s06关于简明数学分析

合集下载

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结数学分析是数学的一个重要分支,它研究数学对象的极限、连续性和变化率等性质。

在数学分析的学习过程中,我们掌握了许多重要的知识点,下面我将对其中的一些知识点进行总结。

1. 极限与连续在数学分析中,极限是一个非常重要的概念。

我们通常用符号lim来表示一个函数的极限,如lim (x→a) f(x)。

极限可以理解为函数在某一点附近值的稳定性。

如果极限存在且与a点无关,我们就说函数在a点是连续的。

在求极限的过程中,常用的方法有代数运算法、夹逼准则、洛必达法则等。

2. 导数与微分导数是函数在某一点的变化率,也可以理解为函数的斜率。

函数f(x)在点x=a处的导数可以用f'(a)或df/dx(x=a)表示。

导数的计算方法有基本求导法则和高阶导数法则等。

微分是一个近似的概念,它表示函数在某一点附近的线性近似。

微分有利于研究函数的性质和进行近似计算。

3. 积分与微积分基本定理积分是求解曲线下面的面积或曲线长度的运算。

在积分计算中,常用的方法有换元法、分部积分法、定积分的性质等。

微积分基本定理是微积分中的核心理论之一,它将导数与积分联系起来。

基本定理分为牛顿-莱布尼茨公式和柯西中值定理两部分,它们在微积分的理论和应用中都起着重要的作用。

4. 级数与收敛性级数是无穷多项之和,其求和问题是数学分析中的一个重要内容。

级数的收敛性判断是一个关键问题,主要有比较判别法、积分判别法、根值判别法等。

级数的收敛性与和的计算直接关系到级数的应用,如泰勒级数、傅里叶级数等。

5. 无穷极限与无穷小量无穷极限是指当自变量趋于无穷大或无穷小时,函数的趋势和性质。

无穷小量的概念是微积分的基础,它表示比自变量趋于零更小的量。

在求解极限、导数等问题时,无穷小量具有非常重要的应用价值。

6. 参数方程与极坐标参数方程是一种以参数形式给出函数方程的表达方式。

在参数方程中,通常我们会用一个参数来表示自变量和函数值,通过参数的取值范围可以得到函数图形。

数学分析简明教程答案(尹小玲 邓东皋)第一二章

数学分析简明教程答案(尹小玲 邓东皋)第一二章

5.在半径为r得瑟球内嵌入一内接圆柱,试将圆柱的体积表示为其高的函数,并求此函数 的定义域。
h2 解:设其高为h, 那么圆柱的底面半径为R r ; 于是圆柱体积 4 2 V R h
2
hr 2

4
h3
由于圆柱为球的内接圆柱,故有h (0, 2r ).
-2-
6.某公交车路线全长为20 Km, 票价规定如下:乘坐5 Km以下(包含5 Km)者收费1元;超过 5 Km但在15 Km以下(包含15Km)者收费2元;其余收费2元5角。试将票价表示成路线的 函数,并作出函数的图像。 解:设y为票价,x为路程,则有 1 y ( x) 2 2.5 它的函数图像如下: x (0,5] x (5,15] . x (15, 20]
画图板作图
7.一脉冲发生器产生一个三角波,若记它随时间t的变化规律为f (t ), 且三个角分别对应关 系f (0) 0, f (10) 20, f (20) 0, 求f (t )(0 t 20), 并作出函数的图形。 解:由题意可知所求函数为: 2t f (t ) 40 2t 其函数图像为:
2 2 2 2
(2). x1 x2 xn x1 x2 xn ; 证明:使用数学归纳法; i.对于x, y , 总有 x y xy, 于是有 x 2 x y y x 2 2 xy y 2 ; 整理后可得 x y x y ,即当n 2时所证成立。 ii.假设当n k时所证不等式也成立,即 x1 x2 xk x1 x2 xk . iii.当n k 1时,取y x1 x2 xk , 于是有: x1 x2 xk xk 1 y xk 1 y xk 1 x1 x2 xk xk 1 x1 x2 xk xk 1 即当n k 1时所证不等式也成立。 那么由数学归纳法可知题证成立。

数学分析复习资料

数学分析复习资料

数学分析复习资料数学分析复习资料数学分析是大学数学中的一门重要课程,它是数学基础学科的核心内容之一。

作为一门抽象而又具有广泛应用的学科,数学分析在理论和实践中都发挥着重要作用。

为了更好地掌握数学分析的知识,我们需要有一份系统全面的复习资料。

一、函数与极限在数学分析中,函数与极限是最基础的概念之一。

函数是描述自变量与因变量之间关系的工具,而极限则是描述函数在某一点附近的趋势。

我们需要掌握函数的定义、性质以及常见函数的图像和性质。

此外,对于极限的概念和性质,我们需要理解其定义、收敛性以及计算方法。

在复习中,可以通过练习题来加深对函数与极限的理解。

二、导数与微分导数与微分是数学分析中的重要内容,它们是描述函数变化率的工具。

我们需要了解导数的定义、性质以及常见函数的导数公式。

同时,还要掌握导数的计算方法,如用极限定义法、基本公式法、隐函数求导法等。

在复习中,可以通过求导练习题来提高对导数的熟练度。

另外,微分的概念和性质也是需要掌握的内容,包括微分的定义、微分的计算以及微分的应用。

三、积分与定积分积分与定积分是数学分析中的重要概念,它们是描述函数面积和变化量的工具。

我们需要了解积分的定义、性质以及常见函数的积分公式。

同时,还要掌握积分的计算方法,如用不定积分法、换元法、分部积分法等。

在复习中,可以通过求积分练习题来提高对积分的熟练度。

另外,定积分的概念和性质也是需要掌握的内容,包括定积分的定义、定积分的计算以及定积分的应用。

四、级数与幂级数级数与幂级数是数学分析中的重要内容,它们是描述无穷序列和无穷级数的工具。

我们需要了解级数的定义、性质以及常见级数的收敛性判别法。

同时,还要掌握级数的计算方法,如用比较判别法、积分判别法、绝对收敛判别法等。

在复习中,可以通过求级数练习题来提高对级数的熟练度。

另外,幂级数的概念和性质也是需要掌握的内容,包括幂级数的收敛半径、幂级数的求和以及幂级数的应用。

五、多元函数与偏导数多元函数与偏导数是数学分析中的重要内容,它们是描述多变量函数变化率的工具。

数学分析简明教程答案数分5_微分中值定理及其应用

数学分析简明教程答案数分5_微分中值定理及其应用

壹第五章微分中值定理及其应用第一节微分中值定理331231.(1)30()[0,1];(2)0(,,),;(1)[0,1]30[0,1]()3nx x c c x px q n p q n n x x c x x f x x x c证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。

证明:设在区间内方程有两个实根,即有使得函数值为零012023(,)[0,1],'()0.'()33(0,1)(3,0)30()[0,1] (2)2220nx x x f x f x x x x c c n n k x px q x 。

那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。

因此有:方程为常数在区间内不可能有两个不同的实根。

当时,方程至多只可能有两个实根,满足所证。

当时,设方程有三个实根,即存在实数1230112022301021010110202()0(,),(,),'()'()0,'()0(*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p使得函数成立。

那么由罗尔定理可知存在使得即0010220000102),(,),''(0)0,''()(1)0,0,0,0.2(*).212n nx x x f f x n n x x x x n k p n n k x px q 再次利用罗尔定理可以知道,存在使得即显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。

