二次函数图象与系数的关系-1
二次函数中各项系数abc与图像的关系
二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。
一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。
二次函数的图像与系数的关系(初三数学最全整理)
二次函数图象与系数的关系二次函数的图象与二次函数的系数a 、b 、c 有内在联系。
由系数可以得出二次函数的大致图象,由图象可以得出二次函数系数的取值范围,以下是二次函数的系数和图象之间联系的一些归纳和总结!一、知识点1 二次函数的图像与系数的关系(1)a 的符号由 决定: ①开口向 ⇔ a 0;①开口向 ⇔ a 0.(2)b 的符号由 决定:① 在y 轴的 ⇔b a 、 ;① 在y 轴的 ⇔b a 、 ;① 是 ⇔b 0.(3)c 的符号由 决定:①点(0,c )在y 轴正半轴 ⇔c 0;①点(0,c )在原点 ⇔c 0;①点(0,c )在y 轴负半轴 ⇔c 0.知识点2 二次函数与一元二次方程的关系[归纳概括]如果抛物线)0(2≠++=a c bx ax y 与x 轴有公共点,公共点的横坐标是0x ,那么当x= 时,函数的值是0,因此x= 就是方程02=++c bx ax 的一个根.[归纳概括]函数)0(2≠++=a c bx ax y 的图像与x 轴交点的个数(1)当042>-ac b 时,有 交点;(2)当042=-ac b 时,有 交点;(3)当042<-ac b 时,没有交点;二、例题讲解:例1 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,试确定代数式①a ;②b ;③c ;④b 2-4ac ;⑤2a+b ;⑥a+b+c ;⑦a-b+c ;⑧4a+2b+c 的符号.练习1:根据图象填空:(1)a _____0;(2)b 0;(3)c 0;(4)ac b 42- 0 ; (5)2a b +______0;(6)0a b c ++⎽⎽⎽⎽ ; (7)0a b c -+⎽⎽⎽⎽;练习2:二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.(1)试确定代数式的符号①abc ______0;②3a +c ______0;③(a +c )2﹣b 2______0; ④b 2-4ac ______0 ⑤a +b +2c _____0(2)证明:a +b ≤m (am +b )(m 为实数).练习3.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,证明: a ﹣b ≤m (am +b )(m 为实数);例2二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,(1)试确定代数式的符号4a +b 0;(2)9a +c 3b ;(2)证明:8a +7b +2c >0;(3)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,判断y 1,y 2,y 3的大小(4)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,判断﹣1,5,x 1,x 2的大小变式1:利用抛物线图象求解一元二次方程及二次不等式(1)方程02=++c bx ax 的根为___________;(2)方程23ax bx c ++=-的根为__________;(3)方程24ax bx c ++=-的根为__________;(4)不等式20ax bx c ++>的解集为 ;(5)不等式20ax bx c ++<的解集为 ;(6)若方程|ax 2+bx +c |=1有四个根,则这四个根的和为 ,变式2.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线x =1.下列结论中:①方程ax 2+bx +c =3有两个不相等的实数根;②抛物线与x 轴的另一个交点坐标为(﹣2,0);③若点A (m ,n )在该抛物线上,则am 2+bm +c ≤a +b +c .其中正确的有变式3.(1)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴上方的条件是(2)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴下方的条件是 例3.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),(1)求代数式(a +c )2﹣b 2的值(2)若方程|ax 2+bx +c |=2有四个根,求这四个根的和(3)求a 的取值范围 (4)求b 的取值范围例4.在同一平面直角坐标系xOy 中,一次函数y =ax 与二次函数y =ax 2+a 的图象可能是( ) A .B .C .D . 三、课后作业1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0),(3,0)两点,下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C.当﹣1<x<1时,y<0D.一元二次方程ax2+bx+c=0的两个根是﹣1和32.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣3,0),顶点为P(﹣1,n).下列结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是()A.abc>0B.b2>4acC.4a+2b+c>0D.2a+b=04.在同一坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.5.二次函数y=ax2+bx+c的图象如图所示(1).判断正误并说明理由:①abc<0②b2﹣4ac<0③2a>b(2)证明:(a+c)2<b26.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①abc<0;②2a﹣b<0;③﹣1<a<0;④b2+8a>4ac;⑤a+c<1.其中正确的是7.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①﹣2b+c=0;;②4a+2b+c<0;③若(0,y1),(1,y2)是抛物线上的两点,则y1=y2;④b+c>m(am+b)+c(其中m≠).其中正确的是8.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①abc<0;②a﹣b+c>0;③c﹣4a=1;④b2>4ac;⑤am2+bm+c≤1(m为任意实数).其中正确的是9.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,求证:无论a,b,c取何值,抛物线一定经过(,0)10.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个。
二次函数的图象与各项字母系数之间的关系
的关系
学习目标
1、能由a,b,c,∆的符号确定抛物线的位置;由 抛物线的位置确定a,b,c,∆等式子的符号;
2、经历探究问题的过程,加强推理技能训练, 体验类比、转化、符号表示及数形结合的思 想方法.
1.二次函数图象开口方向、大小和二次项系数a的关系
y
y
的图像如图,则下列a、b、
c间的关系判断正确的是( D )
A.ab < 0
B.bc < 0
C.a+b+c > 0 D.a-b+c < 0
8.(绵阳)二次函数y=ax2+bx+c的
图像如图,则不等式bx+a>0的
解为 A.x > a/b
(D)
B.x > -a/b
C.x < a/b D.x < -a/b
谈收获
1.(天津)已知二次函数y=ax2+bx+c,
且a<0,a-b+c>0,则一定有( A )
A.b2-4ac>0
B. b2-4ac=0
C.b2-4ac<0
D. b2-4ac≤0
2.(重庆)二次函数y=ax2+bx+c的图
像如图所示,则点M(b,c/a)在( D )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
图像如图所示,下列结论:
① a+b+c<0,②a-b+c>0;
③ abc>0;④b=2a
中正确个数为
( A)
A.4个
B.3个
C.2个
D.1个
6、无论m为任何实数,二次函数y=x2-(2-m)x+m
二次函数系数与图像的关系
二次函数系数a ,b ,c 与图像的关系二次函数)0(2≠++=a c bx ax y 的图像确定后,解析式中的系数a ,b ,c 也随之确定,反之,根据所给字母系数a ,b ,c 的符号,也可以判断抛物线的开口方向和位置.这一知识点在中考也属于必考知识点,在选择题第10题考察,难度中等,综合性较强.那么,字母系数a ,b ,c 又是分别对图像有着怎样的影响,下面我们来一一归纳:一、a 的作用1.决定开口方向:0>a 开口向上;0<a 开口向下; 2.决定开口的大小:∣a ∣越大,抛物线的开口越小.二、b 的作用与抛物线的对称轴和a 有关,b 与a 的符号共同决定抛物线的对称轴 1.b 与a 同号.⇔<-02ab对称轴在y 轴的左边.如图一,对称轴在 y 轴的左边,所以b 与a 同号,因为抛物线开口向下,所以0<a ,则0<b ; 2.b 与a 异号.⇔>-02ab对称轴在y 轴的右边.如图二,对称轴在 y 轴的右边,所以b 与a 异号,因为抛物线开口向下,所以0<a ,则0>b ;3.0=b .顶点在y 轴上. 简记:左同右异三、c 的作用:由抛物线与y 轴的交点坐标决定 1. 0>c ⇔抛物线与y 轴的交点在y 轴的正半轴; 2. 0<c ⇔抛物线与y 轴的交点在y 轴的负半轴; 3. c = 0⇔抛物线过原点.图一 图二四、抛物线与x 轴的交点个数决定ac b 42-的符号 1.抛物线与x 轴有两个交点042>-⇔ac b ; 2.抛物线与x 轴有一个交点042=-⇔ac b ; 3.抛物线与x 轴没有交点042<-⇔ac b .五、b a ±2的符号由对称轴所在位置来决定1.判断b a +2的符号,需要判断抛物线的对称轴与1的大小关系; ①如果对称轴在1的右面,则12>-ab,如果抛物线开口向上,则0>a ,不等式就可转化为a b 2>-,移项可得02>+b a ;②如果对称轴在1的左面,则12<-ab,如果抛物线开口向上,则0>a ,不等式就可转化为a b 2<-,移项可得02<+b a ;例如:在图三中,抛物线对称轴在1=x 的左侧,则12<-ab,因为开口向下,所以0<a ,两边同时乘以a ,不等号方向改变,则有02<+b a .根据这一方法,很容易推出图四中02>+b a .2.判断b a -2的符号,需要判断抛物线的对称轴与1-的大小关系; ①如果对称轴在1-的右面,则12->-ab,如果抛物线开口向上,则0>a ,不等式就可转化为a b 2->-,移项可得02>-b a ;图三 图四1-=x 1-=x ②如果对称轴在1-的左面,则12-<-ab,如果抛物线开口向上,则0>a ,不等式就可转化为a b 2-<-,移项可得02<-b a .例如:在图五中,抛物线对称轴在1-=x 的左侧,则12-<-ab,因为开口向下,所以0>a ,两边同时乘以a ,不等号方向不变,则有02<-b a .根据这一方法,很容易推出图六中02>-b a .六、其他情况(解析式c bx ax y ++=2中x 取特殊值)1.当1=x ,则c b a y ++=,所以抛物线c bx ax y ++=2必过),1(c b a ++,在图像中找到这个点的位置.如图七,抛物线c bx ax y ++=2与1=x 的交点位置在第一象限,所以0>++c b a .当1-=x 时,c b a y +-=图五 图六2.当2=x ,则c b a y ++=24,所以抛物线c bx ax y ++=2)24,2(c b a ++,在图像中找到这个点的位置.c bx ax y ++=2与2=x 的交点位置在第四象限024<++c b a .当2-=x 时,c b a y +-=24,用同样的方法即可判断符号;3.当3=x ,则c b a y ++=39,所以抛物线c bx ax y ++=2)39,3(c b a ++,在图像中找到这个点的位置.c bx ax y ++=2与3=x 的交点位置在第四象限,所以39+b a 当3-=x 时,c b a y +-=39,用同样的方法即可判断符号.以上总结的知识点,在考试中也经常考察,在中考也有直接考察;这一部分知识点属于二次函数性质中非常重要的部分,必须熟练掌握.下面给出几道例题,供大家试试身手:例1:二次函数c bx ax y ++=2的图像如图所示,用<,>,=填空:a 0,b 0,c 0, b a -2 0, ac b 42- 0,c b a ++ 0, c b a +- 0,xy例2:已知,二次函数c bx ax y ++=2的图象如图所示,则点M (cb,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限xy。
初中数学《二次函数图像与系数的六种关系》含解析
