化简()33ππ---的结果为_______.19.在-1.0426中用数字3替换其中的一个非零数字后,使所得的数最大,则被替换的数字是________.20.如图是正方体的展开图,则正方体中与数字5所在面相对的面上的数字为________ .三、解答题21.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表. 组别男女生身高(cm ) A150155x < B155160x < C160165x < D165170x < E 170175x <根据图表中提供的信息,回答下列问题:(1)在样本中,组距是__________,女生身高在B组的有__________人;x<之间的共有__________人,人数最多的是__________(2)在样本中,身高在170175组(填组别序号);x<之间的学生有(3)已知该校共有男生500人,女生480人,请估计身高在160170多少人?22.大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?23.综合与实践如图,某学校由于经常拔河,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.=,对折BM找七年级的聪聪马上想出一个了办法:在线段CD上取一点M,使CM CA到其中点F,将AC和BF剪掉就得到一条长20米的拔河比赛专用绳CF.请你完成下列任务;(1)在图中标出点M、点F的位置;(2)判断聪聪剪出的专用绳CF是否符合要求.试说明理由.24.已知下列等式:①22﹣12=3;②32﹣22=5;③42﹣32=7,…(1)请仔细观察前三个式子的规律,写出第④个式子:;(2)请你找出规律,写出第n个式子.(3)利用(2)中发现的规律计算:1+3+5+7+…+2019+2021.25.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?26.画出如图所示几何体的主视图、左视图和俯视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用全面调查方式,适合抽样调查;B、了调查鞋厂生产的鞋底能承受的弯折次数,适合抽样调查;C、调查端午节期间市场上粽子的质量,适合采用抽样调查方式;D、“长征﹣3B火箭”发射前,检查其各零部件的合格情况,适合采用全面调查方式;故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.D解析:D【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.C解析:C【分析】根据题意分别计算出各班植树的数目,于是得到结论.【详解】解:七(1)班共植树:35221843.253⨯+⨯=(棵),七(2)班共植树:3566218205315⨯+⨯=(棵),七(3)班共植树:3566713225315⨯+⨯=(棵),七(4)班共植树:3515214453⨯+⨯=(棵),∵6676624443.21515>>>,∴植树最多的班级是七(3)班,故选:C.【点睛】本题考查了条形统计图,正确的识别图形是解题的关键.4.B解析:B【分析】由甲班捐的钱数是另外两个班捐款总和的一半,可知甲班捐款数是三个班捐款数总和的1 3,由乙班捐的钱数是另外两个班捐款总和的13,可知乙班捐款数是三个班捐款数总和的14,设三个班捐款总和为x元,根据题意列方程求解.【详解】解:∵甲班捐的钱数是另外两个班捐款总和的一半,∴甲班捐款数是三个班捐款数总和的13,∵乙班捐的钱数是另外两个班捐款总和的13, ∴乙班捐款数是三个班捐款数总和的14, 设三个班捐款总和为x 元,则甲班捐款13x 元,乙班捐款14x 元,根据题意可得 1116034x x x --=,解得:x=384 ∴三个班捐款总和为384元故选:B .【点睛】本题考查了一元一次方程的应用,正确理解题意,分析部分与整体的关系,找准题目等量关系,列方程求解是解题关键.5.C解析:C【分析】根据等式的性质和分式的基本性质逐项判断即可.【详解】解:A 、移项应该改变项的符号,则可得2x =3+1,故A 不正确,不符合题意; B 、两边同时除以−5,可得x =65-,故B 不正确,不符合题意; C 、两边同时乘6,可得2x−3x =6,故C 正确,符合题意;D 、分数的分子分母同时扩大10倍,则分数的值不变,改变的只是分子和分母,与其他项无关,故D 不正确,不符合题意;故选:C .【点睛】本题主要考查等式的性质,掌握等式的基本性质是解题的关键,注意在解方程时移项需要改变项的符号.6.B解析:B【分析】先解该一元一次方程,然后根据a 是整数和x 是正整数即可得到a 的值,从而得到答案.【详解】 解:44163ax x x -+-=- 去分母得,()()64246x ax x --=+-去括号得,64286x ax x -+=+-整理得,()46a x +=∴64x a=+, 当2a =时1x =,当1a =-时2x =,当2a =-时3x =,当3a =-时6x =,这些整数a 的积为()()()212312⨯-⨯-⨯-=-,故选:B .【点睛】本题考查了一元一次方程的解法和代数式求值,熟练掌握解一元一次方程是解题的关键. 7.D解析:D【分析】根据两点之间线段最短性质,可判断选项A ;根据两点之间距离的性质,可判断选项B ;根据角的定义分析,可判断选项C ;根据直线的性质分析,可判断选项D ,即可得到答案.【详解】两点之间,线段最短,故选项A 错误;连接两点间的线段长度,叫做这两点的距离,故选项B 错误;具有公共端点的两条射线组成的图形叫做角,故选项C 错误;经过两点有一条直线,并且只有一条直线,故选项D 正确;故选:D .【点睛】本题考查了线段、直线、角的知识;解题的关键是熟练掌握线段、直线、角的性质,从而完成求解.8.C解析:C【分析】根据角的表示方法和图形选出即可.【详解】A 、图中的∠MON 不能用∠O 表示,故本选项错误;B 、图中的∠1和∠O 不是表示同一个角,故本选项错误;C 、图中的1∠、O ∠、MON ∠表示同一个角,故本选项正确;D 、图中∠1、∠MON 、∠O 不表示同一个角,故本选项错误;故选:C .【点睛】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力. 9.B解析:B【分析】设CB x =,然后根据题目中的线段比例关系用x 表示出线段EF 的长,令它等于11,解出x 的值.【详解】解:设CB x =, ∵13AC AB =,∴1122AC BC x ==, ∵13CD AD =,∴1148CD AC x ==, ∵E 是AC 中点,∴1124CE AC x ==, 111488DE CE CD x x x =-=-=,1988BD BC CD x x x =+=+=, ∵F 是BD 中点,∴19216DF BD x ==, 91111116816EF DF DE x x x =+=+==,解得16x =. 故选:B .【点睛】 本题考查线段之间和差计算,解题的关键是设未知数帮助我们理顺线段与线段之间的数量关系,然后列式求解未知数.10.A解析:A【分析】根据题意可以用相应的代数式表示购买该商品实际付款的金额;【详解】由题意得,若某商品的原价为x 元(x >100),则购买该商品实际付款的金额是:80%x-20(元)故选:A .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.11.B解析:B【分析】正方体的展开图有11种情况:1-4-1型共6种,1-3-2型共3种,2-2-2型一种,3-3型一种,由此判定找出答案即可.【详解】解:A 、有田字格,不是正方体展开图,故选项错误;B、1-4-1型,是正方体展开图,故选项正确;C、不是正方体展开图,故选项错误;D、有田字格,不是正方体展开图,故选项错误.故选:B.【点睛】此题考查正方体的展开图,注意识记基本类型,更快解决实际问题.12.C解析:C【分析】根据绝对值的几何意义,将|p−r|=10,|p−s|=12,|q−s|=9转化为两点间的距离,进而可得q、r两点间的距离,即可得答案.【详解】解:根据绝对值的几何意义,由|p−r|=10,|p−s|=12,|q−s|=9得:|p−q|=|p−s|-|q−s|=3,|r−s|=|p−s|-|p−r|=2∴|q−r|=|p−s|-|p−q|-|r−s|=12-3-2=7.故选:C.【点睛】本题考查了绝对值的几何意义,解题的关键是运用数形结合的数学思想表示出数轴上两点间的距离.二、填空题13.①③【分析】观察比较扇形统计图和条形统计图获取相关信息然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56占一半以上即①正确;②互联网行业中从事技术岗位的80前人数占解析:①③【分析】观察、比较扇形统计图和条形统计图获取相关信息,然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56%,占一半以上,即①正确;②互联网行业中从事技术岗位的80前人数占总人数1-56%-41%=3%,故②错误;.③B互联网行业中从事技术岗位的90后人数占总人数的0.56×0.41=0.2296 >0.2,故③正确;④从事设计岗位的90后人数占总人数的0.56×0.08=0.0448>0.03故选④错误;故答案为①③.【点睛】本题主要考查对扇形统计图和条形统计图的观察分析能力,掌握条形统计图和扇形统计图的关联是解答本题的关键.14.270【解析】【分析】先求出一个星期内每天大概用电量然后乘以6月份的30天得出一月的大概用电量这里要注意的是前面所抄的是八个数但实际是七天的用电量电表显示是总用电量不是哪一天的用电量【详解】解:根据 解析:270【解析】【分析】先求出一个星期内每天大概用电量,然后乘以6月份的30天得出一月的大概用电量.这里要注意的是前面所抄的是八个数,但实际是七天的用电量,电表显示是总用电量,不是哪一天的用电量,【详解】解:根据题意,可得2752123093027081-⨯=⨯=-千瓦·时 答:小海家6月(30天)的用电量约为270千瓦·时.【点睛】此题主要考查用样本估计总体的实际应用,熟练掌握,即可解题.15.4【分析】设一个球体的质量为x 一个圆柱的质量为y 一个正方体的质量为m 列出关系式计算即可;【详解】设一个球体的质量为x 一个圆柱的质量为y 一个正方体的质量为m 根据第一个天平可得:根据第二个天平可得:∴∴ 解析:4【分析】设一个球体的质量为x ,一个圆柱的质量为y ,一个正方体的质量为m ,列出关系式计算即可;【详解】设一个球体的质量为x ,一个圆柱的质量为y ,一个正方体的质量为m ,根据第一个天平可得:35x y =,根据第二个天平可得:25m y =,∴32x m =, ∴23x m =, ∴26643x m m =⨯=; 故答案是4.【点睛】本题主要考查了等式的性质,准确列式计算是解题的关键.16.【分析】根据设∠COB=则∠AOD=求得∠BOD=利用∠COD=列方程即可求解【详解】∵设∠COB=则∠AOD=∴∠BOD=∵垂直于∴∠COB+∠BOD=即解得:∵是的平分线∴∠AOE=∠EOD=∴解析:108︒【分析】根据:3:8COB AOD ∠∠=,设∠COB=3x ,则∠AOD=8x ,求得∠BOD=1808x ︒-,利用∠COD=90︒列方程,即可求解.【详解】∵:3:8COB AOD ∠∠=,设∠COB=3x ,则∠AOD=8x ,∴∠BOD=1808x ︒-,∵OC 垂直于OD ,∴∠COB+∠BOD=90︒,即3180890x x +︒-=︒,解得:18x =︒,∵OE 是AOD ∠的平分线,∴∠AOE=∠EOD=472x =︒,∴∠BOE=180AOE 18072108∠︒-=︒-︒=︒,故答案为:108︒.【点睛】本题考查了余角、补角、角平分线的定义,解一元一次方程,解题的关键是灵活运用所学知识解决问题.17.13cm 【分析】根据线段的长度和比的关系求AD 的长然后利用线段中点的定义求得DM 的长度从而求解BM 【详解】解:∵∴∵点M 是线段的中点∴∴∴线段的长为13cm 【点睛】本题考查线段的和差计算及中点的定义 解析:13cm【分析】根据线段的长度和比的关系求AD 的长,然后利用线段中点的定义求得DM 的长度,从而求解BM .【详解】解:∵:7:3,6cm AD DB DB ==,∴=637=14AD cm ÷⨯∵点M 是线段AD 的中点 ∴172DM AD cm == ∴7613BM MD BD cm =+=+= ∴线段BM 的长为13cm .【点睛】本题考查线段的和差计算及中点的定义,理解题意,找准线段间数量关系正确列式计算是解题关键.18.【分析】根据去括号的法则和绝对值的化简求解即可【详解】解:=3-π-(π-3)=3-π-π+3=故答案为:【点睛】本题主要考查了去括号和绝对值的化简解题的关键是掌握去括号的法则和绝对值的化简运算解析:62π-【分析】根据去括号的法则和绝对值的化简求解即可.【详解】解:()33ππ---=3-π-(π-3)=3-π-π+3=62π-,故答案为:62π-.【点睛】本题主要考查了去括号和绝对值的化简,解题的关键是掌握去括号的法则和绝对值的化简运算.19.4【分析】根据两个负数绝对值大的其值反而小比较被替换的数的绝对值的大小得到答案【详解】解:被替换的数是-30426-10326-10436-10423|-10326|<|-10423|<|-1043解析:4【分析】根据两个负数,绝对值大的其值反而小比较被替换的数的绝对值的大小,得到答案.【详解】解:被替换的数是-3.0426,-1.0326,-1.0436,-1.0423,|-1.0326|<|-1.0423|<|-1.0436|<|-3.0426|,∴最大的数是-1.0326,∴使所得的数最大,则被替换的数字是4,故答案为:4.【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较法则:正数都大于0; 负数都小于0; 正数大于一切负数,两个负数,绝对值大的其值反而小是解题的关键. 20.4三、解答题21.(1)5、12;(2)10、C ;(3)541人【分析】(1)根据组距的定义结合表格可得组距,求出男生总人数,再用女生总人数乘以B 组的百分比可得;(2)将位于这一小组内的频数相加,分别计算出各组人数之和即可求得结果; (3)分别用男、女生的人数乘以对应的百分比,相加即可得解.