当时,设方程1234111212231334111213111110()0(,),(,),(,)'()0,'()0,'()0,'()0'(nn x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x 有三个实根,即存在实数使得函数成立。

s01关于简明数学分析

s01关于简明数学分析

第三章讲实数理论时,应该在最后增加实数的7个定义方式及其等价性的证明,可以将其当做阅读材料。
第五章讲函数极限时,直接把滤子基的概念给出来就很好,并且可以在后面讲一下基的用处(用作阅读材料)可以不讲,但是以后再看时就很方便。海涅收敛还是需要再看一下。还有,应该给出那个是“趋近基”但不是“数分趋近基”的例子
其次,修改教材。
郇中丹,刘永平大爷的教材确实比王昆扬大爷的讲义易教易学,并且在前面讲解的更好。同时,多元微分部分处理也更漂亮。但是,有很多排版错误,还有很多东西应该扩写。
主要说郇老大爷教材的问题
从开头讲起,
讲集合论的时候,都讲了自然数的公理化定义了,却不讲伯恩斯坦引理,不合适,应该加一下。同时,可以在第二章后加一下整数的公理化定义,实际上就是介绍一下商集的概念,可以在丁石孙聂灵沼的《代数学引论》里找到。
讲泰勒公式时,最好将习题里的向量值函数的有泰勒公式用的很生硬,并且也不简洁。而利用向量值函数的有限增量公式,便可以将证明简化很多。Rudin的分析原理的书中介绍的就很好。在讲的时候书中前半部分的思想介绍的不错,可以参考一下张筑生先生的《数学分析新讲》其中就把隐函数定理证明的来由介绍的很明白,但我们的书中后一部分讲的过于简略,应该再细讲讲。同时可以多举一些低维的例子方便理解。还有,
分析功底很深,对某些内容讲解细致
大概学会了黎曼积分。点集拓扑学了一小点。对于多元来说,强烈的感觉到rudin的《数学分析原理》中对反函数定理证明是那样的美妙,相比之下,郇中丹大爷给出的证明中利用向量值函数的微分中值定理就显得多此一举并且并不美妙自然。
微分几何稍微讲了一点,挺好的。

受到学时的限制,所以在课上很难展开。所以,首先要增加学时。

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结在数学的学科体系中,数学分析是一个非常重要的分支。

它主要研究实数和复数的极限、连续性、微积分以及相关的定理和方法。

对于数学分析的学习,我们需要掌握以下知识点。

一、极限极限是数学分析最为基础的概念之一。

它用于描述函数趋近于某个值时的情况。

我们需要掌握无穷小量、无穷大量、极限的定义、左右极限、排除法和插值法等内容。

二、函数的连续性函数的连续性也是数学分析中的重要概念。

它描述的是函数在一定的定义域内是否具有无间断点的特性。

我们需要掌握函数的连续性定义、间断点的分类、连续函数的四个基本定理、单调函数和反函数等重要内容。

三、求导和微分求导和微分是数学分析的核心内容之一。

它主要描述函数的局部变化情况和相关的最值问题。

我们需要掌握导数的定义、基本代数运算、求导法则、高阶导数、微分的定义、微分运算法则、一阶微分方程等内容。

四、积分积分是数学分析中非常重要的概念之一。

它主要描述函数在某个定义域内的“总量”或“面积”。

我们需要掌握定积分和不定积分的定义、基本积分公式、换元积分法、分部积分法、有理分式积分、常系数线性微分方程等。

五、级数级数是数学分析中重要的概念之一。

它描述的是无穷多个数的总和。

我们需要掌握级数和部分和的定义、收敛和发散的概念、常见级数的收敛性和求和公式、绝对收敛和条件收敛、交错级数及别的常见级数。

综上所述,数学分析的知识点十分广泛,需要我们有较高的数学素养,同时也需要不断努力和实践。

只有通过多次反复学习和练习,才能真正掌握数学分析的核心内容和方法,进入到科学和工程领域的高端学习。

数学分析简明教程答案数分10_数项级数(-[1].-)

数学分析简明教程答案数分10_数项级数(-[1].-)

A第十章 数项级数§1级数问题的提出20122012211231.'''0;0,1,2,,.,'23''2n n i n n n n xy y xy y a a x a x a x a i n y a a x a x a x y a a x a x na x y -++==++++===++++=++++=证明:若微分方程有多项式解 则必有证明:若微分方程的一个解那么22321232310122211203126(1);''26(1).'''(4)(9)()0n n n n n n n n n n n a a x n n a x xy a x a x n n a x xy a x a x a x a x xy y xy a a a x a a x n a a x a x --+--+++-=+++-=++++++=++++++++=于是可得因此可知12200 2.00,1,2,,n n ni a n a a n a a i n -=⎧⎪+=>⎨⎪=⎩== 那么由多项式相等可知有递推可知有成立。

B0102012122.,,,,,(1)''2'(1)0.,(1);(1)n n n n n n n n n n n n n n n a a a a x x y xy l l y a x na xn n a x n n a x∞=∞=∞∞--==--++=--∑∑∑∑试确定系数使满足勒让德方程解:将级数两次逐项求导可得把它们代入勒让德方程可得 2221120(1)2(1)0,20.(2)(1)(1),2,3,4,(1)(1) ()12!nnn n n n n n n n nn n n a x na x l l a x a n n l l a a n n n l l y x a ∞∞∞∞-====-+--+-==⎧⎪---+⎨==⎪-⎩+=-∑∑∑∑整理后可得那么由以上递推公式可得方程的解为243510112010(2)(1)(3)4!(1)(2)(1)(3)(2)(4) 3!5! ()().,,,l l l l x x l l l l l l a x x x a y x a y x a a a a -++⎡⎤+-⎢⎥⎣⎦-+--++⎡⎤+-+-⎢⎥⎣⎦=+其中为任意常数由112(),()y x y x 的任意性可以知道都是勒让德方程的特解,并且容易验证它们是线性无关的。

数学分析简明教程答案

数学分析简明教程答案

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin ))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin 4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→nn n n ,故由根式判别法知,级数∑∞=12n nn 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n n n n n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n n n n n .因为101)(lim 1lim 22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n n n n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n n n ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln)1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max (1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。

数学分析简明教程答案数分3_极限与函数的连续性

数学分析简明教程答案数分3_极限与函数的连续性

lim
n
an
k
a.
(2).若
lim
n
an
a, 则lim n
an
a ; 反之是否成立?;
证明:由于
lim
n
an
a, 那么由定义可以知道:对
0, N, 当n
N 时有an
a
.
由于 an a an a (第二章第二节习题1), 那么可以知道对 0,N , 当n N 时有
an a an a
n ,对于 0, 取N [ 12] 1, 则对于n N, 总有
1
1 1 1 .
n1 n n N 1
2
于是可知 lim( n 1 n) lim
1
0.
n
n n 1 n
(6).lim 10n ; n n!
证明:取M
1010 10!
,则lim 10n n n!
lim M
n
10 10 10 10 .那么对于 11 12 13 n
那么对于
0, 分别取N2
[ 1] 1,
N3
[
1 2
]
1,
N
max( N2,
N3),
于是当n
N
时有
i.当n 3k时,xn 3
3 3 0 ;ii.当n 3k 1时,xn 3
1 n
1 ;iii.当n 3k 2时,有 N
xn 3
1 n
1 N
.即对任意n
N , 都有 xn
3
; 故有lnimxn
证明:对于 0, 取N [1] 1, 则对于n N, 总有
sin n n
1 n
1 N
1 1
.
于是可知lim sin n 0. n n

数学分析简明教程答案数分6_不定积分

数学分析简明教程答案数分6_不定积分

1 2
1
dx 3
x3
1 2
2
2 3
1
d
( (
3 x) 2 3 x)3
1 arctan( 6
2
3 x) C. 2
(6)
x
e 2dx 2
x
e 2d(
x)
x
2e 2
C.
2
(7) xex2 dx 1 ex2 d (x 2) 1 ex2 d (x 2) 1 ex2 C.
2
2
2
(8)
x a
C;
3. dx arcsin x C;
a2 x2
a
4. dx ln x x2 a2 C;
x2 a2
5. x2 a2 dx x x2 a2 a 2 ln x x2 a2 C;
2
2
6. a2 x2 dx a2 arcsin x x a2 x2 C.
2
a2
这六个公式在答案中的使用次数很大,使用的时候没有进行说明,敬请
x
C.
(9) (tan2 x 3)dx
sin 2
x 3cos2 cos2 x
x
dx
(
1 cos2
x
2)dx
tan
x
2x
C.
(10)
2
sin2 cos2 x
x
dx
3
cos2 cos2 x
x
dx
3
tan
x
x
C.
sin x
(11)
cos2
tan x x sin2
x
dx
cos cos
x x
3.已知f (x)满足给定的关系式, 试求f (x).