二次函数图像与系数的六种关系题型01a与图像的关系【典例分析】1(23-24九年级上·河北保定·期末)二次函数y=ax2的图象如图所示,则a的值可能为()A.2B.0C.-1D.-2【答案】A【分析】本题考查二次函数的图象与性质,根据二次函数的图象的开口方向求解即可.【详解】解:由图象知,二次函数y=ax2的图象开口向上,则a>0,故选项A符合题意,选项B、C、D不符合题意,故选:A2(2024九年级·全国·专题练习)在同一个平面直角坐标系中,二次函数y1=a1x2,y2=a2x2,y3=a3x2的图象如图所示,则a1,a2,a3的大小关系为.【答案】a3>a2>a1#a1<a2<a3【分析】本题考查了二次函数的性质,抛物线的开口方向和开口大小由a的值决定的,a 越大,开口越小,掌握抛物线的开口方向和开口大小由a的值决定是解题的关键.【详解】解:由抛物线开口方向可知,a1、a2、a3为正数,又由开口大小可得,a3>a2>a1,故答案为:a3>a2>a13(23-24九年级上·福建厦门·阶段练习)已知y=k+2x k2+k-4是二次函数,且当x<0时,y随x的增大而增大.求k的值,并画出它的图象;【答案】k=-3【分析】根据二次函数定义以及当x<0时,y随x的增大而增大.可得出函数解析式,再描点画图即可;【详解】解:由y=k+2x k2+k-4是二次函数,且当x<0时,y随x的增大而增大,得k2+k-4=2,k+2<0解得:k=-3或k=2(舍去);二次函数的解析式为y=-x2,如图所示:【变式演练】1(23-24九年级上·山东青岛·阶段练习)图中与抛物线y=13x2,y=2x2,y=-13x2,y=-2x2,的图象对应的是()A.①②④③B.②①④③C.①②③④D.②①③④【答案】B【分析】本题考查了二次函数的图象.抛物线的形状与a和a 有关,根据a 的大小即可确定抛物线的开口的宽窄.【详解】解:∵①②开口向上,则a>0,∵②的开口最宽,∴y=13x2是②,y=2x2是①,∵③④开口向下,则a<0,∵④的开口最宽,∴y=-13x2是④,y=-2x2是③,综上,依次②①④③,故选:B2(23-24九年级上·吉林松原·阶段练习)二次函数y=k+2x2的图象如图所示,则k的取值范围是.【答案】k>-2【分析】由图示知,该抛物线的开口方向向上,则系数k+2>0,据此易求k的取值范围.【详解】解:如图,抛物线的开口方向向上,则k+2>0,解得k>-2.故答案为:k>-2.【点睛】本题考查了二次函数的图象.二次函数y=ax2的系数a为正数时,抛物线开口向上;a为负数时,抛物线开口向下;a的绝对值越大,抛物线开口越小3(24-25九年级上·全国·假期作业)已知函数y=(m+3)x m2+3m-2是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图像的开口向下?(3)当m为何值时,该函数有最小值?(4)试说明函数的增减性.【答案】(1)m=-4或m=1(2)当m=-4时,该函数图像的开口向下(3)当m=1时,原函数有最小值(4)见解析【分析】(1)由二次函数的定义可得m2+3m-2=2m+3≠0故可求m的值.(2)图像的开口向下,则m+3<0,结合(1)中的结果,即可得m的值;(3)函数有最小值,则m+3>0,结合(1)中的结果,即可得m的值;;(4)根据(1)中求得的m的值,先求出抛物线的解析式,函数的增减性由函数的开口方向及对称轴来确定.【详解】(1)根据题意,得m2+3m-2=2 m+3≠0,解得m1=-4,m2=1 m≠-3,∴当m=-4或m=1时,原函数为二次函数.(2)∵图像开口向下,∴m+3<0,∴m<-3,∴m=-4,∴当m=-4时,该函数图像的开口向下.(3)∵函数有最小值,∴m+3>0,则m>-3,∴m=1,∴当m=1时,原函数有最小值.(4)当m=-4时,此函数为y=-x2,开口向下,对称轴为y轴,当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小;当m=1时,此函数为y=4x2,开口向上,对称轴为y轴,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.【点睛】本题主要考查二次函数的性质,二次函数的最值,二次函数的增减性.二次函数的最值是顶点的纵坐标,当a>0时,开口向上,顶点最低,此时纵坐标为最小值;当a<0时,开口向下,顶点最高,此时纵坐标为最大值.考虑二次函数的增减性要考虑开口方向和对称轴两方面的因素,因此最好画图观察.题型02b与图像的关系【典例分析】1(21-22九年级上·安徽合肥·开学考试)已知二次函数y=-x2+2m-1x-3,当x>1时,y随x的增大而减小,则m的取值范围是()A.m<32B.m≤32C.m≤12D.m<-12【答案】B【分析】本题主要考查二次函数图象对称轴,增减性,解一元一次不等式的问题,根据题意可得二次函数图象的对称轴为x=2m-22,结合函数图象的增减性可得2m-12≤1,由此即可求解,掌握二次函数图象的性质,解不等式的方法是解题的关键.【详解】解:二次函数y=-x2+2m-3x-3中,a=-1<0,b=2m-1,c=-3,∴图象开口向下,对称轴为x=-2m-12×-1=2m-12,∵当x>1时,y随x的增大而减小,∴2m-12≤1,解得,m≤3 2,故选:B2(2023·九年级上·西藏日喀则·)已知抛物线γ=x²+mx的对称轴为直线x=2.则m的值是() A.-4 B.1 C.4 D.-1【答案】A【分析】本题考查了二次函数y=ax2+bx+c的图象与性质,对于二次函数y=ax2+bx+c,其对称轴为直线x=-b2a,据此即可求解.【详解】解:由题意得:抛物线γ=x²+mx的对称轴为直线:x=-b2a=-m2×1=-m2,∴-m2=2解得:m=-4故选:A3(23-24九年级上·安徽淮北·阶段练习)抛物线y=-x2+2ax+3的对称轴位于y轴的右侧,与x轴交于点A,B(点B在点A的右边),且AB=4.(1)此抛物线的顶点坐标为.(2)当-1≤x≤m时,-5≤y≤4,则m的值为.【答案】1,44【分析】(1)令y=0,则x2-2ax-3=0.设A x1,0,B x2,0,则x1+x2=2a,x1x2=-3.根据AB=4,得出x2-x1=4,结合完全平方公式得出x2-x12=x1+x22-4x1x2=16,求出a的值,即可求解;(2)根据二次函数的性质可得当x=1时,y取得最大值4.求出当x=-1时,y=0>-5,且-5≤y≤4,得出m>1,则当x=m时,y=-5,即可求解.【详解】解:(1)令y=0,则-x2+2ax+3=0,即x2-2ax-3=0.设A x1,0,B x2,0,则x1+x2=2a,x1x2=-3.∵AB=4,∴x2-x1=4,∴x2-x12=x1+x22-4x1x2=16,∴4a2+12=16,∴a=±1.∵抛物线的对称轴位于y轴的右侧,即a=1,∴y=-x2+2x+3=-x-12+4,∴抛物线的顶点坐标为1,4.(2)∵y=-x2+2x+3=-x-12+4,∴当x=1时,y取得最大值4.∵当x=-1时,y=0>-5,且-5≤y≤4,∴m>1,∴当x=m时,y=-5,∴-m2+2m+3=-5,∴m=4或m=2(舍去).故答案为:1,4,4.【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握二次函数与x轴交点坐标的求法,将二次函数表达式化为顶点式的方法和步骤,以及二次函数的增减性【变式演练】1(22-23九年级上·福建厦门·期中)已知抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,当x >2时,y的值随着x值的增大而减小,则m的取值范围是()A.m≥1B.m<3C.-3<m≤1D.1≤m<3【答案】D【分析】先得出抛物线对称轴为直线x=3-m,根据抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,可得m<3,根据当x>2时,y的值随着x值的增大而减小,得出m≥1,即可求解.【详解】解:∵抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,∴x=-b2a =6-2m2=3-m>0,解得:m<3,又∵a=1<0,抛物线开口向下,当x>2时,y的值随着x值的增大而减小,则3-m≤2,解得:m≥1,综上所述,1≤m<3,故选:D.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键2(23-24九年级上·重庆合川·期末)关于x的二次函数y=x2+a-1x-1在y轴的右侧,y随x的增大而增大,且使得关于y的分式方程a-12-y+1y-2=2有非负数解的所有整数a的值之和.【答案】19【分析】本题主要考查了二次函数的性质、分式方程的解以及解一元一次不等式,依据题意,解分式方程可先确定出a的取值范围,再由二次函数的性质可确定出a的范围,从而可确定出a的取值,可求得答案.【详解】解分式方程a-12-y+1y-2=2可得y=6-a2,∵关于y的分式方程a-12-y +1y-2=2有非负数解,∴y=6-a2≥0且y=6-a2≠2,∴a≤6且a≠2,∵y=x2+a-1x-1,∴抛物线开口向上,对称轴为x=1-a2,∴当x>1-a2,时,y随x的增大而增大.∵在x>0时,y随x的增大而增大,≤0,解得a≥1.∴1-a2综上1≤a≤6且a≠2,∴满足条件的整数a的值为1,3,4,5,6.∴所有满足条件的整数a的值之和是1+3+4+5+6=19.故答案为:19.3(23-24九年级上·浙江宁波·期末)如图,已知二次函数y=x2+ax+2的图象经过点E1,5.(1)求a的值和图象的顶点坐标.(2)若点F m,n在该二次函数图象上.①当m=-2时,求n的值.②若n≤2,请根据图象直接写出m的取值范围.【答案】(1)a=2;-1,1(2)①n=2;②-2≤m≤0【分析】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.(1)把点E(1,5)代入y=x2+ax+2中,即可求出a;(2)①把m=-2代入解析式即可求n的值;②由n≤2,在此范围内求m即可.【详解】(1)把点E(1,5)代入y=x2+ax+2中,∴a=2,∴y=x2+2x+2=(x+1)2+1,∴顶点坐标为(-1,1);(2)①把m=-2代入n=m2+2m+2=(m+1)2+1,可得:n=2,②∵n≤2,对称轴为x=-1,∴-2≤m≤0.【典例分析】1(23-24九年级上·内蒙古呼和浩特·阶段练习)关于二次函数y=x2-6x+5下列说法中错误的是()A.用配方法可化成y=x-32-4 B.将它的图象向下平移5个单位,会经过原点C.函数有最小值,最小值为5D.当x<3时,y随x的增大而减小【答案】C【分析】本题考查了二次函数的性质,二次函数的图象和几何变换,掌握二次函数的图象与坐标轴交点的求法是解题的关键.运用配方法把一般式化为顶点式,由二次函数的顶点式可判断其开口方向、对称轴、顶点坐标;令x=0可求得与y轴的交点坐标;则可得出答案.【详解】解:y=x2-6x+5=x-32-4,故A正确,不符合题意;2-9+5=x-3∴其对称轴为直线x=3,开口向上,顶点坐标为3,-4,∴函数有最小值,最小值为-4,当x<3时,y随x的增大而减小,故C错误,符合题意,D正确,不符合题意;令x=0可得y=5,∴与y轴的交点坐标为0,5,∴将它的图象向下平移5个单位,会经过原点,故B正确,不符合题意;故选:C2(2023·九年级上·上海杨浦·)将抛物线y=x2-2x+3向下平移m个单位后,它的顶点恰好落在x轴上,那么m=.【答案】2【分析】将抛物线解析式改为顶点式,即可求出平移后的解析式,进而可求出平移后的顶点坐标,最后根据它的顶点恰好落在x轴上,即顶点的纵坐标为0,可求出答案.【详解】解:∵y=x2-2x+3=(x-1)2+2,∴该抛物线向下平移m个单位后的解析式为y=(x-1)2+2-m,∴此时顶点坐标为(1,2-m).∵此时它的顶点恰好落在x轴上,∴2-m=0,解得:m=2.故答案为:2.【点睛】本题考查二次函数图象的平移,二次函数的图象和性质.掌握二次函数图象的平移规律“上加下减,左加右减”是解题关键3(23-24九年级上·四川泸州·期中)写出抛物线y=-2x2-4x+5的开口方向、对称轴及顶点坐标,并指出抛物线y=-2x2-4x+5可由抛物线y=-2x2怎样平移得到.【答案】抛物线y=-2x2-4x+5开口向下,对称轴为x=-1,顶点坐标为-1,7,抛物线y=-2x2-4x+5可由y=-2x2向上平移7个单位长度,向左平移1个单位长度得到.【分析】本题考查的知识点是二次函数的图像与性质、二次函数图像的平移,解题关键是理解抛物线y=ax2+bx+c的性质及掌握抛物线平移规律.先将抛物线y=-2x2-4x+5经配方转换为y=-2x+12+7,即可直接根据表达式判断抛物线开口方向、对称轴和顶点坐标;另根据抛物线平移规律“上加下减,左加右减”即可得出y=-2x2到y=-2x2-4x+5=-2x+12+7的平移过程.