【详解】解:(1)在样本中,组距是5,男生共有2+4+8+12+14=40人,∵男、女生的人数相同,女生身高在B组的人数有40×(1-35%-20%-15%-5%)=12人,故答案为:5、12;(2)在样本中,身高在170≤x<175之间的人数共有8+40×5%=10人,∵A组人数为2+40×20%=10人,B组人数为4+12=16人,C组人数为12+40×35%=26人,D 组人数为14+40×10%=18人,E组人数为8+40×5%=10人,∴C组人数最多,故答案为:10、C;(3)500×121440++480×(35%+10%)=541(人),故估计身高在160≤x<170之间的学生约有541人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.计划调配36座新能源客车6辆,该大学共有218名志愿者.【分析】设计划调配36座新能源客车x辆,根据36座新能源客车的数量×36+2= 22座新能源客车的数量×22-2,且22座新能源客车的数量=36座新能源客车的数量+4即可列出方程求解即可.【详解】解:设计划调配36座新能源客车x辆,则该大学志愿者有(362)x+名.根据题意,得3622242()x x+=+-,解得6x=.∴362218x+=.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.【点睛】本题考查一元一次方程的应用.找准题中的等量关系,能依据等量关系列出方程是解题关键.23.(1)见解析;(2)符合要求,见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得12AC CM AM==,12MF FB MB==,进而可得20CF m=,然后由20AC BD m+<可进行判断.【详解】解:(1)由题意可作如图所示:(2)符合要求.理由是:∵C 为AM 的中点,F 为BM 的中点, ∴12AC CM AM ==,12MF FB MB ==, ∴CF CM MF =+1122AM MB =+()1122AM MB AB =+=, ∵40AB m =,∴20CF m =, ∵20AC BD m +<,∴20CD m >,∴CF 符合要求.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.24.(1)52﹣42=9;(2)(n+1)2﹣n 2=2n+1;(3)10112.【分析】(1)由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;(2)等式左边减数的底数与序号相同,由此得出第n 个式子;(3)由3=22﹣12,5=32﹣22,7=42﹣32,…,将算式逐一变形,再寻找抵消规律.【详解】解:(1)依题意,得第④个算式为:52﹣42=9;故答案为:52﹣42=9;(2)根据几个等式的规律可知,第n 个式子为:(n+1)2﹣n 2=2n+1;故答案为:(n+1)2﹣n 2=2n+1;(3)由(2)的规律可知,1+3+5+7+…+2021=1+(22﹣12)+(32﹣22)+(42﹣32)+…+(10112﹣10102)=10112.【点睛】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,利用规律解决问题是解决此题的关键.25.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)第1次第2次第3次第4次第5次第6次第7次55-4=11+10=1111-8=33-6=﹣3-3+13=1010-10=0答:在练习过程中,守门员离开球门线最远距离是11米;(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.26.详见解析【解析】【分析】根据三视图的概念求解即可.【详解】三视图如图所示:【点睛】本题主要考查作图-三视图,解题的关键是掌握三视图的概念.。
2022-2023学年鲁教版(五四制)数学七年级上册 期末测试卷(原卷版)
2022-2023学年鲁教版(五四制)数学七年级上册期末测试卷一.选择题(共12小题)1.下列实数为无理数的是()A.B.0.2C.﹣5D.2.等腰三角形的一个角是90°,则它的底角是()A.45°B.90°C.45°或90°D.10°或90°3.实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|﹣b|D.|﹣a|>|b|4.点A(a﹣1,5)和点B(2,b﹣1)关于x轴对称,则(a+b)2021=______.()A.1B.﹣1C.±1D.05.如图,若△ABC≌△ADE,则下列结论中不一定成立的是()A.∠ABD=∠ADB B.∠BAD=∠CAE C.∠DAC=∠C D.∠B=∠ADE 6.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB,其中符合要求的有()A.③④B.①②C.①②③④D.①②③④⑤7.如图,△ABC中,∠A=105°,AB的垂直平分线EF交BC于点D,BD=AC,则∠B 的度数为()A.15°B.20°C.25°D.30°8.如图所示,一文物被探明位于A点地下48m处,由于A点地面下有障碍物,考古人员不能垂直下挖,他们从距离A点14m的B处斜着挖掘,那么要找到文物至少要挖()米.A.14B.48C.50D.609.函数的自变量x的取值范围是()A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0 10.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是()A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为(1,0)C.y随x的增大而减小D.图象与坐标轴调成三角形的面积为11.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.7C.5或D.7或2512.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC 于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.∠CED=∠FDB B.DC=3C.AE=5D.AC=10二.填空题(共6小题)13.已知x是16的算术平方根,y是9的平方根,则x2+y2﹣x﹣1的值为.14.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为°.15.如图,在△ABC中,AB=AC=5,BC=6,AD=4,AD是∠BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是.16.海面上有两个疑似漂浮目标.A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行;同时,B舰艇在同地以16海里/时的速度向北偏东一定角度的航向行驶,如图所示,离开港口5小时后两船相距100海里,则B舰艇的航行方向是.17.已知A,B两地相距120km,甲、乙两人沿同一条公路从A地出发到B地,甲骑摩托车,乙骑自行车.图中DE,OC分别表示甲,乙离开A地的路程s(km)与时间t(h)的函数关系,则乙出发小时被甲追上.18.如图,在平面直角坐标系xOy中,点A的坐标是(﹣7,1),∠AOB=135°,OB=5,则点B的坐标为.三.解答题(共7小题)19.如图,将墙面和地平线的一部分分别标记EF,FG,且EF⊥FG.把长为10m的梯子AB斜靠在墙上,梯子底端离墙角6m.如果梯子的顶端下滑了2m,求梯子底部在水平方向滑动的距离BD.20.已知:点P是线段AC上一点,BP=DP,AB=3,CD=7.(1)如图1,若∠A=∠C=∠BPD=90°,求AC的长;(2)如图2,若∠A=∠C=∠BPD≠90°,能否求出AC的长?若能,求出AC的长;若不能,说明理由.21.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)求出租车和客车的速度分别为多少?(2)经过多少小时,两车相遇?并求出相遇时,出租车离甲地的路程是多少?22.如图,△ACB中,点D是AB边上一点,点E是CD的中点,过点C作CF∥AB交AE 的延长线于点F.(1)求证:△ADE≌△FCE;(2)若CD=CF,∠DCF=120°,求∠ACD的度数.23.计算(1).(2).(3).(4).(5).24.如图,一次函数y=kx+b(k≠0)的图象与x,y轴交于点A,B(0,4),与正比例函数y=﹣2x的图象相交于点C(﹣1,m).(1)求一次函数y=kx+b的表达式;(2)若点P在直线AB上,且S△OAP=3S△OAC,求点P的坐标.25.如图,在平面直角坐标系中,△ABC的顶点A,B,C的坐标分别为(2,2),(1,﹣3),(4,﹣2),△A′B′C′与△ABC关于y轴对称,点A,B,C的对应点分别为A′,B′,C′.(1)请在图中作出△A′B′C′,并写出点A′,B′,C′的坐标;(2)若点M(m+2,n﹣2)是△ABC的边上一点,其关于y轴的对称点为M′(﹣n.2m),求m,n的值.(3)请在y轴上找到一点P,使PC﹣PB的值最大,并在图上标注出来.。
鲁教版七年级数学上册期末考试试卷-附带答案
鲁教版七年级数学上册期末考试试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.下列说法中错误的是( ) A .三角形的三个内角中至少有两个角是锐角B .有一个角是锐角的三角形是锐角三角形C .一个三角形的三个内角中至少有一个内角不大于60︒D .如果三角形的两个内角之和小于90︒,那么这个三角形是钝角三角形2.下列货币符号图案是轴对称图形的有( )个.A .0B .1C .2D .33.已知一次函数6y kx =+的图象经过()3,3A -,则k 的值为( )A .3-B .2-C .1D .24.在平面直角坐标系中,平行于坐标轴的线段5PQ =,若点P 坐标是(2,1)-,则点Q 不在第( )象限. A .一 B .二 C .三 D .四5.下列语句正确的是( )A .3.78788788878888是无理数B .无理数分正无理数、零、负无理数C .无限小数不能化成分数D .无限不循环小数是无理数6.小明同学把一张长方形纸折了两次,如图,使点A B 、都落在DG 上,折痕分别是DE DF 、,则EDF ∠的度数为( )A .60︒B .75︒C .90︒D .120︒7.如图,菱形ABCD 中,点M 是AD 的中点,点P 由点A 出发,沿A→B→C→D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是( )A.B.C.D.8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米分;①乙走完全程用了32分钟;①乙用16分钟追上甲;①乙到达终点时,甲离终点还有320米.其中正确的结论有()A.1个B.2个C.3个D.4个9.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A .6B .8C .10D .910.点P(3,4)关于y 轴对称的点的坐标是( )A .(3,﹣4)B .(﹣3,4)C .(﹣4,﹣3)D .(﹣4,3)二、填空题(共8小题,满分32分)11.如果正比例函数y kx =的图象经过点()8,2-,那么k 的值为 .12.已知点(a +1,2a +5)在y 轴上,则该点坐标为 .13.如图,过点()2,0A 作x 轴的垂线与正比例函数y x =和3y x =的图象分别相交于点B ,C ,则OCB 的面积为 .14.平面直角坐标系中,点()3,2A -,点B 在y 轴上,则当线段AB 取最小值时,点B 的坐标为 . 15.一次函数()0y kx b k =+≠的图象如图所示,当0x >时,y 的取值范围为 .16.在平面坐标系内,A (﹣1,﹣1)、B (2,3),M 是x 轴上一点,使MB +MA 的值最小,则M 的坐标为 . 17.给出依次排列的一列数:按照此规律,第n个数为.三、解答题(共6小题,每题8分,满分48分)(1)A ,B 两点关于 ___________轴对称;(2)A ,D 两点横坐标相等,线段AD ___________y 轴,线段AD ___________x 轴;若点P 是直线AD 上任意一点,则点P 的横坐标为___________.(3)线段AB 与CD 的位置关系是___________;若点Q 是直线AB 上任意一点,则点Q 的纵坐标为 ___________.22.已知一直角三角形纸片OAB ,其中90AOB ∠=︒,OA=2,OB=4,将该纸片放置在平面直角坐标系中,如图1所示.(1)求经过A ,B 两点的直线的函数表达式.(2)折叠该纸片,使点B 与点A 重合,折痕与边OB 交于点C ,与边AB 交于点D (如图2所示),求点C 的坐标.(3)①若P 为OAB 内一点,其坐标为()0.5,1P ,过点P 作x 轴的平行线交AB 于点M ,作y 轴的平行线交AB 于点N (如图3所示),求点M ,N 的坐标并求PM PN +的长.①若P 为OB 上一动点,设OA 的中点为点E ,AB 的中点为点()1,2F (如图4所示)求PM PN +的最小值,并求取得最小值时点P 的坐标.23.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A .计时制:0.05元/分钟,B .包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?24.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?参考答案: 1.B2.C3.A4.D5.D6.C7.D8.A9.C10.B11.14-/0.25- 12.(0,3)13.4.14.()0,215.3y < 16.(﹣14,0) 17.22(1)1nnn -+ 18.4043219.22±20.(1)这个一次函数的解析式为21y x =-(2)点C (12,0)在这个一次函数的图像上 (3)12x =21.(1)y(2),⊥,-2(3)ABCD ,3。