简明数学分析第二版教学设计 (2)

简明数学分析第二版教学设计 (2)

简明数学分析第二版教学设计课程概述本课程为《简明数学分析》教材的教学设计,旨在通过对数学分析的学习,提高学生的分析问题、解决问题的能力,以及加深对数学的理解和认识。

教学目标通过本课程的学习,学生应该能够达到以下目标:1.掌握数学分析的基本概念、定理和方法2.能够对常见数学问题进行分析,并给出解决方法3.能够运用数学分析知识,解决一些实际问题教学内容1.实数与复数2.极限和连续3.导数和微分4.不定积分和定积分5.常微分方程教学方法1.讲授法:通过教师的讲解,引导学生掌握数学分析的基本概念、定理和方法2.练习法:通过大量的练习题,帮助学生巩固所学的知识3.研究法:让学生独立思考问题,并通过小组讨论的方式,帮助学生彼此之间进行思想碰撞和知识交流教学流程1.第一章:实数与复数•概念介绍•实数的分类•复数的定义•复数的运算•共轭复数及其性质•模和幅角•根式表示•复数系数方程2.第二章:极限和连续•极限的概念•极限存在性的判定•极限运算法则•无穷小量与无穷大量•函数极限的概念•极限的单调性与夹逼定理•连续的定义与判定•连续函数的基本性质•非连续点的分类3.第三章:导数和微分•导数的概念•导数的几何意义•导数的计算方法•高阶导数及应用•微分的概念•微分形式的转化•高阶微分4.第四章:不定积分和定积分•不定积分的定义和概念•基本不定积分公式•牛顿莱布尼兹公式•定积分的定义和概念•定积分的计算方法•定积分的应用5.第五章:常微分方程•常微分方程的概念•一阶常微分方程的解法•可降阶的方程•高阶微分方程•变量分离的方程•二阶常系数齐次微分方程•二阶常系数非齐次微分方程考核方式1.平时成绩:包括出勤率、课堂表现、作业完成情况等,占总成绩的15%。

2.期中考试:占总成绩的35%。

3.期末考试:占总成绩的50%。

教学评价教学评价的主要内容为:1.对教师的教学态度、教学效果、语言表达等方面进行评估。

2.对教学手段、教学方案、教学资源等方面进行评估。

简明数学分析第二版教学设计

简明数学分析第二版教学设计

简明数学分析第二版教学设计一、教学目标1.精通数学分析中的基本概念和技巧;2.掌握常用的微积分方法和积分应用;3.掌握数学分析的思维方式和方法;4.培养学生的数学思维、逻辑思维和创造性思维。

二、教学内容本课程内容包括数列、函数、极限、微分学、积分学和微积分应用等基本内容。

1. 数列•数列的概念及分类•数列极限的定义、性质和计算方法•函数的极限及其运算法则2. 函数•函数的定义、性质和分类•函数的极限、连续和一致连续性•导数和微分的定义、计算和应用3. 积分学•定积分和无穷积分的定义和性质•积分中值定理和换元积分法•积分应用:曲线长度、曲面面积和体积等4. 微积分应用•辅助线和巧妙变形•优化、微积分中值定理和应用题三、教学方法本课程采用讲授、互动和实践相结合的教学方法。

1. 讲授讲授是本课程的主要教学方法。

通过教师的讲解和演示,向学生传授知识、技能和经验。

2. 互动互动是本课程的重要教学方法。

在讲授的同时,鼓励学生提问、讨论和反馈,增强学生的自主学习和思考能力。

3. 实践实践是本课程的必要教学方法。

通过课堂练习、作业和实验等形式,让学生在实际操作中加深对知识和技能的理解和掌握。

四、教学评估为了检验学生对教学内容的掌握程度,本课程将采取多种教学评估方法。

1. 考试考试是本课程的主要评估方法之一。

通过期中和期末考试,评价学生对知识和技能的掌握程度。

2. 作业作业是本课程的重要评估方法之一,通过作业,检验学生对教学内容的理解和应用能力。

3. 实验和报告实验和报告是本课程的必要评估方法之一,通过实验和报告,检验学生对数学应用的掌握程度和创新能力。

五、教学资源本课程的教学资源包括教材、课件、教具和实验设备等。

教材为“简明数学分析(第二版)”,课件采用PowerPoint制作,教具包括计算器、黑板和白板等。

六、教学时间与进度本课程共16周,每周3学时,共48学时。

具体进度安排如下:教学内容学时数列 6函数12积分学18教学内容学时微积分应用12七、教学参考文献1.《简明数学分析(第二版)》,肖民、肖莉著,高等教育出版社。

简明高等数学教材答案

简明高等数学教材答案

简明高等数学教材答案
引言:
高等数学作为一门广泛应用于科学和工程领域的学科,对于学习者来说,适当的教材答案是巩固知识和提高问题解决能力的重要资源。

本文将为广大高等数学学习者提供一份简明的高等数学教材答案,以帮助他们更好地理解和掌握相关知识。

第一章:极限与连续
1.1 极限的定义与性质
1.2 极限的四则运算
1.3 无穷小量与无穷大量
1.4 极限存在准则
第二章:导数与微分
2.1 导数的定义与性质
2.2 常用函数的导数
2.3 高阶导数与高阶微分
2.4 隐函数与参数方程的导数
第三章:积分与不定积分
3.1 积分的定义与性质
3.2 基本积分表与换元积分法
3.3 分部积分法与定积分
3.4 曲线下面积与定积分的应用
第四章:微分方程
4.1 一阶微分方程的解法
4.2 可降阶的高阶微分方程
4.3 常微分方程与变量分离方程
4.4 高阶线性微分方程
第五章:多元函数微积分
5.1 多元函数与偏导数
5.2 隐函数与参数方程的偏导数
5.3 高阶偏导数与高阶微分
5.4 多元函数的极值与最值
结语:
以上为简明版的高等数学教材答案概要。

学习者可以根据自身需求,选择相应章节进行参考。

同时,希望学习者在使用答案时能够注重思
考过程与理解原理,而非仅仅依赖答案。

通过积极学习和不断实践,
相信大家一定能够在高等数学学科中取得优秀的成绩。

祝愿大家学习进步!。

简明高等数学教材

简明高等数学教材

简明高等数学教材高等数学是大学阶段重要的一门基础课程,被广泛应用于理工科及其他相关领域。

本篇文章将概要介绍一本简明高等数学教材的内容和特点,帮助读者了解其主要内容及学习方法。

简明高等数学教材尤其适合初学者和需要复习基础知识的学生。

它以简洁明了的方式呈现数学概念和方法,旨在帮助读者快速理解和掌握高等数学的基本原理和运算技巧。

本教材首先从数列和极限理论开始,引入了数学分析的基本概念和思想。

通过数列的定义、收敛性以及数列极限的计算方法,读者可以建立起数学分析的基本框架。

之后,教材深入讲解了微积分的关键内容。

这部分包括函数的极值与最值、一元函数的导数与微分、多元函数的偏导数与全微分以及微分中值定理等。

通过这些内容的学习,读者可以了解函数的变化趋势、求解函数的极值和最值,以及在不同函数形式下的微分计算方法。

接下来,教材介绍了不定积分与定积分的理论和应用。

读者将学习到不定积分的计算方法,如换元积分法和分部积分法,以及定积分在几何计算和物理学问题中的应用。

这些知识将帮助读者更深入地理解微积分在实际问题中的重要性和应用价值。

随后,教材讲解了级数与傅里叶级数的相关概念和性质。

级数在数学和物理学中都有广泛的应用,通过学习级数的计算方法和收敛性判定,读者可以处理更复杂的数学问题和物理学模型。

最后,教材给出了简明高等数学的习题和实例。

通过这些习题和实例的练习,读者可以巩固所学的知识,并培养独立解决问题的能力。

总的来说,简明高等数学教材具有以下特点:内容简洁明了,涵盖了高等数学的主要内容;重点突出,强调数学分析、微积分和级数的重要性;应用广泛,注重将数学知识与实际问题相结合;习题实例丰富,激发读者的学习兴趣和动力。