【详解】解:依题得抛物线y=-2x2-4x+5=-2x+12+7,则可根据抛物线性质得:抛物线y=-2x2-4x+5开口向下,对称轴为x=-1,顶点坐标为-1,7,∵根据抛物线平移规律“上加下减,左加右减”,∴y=-2x2-4x+5=-2x+12+7可由y=-2x2向上平移7个单位长度,向左平移1个单位长度得到【变式演练】1(23-24九年级上·安徽合肥·期末)若将抛物线y=ax2(a>0)向右平移h(h>0)个单位,得到抛物线y=ax2+bx+c,则函数y=bx+c的图象可能是()A. B.C. D.【答案】C【分析】本题主要考查了二次函数及一次函数的图象,熟练掌握图象与系数的关系是关键.先根据题意判断 b<0,c>0,再判断经过的象限.【详解】∵将抛物线y=ax2(a>0)向右平移h(h>0)个单位,得到抛物线y=ax2+bx+c,∴y=ax2+bx+c对称轴在y轴的右侧,且交于y轴的正半轴,∴b<0,c>0,∴y=bx+c的图象过第一、二、四象限.故选:C2(22-23九年级上·浙江宁波·期末)将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限,则m的值可能是()A.1B.3C.5D.7【答案】D【分析】根据将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限可知-6+m≥0,即可得出结果.【详解】解:∵将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限,∴-6+m≥0,∴m≥6,∴m的值可能是7,故选:D.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,熟练掌握二次函数的性质是解题的关键3(21-22九年级上·广东中山·阶段练习)已知二次函数y=x2-2x-3.(1)请写出函数图象顶点坐标和对称轴∶(2)当函数值y为正数时,自变量x的取值范围∶(3)将该函数图象向右平移1个单位,再向上平移4个单位后,求所得图象的函数表达式.【答案】(1)1,-4,直线x=1(2)x<-1或x>3(3)y=x-22【分析】本题考查了二次函数的顶点式,对称轴,平移,不等式解集的确定,熟练掌握二次函数的性质是解题的关键.(1)化成顶点式,确定对称轴和顶点坐标即可.(2)求得x2-2x-3=0的两个根,进而即可求解.(3)根据右减上加的平移规律,即可求解.【详解】(1)∵y=x2-2x-3=x-12-4.∴对称轴为直线x=1,顶点为1,-4.(2)根据题意,得x2-2x-3=0,解得x1=-1,x2=3,∵y=x2-2x-3=x-12-4开口向上,故当x<-1或x>3时,y>0.(3)∵y=x2-2x-3=x-12-4.平移后的解析式为y=x-1-122-4+4即y=x-2题型04a,b与图像的关系【典例分析】1(23-24九年级上·浙江金华·期末)已知二次函数y=-mx2+2mx+4m>0,点经过点A-2,y1 B1,y2,那么y1,y2,y3的大小关系为(),点C3,y3A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2【答案】B【分析】本题考查利用二次函数性质比较函数值大小,涉及二次函数图像与性质、比较二次函数值大小等知识,根据二次函数图像与性质,利用图像上点到对称轴距离比较函数值大小即可得到答案,熟练掌握利用距离比较二次函数值大小的方法是解决问题的关键.【详解】解:由二次函数y=-mx2+2mx+4m>0可知抛物线开口向下,对称轴为x=-2m-2m=1,∴抛物线上点到对称轴距离越近,函数值y越大,∵二次函数y=-mx2+2mx+4m>0经过点A-2,y1,点B1,y2,点C3,y3,∴三个点A、B、C到对称轴的距离为3、0、2,∴y1<y3<y2,故选:B.2(23-24九年级上·广东广州·期中)若点A-134,y1B-1,y2,C53,y3为二次函数y=-ax2-4ax+5a<0图象上的三个点,则y1,y2,y3的大小关系是.【答案】y3>y1>y2【分析】本题考查了二次函数的图象及性质,根据题意得抛物线开口向上,对称轴为直线x=-2,则点A-134,y1关于直线x=-2的对称点54,y1在抛物线y=-ax2-4ax+5a<0上,根据二次函数的性质即可求解,熟练掌握二次函数的图象及性质是解题的关键.【详解】解:∵y=-ax2-4ax+5a<0,∴-a>0,对称轴为直线x=--4a2×-a=-2,∴抛物线开口向上,∴点A-134,y1关于直线x=-2的对称点54,y1在抛物线y=-ax2-4ax+5a<0上,∵-2<-1<54<53,∴y3>y1>y2,故答案为:y3>y1>y23(23-24九年级上·云南昆明·阶段练习)已知关于x的二次函数y=mx2+3m+1x+3.(1)求证:不论m为任何实数,方程mx2+3m+1x+3=0总有实数根;(2)若抛物线与x轴交于两个不同的整数点,m为正整数,点P x1,y1与Q x1+n,y2在抛物线上(点P, Q不重合),且y1=y2,求代数式4x21+12x1n+5n2+16n+8的值.【答案】(1)证明见解析;(2)24【分析】本题主要考查了二次函数与一元二次方程的关系以及二次函数的图象与性质等知识;(1)用根的判别式可以直接证明;(2)令y=0,方程可以化为mx+1x+3=0,解得x=-3或x=-1m,又m为正整数,可以求解m的值,进而可求出函数解析式;点P、Q在抛物线上,且y1=y2,可将x1、x1+n代入解析式联立方程,用含n的式子表示出x1,然后带入代数式化简求解即可.【详解】(1)解:由题意可知m≠0,∵Δ=b2-4ac=(3m+1)2-4m×3=(3m-1)2≥0∴此方程总有实数根;综上,不论m为任何实数时,方程总有实数根.(2)解:令y=0,则有mx+1x+3=0解得:x1=-3,x2=-1 m,因为抛物线与x轴交于两个不同的整数点,且m为正整数,所以m=1,所以抛物线为y=x2+4x+3.∵点P、Q在抛物线上,且y1=y2,∴x12+4x1+3=(x1+n)2+2(x1+n)+3∴2x1n+n2+4n=0即:n(2x1+n+4)=0,∵P、Q不重合,∴n≠0,∴2x1=-n-4∴4x12+12x1n+5n2+16n+8=(2x1)2+2x1∙6n+5n2+16n+8=(n+4)2+6n(-n-4)+5n2+16n+8=24所以代数式 4x21+12x1n+5n2+16n+8的值为24【变式演练】1(23-24九年级上·浙江杭州·期末)已知关于x的二次函数y=ax2-4ax a>0.若P m,n和Q5,b是抛物线上的两点,且n>b,则m的取值范围为()A.m<-1B.m>5C.m<-1或m>5D.-1<m<5【答案】C【分析】本题考查了二次函数图象上点的坐标特征,二次函数的性质,由抛物线的解析式可知开口方向和对称轴为直线x=2,根据函数的对称性和增减性即可求解;熟练掌握二次函数的对称性和增减性是解题的关键.【详解】解:∵二次函数y=ax2-4ax a>0.∴抛物线开口向上,对称轴为直线x=--4a2a=2,∵P m,n和Q5,b是抛物线上的两点,∴当n=b时,m=-1,∵抛物线上的点到对称轴的距离越远,函数值越大,∴n>b时,m的取值范围为m<-1或m>5;故选:C.2(23-24九年级上·浙江杭州·期末)已知二次函数y=ax2-4ax+2(a为常数,且a≠0) (1)若函数图象过点1,0,求a的值;(2)当2≤x≤5时,函数的最大值为M,最小值为N,若M-N=18,求a的值.【答案】(1)a=2 3(2)a=±2【分析】本题考查了求二次函数的表达式、二次函数的性质,熟练掌握二次函数的性质是解题的关键.(1)将点1,0的坐标代入表达式求解即可;(2)分类讨论a的正负,结合对称轴和图象的增减性即可得出答案.【详解】(1)解:函数图象过点1,0得a-4a+2=0解得:a=2 3(2)由y=ax2-4ax+2可知对称轴为直线x=2①当a>0时,开口方向向上,当2≤x≤5时当x=2时取最小值,当x=5时取最大值∴M=5a+2,N=-4a+2∵M-N=5a+2--4a+2=9a=18解得a=2,满足题意.②当a<0时,开口方向向下,当2≤x≤5时当x=2时取最大值,当x=5时取最小值∴M=-4a+2,N=5a+2∴M-N=-4a+2-5a+2=-9a=18解得a=-2 满足题意.综上所述:a=±2.3(23-24九年级上·安徽合肥·阶段练习)如图所示,抛物线y=ax2+bx+4(a≠0)经过点A(-1,0),点B(4,0),与y轴交于点C,连接AC,BC.点M是线段OB上不与点O、B重合的点,过点M作DM⊥x 轴,交抛物线于点D,交BC于点E.(1)求抛物线的表达式;(2)过点D作DF⊥BC,垂足为点F.设M点的坐标为M(m,0),请用含m的代数式表示线段DF的长,并求出当m为何值时DF有最大值,最大值是多少?【答案】(1)抛物线的表达式为:y=-x2+3x+4(2)当m=2时,DF有最大值为22【分析】(1)利用待定系数法求函数解析式.(2)先求出B,C所在直线解析式可得∠OBC=∠OCB=45°,通过DF=22DE可表示DF长度的代数式,再配方求解即可.【详解】(1)把点A(-1,0),点B(4,0)分别代入y=ax2+bx+4a≠0中,得:a-b+4=016a+4b+4=0解得:a=-1 b=3∴抛物线的表达式为:y=-x2+3x+4.(2)把x=0代入y=-x2+3x+4中,得:y=4∴C0,4设BC所在直线解析式为y=kx+b,把B4,0,C0,4代入y=kx+b中,得:0=4k+b 4=b解得k=-1 b=4∴y=-x+4设M m,0,则D(m,-m2+3m+4),E m,-m+4∴DE=-m2+3m+4+m-4=-m2+4m ∵OB=OC=4,OC⊥OB∴∠OBC=∠OCB=45°∵DM⊥x轴∴∠DEF=∠BEM=45°又∵DF⊥BC∴DF=22DE=22-m2+4m=-22(m-2)2+22∵-22<0∴当m=2时,DF有最大值为22.【点睛】本题考查二次函数与图形的结合,解题关键是掌握待定系数法求函数解析式,掌握配方法求代数式的最值题型05a,c与图像的关系【典例分析】1(23-24九年级上·广东梅州·期末)如图所示是二次函数y=ax2-x+a2-1的图象,则a的值是()A.a=-1B.a=12C.a=1D.a=1或a=-1【答案】C【分析】此题考查了二次函数的图象.由图象得,此二次函数过原点0,0,把点0,0代入函数解析式得a2 -1=0,解得a的值.【详解】解:由图象得,此二次函数过原点0,0,把点0,0代入函数解析式得a2-1=0,解得a=±1;又因为此二次函数的开口向上,所以a>0;所以a=1.故选:C.2(23-24九年级上·浙江丽水·期末)已知二次函数y=ax²+2x+c a≠0的图象如图所示.(1)写出c的值;(2)求出函数的表达式.【答案】(1)3(2)y=-x²+2x+3【分析】本题着重考查了待定系数法求二次函数解析式,综合利用已知条件求出抛物线的解析式是解题的关键.(1)将点0,3即可求出c;代入y=ax²+2x+c a≠0(2)把点A3,0即可求出函数表达式.代入y=ax²+2x+3a≠0【详解】(1)解:∵二次函数y=ax²+2x+c a≠0;的图象经过点0,3∴将点0,3得;代入y=ax²+2x+c a≠0c=3.(2)解:设函数的表达式为y=ax²+2x+3a≠0;∵函数图象经过点A3,0;∴把点A3,0得;代入y=ax²+2x+3a≠0a=-1;∴函数的表达式为:y=-x²+2x+33(23-24九年级上·广东广州·阶段练习)如图,二次函数y=ax2-2x+c的图象与x轴交于点A-3,0和点B,点y轴交于点C0,3.(1)求二次函数的解析式;(2)求B点坐标,并结合图象写出y<0时,x的取值范围;【答案】(1)y=-x2-2x+3;(2)B1,0,x<-3或x>1.【分析】本题主要考查了求二次函数的解析式,二次函数的图象和性质,熟练掌握二次函数的图象和性质,利用数形结合思想解答是解题的关键.(1)利用待定系数解答,即可求解;(2)根据当y=0时,-x2-2x+3=0,求出点B1,0,进而根据图象可得出答案.【详解】(1)解:∵二次函数y=ax2-2x+c的图象经过点A-3,0,C0,3,∴9a+6+c=0 c=3,解得:a=-1 c=3,∴该二次函数的解析式为y=-x2-2x+3;(2)解:由(1)可知,二次函数的解析式为y=-x2-2x+3,当y=0时,-x2-2x+3=0,解得x1=1,x2=-3,∴B1,0,根据图象可知,当y<0时,x的取值范围为x<-3或x>1【变式演练】1(23-24九年级上·广西崇左·期末)已知二次函数y=m+2x2+m2-9有最大值,且图象经过原点,则m的值为()A.±3B.3C.-3D.±4.5【答案】C【分析】本题考查二次函数的基本性质,根据二次函数有最大值得出m<-2,根据二次函数图象经过原点得出m=±3,即可得出答案,掌握二次函数的性质是解题的关键.【详解】解:∵二次函数的解析式为:y=m+2x2+m2-9有最大值,∴m+2<0,∴m<-2,∵二次函数y=m+2x2+m2-9的图象经过原点,∴m2-9=0,∴m=-3或m=3,∵m<-2,∴m=-3.故选:C2(20-21九年级上·全国·单元测试)如图所示,抛物线y=ax2-x+c的图象经过A-1,0、B0,-2两点.1 求此抛物线的解析式;2 求此抛物线的顶点坐标和对称轴;3 观察图象,求出当x取何值时,y>0?【答案】1 y=x2-x-2;2 抛物线的对称轴是直线x=12;顶点坐标是12,-94;3当x取x<-1或x>2时,y>0.