2022-2023学年鲁教版七年级数学上册期末模拟测试题(附答案)
2022-2023学年鲁教版七年级数学上册期末模拟测试题(附答案)一、选择题(满分36分)1.下列各数为无理数的是()①﹣3.14159;②2.5;③2π;④;⑤.A.①②③B.②③④C.①④⑤D.③④2.下列说法中正确的是()A.81的平方根是9B.的算术平方根是4C.与﹣相等D.64的立方根是±43.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.5.在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是()A.﹣2B.8C.2或8D.﹣2或86.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA7.已知点(﹣2,y1),(1,y2)都在一次函数y=kx﹣1(k<0)的图象上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定8.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)9.如图,某计算器中三个按键,以下是这三个按键的功能::将荧幕显示的数变成它的算术平方根;:将荧幕显示的数变成它的倒数;:将荧幕显示的数变成它的平方.小明输入一个数据后,按照如图步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,则第2025步后,显示的结果是()A.B.10C.D.10.如图,已知△ABC≌△AEF,其中AB=AE,∠B=∠E.在下列结论①AC=AF,②∠BAF=∠B,③EF=BC,④∠BAE=∠CAF中,正确的个数有()A.1个B.2个C.3个D.4个11.如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于D,AB于M,以下结论:①△BCD是等腰三角形;②射线BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+BC;④△ADM≌△BCD.正确的有()A.①②B.①③C.①②③D.③④12.一次函数y=kx+b(k≠0)中变量x与y的部分对应值如下表x…﹣10123…y…86420…下列结论:①y随x的增大而减小;②点(6,﹣6)一定在函数y=kx+b的图象上;③当x>3时,y>0;④当x<2时,(k﹣1)x+b<0.其中正确的个数为()A.4B.3C.2D.1二、填空题(满分18分)13.﹣27的立方根与的平方根的和是.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,正方形ABDE的面积为100,则正方形ACFG的面积为.15.如果+3是一次函数,则m的值是.16.如图,在长方形ABCD中,将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则∠B′A′D=.17.过点(﹣1,﹣3)且与直线y=1﹣2x平行的直线是.18.如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.三、解答题(满分66分)19.(1)计算;(2)已知y=,求(x+y)2021的立方根.20.如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是分钟,清洗时洗衣机中的水量是升.(2)进水时y与x之间的关系式是.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升.22.如图,点A是x轴上左侧的一点,点B(2,m)在第一象限,直线BA交y轴于点C(0,2),S△AOB=6.(1)求S△COB;(2)求点A的坐标及m的值.23.如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由.24.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)若小亮一年内来此游泳馆的次数为15次,选择哪种方式比较划算?(3)若小亮计划拿出1400元用于在此游泳馆游泳,采用哪种付费方式更划算?25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),直线AB与y轴的交点为C,动点M在线段OA和射线AC上运动.(1)求直线AB对应的函数表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,说明理由.参考答案一、选择题(满分36分)1.解:﹣3.14159,2.5是有限小数,属于有理数;是分数,属于有理数,2π;是无理数,故选:D.2.解:A:81的平方根是±9,∴不符合题意;B:的算术平方根是2,∴不符合题意;C:与﹣相等,∴符合题意;D:64的立方根是4,∴不符合题意;故选:C.3.解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.4.解:∵式子+(k﹣1)0有意义,∴,解得k>1,∴1﹣k<0,k﹣1>0,∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.故选:B.5.解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,∴|y﹣3|=5,解得:y=8或y=﹣2.故选:D.6.解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.7.解:∵一次函数y=kx﹣1中,k<0,∴y随x的增大而减小,∵﹣2<1,∴y1>y2.故选:A.8.解:如图,嘴的位置可以表示成(1,0).故选:C.9.解:由题意知第1步结果为102=100,第2步结果为=0.01,第3步结果为=0.1,第4步结果为0.12=0.01,第5步结果为=100,第6步计算结果为10,……∴运算的结果以100、0.01、0.1、0.01、100、10六个数为周期循环,∵2025÷6=337……3,∴第2019步之后显示的结果为0.1,即.故选:C.10.解:∵△ABC≌△AEF,∴AC=AF,EF=BC,故①③正确;∠EAF=∠BAC,∴∠EAB=∠F AC,故④正确;∵AF≠BF,∴∠BAF≠∠B,故②错误;综上所述,结论正确的是①③④共3个.故选:C.11.解:由AB=AC,∠A=36°知∠ABC=∠C=72°,∵MN是AB的中垂线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=36°,∴∠C=∠CDB=72°,∴△CDB是等腰三角形,∴①正确,又∵∠ABC=72°,∴∠ABD=36°,∴线段BD是△ACB的角平分线,∵三角形的角平分线是线段,∴②错误,由AD=BD,AB=AC知,△BCD的周长=BC+CD+BD=AC+BC,∴③正确,∵AM⊥MD,而△BCD为锐角三角形,∴④错误,∴正确的为:①③.故选:B.12.解:由题意得,当x=1时,y=4,当x=0时,y=6,则,解得:,函数解析式为:y=﹣2x+6,①∵k=﹣2<0,∴y随x的增大而减小,正确;②当x=6时,y=﹣2×6+6=﹣6,∴点(6,﹣6)一定在函数y=kx+b的图象上,正确;③由表格得出当x>3时,y<0,故错误;④由表格得出当x<2时,kx+b>x,∴(k﹣1)x+b>0,故错误;故选:C.二、填空题(满分18分)13.解:∵﹣27的立方根是﹣3,的平方根是±3,所以它们的和为0或﹣6.故答案为:0或﹣6.14.解:因为S正方形ABDE=AB2=100,在Rt△ABC中,BC=6,所以S正方形ACFG=AC2=AB2﹣BC2=64.故答案为:64.15.解:∵+3是一次函数,∴2﹣m2=1且m﹣1≠0,解得m=﹣1.故答案是:﹣1.16.解:根据折叠的性质可得:∠A=∠EA′D=90°,∠ADE=∠A′DE,∠B=EB′A′=90°,∠BEA′=B′EA′,∵∠BA′E+BEA′=90°,∠A′DE+∠A′ED=90°,∴∠BA′E=∠A′DE,又∵∠BA′E+∠DA′C=90°,∠DA′C+∠CDA′=90°,∴∠BAE′=∠CDA′,∴∠CDA′=∠A′DE=∠ADE,∴∠CDA′+∠A′DE+∠ADE=90°,∴∠A′DE=30°,∴∠B′A′D=90°﹣∠A′DE=90°﹣30°=60°.故答案为:60°.17.解:设所求的直线为y=kx+b,∵直线y=kx+b与直线y=1﹣2x平行,∴k=﹣2,把点(﹣1,﹣3)代入y=﹣2x+b得2+b=﹣3,解得b=﹣5,∴所求的直线为y=﹣2x﹣5.故答案为y=﹣2x﹣5.18.解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD===5(cm);∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故答案是:2.三、解答题(满分66分)19.解:(1)原式=﹣(﹣)+=++=;(2)由题意可得,解得:x=2,∴y=﹣3=﹣3,∴原式=(﹣3+2)2021=﹣1,﹣1的立方根为﹣1,∴(x+y)2021的立方根为﹣1.20.解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离,在△ABC中,∵AC=24,CB=18,AB=30,∴AC2+CB2=242+182=900,AB2=302=900,∴AC2+BC2=AB2,∴△ABC为直角三角形,即∠ACB=90°,∵S△ABC=AC•BC=CE•AB,∴AC•BC=CE•AB,即24×18=CE×30,∴CE=14.4≈14,答:点C到AB的距离约为14cm.21.解:(1)由图象可得,洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升,故答案为:4,40;(2)设进水时y与x之间的关系式是y=kx,4k=40,得k=10,即进水时y与x之间的关系式是y=10x,故答案为:y=10x(0≤x≤4);(3)排水结束时洗衣机中剩下的水量是:40﹣18×2=40﹣36=4(升),故答案为:4.22.解:(1)∵点B(2,m),点C(0,2),∴S△COB=×2×2=2;(2)∵S△AOB=6,S△COB=2,∴S△AOC=6﹣2=4,∴OA•OC=4,即OA•2=4,解得OA=4,∴A点坐标为(﹣4,0);设直线AC的解析式为y=kx+b,把A(﹣4,0)、C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,把B(2,m)代入得m=1+2=3.23.解:(1)如图1中,延长AE交BD于H.在△ACE与△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为:AE=BD,AE⊥BD;(2)(1)中的结论还成立,理由如下:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,在△ACE与△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD,∴AE=BD,AE⊥BD,(1)中的结论还成立.24.解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;(2)若小亮来此游泳馆的次数为15次,方式一的费用为:30×15+200=650(元),方式二的费用为:40×15=600(元),∵650>650,∴若小亮一年内来此游泳馆的次数为15次,选择方式比二较划算;(3)当y1=1400时,即1400=30x+200,得x=40,当y2=1400时,即1400=4x,得x=35,故采用方式一更划算.25.解:(1)设AB的直线解析式为y=kx+b,∴,∴,∴y=﹣x+6;(2)令x=0,则y=6,∴C(0,6),∴OC=6,∵点A(4,2),∴点A到OC的距离为4∴S△OAC=×6×4=12;(3)存在点M,使△OMC的面积是△OAC的面积的,理由如下:设直线OA的解析式为y=kx,∴4k=2,∴k=,∴y=x,∵△OMC的面积是△OAC的面积的,∴S△OMC=12×=3,设M点的横坐标为x,∴×6×|x|=3,∴|x|=1,∴x=±1,当M点在线段OA上时,M(1,);当M点在射线AC上时,M(1,5)或M(﹣1,7);综上所述:M点坐标为(1,)或(1,5)或(﹣1,7).。
【鲁教版】七年级数学上期末试题(及答案)(2)