在学习本教材时,建议读者在阅读理论内容的同时,积极思考、动手实践,加深对数学原理的理解和应用能力。

同时,也鼓励读者与同学、教师进行讨论和交流,相互学习和解决问题。

简明高等数学教材作为一本基础教材,不仅适用于大学本科生,也适用于相关领域的研究生和工程技术人员。

数学分析知识点总结大一下

数学分析知识点总结大一下

数学分析知识点总结大一下大一下学期的数学分析是数学系学生必修的一门课程,其内容主要涵盖了极限、导数和微分、积分以及级数等部分。

通过学习这门课程,我们不仅能够进一步理解数学的本质与应用,还能培养我们的逻辑思维能力和问题解决能力。

在本文中,我将对大一下学期数学分析的几个重要知识点进行总结与归纳。

一、极限与连续在数学分析的学习中,极限是一个非常重要的概念。

极限的概念与数列的极限、函数的极限密切相关。

通过学习极限的定义、性质与计算方法,我们能够更好地理解和应用极限的概念。

同时,极限与连续是数学分析中的两个紧密关联的概念。

通过学习连续的定义、性质和连续函数的判定方法,我们能够更好地理解和应用这两个概念,从而为后续的微积分知识打下坚实的基础。

二、导数与微分导数是微积分的核心概念之一。

通过学习导数的定义、性质和计算方法,我们能够更好地理解函数变化的速率和曲线的斜率,为后续的微分方程等知识打下坚实的基础。

微分作为导数的重要应用,是对函数微小变化的描述。

通过学习微分的概念、性质和微分中值定理等知识,我们能够更好地理解函数的局部特性,如极值、凹凸性以及拐点等等。

三、积分积分是微积分的另一个重要概念。

通过学习积分的定义、性质和计算方法,我们能够理解函数与曲线所围成的面积以及函数的累积变化。

积分是微积分中的一种重要工具,可以解决很多实际问题,如求曲线的长度、体积和质量等。

在应用层面上,通过学习定积分的应用,我们能够更好地理解函数的平均值和重心等概念,为后续数学建模等知识打下基础。

四、级数级数是数学分析中的一个重要概念。

通过学习级数的定义、性质和收敛条件等知识,我们能够理解级数的逼近性质和求和的方法。

级数是一种重要的数学工具,在数学物理等领域有着广泛的应用。

通过学习级数的收敛性与发散性,我们能够理解无限序列和无限和的概念,加深对数学的理解。

五、思维方法与解题技巧在数学分析的学习过程中,除了掌握知识点外,培养良好的思维方法和解题技巧也是非常重要的。

数学分析简明教程答案14

数学分析简明教程答案14
, .
(2)由于 是 的奇函数,因此 , .
, ,
且 在 可微,因此
, .
(3) ,
, ,
, ,
由于 在 可微,故
, .
(4) ,
, ,
, ,
且 在 上逐段可微,连续,故


2.求下列周期函数的Fourier级数:
(1) ;
(2) .
解(1)这是周期为 的函数,且 在 连续,逐段可微,又是偶函数,故 , .

, ,
所以,
, .

所以, , .
(2) ,

, ,
所以,
~ .
由于 在 逐段可微,而
, ,
因此,


2.由展开式

(1)用逐项积分法求 , , 在 中的Fourier展开式;
(2)求级数 , 的和.
解(1)
, ,
所以,
, .
, ,
, .
, ,
所以,
, .
(2)由于 ,故只须求出 即可.在(1)中最后一式,令 ,得到
第十四章傅里叶级数
§1三角级数与傅里叶级数
1.证明:
(1) 是 上的正交系;
(2) 是 上的正交系;
(3) 是 上的正交系;
(4) 不是 上的正交系.
证明(1) ,有

所以, 是 上的正交系.
(2) ,有

பைடு நூலகம்所以, 是 上的正交系.
(3)由于 ,有

又, ,有

故 是 上的正交系.
(4)因为 ,因此 不是 上的正交系.

这是在和号中后一积分中令 换元后得到的.由此得

10_数学分析简明教程答案

10_数学分析简明教程答案

10_数学分析简明教程答案第十章数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++=Λ2210,则必有),,2,1(0n i a i Λ==.证明由多项式解nn x a x a x a a y ++++=Λ2210得1232132-++++='n n x na x a x a a y Λ,22432)1(1262--++++=''n n x a n n x a x a a y Λ.从而 134232)1(1262--++++=''n n x a n n x a x a x a y x Λ,且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy Λ.将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a Λ.比较系数得递推公式如下:===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a ΛΛ 由此解得0210=====n a a a a Λ,因而),,2,1,0(0n i a i Λ==.2.试确定系数ΛΛ,,,,10n a a a ,使n n nx a=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n x a n n xa n n x y x ,=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2 =++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120ΛΛΛΛn n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得++++-+-+--=++--=?+--=?+--=-++++-+--=??++-=?+--=+-=+ΛΛΛΛΛΛΛΛΛΛΛΛ,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(11213512402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y ΛΛ+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a ΛΛ.其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和:(1)∑∞=+-1)15)(45(1n n n ;(2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ;(4)=-1212n nn ;(5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++?+?=n n S n Λ ??? ??+--++-+-=1514511116161151n n Λ )(5 1151151∞→→??? ??+-=n n ,所以级数的和51=S . (2)由于+--=-1211212112n n n ,故)(21121121121121513131121∞→→??? ??+-=??? ??+--++-+-= n n n n S n Λ.所以级数的和21=S . (3)322111212)1(11111=??--=-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=??? ??-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++=Λ,则14322222226242221++-++++=n n n nn S Λ,故1432222222222212121+-+++++=-=n n n n n n S S S Λ 14322 22121212121+-??? ??+++++=n nnΛ112222112112121+---??-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412 221211=-=-=-∑∑∞=∞=n n n n n n .(5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→,因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性:(1)∑∞=-112n n n;(2)∑∞=??+13121n nn;(3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ;(5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散.(2)由于∑∑∞=∞=??? ??=112121n nn n ,∑∑∞=∞=??=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++?+?=n n S n Λ ??+--++-+-=131231714141131n n Λ)(31131131∞→→??? ??+-=n n ,因而原级数收敛.(5)由于+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 11 1111131212111→+-=+-++-+-=n n n S n Λ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u.证明设∑∑==='= nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S n k k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim ,设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ,所以)(1v u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即ΛΛ,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中ΛΛ<<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明设∑∑====nk k n nk kS 11,σ,则n nk k n U U U U +++==∑=Λ211σ)()(21112121k k k k u u u u u u +++++++=++ΛΛ n n n n k k k k S u u u =+++++++--)(2111ΛΛ.由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈?,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性:(1)∑=+121n nn ;(2)∑∞=--1122)12(1n n n ;(3)∑∞=--112n n nn ;(4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n;(6)∑∞=11n nn;(7)n n n ∑∞=??+1121;(8)[]∑∞=+1)1ln(1 n nn ;。

数学分析简明教程答案16

数学分析简明教程答案16

f y (0,0)y] xy sin
x 2
1
y 2

是比 x 2 y 2 更高阶的无穷小,为此考察极限
(1) u x 2 y 2 z 2 ;
(2) u xe y z ex y .
解(1) du d x 2 y 2 z 2
1
d(x2 y2 z2)
2 x2 y2 z2
1
(xdx ydy zdz)
x2 y2 z2Βιβλιοθήκη xdx y
dy
z
dz .
x2 y2 z2
x2 y2 z2
x0
f (0,0) x
lim x0
f (x,0) x
f (0,0)
lim 0 0 x0 x
0
,即
f x (0,0) 0
,而
lim y
y 0
f (0,0) y
lim
y 0
f (0, y) y
f (0,0)
lim
y sin
1 y 2
y 0
y
0
lim
y 0
sin
1 (y ) 2
不存在,
f y (0,0) 不存在. 3.证明函数 u x 2 y 2 在 (0,0) 点连续但偏导数不存在.
(
x
)
1 z
y
ln
x dz , y
故在 (1,1,1) 有, du dx dy .
(4)函数的定义域为{(x , y) : 0 x y or 0 y x} .当 x 0 时,有
du dx arcsin
x dy ( y 1) y
11 1 x 2 x
ydx xdy y2
yy
(1 ( y 1) sgn y )dx (arcsin x x(1 y) sgn y )dy ,