【分析】(1)把A点和B点坐标代入y=ax2-x+c得到关于a、c的方程组,然后解方程组求出a、c即可得到抛物线解析式;(2)把一般式配成顶点式,然后根据二次函数的性质求解;(3)先通过解方程x2-x-2=0 得到抛物线y=x2-x-2与x轴的另一个交点的坐标为2,0.然后写出函数图象在x轴上方所对应的自变量的取值范围即可.【详解】1 ∵二次函数y=ax2-x+c的图象经过A-1,0、B0,-2,∴a+1+c=0c=-2,解得a=1c=-2∴此二次函数的解析式是y=x2-x-2;2 ∵y=x2-x-2=x-122-94,∴抛物线的对称轴是直线x=12;顶点坐标是12,-94 ;3 当y=0时,x2-x-2=0,解得x1=-1,x2=2,即抛物线y=x2-x-2与x轴的另一个交点的坐标为2,0.所以当x取x<-1或x>2时,y>0.【点睛】待定系数法求二次函数解析式, 二次函数的性质,二次函数与一元二次方程的关系等,掌握待定系数法求二次函数解析式是解题的关键3(23-24九年级上·江苏扬州·期末)如图,已知二次函数y=ax2+bx+3的图象经过点A1,0,B-2,3(1)求a+b的值;(2)用无刻度直尺画出抛物线的对称轴l;(用虚线表示画图过程,实线表示画图结果)(3)结合图象,直接写出当y≤3时,x的取值范围是.【答案】(1)a+b=-3(2)见解析(3)x≤-2或x≥0【分析】本题考查了待定系数法求二次函数的解析式、二次函数的图象与性质,熟练掌握二次函数的图象与性质,采用数形结合的思想是解此题的关键.(1)利用待定系数法求解即可;(2)根据二次函数图象的对称性可得出抛物线的对称轴;(3)观察函数图象,结合方程,即可得出结论.【详解】(1)解:将A1,0,B-2,3代入二次函数y=ax2+bx+3得:a+b+3=0 4a-2b+3=3,解得:a=-1 b=-2,∴a+b=-1+-2=-3;(2)解:如图,直线l为所求对称轴,,由(1)得二次函数的解析式为y=-x2-2x+3=-x+12+4,∴可以得出顶点坐标为-1,4,对称轴为直线x=-1;(3)解:令y=3,则-x2-2x+3=3,解得:x=0或x=-2,结合图象得:x≤-2或x≥0时,y≤3,故答案为:x≤-2或x≥0题型06a,b,c与图像的关系【典例分析】1(23-24九年级上·山东济南·期末)二次函数y=ax2+bx+c a≠0的图像如图所示,则下列结论中:①abc<0;②2a-b=0;③当-2<x<3时,y<0;④当x≥1时,y随x的增大而减小,正确的个数是()A.1B.2C.3D.4【答案】A【分析】本题考查二次函数图像与系数的关系,二次函数的性质.根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图像确定y<0时,x的范围,根据二次函数的性质确定增减性.掌握二次函数的图像和性质、灵活运用数形结合思想是解题的关键.【详解】解:①∵二次函数的图像开口向上,∴a>0,∵二次函数图像的对称轴在y轴的右侧,∴-b>0,2a∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故结论①不正确;②∵a>0,b<0,∴2a-b>0,故结论②不正确;③∵二次函数的图像开口向上,对称轴为:x=1,该图像与x轴的位于对称轴左边的交点的坐标为-2,0,∴该图像与x轴的位于对称轴右边的交点的坐标为4,0,∴当-2<x<4时,y<0,∴当-2<x<3时,y<0,故结论③正确;④∵二次函数的图像开口向上,对称轴为:x=1,∴当x≥1时,y随x的增大而增大,故结论④不正确,∴正确的个数是1个.故选:A2(23-24九年级上·湖北随州·期末)已知二次函数y=ax2+bx+c的图象如图所示抛物线的顶点坐标是1,1在该抛物线上,则am2+bm ,有下列结论①a>0;②b2-4ac>0;③4a+b=1;④若点A m,n+c≥a+b+c.其中正确的结论是.【答案】①③④【分析】本题考查二次函数图象与系数之间的关系,开口方向判断①,与x轴的交点个数,判断②,特殊点判断③,最值判断④.【详解】解:∵抛物线的开口向上,∴a>0;故①正确;∵抛物线与x轴没有交点,∴b2-4ac<0;故②错误;∵顶点坐标为1,1,,图象过3,3∴a+b+c=1,9a+3b+c=3,两式相减,得:8a+2b=2,∴4a+b=1;故③正确;∵当x=1时y=a+b+c=1值最小,∴am2+bm+c≥a+b+c,故④正确;故答案为:①③④3(23-24九年级上·河南洛阳·期末)已知二次函数y=ax2+2ax-m.(1)当a=1时,二次函数y=ax2+2ax-m的图象与x轴有两个交点,求m的取值范围;(2)若二次函数y=ax2+2ax-m的部分图象如图所示,①求二次函数y=ax2+2ax-m图象的对称轴;②求关于x的一元二次方程ax2+2ax-m=0的解.【答案】(1)m>-1(2)①直线x=-1;②x1=1,x2=-3【分析】(1)将a=1代入二次函数y=ax2+2ax-m中,然后根据当a=1时,二次函数y=ax2+2ax-m的图象与x轴有两个交点,可知 22-4×1×-m>0,然后即可求得m的取值范围;(2)①将函数解析式化为顶点式,即可得到该函数的对称轴;②根据图象与x轴的一个交点和二次函数的性质,可以写出该函数图象与x轴的另一个交点,然后即可写出关于x的一元二次方程ax2+2ax-m=0的解;本题考查了抛物线与x轴的交点、二次函数的性质,解题的关键是明确题意,利用数形结合熟练掌握以上知识的应用.【详解】(1)当 a=1时,y=ax2+2ax-m,∵当a=1时,二次函数y=ax²+2ax-m的图象与x轴有两个交点,∴22-4×1×-m>0,解得m>-1;(2)①∵y=ax2+2ax-m=a x+12-a-m,∴二次函数y=ax2+2ax-m的图象的对称轴是直线x=-1;②由图象可知:二次函数y=ax2+2ax-m的图象与x轴交于点(1,0),由①知,该函数的对称轴为直线x=-1,∴该函数与x轴的另一个交点为-3,0,∴关于x的一元二次方程ax2+2ax-m=0的解是x1=1,x2=-3【变式演练】1(23-24九年级上·云南昭通·阶段练习)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()A.b<0B.当x>0时,y>0C.a-3=cD.2a+b=0【答案】D【分析】本题考查抛物线与坐标轴的交点、二次函数的性质.解答本题的关键是明确题意,利用数形结合的思想解答.根据函数图象的开口方向,对称轴,与y轴的交点位置,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可得,A.该函数图象的开口向下,∴a<0,∵对称轴位于y轴右侧,∴-b>0,2a∴b>0,故此选项不符合题意;B.由图象可得:当x>0时,y不一定大于0,故此选项不符合题意;C.该函数图象与y轴交于正半轴,∴c>0,而a<0,∴a-c<0,∴a-c=3错误,即a-3=c错误;故此选项不符合题意;D.该函数的对称轴为直线x=1,=1,∴x=-b2a∴b=-2a,即2a+b=0,故选项符合题意.故选:D2(23-24九年级上·宁夏吴忠·阶段练习)二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac<0;②a+b=0;③a+b+c>0;④b2-4ac<0.其中正确的是.(填序号)。
二次函数系数a、b、c与图像的关系
二次函数系数a 、b 、c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a 〈 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-ab ,则对称轴在y 轴的左边;b 与a 异号,说明,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c 〉 0 抛物线与y 轴的交点在y 轴的正半轴;c 〈 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b ,c 共同决定判别式的符号进而决定图象与x 轴的交点与x 轴两个交点与x 轴一个交点与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= —1时,y=a - b + c .当x = 1时,① 若y 〉 0,则a + b + c 〉0;② 若y < 时0,则a + b + c 〈 0 当x = —1时,① 若y 〉 0,则a - b + c 〉0;② 若y 〈 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= —2, y=4a —2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a —3b +c . 反之,给我们相应的二次函数图象,我们可以得到其系数a,b,c 以及它们组合成的一些关系结构(例如对称轴; 判别式……等等)的符号二、经典例题讲解例1 已知二次函数()02≠++=a c b a χχγ的图像如图,则a 、b 、c 满足( ) A .a 〈 0,b 〈 0,c 〉 0 ;B .a < 0,b < 0,c 〈 0 ;C . a < 0,b 〉 0,c 〉 0 ;D .a > 0,b < 0,c > 0 ;例2(2015呼和浩特)如图,四个二次函数的图像中分别对应的是: ①2χγa =②2χγb =③2χγc =④2χγd =,则a , b , c , d 的大小关系是 .A .a 〉 b > c > dB .a 〉 b 〉 d > cC .b 〉 a 〉 c > dD .b > a > d 〉 c例3已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果①b 2>4ac ;②abc >0;③2a+b=0;④a+b+c >0;⑤4a-2b+c <0,则正确的结论是( )A 、①②③④B 、②④⑤C 、②③④D 、①④⑤y xO x y O ① ② ④ ③练习1。
二次函数图像与系数的关系
二次函数系数与图形的关系解答方法:1、判断单独系数a,看开口方向2、单独判断系数b,看对称轴,左同右异,对称轴在y轴左边,则a,b同号,对称轴在y轴右边,则a,b异号3.单独判断系数c,则看抛物线与对称轴的交点。
4、判断系数a和b的大小,则看对称轴,如题目给出对称轴为1,则对称轴就是-=1从而计算得出a和b的关系,如果题目给出的对称轴是在-1和0之间,则,进而计算出a和b的大小关系5、判断3个系数a,b,c的关系,首先是-4ac,看抛物线与横轴的交点,其次顶点坐标最后a+b+c代表的就是x=1时对应的y值a-b+c x=-14a+2b+c x=24a-2b+c x=-29a-3b+c x=-39a+3b+c x=3例1如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:①abc<0②b2-4ac>0③4b+c<0④若B(-52,y1)、C(-12,y2)为函数图象上的两点,则y1>y2⑤当-3≤x≤1时,y≥0,例2二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0④当y>0时,x的取值范围是-1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()例4已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,0),下列结论:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是()课堂练习:二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②244ac ba>0;③ac-b+1=0;④OA•OB=-ca.其中正确结论的个数是()如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③-1≤a≤-2 3;④4ac-b2>8a;其中正确的结论是()a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2-2ax+3的图象上,则b、c的大小关系是b如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是∙二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的结论是∙若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0∙若关于x的一元二次方程x2-3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2-ab+b2=18,则a/b+ b/a 的值是()A.3 B.-3 C.5 D.-5∙若x1,x2是一元二次方程x2-2x-1=0的两个根,则x12-x1+x2的值为()A.