一、选择题1.以下调查中,适合用抽样调查的是()A.了解我校初一(1)班学生的视力情况B.企业招聘,对应聘人员进行面试C.检测武汉市的空气质量D.了解北斗导航卫星的设备零件的质量情况2.要了解某种产品的质量,从中抽取出300个产品进行检验,在这个问题中,300是()A.总体B.个体C.样本D.样本容量3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批袋装食品是否含有防腐剂B.对一批导弹的杀伤半径的调查C.了解某校学生的身高情况D.对重庆市居民生活垃圾分类情况的调查4.如图为在电脑屏幕上出现的色块图,它的形状是由6个颜色不同的正方形,如果中间最小的正方形边长为1,则所拼成的长方形的面积是()A.144 B.154 C.143 D.1695.江陵县青少年活动中心组织实验中学七年级第一批学生前往宜昌参加研学旅行,需要与旅行社联系车辆.如果每辆旅游大巴坐45人,则有28人没有座位,如果每辆坐50人,只有一辆车空12个座位无人坐,其余车辆全部坐满,设有x辆旅游大巴,则可列方程()A.45x+28=50x﹣12 B.45x﹣28=50x+12C.45x﹣28=50x﹣12 D.45x+28=50x+126.如图所示,将正整数1至2020按一定规律排列成数表,平移表中带阴影的方框,方框中三个数的和可能是()A.2018 B.2019 C.2013 D.20407.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条8.把根绳子对折成一条线段AB ,在线段AB 取一点P ,使13AP PB =,从P 处把绳子剪断,若剪断后的三段绳子中最长的一段为24cm ,则绳子的原长为( ) A .32cmB .64cmC .32cm 或64cmD .64cm 或128cm 9.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定10.如图,将一个边长为m 的正方形纸片剪去两个小长方形,得到一个类似“9”的图案,再将剪下的两个小长方形无缝隙地拼成一个新的长方形,则新长方形的周长可表示为( )A .59m n -B .5.58m n -C .45m n -D .58m n - 11.如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .29.8mmB .30.03mmC .30.02mmD .29.98mm 12.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友二、填空题13.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为______人.14.请你举出一个适合抽样调查的例子:________________________;并简单说说你打算怎样抽样:________________________________________.15.我们知道,无限循环小数都可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,由0.30.3333=⋅⋅⋅,可知,10 3.3330.3333x x -=⋅⋅⋅-⋅⋅⋅=,即103x x -=,解方程得13x =,即10.33=.仿此方法,将0.65化成分数是________. 16.2019年4月4日,中国国际女足锦标赛半决赛在武汉进行,这场由中国队迎战俄罗斯队的比赛牵动着众多足球爱好者的心,在未开始检票入场前,已有1200名足球爱好者排队等待入场,假设检票开始后,每分钟赶来的足球爱好者人数是固定的,1个检票口每分钟可以进入40人,如果4个检票口同时检票,15分钟后排队现象消失;如果7个检票口同时检票,则___________分钟后排队现象消失.17.如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =140°.(1)求∠BOC 的度数.(2)求∠DOE 的度数.18.如图所示,一系列图案均是长度相同的火柴棒按一定的规律拼搭而成:第1个图案需7根火柴棒,第2个图案需13根火柴棒,……,依此规律,第15个图案需_______根火柴棒.19.如图,是北京S1线地铁的分布示意图,其中桥户营、四道桥、金安桥、苹果园四站在同一条直线上.如果在图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别 ,2,那么金安桥站表示的数是___________.是420.如图是一个正方体的表面展开图,则折成正方体后,与点M重合的点是点______.三、解答题21.新修订的《北京市生活垃圾管理条例》于2020年5月1日正式施行.新修订的分类标准将生活垃圾分为厨余垃圾、有害垃圾、其他垃圾和可回收物四类,为了促使居民更好地了解垃圾分类知识,小明所在的小区随机抽取了50名居民进行线上垃圾分类知识测试.将参加测试的居民的成绩进行收集、整理,绘制成如图的频数分布表和频数分布直方图:a.线上垃圾分类知识测试频数分布表成绩分组50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100频数39m128c.成绩在80≤x<90这一组的成绩为80,81,82,83,83,85,86,86,87,88,88,89根据以上信息,回答下列问题:(1)本次抽样调查样本容量为,表中m的值为;(2)请补全频数分布直方图;(3)小明居住的社区大约有居民2000人,若达到测试成绩80分为良好,那么估计小明所在的社区良好的人数约为人;(4)若达到测试成绩前十五名的可以颁发“垃圾分类知识小达人”奖章,已知居民A的得分为88分,请问居民A是否可以领到“垃圾分类知识小达人”奖章?22.国庆期间,七(1)班的明明、丽丽等同学随家长一同到吉水进士文化园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七(2)班的张小涛等7名同学和他们的9名家长共16人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.23.如图,已知点M是线段AB的中点,点E将AB分成:3:4AE EB=的两段,若2cmEM=,求线段AB的长度.24.小明房间窗户的窗帘如图所示,它是由两个四分之一圆组成(半径相同).(1)用代数式表示窗户能射进阳光的面积S是(结果保留π);(2)当31,22a b==时,求窗户能射进阳光的面积是多少(取3π≈)?25.计算(1)75241126⎛⎫-⨯-- ⎪⎝⎭ (2)()()22184235++---⨯26.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?你是怎么清点的?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A 、了解我校初一(1)班学生的视力情况,必须准确,故适合普查;B 、企业招聘,对应聘人员进行面试,必须准确,故适合普查;C 、检测武汉市的空气质量,适合抽样调查;D 、了解北斗导航卫星的设备零件的质量情况,必须准确,故适合普查.故选:C .【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.D解析:D【分析】总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目.【详解】根据样本及样本容量的定义可知,题目中300是样本容量.故选:D .【点睛】本题难度较低,主要考查学生对总体、个体、样本、样本容量.理清概念是关键. 3.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、调查一批袋装食品是否含有防腐剂,最适宜采用抽样调查,故本选项不合题意; B 、对一批导弹的杀伤半径的调查,最适宜采用抽样调查,故本选项不合题意; C 、了解某校学生的身高情况,最适宜采用全面调查(普查);D 、对重庆市居民生活垃圾分类情况的调查,最适宜采用抽样调查,故本选项不合题意; 故选:C .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 4.C解析:C【分析】由题可知,由于矩形色块图中全是正方形,则右下角两个小正方形一样大小,而顺时针方向每个大正方形边长都增大1,根据等量关系计算即可;【详解】设右下方两个并排的正方形的边长为x ,则231x x x x x +++=+++,解得:4x =,∴长方形的长为3113x +=,宽为2311x +=,∴长方形面积为1311143⨯=;故答案选C.【点睛】本题主要考查了一元一次方程的应用,准确计算是解题的关键.5.A解析:A【分析】等量关系为:45×汽车辆数+28=50×汽车辆数﹣12.依此列出方程即可求解.【详解】解:设有x辆汽车,根据题意得:45x+28=50x﹣12.故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解题的关键是找出题目中的相等关系.6.C解析:C【分析】设中间数为x,则另外两个数分别为x-1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【详解】解:设中间数为x,则另外两个数分别为x-1、x+1,∴三个数之和为(x-1)+x+(x+1)=3x.根据题意得:3x=2018、3x=2019、3x=2013、3x=2040,解得:x=67223(舍去),x=673,x=671,x=680.∵673=84×8+1,∴2019不合题意,舍去;∵671=83×8+7,∴三个数之和为2013.∵680=85×8,∴2040不合题意,舍去;故选:C.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.7.B解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可.【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B .【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键. 8.C解析:C【分析】由于题目中的对折没有明确对折点,所以要分A 为对折点与B 为对折点两种情况讨论,讨论中抓住最长线段即可解决问题.【详解】解:如图∵13AP PB =, ∴2AP=23PB <PB ①若绳子是关于A 点对折,∵2AP <PB∴剪断后的三段绳子中最长的一段为PB=30cm ,∴绳子全长=2PB+2AP=24×2+23×24=64cm ; ②若绳子是关于B 点对折,∵AP <2PB∴剪断后的三段绳子中最长的一段为2PB=24cm∴PB=12 cm∴AP=12×143=cm∴绳子全长=2PB+2AP=12×2+4×2=32 cm ;故选:C .【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.9.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.10.A解析:A【分析】根据图形给出的已知条件列出算式,进行整式加减即可得结论.【详解】解:由图可得,新长方形的长为()(2)23m n m n m n -+-=-,宽为113(3)222m n m n -=-,则新长方形的周长为13592322592222m n m n m n m n ⎫⎫⎛⎛-+-⨯=-⨯=- ⎪ ⎪⎝⎝⎭⎭. 故选A .【点睛】本题考查了整式的加减,解决本题的关键是观察图形正确列出算式.11.A解析:A【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】解:∵30+0.03=30.03,30-0.02=29.98,∴零件的直径的合格范围是:29.98mm≤零件的直径≤30.03mm .∵29.8mm 不在该范围之内,∴不合格的是A .故选:A .【点睛】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.12.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.1100【分析】用该校的总人数乘以成绩为良和优的人数所占的百分比即可【详解】根据题意得:(人)答:其中成绩为良和优的总人数估计为1100人故答案为:1100【点睛】本题考查了条形统计图和用样本估计总解析:1100【分析】用该校的总人数乘以成绩为“良”和“优”的人数所占的百分比即可.【详解】根据题意得:85252000110018728525+⨯=+++(人), 答:其中成绩为“良”和“优”的总人数估计为1100人.故答案为:1100.【点睛】本题考查了条形统计图和用样本估计总体,根据条形统计图计算出“良”和“优”的人数所占的百分比是解题的关键.14.对某种品牌灯泡使用寿命调查我们可以根据某一批次的灯泡中随机抽取部分进行测试实验对某种品牌灯泡使用寿命调查随机抽取部分进行测试实验【分析】根据问题特点得出适合抽样调查的方式进而举例得出答案【详解】根据解析:对某种品牌灯泡使用寿命调查,我们可以根据某一批次的灯泡中随机抽取部分进行测试实验.对某种品牌灯泡使用寿命调查,随机抽取部分进行测试实验.【分析】根据问题特点,得出适合抽样调查的方式,进而举例得出答案.【详解】根据适合抽样调查的特点,适合抽样调查的例子可以为:对某种品牌灯泡使用寿命调查,我们可以根据某一批次的灯泡中随机抽取部分进行测试实验.故答案为对某种品牌灯泡使用寿命调查,随机抽取部分进行测试实验.【点睛】本题主要考查了全面调查与抽样调查,解决问题的关键是掌握全面调查(普查)的优缺点.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.15.【分析】设表示出然后相减解得出关于的一元一次方程再求解即可【详解】解:设则即解方程得即故答案为:【点睛】本题考查了解一元一次方程读懂题目信息理解无限循环小数转化为分数的方法是解题的关键解析:65 99.【分析】设0.65x,表示出100x,然后相减解得出关于x的一元一次方程,再求解即可.【详解】解:设0.65x,则10065.65x,10065.650.65x x,即9965x,解方程得,6599 x,即065 99.65.故答案为:65 99.【点睛】本题考查了解一元一次方程,读懂题目信息,理解无限循环小数转化为分数的方法是解题的关键.16.【分析】设每分钟赶来的足球爱好者人数为人由4个检票口同时检票15分钟后排队现象消失列出方程可求每分钟赶来的足球爱好者人数再设7个检票口同时检票分钟排队现象消失列出方程可求解【详解】设每分钟赶来的足球 解析:【分析】设每分钟赶来的足球爱好者人数为x 人,由4个检票口同时检票,15分钟后排队现象消失,列出方程,可求每分钟赶来的足球爱好者人数,再设7个检票口同时检票,y 分钟排队现象消失,列出方程,可求解.【详解】设每分钟赶来的足球爱好者人数为x 人,由题意可得:151********x +=⨯⨯,∴80x =,∴每分钟赶来的足球爱好者人数为80人,设7个检票口同时检票,y 分钟排队现象消失,由题意可得:801200740y y +=⨯⨯,∴6y =,答:7个检票口同时检票,6分钟排队现象消失,故答案为:6.【点睛】本题考查了一元一次方程的应用,找出等量关系列出正确的方程是本题的关键. 17.(1)∠BOC =50°;(2)∠DOE =45°【分析】(1)由角平分线的定义得∠DOB =∠AOB =70°再由∠BOC =∠BOD ﹣∠COD 即可得出结果;(2)由角平分线的定义得∠COE =∠BOC =25解析:(1)∠BOC =50°;(2)∠DOE =45°【分析】(1)由角平分线的定义得∠DOB =12∠AOB =70°,再由∠BOC =∠BOD ﹣∠COD ,即可得出结果;(2)由角平分线的定义得∠COE =12∠BOC =25°,再由∠DOE =∠COE +∠COD ,即可得出结果.【详解】解:(1)∵OD 平分∠AOB ,∴∠DOB =12∠AOB =12×140°=70°, ∴∠BOC =∠BOD ﹣∠COD =70°﹣20°=50°;(2)∵OE 平分∠BOC ,∴∠COE =12∠BOC =12×50°=25°, ∴∠DOE =∠COE +∠COD =25°+20°=45°.