数学分析简明教程答案数分11_广义积分

数学分析简明教程答案数分11_广义积分
第十一章 广义积分
§1 无穷限广义积分
1.求下列积分的值:
(1)
2
1 x2 1
dx
1 2
2
1 x 1
x
1
1
dx
1 2
ln
x 1 x 1
2
1ቤተ መጻሕፍቲ ባይዱ2
lim ln
x
x 1 x 1
ln
2 1 21
1 2
ln
3.
(2)
dx 1 x(1 x2 )
1 2
dx 2 1 x2 (1 x2 )
0
cos ax 1 xn
dx;
0
cos
axdx有界,
1
1 xn
单调下降趋于零,由狄理克雷判别法知积分收敛。
(14)
1
ln
1
1 x
1 1
x
dx
1
1 x
o
1 x
1
1
x
dx
1
x
1
x
2
o
1 x
dx,
故积分收敛。
(15)
1
ln
cos
1 x
sin
1 x
dx
ln
1, 故由比较判别法可知原积分收敛。
1 x3 1 x2
x x 3 1 x2
(9) x pexdx; 由于 lim x 2 pex 0, 因此原积分收敛。
0
x
(10)
0
ln x
x
p
dx;
lim
x
x
q ln xp
x
0
p p
q ,
q
因此可知当p
1时,积分收敛;