-1 B.0 C.2 D.3∙若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=-7 D.x1=-1,x2=7 ∙如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac-b2<8a④1/3<a<2/3⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤如图是二次函数y=ax2+bx+c过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac,②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是()A.②④B.①④C.②③D.①③∙在同一平面直角坐标系中,函数y=ax2+bx(a≠0)与y=bx+a(b≠0)的图象可能是()A.B.C.D.∙直线y=kx经过二、四象限,则抛物线y=kx2+2x+k2图象的大致位置是()A.B.C.D.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,下列结论:①b2-4ac<0;②abc>0;③a-b+c<0;④m>-2,其中,正确的个数有()A.1B.2C.3D.4已知二次函数y=ax 2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b 为整数时,ab 的值为( )二次函数y=ax 2+bx+c 的图象如图所示,下列结论:①b <2a ;②a+2c-b >0;③b >a >c ;④b 2+2ac <3ab .其中正确结论的个数是( )已知直线y=-3x+3与坐标轴分别交于点A ,B ,点P 在抛物线y=-31(x-32+4上,能使△ABP 为等腰三角形的点P 的个数有( ) A .3个 B .4个C .5个D .6个二次函数y=ax 2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( ) A .-3B .-1C .2D .3已知关于x 的方程ax+b=0(a≠0)的解为x=-2,点(1,3)是抛物线y=ax 2+bx+c (a≠0)上的一个点,则下列四个点中一定在该抛物线上的是( ) A .(2,3)B .(0,3)C .(-1,3)D .(-3,3)已知二次函数y=x 2+2x-3,当自变量x 取m 时,对应的函数值小于0,设自变量分别取m-4,m+4时对应的函数值为y 1,y 2,则下列判断正确的是( ) A .y 1<0,y 2<0 B .y 1<0,y 2>0C .y 1>0,y 2<0D .y 1>0,y 2>0。
二次函数中各项系数abc与图像的关系
二次函数中各项系数a ;b ;c 与图像的关系一、首先就y=ax 2+bx+ca≠0中的a ;b ;c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大;抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号;说明02<-ab ;则对称轴在y 轴的左边; b 与a 异号;说明−b 2b >0;则对称轴在y 轴的右边;特别的;b = 0;对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点0;cc > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的;c = 0;抛物线过原点.4 a;b;c 共同决定判别式?=b 2−4bb 的符号进而决定图象与x 轴的交点b 2−4bb >0 与x 轴两个交点b 2−4bb =0 与x 轴一个交点b 2−4bb <0 与x 轴没有交点5 几种特殊情况:x=1时;y=a + b + c ;x= -1时;y=a - b + c .当x = 1时;① 若y > 0;则a + b + c >0;② 若y < 时0;则a + b + c < 0当x = -1时;① 若y > 0;则a - b + c >0;② 若y < 0;则a - b + c < 0.扩:x=2; y=4a + 2b + c ;x= -2; y=4a -2b + c ; x=3; y=9a +3 b + c ;x= -3; y=9a -3b + c ..一.选择题共8小题1.已知二次函数y=ax 2+bx+c 的图象大致如图所示;则下列关系式中成立的是A .a >0B .b <0C .c <0D .b+2a >02.如果二次函数y=ax 2+bx+ca ≠0的图象如图所示;那么下列不等式成立的是A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx+ca ≠0的图象如图所示;有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx+ca ≠0的图象如图所示;对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0;其中正确的个数是A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx+ca ≠0的图象如图;给出下列四个结论::①a <0;②b >0;③b 2﹣4ac>0;④a+b+c <0;其中结论正确的个数有A .1个B .2个C .3个D .4个6.如图所示;抛物线y=ax 2+bx+c 的顶点为﹣1;3;以下结论:①b 2﹣4ac <0;②4a ﹣2b+c <0;③2c ﹣b=3;④a+3=c;其中正确的个数A .1B .2C .3D .47.如图是二次函数y=ax 2+bx+c 图象的一部分;图象过点A ﹣3;0;对称轴为直线x=﹣1;下列给出四个结论中;正确结论的个数是 个①c >0;②若点B ﹣;y 1、C ﹣;y 2为函数图象上的两点;则y 1<y 2;③2a ﹣b=0; ④<0;⑤4a ﹣2b+c >0.A .2B .3C .4D .58.二次函数y=ax 2+bx+c 的图象如图所示;以下结论:①abc >0;②4ac <b 2;③2a+b >0;④当x <时;y 随x 的增大而减小;⑤a+b+c >0.其中正确的有A .5个B .4个C .3个D .2个二.填空题共4小题9.如图;抛物线y=ax 2+bx+ca ≠0的对称轴为直线x=1;与x 轴的一个交点坐标为﹣1;0;其部分图象如图所示;下列结论:①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1;x 2=3;③3a+c >0;④当y >0时;x 的取值范围是﹣1≤x <3;⑤当x <0时;y 随x 增大而增大; 其中结论正确有 .10.一抛物线和抛物线y=﹣2x 2的形状、开口方向完全相同;顶点坐标是﹣1;3;则该抛物线的解析式为 .11.抛物线y=ax 2+12x ﹣19顶点横坐标是3;则a= .12.将二次函数y=x 2+6x+5化为y=ax ﹣h 2+k 的形式为 .三.解答题共7小题13.已知:抛物线y=﹣x 2+bx+c 经过点B ﹣1;0和点C2;3.1求此抛物线的表达式;2如果此抛物线沿y 轴平移一次后过点﹣2;1;试确定这次平移的方向和距离.14.函数y=m+2是关于x 的二次函数;求:1满足条件的m 值;2m 为何值时;抛物线有最低点 求出这个最低点.这时;当x 为何值时;y 随x的增大而增大3m 为何值时;函数有最大值 最大值是多少 这时;当x 为何值时;y 随x 的增大而减小.15.已知二次函数的图象经过0;0﹣1;﹣1;1;9三点.1求这个函数的解析式;2求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是1;﹣4;且经过点0;﹣3;求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.1将y=x2﹣4x+5化成y=a x﹣h2+k的形式;2指出该二次函数图象的对称轴和顶点坐标;3当x取何值时;y随x的增大而增大18.如图;二次函数的图象的顶点坐标为1;;现将等腰直角三角板直角顶点放在原点O;一个锐角顶点A在此二次函数的图象上;而另一个锐角顶点B在第二象限;且点A的坐标为2;1.1求该二次函数的表达式;2判断点B是否在此二次函数的图象上;并说明理由.19.已知二次函数y=ax﹣h2;当x=4时有最大值;且此函数的图象经过点1;﹣3.1求此二次函数的解析式;2当x为何值时;y随x的增大而增大。
二次函数图像与系数的关系
二次函数的图象与各项系数之间的关系技巧讲解1. 二次项系数a :a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.二次函数2y ax bx c =++中,a 为二次项系数,显然0a ≠.① 当0a >时,抛物线开口向上;② 当0a <时,抛物线开口向下; ③a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。
2. 一次项系数b :①在a 确定的前提下,b 决定了抛物线对称轴的位置.②ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,①当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧; ②当0b =时,02b a-=,即抛物线的对称轴就是y 轴; ③当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即①当0b >时,02b a->,即抛物线的对称轴在y 轴右侧; ②当0b =时,02b a-=,即抛物线的对称轴就是y 轴; ③当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧. 3. 常数项c :c 决定了抛物线与y 轴交点的位置.⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.4.特殊形式(1)当x=1时,可以求出a+b+c 的值; 若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0;(2)当x=-1时,可以求出a-b+c 的值; 若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0;(3)根的别式b 2-4ac ,可以用来判断抛物线与x 轴的交点个数,当b 2-4ac>0时,方程2y ax bx c =++=0有两个根,也就是说y=0时,函数在x 轴上可以找到2个对应的自变量值,即断抛物线与x 轴有2个交点;同理b 2-4ac=0,二次函数图象与x 轴有一个交点;b 2-4ac <0时,抛物线与x 轴没有交点。
二次函数中各项系数与图像的关系
二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。
一.选择题(共8小题)1.已知二次函数y=ax 2+bx+c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b+2a >02.如果二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx+c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a+b+c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx+c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b+c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个B.4个C.3个D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a= .12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。
(完整版)二次函数的图象与各项系数之间的关系知识点,推荐文档
总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决
定开口的大小. 2. 一次项系数 b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴. ⑴ 在 a 0 的前提下, 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴左侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a 当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的右侧. 2a ⑵ 在 a 0 的前提下,结论刚好与上述相反,即 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴右侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a 当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的左侧. 2a 总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.