【点睛】本题考查了角平分线的定义、角的计算等知识;熟练掌握角平分线的定义是解题的关键.18.273【分析】根据第1个图案需7根火柴7=1×(1+3)+3第2个图案需13根火柴13=2×(2+3)+3第3个图案需21根火柴21=3×(3+3)+3得出规律第n个图案需n(n+3)+3根火柴再把解析:273【分析】根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把15代入即可求出答案.【详解】解:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第15个图案需:15×(15+3)+3=273(根);故答案为:273.【点睛】此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题.19.0【分析】由桥户营站苹果园站表示的数分别是2计算出两点之间的距离为6求出一个单位长度表示的数是2即可得到答案【详解】∵桥户营站苹果园站表示的数分别是2∴桥户营站与苹果园站的距离是2-(-4)=6∵桥解析:0【分析】-,2,计算出两点之间的距离为6,求出一个单由桥户营站、苹果园站表示的数分别是4位长度表示的数是2,即可得到答案.【详解】∵桥户营站、苹果园站表示的数分别是4-,2,∴桥户营站与苹果园站的距离是2-(-4)=6,∵桥户营站与苹果园站之间共有三个单位长度,÷=,∴每个单位长度表示632∴金安桥表示的数是2-2=0,故答案为:0.【点睛】此题考查数轴上两点之间的距离,数轴上点的平移规律,有理数的加减法计算,掌握数轴上两点之间的距离公式是解题的关键.20.D三、解答题21.(1)50;18;(2)见解析;(3)800;(4)可以领到【分析】(1)根据题意,可以得到样本容量,然后即可计算出m的值;(2)根据频数分布表中的数据和m的值,可以将频数分布表补充完整;(3)根据题目中的数据,可以得到样本中良好的人数百分比为12+850,进一步即可估计出小明所在的社区良好的人数;(4)根据题目中的数据,可以得到88分是第多少名,从而可以得到居民A是否可以领到“垃圾分类知识小达人”奖章.【详解】解:(1)由题意可得,随机抽取了50名居民进行线上垃圾分类知识测试.本次抽样调查样本容量为50,表中m的值为:m=50﹣3﹣9﹣12﹣8=18,故答案为:50,18;(2)由(1)值m的值为18,由频数分布表可知80≤x<90这一组的频数为12,补全的频数分布直方图如图所示;(3)随机抽取了50名居民进行线上垃圾分类知识测试.达到测试成绩80分为良好,良好的人数有:12+8=20(人)良好的百分比为=20100%=40% 502000×40%=800(人),即小明所在的社区良好的人数约为800人,故答案为:800;(4)由题意可得,88分是第10名或者第11名,故居民A可以领到“垃圾分类知识小达人”奖章.【点睛】本题考查样本和样本容量,频率直方分布图,用样本估计总体,掌握样本和样本容量,频率直方分布图,用样本估计总体等知识是解题的关键.22.(1)明明他们一共去了6个成人,4个学生;(2)买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,购票总费用为372元.【分析】(1)根据题意,可以找出题目中的等量关系,列出相应的方程,从而可以解答本题;(2)根据题意可以算出团购的费用,然后与(1)中320比较大小,即可解答本题;(3)根据题意,可以知道学生按照学生票购买,成人按团体票购买最省钱,然后求出相应的费用即可解答本题.【详解】解:(1)设一共去了x个成人,则学生(10-x)人,40x+0.5×40×(10-x)=320,解得,x=6.∴10-x=10-6=4,答:明明他们一共去了6个成人,4个学生;(2)买团体票更省钱,理由:∵购买团体票时,花费为:40×0.6×13=312(元),∵312<320,∴买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,费用为:40×0.6×13+3×0.5×40=312+60=372(元),答:购票总费用为372元.【点睛】本题考查一元一次方程的应用,解答此类问题的关键是明确题意,找出所题目中的等量关系,列出相应的方程.23.线段AB的长为28cm.【分析】由点E将AB分成:3:4AE EB=的两段,设AE=3k,BE=4k,可用k表示AB=7k,由点M是线段AB的中点,AM=17AB=22k,由EM=AM-AE=71322k k k-==2cm,求出k=4cm即可.【详解】解:∵点E将AB分成:3:4AE EB=的两段,设AE=3k,BE=4k,∴AB=AE+BE=3k+4k=7k,∵点M是线段AB的中点,∴AM=17AB=22k,∴EM=AM-AE=71322k k k-==2cm,∴k=4cm,∴AB=7k=7×4=28cm .∴线段AB 的长为28cm .【点睛】本题考查线段比例,线段中点,掌握线段的比例问题解题法法,线段中点,会利用线段差构造等式解决问题是解题关键.24.(1)2122ab b π-;(2)98 【分析】(1)根据“窗户能射进阳光的面积=长方形的面积-窗帘的面积”,列式即可;(2)根据(1)得出的式子,再把a 、b 的值代入计算即可求出答案.【详解】解:(1)窗帘的面积是22121()222b b ππ=. ∵窗户能射进阳光的面积=长方形的面积-窗帘的面积,∴窗户能射进阳光的面积是2122ab b π-; (2)由(1)得:2122S ab b π=-, 当32a =,12b =时,窗户能射进阳光的面积是: 22131119223222228S ab b π⎛⎫=-≈⨯⨯-⨯⨯≈ ⎪⎝⎭. 【点睛】本题考查了列代数式以及代数式求值,注意利用长方形和圆的面积公式解决问题. 25.(1)30;(2)-13【分析】(1)使用乘法分配律使得计算简便;(2)有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)75241126⎛⎫-⨯--⎪⎝⎭ =7524+24+241126-⨯⨯⨯ =14+20+24-=30(2)()()22184235++---⨯ =1816295+--⨯+--=1816245-.=13【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.26.8个,理由见解析.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:从图可得箱子的个数有8个,如图:.【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.。
七年级数学上册 期末考试卷(鲁教版)
七年级数学上册期末考试卷(鲁教版)满分:120分时间:120分钟一、选择题(每题3分,共36分)1.【2022·永州】下列多边形具有稳定性的是()2.[数学文化]【2022·自贡】剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()3.【2022·泰州】下列判断正确的是()A.0<3<1 B.1<3<2 C.2<3<3 D.3<3<4 4.【2023·济南槐荫区月考】如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-4,1)C.(-2,-1)D.(1,-2)5.【2023·青岛市中区月考】下列运算中错误的有()①16=±4;②3(-8)2=8;③(-4)2=-4;④(-3)2=3;⑤±32=3A.4个B.3个C.2个D.1个6.下列说法不正确的是()A.点A(-a2-1,|b|+1)一定在第二象限B.点P(-2,3)到y轴的距离为2C.若P(x,y)中x=0,则P点在y轴上D.若xy=0,则点P(x,y)一定在第二、四象限角平分线上7.如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米,那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米8.【社会热点】呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图①中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图②),血液酒精浓度M与呼气酒精浓度K的关系见图③.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0 Ω时,R1的阻值为100 ΩC.当K=10 Ω时,该驾驶员为非酒驾状态D.当R1=20 Ω时,该驾驶员为醉驾状态9.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AD=3,BD=2,则EC的长度是() A. 5 B. 6 C.3 D.210.【2023·泰安泰山区月考】如图,已知AB =CD ,AE =DF ,CE =BF ,则下列结论:①△ABE ≌△DCF ;②∠B =∠C ;③∠CDF =∠BAE ;④∠BEA =∠CFD ;⑤CF =BE .其中正确的个数是( ) A .2B .3C .4D .511.[数学文化] “赵爽弦图”巧妙利用面积关系证明勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较长直角边长为a ,较短直角边长为b ,且(a + b )2=11,小正方形的面积为3,则大正方形的边长为( ) A .10 B .7 C .10 D .712.如图,已知点A 的坐标为(0,1),点B 的坐标为⎝ ⎛⎭⎪⎫32 ,-2,点P 在直线y =-x 上运动,当|P A -PB |最大时点P 的坐标为( ) A .(2,-2)B .(4,-4)C .⎝ ⎛⎭⎪⎫52,-52D .(5,-5)二、填空题(每题3分,共18分)13.【2023·济南商河期中】已知点M 关于y 轴的对称点N 的坐标是(-5,4),则点M 的坐标是________.14.如果一个正数的两个不同的平方根是3a -2和2a -13,那么这个正数是________.15.【2023·淄博临淄区期末】如图,在等腰直角三角形ABC 中,∠A 为直角.若AD =6 cm ,且∠DBC =15°,则BD 的长为________cm.16.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________.17.【2022·哈尔滨】在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是________.18.【2022·盐城】《庄子·天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l1:y=12x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,…,O n-1A n-1=a n,若a1+a2+…+a n≤S对任意大于1的整数n恒成立,则S的最小值为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.已知2a-1的一个平方根是3,3a+b-1的一个平方根是-4,求a+2b的立方根.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1__________,B1__________,C1____________;(2)计算△ABC的面积.21.【2023·德州乐陵市月考】已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:(1)BD=CE;(2)∠M=∠N.22.【2022·温州】如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)试说明:∠EBD=∠EDB;(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.23.【2023·济南章丘区期中】如图,已知直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的表达式.(2)已知直线AB上一点C在第一象限,且点C的坐标为(a,2),求a的值及△BOC的面积.24.某校借助小型飞行器监测学生课间休息情况.一天,甲飞行器从距地面5 m处,以1 m/min的速度上升;同时,乙飞行器从距地面15 m处,以0.5 m/min的速度上升.设甲、乙两个飞行器距地面的高度分别为y甲m,y乙m,上升的时间为x min.(1)分别求出y甲,y乙与x之间的函数关系式.(2)当x=50时,甲、乙两个飞行器距地面的高度相差多少米?(3)在某时刻甲、乙两个飞行器能否位于同一高度?如果能,求此时两个飞行器距地面的高度.25.【2023·德州宁津月考】如图①,在长方形ABCD中,AB=CD=6 cm,BC=10 cm,点P从点B出发,以2 cm/s的速度沿BC向点C运动,设点P的运动时间为t s.(1)PC=________ cm.(用含t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)如图②,当点P从点B开始运动时,同时,点Q从点C出发,以v cm/s的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.答案一、1.D2.D3.B4.B5.A【点拨】①16=4,②3(-8)2=4,③(-4)2=4,④(-3)2=3,⑤±32=±3.综上,错误的有①②③⑤,共4个.6.D【点拨】A.因为-a2-1=-(a2+1)<0,|b|+1>0,所以点A一定在第二象限;B.因为点到y轴的距离等于横坐标的绝对值,所以点P(-2,3)到y轴的距离为2;C.横坐标为0的点在y轴上;D.因为xy=0,所以当x=0,y≠0时,点P在y轴上,当y=0,x≠0时,点P在x轴上,所以当x =y=0时,点P在原点,所以原说法不正确.7.C【点拨】连接AB.