数学分析简明教程答案

数学分析简明教程答案

第十一章 广义积分§11.1 无穷限广义积分1. 求下列无穷积分的值: (1)⎰+∞-2211dx x ; (2)⎰+∞+22)1(1dx x x ;(3))0(02>⎰+∞-a dx xe ax ;(4))0(sin 0>⎰+∞-a bxdx eax;. (5)⎰∞++021dx x x; (6))0,()()(022>+++⎰+∞q p q x p x dx.解 (1)3ln 21)31ln 11(ln 21lim 11lim 112222=-+-=-=-+∞→+∞→+∞⎰⎰A A dx x dx x A A A . (2)2ln 21)2ln 1(ln 21lim )1(1lim )1(1221212=++=+=++∞→+∞→∞+⎰⎰AA dx x x dx x x A A A . (3)a211a 21limlim222=-==-+∞→-+∞→+∞-⎰⎰)(e dx e x dx ex ax A Aax A ax . (4)设⎰+∞-=0sin bxdx e I ax )0(>a ,则)cos sin 1(lim sin lim 000⎰--+∞→-+∞→+-=⎰=A ax A ax A Aax A dx bx e a b bx e a bxdx e I)sin cos (lim 002⎰--+∞→+-=A ax A axA bxdx e b bx e a bI ab a b bxdx eab a b bxdx e a b a b axA axA 22202220222sin sin lim -=-=-=⎰⎰∞+--+∞→,所以 ,22ba bI +=. (5)作变换y x =,则有⎰+++-+--++=+=+⎰⎰dy y y y y y y y y y y dy y y dx x x )21)(21()21(22)21(221212222422 ⎰⎰-+++-+-=)22(21)(2121)21(42222y y d y y y y d ⎰⎰+++++++-)22(2121)21)21(42222y dyy y y y d C y y y y y y +++-++++-=)]12arctan()12[arctan(222121ln 4222C x x x x x xy +++-+++-=)]12arctan()12[arctan(221)21(ln 4222, 所以,)]12arctan()12[arctan(221)21(ln 421222++-+++-=+⎰A A A A A dx x x A)(22)22(22+∞→=+→A πππ,即,π22102=+⎰∞+dx xx . (6) 由于当q p =时,用⎰+=n n x a dxI )(22的地推公式,p x dxp p x x p p x dx q x p x dx +++=+=++⎰⎰2222222121)())((C pxp p p x x p +++=arctan 21212所以,时,0>=q ppp p A p p p A A p p x dx A AA 4)arctan 2121(lim )(lim2022π=++=++∞→+∞→⎰, 当q p ≠时,由于⎰⎰⎰+-+-=++--=++dx p x q x q p q x p x dx q p q p q x p x dx )11(1))(()(1))((222222C pxp q x q q p +--=)arctan 1arctan 1(1, 所以,当q p ≠时,⎰⎰+=+++∞→+∞A A q x dx q x p x dx 02022)(lim ))(( )(2)arctan 1arctan 1(1limq p pq p A p q A q q p A +=--=+∞→π两种情况下,即只要0,>q p ,就有⎰+∞+=++022)(2))((q p pq q x p x dx π. 2. 讨论下列积分的收敛性: (1)⎰+∞+0341x dx ;(2)⎰+∞+031arctan dx x x;(3)⎰∞+121sindx x;(4)⎰+∞+0dx xx sin 11;(5)⎰+∞+022sin 1dx xx x; (6))0,(10>+⎰∞+m n dx xx nm; (7)⎰∞++-0 1242x x dxx ;(8)⎰+∞+13211dx xx ;(9))0(02≥⎰+∞-p dx e x x ;(10)⎰+∞1ln dx x xp; (11)⎰∞+12ln dx x xn (n 是正整数); (12)⎰∞+02sin dx xx; (13)⎰+∞+01cos dx x axn ; (14)⎰+∞+-+1]11)11[ln(dx x x ;(15)⎰+∞+1)1sin 1ln(cos dx xx ;(16)⎰∞+-⎪⎪⎭⎫ ⎝⎛-0dx x x 1222sin 1ln 1. 解 (1)111lim 3434=++∞→x xx ,所以积分⎰+∞+0341x dx 收敛.(2)21arctan lim 32π=++∞→x x x x x ,故所求积分收敛.(3)111sin lim1sin lim 2222==+∞→+∞→x x xx x x ,因此所求积分收敛. (4)0≥∀x ,有011sin 11>+≥+x x x ,且+∞=+=+=++∞→+∞→+∞⎰⎰)1ln(lim 1lim 10A x dx x dxA A A 0,即⎰+∞+01xdx发散,由比较判别法知⎰+∞+0x x dx sin 1发散.(5)0≥∀x ,有01sin 1222>+≥+x x x x x ,而11lim 2=++∞→x xx x ,无穷积分⎰+∞+021dx x x 发散,由比较判别法知⎰+∞+022sin 1dx xx x发散. (6)因为11lim=++∞→nnx x x ,所以, 当1>-m n ,即1+>m n 时,⎰∞++01dx x x nm收敛;当1≤-m n ,即1+≤m n 时,⎰∞++01dx xx nm发散. (7) 11lim 2422=+-+∞→x x x x x ,所以积分收敛.(8)1111lim11lim 323235=+=++∞→+∞→x xx xx x ,所以积分收敛.(9) 因为 =+==++∞→++∞→-+∞→x px x p x xpx ex p e x e x x 122)2(lim lim )(lim 0])[()1)(2(lim ][=-++=-+∞→x p p x ex p p p p , 所以无穷积分收敛.(10) 若1>p ,则可以选取00>ε,使得10>-εp ,由于0ln limln lim 0==+∞→-+∞→εεx xxx x X pp x ,所以⎰+∞1ln dx xxp 收敛; 若1≤p ,则当e x ≥时,p p x x x 1ln ≥,而⎰+∞11dx x p 发散,由比较判别法,⎰+∞1ln dx xx p 发散.从而,⎩⎨⎧≤>⎰∞+.时发散时收敛1p ,,1p ,ln 1dx x x p (11)由于012)1(22lim ln 2lim ln lim ln lim 2121121223=-⋅====+∞→-+∞→+∞→+∞→x n n x x n x x xx x x n x n x n x , 所以无穷积分⎰∞+12ln dx x xn 收敛. (12) 因为xxx x x x x 22cos 2122cos 1sin 2-=-=,而 21)0sin 2(sin 212cos 0≤-=⎰A xdx A,对一切0>A 成立,x21在[1,+)∞单调下降,且当+∞→x 时趋于0,由Dirichlet 判别法⎰+∞122cos dx xx收敛,又⎰+∞12x dx 发散,所以⎰∞+02sin dx x x 发散(0=x 是可去间断点). (13)当1>n 时,由于n nx x ax +≤+111cos ,而⎰+∞+011dx x n 收敛,所以⎰+∞+01cos dx xax n 收敛,故这时不论R a ∈是哪个常数,⎰+∞+01cos dx xaxn均绝对收敛. 当10≤<n 时,若0≠a ,则由于aaA a axdx A 1sin 1cos 0≤=⎰,而n x +11在),0[+∞单调递减,且当+∞→x 时趋于0,由Dirichlet 判别法知,无穷积分收敛,但由于)1(22cos )1(211cos 1cos 2nn n nx ax x x ax x ax +++=+≥+, 则由于⎰+∞+0)1(21dx x n 发散,同样由Dirichlet 判别法知⎰+∞+0)1(22cos dx x ax n 收敛,故⎰∞++021cos dx xax n 发散,由比较判别法知⎰∞++012cos dx x ax n 发散,故这时无穷积分条件收敛. 当10≤<n 且0=a 时,无穷积分为⎰+∞+011dx xn发散. 当0=n 时,无穷积分为⎪⎪⎩⎪⎪⎨⎧=+∞=≠==+∞→+∞→+∞→∞+⎰⎰,02A lim ,0sin 21lim 2cos lim 2cos A A 00a a aA adx ax dx ax A A ,不存在, 故这时,不论a 为何常数,积分发散.当0<n 时,若0=a ,无穷积分为⎰+∞+011dx x n发散.以下假设0≠a ,0820>=∃a πε,N K A ∈∃>∀,0,使得A a a k >-42ππ且142≤⎪⎪⎭⎫ ⎝⎛-na a k ππ,这时 0424282)44(421cos επππππππ==+≥+⎰+-a a a dx xax a a k aa k n, 由Cauchy 收敛原理,⎰+∞+01cos dx x axn 发散. 综上,积分⎰+∞+01cos dx x axn当0>n 时绝对收敛;当10≤<n 且0≠a 时条件收敛;其他时候发散.(14) 因为)1(21))1(11(1)1(21111)11ln(2222xo x x o x x x o x x x x +=+--+-=+-+,所以,⎰+∞+-+1]11)11[ln(dx xx 收敛.(15) 因为xx x xx x x x 1)1sin 1ln(cos lim)1sin 1ln(cos lim +=++∞→+∞→ 11sin1cos 1sin1cos lim )1)(1sin 1(cos )1(1cos )1(1sin lim222=+-=-+-+--=+∞→+∞→x x x x xx x x x x x x x , 所以,⎰+∞+1)1sin 1ln(cos dx xx 发散.(16)因为12sin 1212≤-≤x ,所以,2ln 2sin 1ln 012≤⎪⎪⎭⎫⎝⎛-≤-x .因此,21221222ln 2sin 1ln 12sin 1ln 1x x x x x ≤⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛---, 而⎰+∞122ln dx x 收敛,所以⎰∞+-⎪⎪⎭⎫⎝⎛-0dx x x 1222sin 1ln 1收敛(0=x 是可去间断点). 3.讨论下列无穷积分的收敛性(包括绝对收敛或条件收敛): (1)⎰∞+1dx xx2cos ; (2)⎰+∞1dx x xcos ; (3)⎰+∞1cos dx xx p ; (4)⎰∞++0100cos dx x xx ;(5)⎰+∞2sin ln ln ln xdx xx. 