二次函数的图象与各项系数之间的关系
1. 二次项系数 a
二次函数 y ax2 bx c 中, a 作为二次项系数,显然 a 0 .
⑴ 当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越 大;
⑵ 当 a 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越 大.
y ax2 bx c 关于 x 轴对称后,得到的解析式是 y ax2 bx c ;
y ax h2 k 关于 x 轴对称后,得到的解析式是 y ax h2 k ;
2. 关于 y 轴对称 y ax2 bx c 关于 y 轴对称后,得到的解析式是 y ax2 bx c ;
⑶ 当 c 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为 负.
总结起来, c 决定了抛物线与 y 轴交点的位置.
总之,只要 a ,, b c 都确定,那么这条抛物线就是唯一确定的.
二次函数图象与系数的关系最全总结
二次函数图象与系数的关系最全总结二次函数是初中数学的重点也是难点内容之一,它的图象是一条抛物线,其形状、开口方向、位置等与表达式中的系数的关系非常密切。
所以,二次函数图象与a、b、c的关系是非常重要的一个知识点,今天,小培就为大家总结一下二次函数图像与系数的关系变化。
1. a决定抛物线的开口方向及大小具体内容:•a>0,抛物线开口向上•a<0,抛物线开口向下•|a|越大,抛物线的开口越小•|a|越小,抛物线的开口越大我们知道抛物线平移前后形状及开口方向不变,只是位置发生改变,那么只要两个二次函数的a相同,那么就可以由其中一个二次函数通过平移得到另一个二次函数.图象:抛物线开口向上,a>0,抛物线开口向下,a<0,开口大的抛物线的|a|小于开口小的抛物线的|a|.图象示例:2. a、b共同决定抛物线对称轴的位置对称轴的位置具体内容:•b=0时,对称轴为y轴•b/a>0,对称轴在y轴左侧(即a、b同号,则对称轴在y轴左侧,简记为“左同”)•b/a<0,对称轴在y轴右侧(即a、b异号,则对称轴在y轴右侧,简记为“右异”)上述当b≠0时,a、b的符号及对称轴与y轴的位置可简记为“左同右异”图象:对称轴在y轴,则b=0,对称轴在y轴左侧,根据“左同右异”判断a、b同号,对称轴在y轴右侧,根据“左同右异”判断a、b异号.图象示例:3. c决定抛物线与y轴交点的位置具体内容:•c=0,抛物线过原点•c>0,抛物线与y轴交于正半轴•c<0,抛物线与y轴交于负半轴可根据c是抛物线与y轴交点的纵坐标来理解记忆这一点内容图象示例:4. b2-4ac决定抛物线与x轴的交点的个数具体内容:•b2-4ac=0时,与x轴有唯一交点(即顶点)•b2-4ac>0时,与x轴有两个交点(即开口向上时顶点在x轴下方,开口向下顶点在x轴上方)•b2-4ac<0时,与x轴没有交点(即开口向上时顶点在x轴上方,开口向下顶点在x轴下方)图象示例:5. 特例•当x=1时,y=a+b+c•当x=-1时,y=a-b+c•当x=2时,y=4a+2b+c•当x=-2时,y=4a-2b+c•若a+b+c<0,即当x=1时,y<0•若a-b+c>0,即当x=-1时,y>0•当对称轴为直线x=1时,则2a+b=0•当对称轴为直线x=-1时,则2a-b=0从上述中我们可以得出从二次函数的图象也可以得出关于系数a、b、c的相关信息,做此类问题一定要注意数形结合.例题讲解例1二次函数y=ax2+bx+c的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据图象开口向下可得a<0,根据对称轴在y轴右侧可得a、b异号,则b>0,抛物线与y轴交于正半轴,可得c>0,所以<0,则点M(b,)符合第四想象点的坐标特征(+,-),故选D.例2若抛物线y=ax2+3x+1与x轴有两个交点,则a的取值范围是()A.a>0B.a>- 4/9C.a>9/4D.a<9/4且a≠0【分析】根据抛物线与x轴有两个交点,则b2-4ac>0,即32-4a×1>0,解得a<9/4,根据二次函数定义可知a≠0.故选D.▲易错警示▲不要忽视二次函数表达式中二次项系数不为0这一条件.例3 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①a+b+c<0,②a-b+c>0;③abc>0;④b=2a 中正确个数为()A.4个B.3个C.2个D.1个【分析】•a+b+c是当x=1时y的值,根据图象可知当x=1时,图象上对应的点在x轴下方,则y=a+b+c<0,故①正确;•a-b+c是当x=-1时y的值,根据图象可知当x=-1时,图象上对应的点在x 轴上方,则y=a-b+c>0,故②正确;•根据图象开口向下可得a<0,根据对称轴在y轴左侧,可得a、b同号,故b<0,根据图象与y轴交于正半轴可得c>0,所以abc>0,故③正确;•由图象得抛物线的对称轴为直线•x=-b/2a=-1,则b=2a,故④正确;故本题选A.。
中考复习课件 二次函数的图象与各项字母系数之间的关系
A、4个 B、3个
y
C、2个 D、1个
o
x
x=1
3、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①abc>0;②b=2a;③a+b+c<0;
④a+b-c>0; ⑤a-b+c>0正确的个数是 (C )
A、2个 B、3个
y
C、4个 D、5个
小试牛刀 快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
20
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
21
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
b
2a+b
- 与1比较,等于1,大于1,小于1
2a
2a-b
- b 与-1比较,等于-1,大于-1,小于-1 2a
b2-4ac
与x轴交点个数
a+b+c 令x=1,y=a+b+c,看纵坐标是在y轴的正半
轴上(>0)还是在负半轴上(<0)
a-b+c 令x=-1,y=a-b+c,看纵坐标
4a+2b+ c
4a-
b24ac>0
b2-4ac=0
与x轴无交点
b24ac<0
5.二次函数图象的对称轴特殊情况
(1)当对称轴是x=1
二次函数a、b、c与图像的关系
一一、首首先就 y=ax +bx+c(a≠0)中的 a,b,c 对图像的作用用归纳如 下:
1 a 的作用用:决定开口口方方向:a > 0 开口口向上;a < 0 开口口向下;
决定张口口的大大小小:∣ a∣ 越大大,抛物线的张口口越小小.
2 b 的作用用:b 和 a 与抛物线图像的对称轴、顶点横坐标有关.
3.(2015•泸州)已知二二次函数 y=ax2+bx+c(a,b,c 为常数,a≠0)的图象如图所示,有下
列列结论:①abc<0,②b2- 4ac>0,③a-b+c=0,④a+b+c>0,其中正 确结论的个数是( )
A、1 B、2
C、3 D、4
4.(2015•仙游县二二模)已知二二次函数 y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:y ①② NhomakorabeaO
x
③④ 例例 3 已知二二次函数 y=ax2+bx+c 的图象如图,其对称轴 x=-1,给出下列列结果 ①b2>4ac ;②abc >0;③2a+b=0;④a+b+ c>0;⑤4a-2b+c<0,则正确的结论 是( ) A、①②③④ B、②④⑤ C、②③④ D、①④⑤
2
练习
1. (2015•重庆)已知抛物线 y=ax2+bx+c(a≠0)在平面面直⻆角坐标系中的
4 a,b,c 共同决定判别式的符号进而而决定图象与 x 轴的交点 与 x 轴两个交点 与 x 轴一一个交点 与 x 轴没有交点
5 几几种特殊情况:x=1 时,y=a + b + c ; x= -1 时,y=a - b + c .