因为PA=15米,PB=11米,所以由三角形三边关系定理得(15-11)米<AB<(15+11)米,即4米<AB<26米,所以选C.8.C【点拨】由题图②可知:呼气酒精浓度K越大,R1的阻值越小;当K=0×10-3mg/100mL时,R1的阻值为100Ω;由题图③可知:当K=10×10-3mg/100mL时,M=2200×10×10-3=22mg/100 mL,此时,该驾驶员为酒驾状态;由题图②可知,当R1=20Ω时,K=40×10-3mg/100mL,所以M=2200×40×10-3=88mg/100mL,此时该驾驶员为醉驾状态.9.C【点拨】由作法得CE⊥AB,BE=DE,则∠AEC=90°.因为AD=3,BD =2,所以DE=BE=1,AE=4,AC=AB=AD+BD=3+2=5.所以在Rt△ACE中,CE2=52-42=9,所以CE=3.10.D【点拨】因为CE=BF,所以CE+EF=BF+EF,即CF=BE.所以CE+EF=BF+EF,即CF=BE.在△ABE和△DCF =CD,=DF,=CF,所以△ABE≌△DCF(SSS).所以∠B=∠C,∠CDF=∠BAE,∠BEA=∠CFD.故①②③④⑤都正确.11.D【点拨】设大正方形的边长为c,则c2=a2+b2.因为(a+b)2=11,所以a2+2ab+b2=11.①因为小正方形的面积为3,所以(a-b)2=3,所以a2-2ab+b2=3.②①+②,得2a2+2b2=14,所以a2+b2=7.所以c=a2+b2=7.12.B二、13.(5,4)14.49【点拨】由题意得3a-2+2a-13=0,解得a=3,所以这个正数为(3a-2)2=49.15.12【点拨】因为△ABC是等腰直角三角形,且∠A=90°,所以∠ABC=∠ACB=45°.因为∠DBC=15°,所以∠ABD=∠ABC-∠DBC=45°-15°=30°.所以BD=2AD=2×6=12(cm).16.4【点拨】根据垂线段最短,可知当DP⊥BC时,DP的长度最小.因为BD⊥CD,所以∠BDC=90°,所以∠A=∠BDC.又因为∠ADB=∠C,所以∠ABD=∠CBD.又因为DA⊥BA,DP⊥BC,所以AD=DP.又因为AD=4,所以DP=4,即DP长的最小值为4.17.80°或40°【点拨】当△ABC为锐角三角形时,如图①,∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC 为钝角三角形时,如图②,∠BAD =180°-∠B -∠ADB =180°-30°-90°=60°,∠BAC =∠BAD -∠CAD =60°-20°=40°.综上所述,∠BAC =80°或40°.18.2【点拨】把x =0代入y =12x +1,得y =1,所以A (0,1),所以OA =a 1=1.把y =1代入y =x ,得x =1,所以O 1(1,1).把x =1代入y =12x +1,得y =12×1+1=32,所以A 11,32所以O 1A 1=a 2=32-1=12.把y =32代入y =x ,得x =32,所以O 232,32把x =32代入y =12x +1,得y =12×32+1=74,所以A 232,74所以O 2A 2=a 3=74-32=14;…,所以O n -1A n -1=a n 12n -1.因为a 1+a 2+…+a n ≤S 对任意大于1的整数n 恒成立,所以S ≥a 1+a 2+…+a n =1+12+14+…+12n -1=2-12n -1,所以S 的最小值为2.三、19.【解】因为2a -1的一个平方根是3,3a +b -1的一个平方根是-4,所以2a -1=9,3a +b -1=16.解得a =5,b =2.所以a +2b =5+4=9.所以a +2b 的立方根为39.20.【解】(1)如图所示,△A 1B 1C 1即为所求.(-1,1);(-4,2);(-3,4)(2)S △ABC =3×3-12×3×1-12×2×1-12×2×3=9-32-1-3=72.21.【解】(1)在△ABD 和△ACE 中,AB =AC ,∠1=∠2,AD =AE ,所以△ABD ≌△ACE (SAS),所以BD =CE .(2)因为∠1=∠2,所以∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM .由(1)得△ABD ≌△ACE ,所以∠B =∠C .在△ACM 和△ABN 中,∠C =∠B ,AC =AB ,∠CAM =∠BAN ,所以△ACM ≌△ABN (ASA),所以∠M=∠N.22.【解】(1)因为BD是△ABC的角平分线,所以∠CBD=∠EBD.因为DE∥BC,所以∠CBD=∠EDB.所以∠EBD=∠EDB.(2)CD=ED.理由如下:因为AB=AC,所以∠C=∠ABC.因为DE∥BC,所以∠ADE=∠C,∠AED=∠ABC.所以∠ADE=∠AED.所以AD=AE,所以CD=BE,由(1)得∠EBD=∠EDB,所以BE=DE,所以CD=ED.23.【解】(1)设直线AB的表达式为y=kx+b.把点A(1,0),B(0,-2)的坐标代入,得b=-2,k+b=0,解得k=2,所以直线AB的表达式为y=2x-2.(2)因为点C(a,2)在直线y=2x-2上,所以2=2a-2,所以a=2,所以C(2,2).×2×2=2.所以S△BOC=1224.【解】(1)由题意可得y甲=5+x,y乙=15+0.5x.(2)当x=50时,y甲=5+50=55,y=15+0.5×50=40,55-40=15(m),乙所以当x=50时,甲、乙两个飞行器距地面的高度相差15m.(3)在某时刻甲、乙两个飞行器能位于同一高度.由题意得5+x=15+0.5x,解得x=20,所以5+x=25,所以上升的时间为20min时,甲、乙两个飞行器位于同一高度,此时两个飞行器距地面的高度是25m.25.【解】(1)(10-2t)(2)当△ABP≌△DCP时,BP=CP=5cm,故2t=5,解得t=2.5.(3)①当△ABP≌△QCP时,BA=CQ,PB=PC.所以BP=PC=12BC=5cm,所以2t=5,解得t=2.5.因为BA=CQ=6cm,所以v×2.5=6,解得v=2.4.②当△ABP≌△PCQ时,BP=CQ,AB=PC.因为AB=6cm,所以PC=6cm,所以BP=10-6=4(cm),所以2t=4,解得t=2,因为CQ=BP=4cm,所以v×2=4,解得v=2.综上所述,当v=2.4或2时,△ABP与△PQC全等.。
[精校版]鲁教版七年级上册数学期末试卷
鲁教版七年级上册数学期末试卷一.选择题(共9小题)1.下列各组的两个图形属于全等图形的是()A.B. C.D.2.如图,给出下列四个条件:AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组 C.3组 D.4组3.在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.4.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A.20 B.25 C.30 D.355.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米6.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的()A.2倍B.3倍 C.4倍 D.5倍7.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>08.在平面直角坐标系中,点A、点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8) C.(﹣2,8)D.(8,2)9.如果一次函数y=kx+b(k,b是常数,k≠0)的图象经过第一、二、四象限,那么k,b 应满足的条件是()A.k>0且b>0 B.k<0且b>0 C.k>0且b<0 D.k<0且b<0二.填空题(共4小题)10.如图,AC=DC,BC=EC,请你添加一个适当的条件:,使得△ABC≌△DEC.11.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中共有个等腰三角形.12.实数a,b在数轴上对应点的位置如图所示,则|a﹣b|= .13.我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象交点的横坐标为.三.解答题(共4小题)14.在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm的两部分,求三角形各边的长.15.如图,有一个长方体无盖的盒子,长AB=8cm,宽BD=5cm,高BC=1cm,一只蚂蚁经过盒子里面从N爬到M.(1)画出盒子的展开图,并画出蚂蚁的最短爬行路径;(2)求出蚂蚁的最短爬行路径是多少厘米.16.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的关系式;(2)当x=﹣时,求函数y的值;(3)求当﹣3<y≤1时,自变量x的取值范围.17.A,B,C三地在同一条公路上,A地在B,C两地之间,甲、乙两车同时从A地出发匀速行驶,甲车驶向C地,乙车先驶向B地,到达B地后,调头按原速经过A地驶向C地(调头时间忽略不计),到达C地停止行驶,甲车比乙车晚0.4h到达C地,两车距B地的路程y (km)与行驶时间x(h)之间的函数关系如图所示,请结合图象信息,解答下列问题:(1)甲车的行驶速度是km/h,并在图中括号内填入正确的数值;(2)求图象中线段FM所表示的y与x的函数解析式(不需要写出自变量x的取值范围);(3)在乙车到达C地之前,甲、乙两车出发后几小时与A地路程相等?直接写出答案.。
【鲁教版】七年级数学上期末试题(附答案)(2)
一、选择题1.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n3.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n +4.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个5.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋 B .6袋 C .7袋 D .8袋 6.若三个连续偶数的和是24,则它们的积为( ) A .48B .240C .480D .1207.甲、乙两个工程队,甲队人,乙队人,现在从乙队抽调人到甲队,使甲队人数为乙队人数的倍.则根据题意列出的方程是( )A .B .C .D .8.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( )A .B .C .D .9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67 D .011.下列四个式子,正确的是( )①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③12.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.15.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C的销售额应比去年增加__________.16.对任意四个有理数a,b,c,d,定义:a bad bcc d=-,已知24181-=xx,则x=_____.17.如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=_____.18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).19.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.20.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.三、解答题21.已知线段10cmAB=,在直线AB上取一点C,使16cmAC=,求线段AB的中点与AC的中点的距离.22.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D 在线段CB 上”改为“点D 在线段CB 的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD 的长度.23.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人? 24.解方程: (1)3x ﹣4=2x +5; (2)253164x x--+=. 25.计算:2334[28(2)]--⨯-÷- 26.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ; (3)请用上述计算103+105+107+…+2015+2017的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D . 【详解】∵线段AB 的长度是A 、 B 两点间的距离, ∴(1)错误; ∵射线没有长度, ∴(2)错误; ∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.2.C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.4.B解析:B【解析】【分析】利用公式:()21n n-来计算即可.【详解】根据公式:()21n n-来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.5.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C.【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键.7.A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.8.B解析:B【解析】【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】由题意可知:.故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.11.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;B. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;C. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;D. a-可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体 体 面 平 曲 【解析】 【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种 【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲 【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体 四棱锥 三棱柱 【解析】 【分析】根据常见的几何体的展开图进行判断. 【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体 ,四棱锥 , 三棱柱; 【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.15.【分析】把去年的总销售金额看作整体1设今年产品C 的销售金额应比去年增加x 根据今年的销售总金额和去年的销售总金额相等列出方程再求解即可【详解】解:设今年产品的销售金额应比去年增加由题意得解得:答:今年 解析:30%【分析】把去年的总销售金额看作整体1.设今年产品C 的销售金额应比去年增加x ,根据今年的销售总金额和去年的销售总金额相等,列出方程,再求解即可. 【详解】解:设今年产品C 的销售金额应比去年增加x , 由题意得,60%(1)(160%)(145%)1x ++--=, 解得:30%x =.答:今年产品C 的销售金额应比去年增加30%. 故答案为:30%.【点睛】本题考查了一元一次方程的应用,关键在于设未知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A和B的销售金额和C的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程.16.3【分析】首先看清这种运算规则将转化为一元一次方程2x-(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x-(﹣4x)=186x=18解得:x=3故答案为:3【点睛解析:3【分析】首先看清这种运算规则,将24181-=xx转化为一元一次方程2x-(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x-(﹣4x) =186x=18解得:x=3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.17.990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b)1的第三项系数为0(a+b)2的第三项的系数为:1(a+b)3的解析:990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】 本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.18.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 20.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C 在数轴上,∴点C 对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.三、解答题21.13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 22.(1)CD=2.5厘米;(2)CD=4厘米.【分析】根据BD+AD=AB 可求出AB 的长,利用中点的定义可求出BC 的长,根据CD=BC-BD 求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD 的长【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C 是线段AB 的中点,∴BC=12AB=4(厘米) ∴CD=BC-BD=2.5(厘米).(2)当点D 在线段CB 的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C 是线段AB 的中点,∴BC=12AB=2.5(厘米) ∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.23.大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人,根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 24.(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 25.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.26.(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n+,n+;故答案为:()22(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=2511009-2=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.。
【鲁教版】七年级数学上期末试题(带答案)(2)
一、选择题1.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形2.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16 3.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等 4.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 5.若│x -2│+(3y+2)2=0,则x+6y 的值是( )A .-1B .-2C .-3D .32 6.某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元 7.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折8.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( ) A .吨 B .吨 C .吨 D .吨 9.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 10.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个11.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .12 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0二、填空题13.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.14.36.275︒=_____度______分______秒.15.在方程1322x -=-的两边同时_________,得x =__________. 16.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________. 17.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 18.在x y +,0,21>,2a b -,210x +=中,代数式有______个.19.在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.20.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.三、解答题21.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗? 22.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.23.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?24.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52 ,求a 的值. 25.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ; (2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?26.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A 、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B 、n 棱柱有n+2个面,n 个顶点,故原题说法错误;C 、长方体,正方体都是四棱柱,说法正确;D 、三棱柱的底面是三角形,说法正确;故选B .2.B解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =. 由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口. 3.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.4.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A 、射线OA 与OB 不是同一条射线,选项错误;B 、射线OA 与OB 是同一条射线,选项正确;C 、射线OA 与OB 不是同一条射线,选项错误;D 、射线OA 与OB 不是同一条射线,选项错误.故选B .【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外5.B解析:B【分析】根据非负数的性质,可求得x 、y 的值,再将x ,y 的值代入可得出答案.【详解】解:∵│x -2│+(3y+2)2=0,∴x-2=0且3y+2=0,解得x=2,y=-23, ∴x+6y=2+6×(-23)=2-4=-2. 故选:B .【点睛】本题考查了非负数的性质,能够利用非负数的和为零得出x 、y 的值是解题关键. 6.C解析:C【分析】设这种商品每件的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果.【详解】设这种商品每件的进价为x 元,根据题意得:330×80%−x=10%x ,解得:x=240,则这种商品每件的进价为240元.故选C.【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.7.C解析:C【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 800 20%800⨯-≥,解不等式可得:8x ≥. 【详解】设打折x 折,由题意可得:12000.1x 80020%800⨯-≥,故选C.【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.8.C解析:C【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x ,7x ,4.5x ,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x 吨,7x 吨,4.5x 吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C .【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x 吨,7x 吨,4.5x 吨,找到等量关系,然后列出方程.9.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.10.A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式;根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】 本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.11.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C .【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.12.C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .二、填空题13.BC 【分析】把展开图折叠成一个长方体找到与AB 重合的线段即可【详解】解:根据题意得:折叠后与棱AB 重合的棱是BC 故答案为BC 【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可 解析:BC【分析】把展开图折叠成一个长方体,找到与AB 重合的线段即可.【详解】解:根据题意得:折叠后与棱AB 重合的棱是BC .故答案为BC .【点睛】本题考查了展开图折叠成几何体,解决这类问题时,不妨动手实际操作一下,即可解决问题.14.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则解析:16 30【解析】【分析】利用度分秒的换算1度= 60分,1分=60秒 ,来计算.【详解】36.275︒=36度16分30秒故答案为:36,16,30.【点睛】此题考查度分秒的换算,解题关键在于掌握换算法则.15.