解 (1)xxx x x x x 22cos 2122cos 1cos 2+=+=, 由于⎰+∞121dx x 发散,而⎰+∞1dx xx 22cos 收敛(Dirichlet 判别法),因此,⎰∞+1dx x x 2cos 发散.(2)由Dirichlet 判别法知⎰+∞1dx xxcos 收敛,但由于x x x x 2cos cos ≥,而由(1),⎰∞+1dx x x2cos 发散,故由比较判别法知⎰∞+1cos dx x x 发散,因而⎰+∞1dx xx cos 条件收敛.(3)1>p 时,由于p p x x x 1cos ≤对一切),1[+∞∈x 成立,所以⎰+∞1cos dx x x p绝对收敛.10≤<p 时,用Dirichlet 判别法知⎰+∞1dx xxp cos 收敛,但由于 pp p px x x x x x x 22cos 21cos cos 2+=≥,同样用Dirichlet 判别法知⎰+∞122cos dx x xp 收敛,而⎰+∞121dx x p 发散,故由比较判别法知⎰∞+1cos dx x x p发散,所以这时⎰+∞1cos dx x xp条件收敛. 0=p 时,⎰+∞1cos xdx 发散.0<p 时,亦发散(用Cauchy 收敛原理即可).所以,⎰+∞1cos dx xxp 当1>p 时绝对收敛;10≤<p 时条件收敛;0≤p 时发散. (4)⎰⎰∞+∞++=+11100cos 100cos dx x x x x dx x x x ,由于⎰+∞1cos dx x x 收敛,100+x x 单调递减有界,故由Abel 判别法,⎰∞++1100cos dx x x x 收敛,从而⎰∞++0100cos dx x xx 也收敛,但)100(22cos )100(2100cos 100cos 2+++=+≥+x xx x x x x x x xx ,同样⎰∞++0)100(22cos dx x x x 收敛,但⎰∞++0)100(2dx x x发散,所以⎰∞++0100cos dx x x x 发散.因此,⎰∞++0100cos dx x xx 条件收敛.(5)⎰⎰+∞+∞=22ln ln ln ln sin sin ln ln ln dx x x x x xdx x x,用Dirichlet 判别法知⎰+∞2ln sin dx xx 收敛,而由于)(0ln ln ln +∞→→x xx ,因而xx ln ln ln 有界,且由于23)(ln 2ln ln 2ln ln ln x x xx x -=⎪⎪⎭⎫⎝⎛,当2e e x ≥小于零,故当2e e x ≥时,xx ln ln ln 单调递减,由Abel 判别法,⎰+∞2sin ln ln ln xdx xx收敛.但xx x x x x x x x x x ln 22cos )ln (ln ln 2ln ln sin ln ln ln sin ln ln ln 2-=≥, 同样用Abel 判别法,⎰∞+2ln 22cos ln ln dx xx x 收敛,而⎰∞+2ln 2ln ln dx xx 发散(当x 充分大时,xx x 1ln ln ln ≥),故⎰∞+22sin ln ln ln xdx x x 发散,由比较判别法,dx x x x ⎰∞+2sin ln ln ln 发散,无穷积分⎰+∞2sin ln ln ln xdx xx条件收敛. 4.设)()()(x g x h x f ≤≤,+∞<≤x a ,)(,x h 在任意有限区间],[A a 可积,又⎰+∞adx x f )(和⎰+∞adx x g )(收敛.求证⎰+∞adx x h )(收敛.证明 由于)()()(x g x h x f ≤≤,+∞<≤x a ,所以,)()()()(0x f x g x f x h -≤-≤,+∞<≤x a ,又⎰+∞adx x f )(和⎰+∞adx x g )(收敛,故⎰+∞-adx x f x g )]()([也收敛,因而由比较判别法,⎰+∞-adx x f x h )]()([收敛.而)()]()([)(x f x f x h x h +-=, 所以,dx x f x f x h dx x h aa⎰⎰+∞+∞+-=)}()]()({[)(收敛.5. 证明定理11.2,并举例说明其逆是不成立的.证明 定理11.2 若⎰+∞adx x f )(收敛,则⎰+∞adx x f )(收敛.证法1、由于⎰+∞adx x f )(收敛,有无穷限积分的Cauchy 原理,0A ,0>∃>∀ε,当A A A >''',时,有ε<⎰'''A A )(dx x f ,从而当A A A >''',时,有ε<≤⎰⎰''''''A A A A dx x f dx x f )()(,同样由无穷积分的Cauchy 收敛原理,知⎰+∞adx x f )(收敛.证法2、由于),[,)()()(∞+∈≤≤-a x x f x f x f ,由第4题结论知,⎰+∞adx x f )(收敛.其逆是不成立的.例如,3(2)题中积分⎰+∞1dx xxcos 收敛,但⎰∞+1cos dx x x 发散. 6. 若)(x f 在),[∞+a 上单调下降,且积分⎰+∞adx x f )(收敛,求证:0)(lim =+∞→x xf x .证明 由于⎰+∞adx x f )(收敛,故依)(x f 在),[∞+a 上单调下降知,),[∞+∈∀a x ,有0)(≥x f ,否则,若),[0∞+∈∃a x ,使0)(0<x f ,则01x x >∀,有0)()(01<≤x f x f ,因而0x b >∀,有)+∞→∞-→-+≤+=⎰⎰⎰⎰b x b x f dx x f dx x f dx x f dx x f bax abx x a())(()()()()(000, 与⎰+∞adx x f )(收敛相矛盾.由无穷积分的Cauchy 收敛原理00>∃>∀A ,ε,当A A ,A >'''时,有2)(A A ε<⎰'''dx x f ,所以,当A 2>x 时,有2)(2ε<⎰xxdt t f ,由⎰<⇒<≤x x x xf dt t f x f x 2)(2)()(2εε,因此,0)(lim =+∞→x xf x .7. 设)(x f 在),0[+∞上一致连续,并且积分⎰+∞)(dx x f 收敛.证明0)(lim =+∞→x f x .如果仅仅知道积分⎰+∞)(dx x f 收敛,以及)(x f 在),0[+∞上连续,0)(≥x f ,是否仍有0)(lim =+∞→x f x ?证明 证法1、由)(x f 在),0[+∞上一致连续,0 0>∃>∀δε,(不妨设εδ≤),当),0[,21∞+∈x x ,δ≤-21x x 时,2)()(21ε<-x f x f ,又由⎰+∞)(dx x f 收敛,对上述0>δ,,0>∃N ,当N x x >21,时,有2)(221δ<⎰x xdx x f .N x >∀,取N x x >21,,使得21x x x <<,且δ=-12x x ,则由⎰⎰⎰⎰+-==21212121)()()()()(x x x x x x x x dt t f dt t f dt x f dt x f x f δ22)()()(22121δδε+<+-≤⎰⎰x x x x dt t f dt t f x f ,所以,当N x >时,εδε≤+<22)(x f ,因此,0)(lim =+∞→x f x .证法2、假设0)(lim ≠+∞→x f x ,则00>∃ε,0>∀A ,存在与A 有关的A x >0,使00)(ε≥x f .不妨设00)(ε≥x f ,由)(x f 在),0[+∞上一致连续,0>∃δ,当a x x ≥''',,且δ<''-'x x 时,2)()(0ε<''-'x f x f .故当),(00δδ+-∈x x x 时,2)()(00ε<-x f x f ,所以,22)()(00εε≥->x f x f ,因此δεδδ000)(≥⎰+-x x dx x f ,与⎰+∞)(dx x f 收敛矛盾,从而0)(lim =+∞→x f x .如果仅仅知道积分⎰+∞)(dx x f 收敛,以及)(x f 在),0[+∞上连续非负,则0)(lim =+∞→x f x 不成立.例如⎪⎪⎩⎪⎪⎨⎧-++⋃∈===∞=+,其他线性,,]211,21[]21,0[,0,),2,1(,1)(11 n n n n n x n n x x f则121)(10==∑⎰∞=+∞n n dx x f ,即⎰+∞0)(dx x f 收敛,显然)(x f 在),0[+∞上连续非负,但)(lim x f x +∞→不存在.8. 设⎰+∞adx x f )(与⎰+∞'adx x f )(收敛,求证:0)(lim =+∞→x f x .证明 由于⎰+∞'adx x f )(收敛,因而,))()((lim )(lim )('lima f x f t f dt t f x xa x xax -==+∞→+∞→+∞→⎰存在,因而)(lim x f x +∞→存在,设l x f x =+∞→)(lim ,若0≠l ,不妨设0>l ,则a A >∃0且00>A ,当0201,A A A A >>时,02)(>>lx f .又⎰+∞a dx x f )(收敛,故0>∀ε,a A >∃1且01>A ,当11,A A A A >''>'时,有ε<⎰'''AAdx x f )(.令},m ax {10A A A =,则当AA >'时,A A >'2,因此以下二式同时成立:ε<>'⎰''A A dx x f lA f 2)(,2)(.故022)(22>'=>⎰⎰''''A ldx l dx x f A A A A , 所以,ε<'A l2,但这是矛盾的,因此0)(lim =+∞→x f x .9.设)(x f 单调下降趋于0, )(x f '在),0[∞+连续.求证:⎰+∞'02sin )(xdx x f收敛.证明⎰⎰⎰+∞→+∞→+∞='='AA AA x xdf xdx x f xdx x f 020202)(sin limsin )(limsin )(⎰⎰+∞+∞→=-=022sin )(]2sin )(sin )([lim xdx x f xdx x f A A f A A ,由于0>∀A ,1)12(cos 212sin 0≤--=⎰A xdx A,由Dirichlet 判别法,⎰+∞02sin )(xdx x f 收敛,因而⎰+∞'02sin )(xdx x f 收敛.10.设)(x f 和)(x g 是定义在),[∞+a 上的函数,且在任何有限区间],[A a 上可积.证明:若⎰+∞adx x f )(2与⎰+∞adx x g )(2收敛,则⎰+∞+adx x g x f 2)]()([与⎰+∞adx x g x f )()(也收敛.证明 由于)]()([21)()(22x g x f x g x f +≤及)()(x g x f 在任何有限区间],[A a 上可积,⎰+∞adx x f )(2与⎰+∞adx x g )(2收敛,由比较判别法知⎰+∞adx x g x f )()(收敛,因而⎰+∞adx x g x f )()(收敛.又)()()(2)()]()([222x g x g x f x f x g x f ++=+,所以⎰+∞+adx x g x f 2)]()([也收敛.11.证明:(1)设)(x f 在),0[∞+连续,且k x f x =+∞→)(lim ,则)0(ln ])0([)()(0>>-=-⎰+∞a b abk f dx x bx f ax f ; (2)若上述条件k x f x =+∞→)(lim 改为⎰+∞a dx xx f )(存在)0(>a ,则)0.