九年级上数学专题复习二:二次函数图象与系数的关系(含答案)
专题复习二 二次函数图象与系数的关系(1)系数a 决定抛物线的开口方向和大小,a>0时,开口向上;a<0时,开口向下.(2)对称轴在y 轴的左侧,a ,b 同号;对称轴在y 轴的右侧,a ,b 异号.(3)c>0时,图象与y 轴交点在x 轴上方;c=0时,图象过原点;c<0时,图象与y 轴交点在x 轴下方.(4)b 2-4ac 的符号决定抛物线与坐标轴的交点个数.1.已知二次函数y=ax 2+bx 的图象如图所示,那么a ,b 的符号为(C ).A.a >0,b >0B.a <0,b >0C.a >0,b <0D.a <0,b <0(第1题) (第2题) (第5题)2.如图所示为二次函数y=ax 2+bx+c 的图象,对称轴是直线x=1,则下列结论错误的是(D ).A.c >0B.2a+b=0C.b 2-4ac >0D.a-b+c >03.二次函数y=ax 2-a 与反比例函数y=xa (a ≠0)在同一平面直角坐标系中可能的图象为(A ).A. B. C. D.4.二次函数y=x 2+bx+c ,若b+c=0,则它的图象一定过点(D ).A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)5.抛物线y=ax 2+bx+c 的顶点为D(-1,2),与x 轴的一个交点A 在(-3,0)和(-2,0)之间,其部分图象如图所示,则下列结论:①b 2-4ac <0;②a+b+c <0;③c-a=2;④方程ax 2+bx+c-2=0有两个相等的实数根.其中正确的结论有(C ).A.1个B.2个C.3个D.4个6.已知抛物线y=ax 2+2x+c 与x 轴的交点都在原点的右侧,则点M(a ,c)在第 三 象限.7.如图所示为二次函数y=ax 2+bx+c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:(第7题)①abc <0;②b 2-4ac >0;③4b+c <0;④若B (-25,y 1),C (-21,y 2)为函数图象上的两点,则y 1>y 2; ⑤当-3≤x ≤1时,y ≥0.其中正确的结论有 ②③⑤ (填序号).8.已知二次函数y=ax 2+bx+c 的图象开口向下,顶点落在第二象限.(1)试确定a ,b ,b 2-4ac 的符号,并简述理由.(2)若此二次函数的图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为32,求抛物线的二次函数的表达式.【答案】(1)∵抛物线开口向下,∴a <0.∵顶点在第二象限,∴⎪⎪⎩⎪⎪⎨⎧>-<-044022ab ac a b ,∴b <0,b 2-4ac >0.(2)由题意可得c=0,此时顶点坐标为(-a b 2,-a b 42).∵顶点在直线x+y=0上,∴-a b 2-a b 42=0. ∴b=-2.此时顶点坐标为(a 1,-a 1).∴21a +21a =(32)2.∴a=-31或a=31 (舍去).∴抛物线的函数表达式为y=-31x 2-2x. 9.已知函数y=x 2-2mx 的顶点为点D.(1)求点D 的坐标(用含m 的代数式表示).(2)求函数y=x 2-2mx 的图象与x 轴的交点坐标.(3)若函数y=x 2-2mx 的图象在直线y=m 的上方,求m 的取值范围.【答案】(1)y=x 2-2mx=(x-m)2-m 2,∴顶点D(m ,-m 2).(2)令y=0,得x 2-2mx=0,解得x 1=0,x 2=2m.∴函数的图象与x 轴的交点坐标为(0,0),(2m ,0).(3)∵函数y=x 2-2mx 的图象在直线y=m 的上方,∴顶点D 在直线y=m 的上方.∴-m 2>m ,即m 2+m <0.∴m 的取值范围是-1<m <0.10.已知抛物线y=ax 2+3x+(a-2),a 是常数且a <0,下列选项中,可能是它大致图象的是(B).A.B.C.D.11.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:①4ac-b 2<0;②4a+c <2b ;③3b+2c <0;④m(am+b)+b <a(m ≠-1).其中正确的结论有(B ).A.4个B.3个C.2个D.1个(第11题) (第12题) (第14题)(第15题)12.函数y=x 2+bx+c 与y=x 的图象如图所示,则下列结论:①b 2-4c <0;②c-b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b-1)x+c <0.其中正确结论的个数为(C ).A.1B.2C.3D.413.二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 的取值范围是 0<t <2 .14.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则a b 的值为 -2 ,a c 的取值范围是 -8<ac <-3 . 【解析】∵抛物线的对称轴为直线x=1,∴x=-a b 2=1,即a b =-2.由图象知当x=-2时,y >0,即4a-2b+c >0①,当x=-1时,y <0,即a-b+c <0②,将b=-2a 代入①②,得c >-8a ,c <-3a. 又∵a >0,∴-8<ca <-3.15.如图所示为抛物线y=ax 2+bx+c 的图象,A ,B ,C 为抛物线与坐标轴的交点,且OA=OC=1,则a ,b 之间满足的关系式为 a-b+1=0 .(第16题)16.如图所示为二次函数y=ax 2+bx+c(a ≠0)的图象.(1)判断a ,b ,c 及b 2-4ac 的符号.(2)若OA=OB ,求证:ac+b+1=0.【答案】(1)a>0,b<0,c<0,b 2-4ac>0.(2)∵OA=OB ,且OB=|c|=-c ,∴ax 2+bx+c=0有一根为x=c.∴ac 2+bc+c=0.∴ac+b+1=0.17.对于二次函数y=ax 2+bx+c ,如果当x 取任意整数时,函数值y 都是整数,那么我们把该函数的图象叫做整点抛物线(例如:y=x 2+2x+2).(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的函数表达式: y=21x 2+21x .(不必证明) (2)请探索:是否存在二次项系数的绝对值小于21的整点抛物线?若存在,请写出其中一条抛物线的表达式;若不存在,请说明理由.【答案】(1)y=21x 2+21x (2)假设存在符合条件的抛物线,则对于抛物线y=ax 2+bx+c ,当x=0时,y=c;当x=1时,y=a+b+c. 由整点抛物线定义知:c 为整数,a+b+c 为整数,∴a+b 必为整数.又当x=2时,y=4a+2b+c=2a+2(a+b )+c 是整数,∴2a 必为整数.∴|a|≥21.∴不存在二次项系数的绝对值小于21的整点抛物线.(第18题)18.【攀枝花】二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列命题中,正确的是(D ).A.a >b >cB.一次函数y=ax+c 的图象不经过第四象限C.m(am+b)+b <a(m 是任意实数)D.3b+2c >0【解析】由二次函数的图象可知a >0,c <0;由x=-1得-ab 2=-1,故b >0,b=2a ,则b >a >c ,故A 错误.∵a >0,c <0,∴一次函数y=ax+c 的图象经过第一、三、四象限,故B 错误.当x=-1时,y 最小,即a-b+c 最小,故a-b+c <am 2+bm+c ,即m(am+b)+b >a ,故C 错误. 由图象可知当x=1时y >0,即a+b+c >0,∵b=2a ,∴a=21b.∴21b+b+c >0.∴3b+2c >0,故D 正确.故选D.19.【杭州】在平面直角坐标系中,设二次函数y 1=(x+a)(x-a-1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式.(2)若一次函数y 2=ax+b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的表达式.(3)已知点P(x 0,m)和点Q(1,n)在函数y 1的图象上,若m <n ,求x 0的取值范围.【答案】(1)函数y 1的图象经过点(1,-2),得(a+1)(-a)=-2,解得a 1=-2,a 2=1.当a1=-2时,y1=(x-2)(x+2-1)=x 2-x-2;当a2=1时,y1=(x+1)(x-2)=x 2-x-2.综上所述,函数y1的表达式为y=x 2-x-2.(2)当y=0时,(x+a)(x-a-1)=0,解得x 1=-a ,x 2=a+1.∴y 1的图象与x 轴的交点是(-a ,0),(a+1,0).当y2=ax+b 经过(-a ,0)时,-a 2+b=0,即b=a 2;当y2=ax+b 经过(a+1,0)时,a 2+a+b=0,即b=-a 2-a.(3)由题意知,函数y 1的对称轴为直线x=21.当点P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,(1,n)与(0,n)关于对称轴对称,由m <n ,得0<x 0≤21;当点P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得21<x 0<1.综上所述,m <n ,所求x 0的取值范围0<x 0<1.20.如图所示,二次函数y=ax 2+2ax-3a(a ≠0)图象的顶点为H ,与x 轴交于A ,B 两点(点B 在点A 右侧),点H ,B 关于直线l:y=33x+3对称.(1)求A ,B 两点坐标,并证明点A 在直线l 上.(2)求二次函数的表达式.(3)过点B 作直线BK ∥AH 交直线l 于点K,M,N 分别为直线AH 和直线l 上的两个动点,连结HN,NM,MK ,求HN+NM+MK 的最小值.(第20题)图1图2(第20题答图)【答案】(1)由题意得ax 2+2ax-3a=0(a ≠0),解得x 1=-3,x 2=1.∴点A 的坐标为(-3,0),点B 的坐标为(1,0).∵直线y=33x+3,当x=-3时,y=33×(-3)+ 3=0,∴点A 在直线l 上.(2)∵点H ,B 关于过点A 的直线y=33x+3对称,∴AH=AB=4.∵AH=BH ,∴△ABH 为正三角形.如答图1所示,过顶点H 作HC ⊥AB 于点C ,则AC=21AB=2,HC=23,∴顶点H(-1,23),代入二次函数表达式,解得a=-23.∴二次函数表达式为y=-23x 2-3x+233. (3)易求得直线AH 的函数表达式为y=3x+33,直线BK 的函数表达式为y=3x-3.由⎪⎩⎪⎨⎧-=+=33333x y x y ,解得⎩⎨⎧==323y x ,即K(3,23).∴BK=4.∵点H ,B 关于直线AK 对称,∴HN+MN 的最小值是MB.如答图2所示,过点K 作直线AH 的对称点Q,连结QK,交直线AH 于点E ,则QM=MK,QE=EK=KD=23,则QK=43,AE ⊥QK.∴BM+MK 的最小值是BQ,即BQ 的长是HN+NM+MK 的最小值.∵BK ∥AH,∴∠BKQ=∠HEQ=90°.由勾股定理可求得QB=8.∴HN+NM+MK 和的最小值为8.。
二次函数图象与系数之间的关系
二次函数y=ax2+bx+c(a≠0)图象与各项系数之间的关系一、知识梳理1、二次项系数a:①a>0时,抛物线开口向上;a<0时,抛物线开口向下。
②|a|越大,开口越小;|a|越小,开口越大。
2、一次项系数b:a,b共同决定了抛物线对称轴的位置,“左同右异”。
3、常数项c:决定抛物线与y轴交点的位置4、△= b2-4ac>0方程ax2+bx+c=0有两个不相等的实数根函数y=ax2+bx+c与x轴有两个交点;△= b2-4ac=0方程ax2+bx+c=0有两个相等的实数根函数y=ax2+bx+c与x轴只有一个交点;△= b2-4ac<0方程ax2+bx+c=0没有实数根函数y=ax2+bx+c与x轴没有交点;5、抛物线的特殊位置与系数的关系:(1)顶点在x轴上:b²-4ac=0;(2)顶点在y轴上:b=0;(3)顶点在原点:b=c=0;(4)抛物线经过原点:c=0.6、特殊代数式:二、典型例题例1.已知二次函数y=ax2+bx+c(a≠0)的图象如图,现有下列结论:①b2-4ac>0;②abc>0;③a-b+c>0;④9a+3b+c<0;⑤2a+b=0,⑥3a+c<0,⑦8a+c>0;⑧am2+bm>a+b(m≠1).则其中结论正确的是( )例2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①;②;③;④当x<0时,y随x增大而增大;则其中结论正确的是( )例3.当b<0时,一次函数与二次函数在同一坐标系内的图象可能是()x变式练习1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①②当x=1时,函数有最大值。
③当x=-1或x=3时,函数y的值都等于0. ④4a+2b+c<0其中正确结论的个数是()A.1B.2C.3D.4(第1题)(第2题)(第3题)2、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①ab c>0;②b<a+c;③4a+2b+c >0;④b2-4ac>0;其中正确的结论有()A.1个B.2个C.3个D.4个3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列判断不正确的是()A、abc>0;B、b2-4ac>0;C、2a+b>0;D、4a+2b+c<04、二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的个数是()①a+b+c<0;②a-b+c>0;③abc>0;④b=2aA、4B、3C、2D、15、已知二次函数y=ax2+bx+c其中a,b,c满足a+b+c=3和9a+3b+c=3,则该二次函数图象的对称轴是直线.6、已知y=ax2+bx+c中a<0,b>0,c<0,△<0,函数的图象经过象限。
二次函数图象-1