加【解析】【分析】根据等式的性质2方程的两边加即可【详解】方程的两边同时加得:x =-1故答案为:加;【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:加12 1- 【解析】【分析】根据等式的性质2,方程的两边加12即可. 【详解】 方程1322x -=-的两边同时加12得:x =-1, 故答案为:加12;1-. 【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.16.【解析】【分析】若设小明x 岁则小红的年龄(x+2)岁根据小明和小红的年龄和为18岁可列一元一次方程求解【详解】(1)根据题意设小明岁则小红的年龄为(2)设小明x 岁则可列方程:【点睛】本题考查一元一次解析:(2)x +, (2)18x x ++=【解析】【分析】若设小明x 岁,则小红的年龄 (x+2)岁,根据小明和小红的年龄和为18岁,可列一元一次方程求解.【详解】(1)根据题意,设小明x 岁,则小红的年龄为(2)x +(2)设小明x 岁,则可列方程:(2)18x x ++=【点睛】本题考查一元一次方程的应用,根据题意列出正确的一元一次方程是解题关键. 17.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.18.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.19.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.20.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.三、解答题21.见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.22.见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图, 由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.23.6人【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人.【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 24.a=1【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.25.(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.26.(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+--- =1118-- =18-;(2)()41151123618⎛⎫---+÷⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭=115 118+1818 236-⨯⨯-⨯=1-9+6-15=-17.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。
新鲁教版初一上学期数学期末测试题
新鲁教版初一上学期数学期末测试题一、选择题(本题共12个小题,每小题3分,共36分.)1.2-等于( ) A .-2 B .12- C .2 D .12 2.下列方程为一元一次方程的是( ) A .y +3= 0 B .x +2y =3 C .x 2=2x D .21=+y y 3.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与14.下列各组单项式中,为同类项的是( )A .a 3与a 2B .12a 2与2a 2 C .2xy 与2x D .-3与a 5.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>6.下列各图中,可以是一个正方体的平面展开图的是( )7、某物品标价为132元,若以9折出售,仍可获利10%,则该物品进价是( )A .105元B .106元C .108元D .118元8、方程4113--=x x,去分母后正确的是( ) A .)1(314--=x x B .)1(1--=x xC .)1(3124--=x xD .)1(34--=x x9.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( )A .(1+50%)x×80%=x -28B .(1+50%)x×80%=x +28C .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2810.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( )A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 11.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( ) A B C D 6 2 22 4 2 0 4 8 8 4 44 6 m 10 ……A.110 B.158 C.168 D.17812、一家三口(父亲`母亲女儿)准备参加旅行团外出旅游,甲旅行社告知“父母全票,女儿半票优惠”;乙旅行社告知“家庭旅游,可按团体票记价,即每人按全价的45收费”,若两旅行社每人原票价相同,则两家旅行社的优惠状况是()A.甲比乙更优惠B.乙比甲更优惠 C.甲与乙相同 D.与原票价有关二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式12-xy2的系数是_________.15.若x=2是方程8-2x=ax的解,则a=_________.16.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.17.已知,a-b=2,那么2a-2b+5=_________.18.已知y1=x+3,y2=2-x,当x=_________时,y1比y2大5.19.根据图中提供的信息,可知一个杯子的价格是________元.20、为了提高人们的环保意识,某商店推出用 3个空饮料瓶换1瓶饮料,小明买了8瓶该种饮料,他最多可换回 ____瓶饮料.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分7分)先化简,再求值:41(-4x2+2x-8)-(21x-1),其中x=21.23.(本小题满分7分)解方程:513x+-216x-=1.共43共94元24、(6分)已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2, 求2||4321a b m cd m ++-+的值.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ;(2)写出第二次移动结果这个点在数轴上表示的数为 ;(3)写出第五次移动后这个点在数轴上表示的数为 ;(4)写出第n 次移动结果这个点在数轴上表示的数为 ;(5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.23、(本题7分)某车间共90名工人,每名工人平均每天加工甲种部件15个或乙种部件8个,问应安排加工甲种部件和乙种部件各多少人,才能在每天加工后使每3个甲种部件和2个乙种部件刚好配套? 若设安排加工甲种部件x 人,则加工乙种部件______人,那么每天加工甲种部件_____个,每天加工乙种部件________个.根据题意可得方程__________________________.请你解这个方程,分别求出加工甲、乙种部件的人数.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版数学七年级上册期末水平测试题
一、试试你的身手
1.2
(3 1.7333)-的算术平方根是 .
2.如图1,两个正方形面积分别是81和225,则直角三角形一直角边x 取值为 .
3.点P (3,-4)关于x 轴对称的点的坐标为 . 4.写出满足方程29x y +=的一对整数值 .
5.直角三角形的周长为12cm ,斜边长为5cm ,则其面积为 .
6.若△ABC 的三边a 、b 、c 满足2
2
2
()()0a b a b c -+-=,则△ABC 的形状为 . 7.已知一次函数2y kx =+,请你补充一个条件:,使y 随x 的增大而减小 . 8.如图2,DE 是AC 的垂直平分线,AB =10cm ,BC =11cm ,则△ABD 的周长是 .
9.如图3所示的正方形网格中,每个小正方形的边长为1,则AB 2= ,BC 2= ,AC 2= . 10.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是 . 二、相信你的选择
1.下列图形中,不是轴对称图形的是( ) A .线段 B .相交直线
C .有公共端点的两条相等线段
D .有公共端点的两条不相等线段 2.下列说法正确的是( ) A .负数和零没有平方根
B .
1
2002
的倒数是2002 C .
2
2
是分数 D .0和1的相反数是它本身
3.已知点(324)P m m ++,在y 轴上,那么点P 的坐标是( ) A .(20)-,
B .(02)-,
C .(1,0)
D .(0,1)
4.等腰三角形一腰上的高与另一腰的夹角为45°,那么这个三角形的底角为( )
A .67°
B .135°
C .67.5°
D .67.5°或22.5°
5.以下说法不正确的是( )
A .有一个内角等于另外两个内角之和的三角形是直角三角形
B .若一个三角形三边a 、b 、c 满足222
a b c -=,则此三角形是直角三角形 C .若一个三角形三边长度比是3︰4︰5,则它一定是直角三角形 D .直角三角形中,已知两边长为3和4,则第三边长为5
6.如图4,数轴上的点A 所表示的数为x ,则2
10x -的立方根是( ) A .210-
B .210--
C .2
D .2-
7.已知2
3
(21)m y m x -=-是正比例函数,且y 随x 增大而减小,那么
这个函数的表达式为( )
A .5y x =-
B .5y x =
C .3y x =
D .3y x =-
8.已知方程组42ax by ax by -=⎧⎨+=⎩
,的解为21x y =⎧⎨=⎩,,则23a b -的值为( )
A .4
B .6
C .6-
D .4-
9.如图5,长方体的长、宽、高分别为4cm ,3cm ,12cm ,则B ′D 的长为( ) A .13cm
B .19cm
C .17cm
D .293cm
10.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图6所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( ) A .42分钟
B .48分钟
C .30分钟
D .33分钟
三、挑战你的技能
1.如图7,△ABC 中,AB =AC ,∠A =58°,若AB 的垂直平分线交AC 于E . 求∠EBC 的度数.
2.如图8,有一块四边形草地ABCD ,∠B =90°,AB =4m ,BC =3m ,CD =12m ,DA =13m ,求该四边形草地的面积.
3.已知第一个正方体纸盒的棱长是6,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127,试求第二个正方体纸盒的棱长.
4.已知一次函数y kx b
=+的图象经过A(-3,-2)及点B(1,6).
(1)求此一次函数的表达式,并画出图象;
(2)求此函数图象与坐标轴围成的三角形的面积.
四、拓广探索
通过电脑拨号上因特网的费用是电话费和上网费两部分组成的,以前某市上因特网的费用是:电话费0.18元/3分钟,上网费为7.2元/时;后来调整为:电话费0.22元/3分钟,每月上网费不超过60小时,上网费按4元/时,超过60小时的部分,按8元/时计算,设每月上因特网的费用为y(元),时间为x(小时).
(1)写出调整之前y与x之间的函数关系式;
(2)按上因特网时间不超过60小时和超过60小时两种情况,分别写出调整之后y与x之间的函数关系式;
(3)若上因特网时间为70小时,比较调整之前与调整之后所需上网费用的多少?参考答案:
一、1.1.7333
-2.123.(3,4)4.
1
4.
x
y
=
⎧
⎨
=
⎩
,
5.2
6cm(提示:设两直角边分别为x,y,则有7
x y
+=,从而222
49()2252
x y x y xy xy
=+=++=+,即12
xy=,故面积为2
1
6cm
2
xy=)
6.等腰三角形或直角三角形
7.3
k=-(答案不惟一只要满足0
k<即可)
8.21cm(提示:由垂直平分线的性质知DA DC
=,所以ABD
△的周长AB BD DA AB BC
=++=+)
9.29,13,2010.
11
14
二、1.D2.B3.B
4.D(提示:注意考虑等腰三角形顶角为锐角和钝角两种情况)
5.D6.D7.A8.B9.A10.A
三、1.解:因为58
AB AC A
=∠=
,,所以
18058
61
2
ABC C
-
∠=∠==.
因为DE垂直平分AB,所以EA=EB,所以∠ABE=∠A=58°.
所以∠EBC=∠ABC-∠ABE=3°.
2.36m2.(提示:连结AC,如图所示,在Rt△ABC中,由
勾股定理,得22222
4325
AC AB BC
=+=+=,所以
5
AC=,在△ADC中,
22222
512169
AC CD DA
+=+==,所以△ADC是直角三形.
四边形草地面积可转化为求△ADC与△ABC的面积和,即草地面积为:
2
11
4351236m
22
ADC ABC
S S
+=⨯⨯+⨯⨯=
△△
.)
3.7.(提示:第二个正方体纸盒的体积为:3
6127343+=,所以第二个正方体纸盒的棱长为:3
3437=.)
4.(1)解:将(32)(16)A B --,,,代入y kx b =+,得236.
k b k b -=-+⎧⎨=+⎩,
,
解得24.
k b =⎧⎨
=⎩,
所以一次函数的表达式为24y x =+.如图所示. (2)4.。