20.2 二次函数图象-1选择题 1.(2007•朝阳区)如图,直角梯形ABCD 中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E 由B 沿折线BCD 向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM=x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系的图象大致是( ).CD .MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右平移,直到C 点与N 点重合时为止,设△ABC 与正方形MNPQ 的重叠部分(图中阴影部分)的面积为ycm 2,MA 的长度为xcm ,则y 与x 之间的函数关系大致为( ).CD.3.(2008•铜仁地区)已知y=ax +bx+c 的图象如图所示,则y=ax+b 的图象一定过( )4.(2006•菏泽)二次函数y=ax +bx+c 的图象如图所示,则直线y=bx+c 的图象不经过( )( ).C D.6.(2008•绵阳)二次函数y=ax+bx+c的部分对应值如下表.利用二次函数的图象可知,当函数值y<0时,x的取值范围是7.(2005•连云港)抛物线y=a(x+1)+2的一部分如图所示,该抛物线在y轴右侧部分与x轴交点的坐标是().C D..C D..C D.2.CD .12.如图,一次函数y 1=kx+b 与二次函数y 2=ax 交于A (﹣1,1)和B (2,4)两点,则当y 1<y 2的取值范围是( )13.(2010•福州)已知二次函数y=ax +bx+c 的图象如图所示,则下列结论正确的是()14.(2009•随州)如图是某二次函数的图象,将其向左平移2个单位后的图象的函数解析式为y=ax +bx+c (a ≠0),则下列结论中正确的有( ) (1)a >0;(2)c <0;(3)2a ﹣b=0;(4)a+b+c >0.15.(2007•南充)如图是二次函数y=ax +bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论:①b 2>4ac ;②2a+b=0;③a ﹣b+c=0;④5a <b .其中正确结论是( )16.(2006•山西)二次函数y=ax+bx+c(a≠0)的图象如图所示.有下列结论:①b2﹣4ac<0;②ab>0;③a﹣b+c=0;④4a+b=0;⑤当y=2时,x只能等于0.其中正确的是()17.(2006•金华)二次函数y=ax+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b﹣4ac>0,其中正确的个数是()18.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在()19.(2004•潍坊)已知二次函数y=ax+bx+c的图象如图所示,则a、b、c满足()20.(1998•湖州)若二次函数y=ax+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),则S=a+b+c的变化其值为正的式子的个数是()22.二次函数y=ax+bx+c的图象如图所示,则下面四个结论中正确的结论有()①ac<0;②ab>0;③2a<b;④a+c>b;⑤4a+2b+c>0;⑥a+b+c>0.23.二次函数y=ax+bx+c的图象如图所示,根据图象可得a,b,c与0的大小关系是()24.已知b>0时,二次函数y=ax+bx+a﹣1的图象如下列四个图之一所示:中正确的个数为()29.已知二次函数y=ax2+bx+c的图象如图所示,那么点()在平面直角坐标系中的()30.(2010•文山州)已知二次函数y=ax+bx+c的图象如图所示,则a,b,c满足()【试卷训练】第20章《二次函数和反比例函数》好题集(02):20.2 二次函数图象-1参考答案与试题解析选择题1.(2007•朝阳区)如图,直角梯形ABCD 中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E 由B 沿折线BCD 向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM=x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系的图象大致是( ).CD .2.(2004•嘉兴)如图,等腰直角三角形ABC (∠C=90°)的直角边长与正方形MNPQ 的边长均为4cm ,CA 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右平移,直到C 点与N 点重合时为止,设△ABC 与正方形MNPQ 的重叠部分(图中阴影部分)的面积为ycm 2,MA 的长度为xcm ,则y 与x 之间的函数关系大致为( ).CD .x﹣3.(2008•铜仁地区)已知y=ax2+bx+c的图象如图所示,则y=ax+b的图象一定过()>轴的交点为(﹣>轴的交点为(﹣4.(2006•菏泽)二次函数y=ax2+bx+c的图象如图所示,则直线y=bx+c的图象不经过()>2.C D.,与x=6.(2008•绵阳)二次函数y=ax2+bx+c的部分对应值如下表.利用二次函数的图象可知,当函数值y<0时,x的取值范围是7.(2005•连云港)抛物线y=a(x+1)2+2的一部分如图所示,该抛物线在y轴右侧部分与x轴交点的坐标是()2.C D.﹣<9.在同一坐标系中,作出函数y=kx2和y=kx﹣2(k≠0)的图象,只可能是().C D.2.C D.2.C D.12.如图,一次函数y1=kx+b与二次函数y2=ax2交于A(﹣1,1)和B(2,4)两点,则当y1<y2的取值范围是()13.(2010•福州)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()14.(2009•随州)如图是某二次函数的图象,将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c(a≠0),则下列结论中正确的有()(1)a>0;(2)c<0;(3)2a﹣b=0;(4)a+b+c>0.==15.(2007•南充)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是()x==16.(2006•山西)二次函数y=ax2+bx+c(a≠0)的图象如图所示.有下列结论:①b2﹣4ac<0;②ab>0;③a﹣b+c=0;④4a+b=0;⑤当y=2时,x只能等于0.其中正确的是()x=17.(2006•金华)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()18.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在(),进一步得到>)的位置.,19.(2004•潍坊)已知二次函数y=ax2+bx+c的图象如图所示,则a、b、c满足()<<20.(1998•湖州)若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),则S=a+b+c的变化范21.已知二次函数y=ax2+bx+c的图象如图所示,则下列6个代数式:ab,ac,a+b+c,a﹣b+c,2a+b,2a﹣b中,其值为正的式子的个数是()x=22.二次函数y=ax2+bx+c的图象如图所示,则下面四个结论中正确的结论有()①ac<0;②ab>0;③2a<b;④a+c>b;⑤4a+2b+c>0;⑥a+b+c>0.轴的正半轴上可知,﹣0<23.二次函数y=ax2+bx+c的图象如图所示,根据图象可得a,b,c与0的大小关系是()24.已知b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示:轴,所以﹣=0第三个图的对称轴﹣25.(2011•黄浦区一模)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()2x=>27.已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①a+b+c>0;②a﹣b+c>0;③abc<0;④2a+b=0.其中正确的个数为()<=2>>29.已知二次函数y=ax2+bx+c的图象如图所示,那么点()在平面直角坐标系中的(),)的符<<,)在第三象限.30.(2010•文山州)已知二次函数y=ax2+bx+c的图象如图所示,则a,b,c满足()﹣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【考点训练】二次函数图象与系数的关系-1
一、选择题(共12小题)
1.(2013秋•张家港市期末)已知二次函数y=ax2+bx+c,若a<0,c>0,那么它的图象大致是()
A.B.C.D.
2.(2014秋•梁子湖区期末)如图,二次函数y=ax2+bx+c的图象经过点(,0),对称轴为
x=﹣1,下列5个结论:①abc>0;②a+2b+4c=0;③2a﹣b>0;④3b+2c>0;⑤a﹣b≥m (ma+b)(m为任意实数),其中正确结论的个数是()
A.1 B.2 C.3 D.4
3.(2014秋•静宁县期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:其中正确的有()
①a>0;c>0;②方程ax2+bx+c=0(a≠0)有两个不等的实数根;
③y随x的增大而增大;④a﹣b+c<0.
A.4个B.3个C.2个D.1个
4.(2014秋•宜城市期中)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③m(am+b)+b<a(m≠﹣1),④3b+2c<0;
其中正确结论是()
A.①②③ B.①③④ C.②③④ D.①②④
5.(2014•松山区校级模拟)如图,二次函数y=ax 2+bx+c(a≠0)的图象经过点(1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2.下列结论:①abc<0;②b<﹣2a;③b2+8a>4ac;④2a+c<0.其中正确的结论有()
A.1个B.2个C.3个D.4个
6.(2014•重庆模拟)抛物线y=ax2+bx+c(a≠0)如图,对称轴是,则下列结论中正确的是()
A.bc>0 B.b2﹣4ac<0 C.a+c<b D.2a+c<0
7.(2014•重庆模拟)抛物线y=ax2+bx+c如图,对称轴是x=﹣1,则下列结论中正确的是()
A.b>0 B.4a+c<2b C.a﹣b<0 D.c﹣a>1
8.(2014秋•乳山市期中)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面四个结论:①2a+b=0;
②4a﹣2b+c<0;③ac>0;④当y<0,x<﹣1或x>2中,正确的序号是()
A.①③B.②③C.①②D.③④
9.(2014秋•腾冲县期末)函数y=ax2+bx+c图象如图,根据图象小明做如下判断:①a<0,
b>0,c>0同时成立;②函数值y≤;③当x时,y随x的增大而减小;
④a+b+c>0,a﹣b+c<0,b2﹣4ac>0同时成立.判断正确的个数为()个.
A.1 B.2 C.3 D.D、
10.(2014秋•鲤城区期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c﹣m=2有实数根,有下列结论:①b2﹣4ac>0;②abc>0;③m≤2.其中,正确结论的个数是()
A.0 B.1 C.2 D.3
11.(2014秋•历下区期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中:
①abc<0,
②2a﹣b=0,③当﹣2<x<3时,y<0,④当x≥1时,y随x的增大而减小,正确
的个数是()
A.1 B.2 C.3 D.4
12.(2014秋•宝应县校级期中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:
①b2﹣4ac>0;
②2a+b<0;
③4a﹣2b+c=0;
④a:b:c=﹣1:2:3.
其中正确的个数是()
A.1 B.2 C.3 D.4
二、填空题(共6小题)(除非特别说明,请填准确值)
13.(2011秋•惠山区校级期末)如图,抛物线y=ax2+c的顶点为B,O为坐标原点,四边形ABCO为正方形,则ac=.
14.(2014秋•兴化市校级月考)二次函数y=ax2+bx+c的图象如图所示,那么abc,b2﹣4ac,2a+b,a+b+c四个代数式中,值为正数的有个.
15.(2010秋•西城区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(1,0),则下列结论:
①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a﹣b+c<0,其中正确的是.
16.(2014秋•沛县期中)已知二次函数y=ax2+bx+c的图象如图所示,对称轴x=1,下列结论中正确的是(写出所有正确结论的序号)
①b>0;②abc>0;③b2﹣4ac>0;④a﹣b+c<0;⑤4a+2b+c>0;⑥方程ax2+bx+=0
有一根介于3和4之间.
17.(2013秋•大丰市校级期末)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:
①ac>0;②2a+b=0;③a+b+c=0;④当x>1时,函数y随x的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有.(请写出所有正确说法的序号)
18.(2010秋•张家港市期末)已知二次函数y=ax2+bx+c的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤c﹣a>1,其中正确的结论有.(把你认为正确的结论的序号都填上)
【考点训练】二次函数图象与系数的关系-1
参考答案
一、选择题(共12小题)
1.D 2.B 3.C 4.B 5.C 6.D 7.D 8.C 9.B 10.B 11.A 12.B
二、填空题(共6小题)(除非特别说明,请填准确值)
13.-2 14.3 15.②④16.②③④⑥17.②⑤18.①②⑤。