(ln )0()()(0>>=-⎰+∞a b abf dx x bx f ax f . 证明(1)当+∞<∆<<δ0时,积分 ⎰⎰⎰⎰⎰∆∆∆∆∆-=-=-b b a a dz zz f dz z z f dx x bx f dx x ax f dx x bx f ax f δδδδδ)()()()()()( ⎰⎰⎰⎰∆∆∆∆--=b a b a b a b a z dzf z dz f dz zz f dz z z f )()()()(ηξδδδδ ),(ln )(ln )(∆≤≤∆≤≤-=b a b a abf a b f ηδξδηξ,所以,⎰⎰∆+∞→∆+∞-=-δdx xbx f ax f dx x bx f ax f )()(lim )()(0ab f f a b f a b f ln )](lim )(lim [)ln )(ln)((lim 00ηξηξδδ+∞→∆→→+∞→∆-=-=++由于+→0δ时,+→0ξ;+∞→∆时,∞→+η,所以abk f a b f f dx x bx f ax f ln ])0([ln )](lim )(lim [)()(0-=-=-+∞→∆→∆+⎰ηξδδ. (2) 用(1),当+∞<∆<<δ0时,有⎰⎰⎰∆∆∆-=-δδδb a b a dz zz f dz z z f dx x bx f ax f )()()()( )()(ln )(δξδξb a dz zz f a b f b a ≤≤-=⎰∆∆,令+∞→∆→+,0δ取极限,由于⎰+∞a dx x x f )(存在,故)(0)(+∞→∆→⎰∆∆b a dz zz f ,所以,abf dx x bx f ax f ln )0()()(0=-⎰+∞.§11.2 瑕积分1. 下列积分是否收敛?若收敛求其值. (1)⎰210cot xdx ;(2)⎰1ln xdx ;(3)⎰-axa dx 0;(4)⎰-11dx xx. 解 (1) +∞=-=++→→⎰)sin ln 21sin (ln lim cot lim 0210ηηηηxdx ,所以,⎰210cot xdx 发散.(2)1)1ln (lim )ln (lim ln lim 01101-=+--=-=+++→→→⎰⎰ηηηηηηηηηdx x x xdx ,所以⎰1ln xdx收敛, 且⎰-=11ln xdx .(3)a a dt t t xa dx aa 2)(22lim lim 0=-=-=-⎰⎰++→-→ηηηηη,所以⎰-a xa dx0收敛,且⎰=-aa xa dx2. (4)ηηηηηηηη-→-→-→⎪⎭⎫ ⎝⎛+-=+=-+++⎰⎰1020102220101arctan lim )1(2lim 1lim t t t dt t t dx xx2)1(1arctanπηηηη=---=,所以dx x x ⎰-11收敛 ,且其值为2π. 2.讨论下列积分的收敛性: (1)dx xx ⎰123sin ;(2)⎰-1032)1(x x dx ;(3)⎰-1021ln dx x x;(4)⎰2022cos sin πx x dx; (5)⎰1ln dx x p;(6)⎰-20cos 1πdx xxm; (7)⎰10ln x dx ;(8)⎰πsin xdx ;(9)⎰1ln xdx xα;(10)⎰---111ln dx xx x q p ;(11)⎰20tan πdx x ; (12)⎰20sin ln cos πxdx x .解(1)因为2123231sin xxx xx =≤,]1,0(∈∀x ,由dx x⎰11收敛及比较判别法,知 dx xx ⎰123sin 收敛.(2)⎰⎰⎰-+-=-12132210321032)1()1()1(x x dx x x dx x x dx ,]21,0(∈x 时,32332322)211(1)1(1xdxx x x =-≤-,由于⎰2103232dx x收敛,可得⎰-21032)1(x x dx 收敛 ;]1,21(∈x 时,33323214)1(211)1(1xdx x x x -=-⎪⎭⎫⎝⎛≤-,由于dx x⎰-2103314收敛,可得⎰-12132)1(x x dx 收敛,所以⎰-1032)1(x x dx 收敛.(3)⎰-1021ln dx x x 只有瑕点1,0==x x 是可去奇点.因为当210≤<x 时, x x x ln 341ln 2-≤-成立,故由比较判别法知⎰-1021ln dx x x收敛(绝对收敛).(4)12sin 4lim cos sin 1lim 2202220==++→→x x x x x x x ,所以,⎰2022cos sin πxx dx 发散. (5)若0<p ,则由于)0(0ln +→→x x p知0=x 是可去间断点, 而1=x 是瑕点 ,这时由于)1()1(~)]1(1ln[ln -→--+=x x x xp pp,故当01<<-p 时,⎰1ln dx x p收敛,1-≤p 时,发散.若0=p ,则是常义积分11=⎰dx 存在.当0>p 时, 1=x 是可去间断点, 而0=x 是瑕点,由于0ln lim 21=+→px xx ,所以⎰1ln dx x p收敛.(6)mm x xx x 2sin 2cos 12=-, 当2≤m 时,+→0x 时该式极限为0或21存在,故这时0=x 不是瑕点,这是常义积分.当2>m 时, 由于21cos 1lim 20=--→+mm x x x x ,所以, 当12<-m 即32<<m 时,瑕积分⎰-2cos 1πdx x xm收敛,当12≥-m 即3≥m 时发散. (7)1ln 1)1(lim 1=---→xx x ,所以⎰10ln x dx 发散. (8)⎰⎰⎰+=ππππ22sin sin sin xdx x dx xdx ,因为1sin 1lim 210=+→xxx , 1sin 1)(lim 21=--→xx x ππ,所以⎰20sin πxdx ,⎰ππ2sin xdx 均收敛,故⎰πsin xdx 收敛.(9)当0>α时,由于0ln lim 0=+→x x x α,故是常义积分.当0=α时,1))1(ln (lim ln lim ln 011-=---==++→→⎰⎰εεεεεεxdx xdx ,所以积分收敛.当01<<-α时 ,00>∃ε,使101000<+-<⇒->->εαεα,而()0ln lim ln lim 000=-=++→+-→x x x x x x x εαεα,所以,⎰1ln xdx xα收敛.当 1-≤α 时,+∞==++→-→x x x xx x ln lim ln lim 0αα,由1≥-α知,⎰1ln xdx x α发散.(10) 当q p =时被积函数为0,故积分值为0.由于在相差一个负号的意义下,qp ,对称,故可只考虑q p >的情形.这时,)1(ln ln 111-=-----qp q q p x xx x x x ,若1>q ,则0=x 不是瑕点,因而积分为常义积分,积分值存在. 若1<q ,则被积函数为)1(ln 11---qp qx xx . ① 当11<-q 即0>q 时,故00>∃ε,使110<+-εq ,而⎰+-110εq x dx 收敛,xx ln 0ε单调增加(在)1,0(),且当+→0x 时趋于0,故由此得xx ln 0ε有界,因而由Abel 判别法知dx x x q ⎰-101ln 1收敛,又1--qp x 在)1,0(单调增加且有界,故知⎰---101)1(ln 1dx x xx q p q 即⎰---111ln dx xx x q p 收敛.② 当11>-q 即 0<q 时, 01>∃ε,使111>--εq ,因而)1(ln 11)1(ln 11111-=------q p q qp q x xx x x x x εε, 而 +∞=--→+)1(ln 1lim 10q p x x x x ε,故有10<<δ,当δ<<x 0时,1)1(ln 11>--qp x xx ε,因而1111)1(ln 1ε---->-q qp q xx x x ,所以积分 ⎰---1011ln dx x x x q p 发散. ③ 当11=-q 时,即0=q 时,由于当]21,0(∈x 时,0ln <x 而1121-≥-⎪⎭⎫⎝⎛--q p qp x ,故当]21,0(∈x 时,⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛≥---121ln 1)1(ln 1qp qp x x x x x ,由于 -∞=-==++→→⎰⎰)ln ln 2ln (ln lim ln 1lim ln 10210210εεεεdx xx dx x x发散,故由比较判别法,⎰--21)1(ln 1dx x xx qp 发散,因而⎰--10)1(ln 1dx x x x q p 发散.若1=q ,积分为⎰--10)1(ln 1dx x x qp ,这时0)1(ln 1lim 0=--→+q p x x x,故0=x 不是瑕点,积分是常义积分,因而存在.综上,瑕积分⎰---111ln dx xx x q p 当0>>q p 时收敛,q p >且0≤q 时发散;对称地,瑕积分⎰---111ln dx xx x q p 当0>>p q 时收敛,p q >而0≤p 时发散;q p =时,亦收敛.(11)解法1、令t x =tan ,则2tan t x =,2arctan t x =,dt ttdx 412+=,且当0=x 时,0=t ;2π=x 时,+∞=t .瑕积分⎰⎰∞++=0422012tan dt tt dx x π化为了无穷积分.由于212lim 422=++∞→t t t t , 故广义积分⎰∞++04212dt tt 收敛,即⎰20tan πdx x 收敛. 解法2、由于1sin )2sin()2(lim tan )2(lim 212212=--=---→→x x x x x x x πππππ,所以⎰20tan πdx x收敛.(12)由于0sin ln cos lim 0=+→x x x x ,故⎰20sin ln cos πxdx x 收敛.实际上,1)cos sin ln sin (lim sin ln cos lim sin ln cos 202020-=--==⎰⎰⎰++→→πεεπεεπεεxdx xdx x xdx x .3.判别敛散性: (1)⎰∞+-⎪⎭⎫ ⎝⎛-12111ln dx x ; (2)⎰+∞--01dx e x x p ;(3)⎰∞+0)(arctan dx x x pq; (4)⎰+∞+0)1ln(dx xx p;(5)⎰+∞1ln x x dxq p ;(6)⎰+∞+0qp xx dx; (7)⎰+∞--032)2()1(x x x dx ;(8)⎰∞-0ln dx x e x .解(1)⎰⎰⎰∞+--∞+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-221212112111ln 11ln 11ln dx x dx x dx x ,对⎰⎰∞+∞+-⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-2222111ln 11ln dx x dx x ,由于122111lim )11ln(lim 33222=⋅-=⎥⎦⎤⎢⎣⎡--+∞→+∞→x x x x x x x ,所以,⎰∞+-⎪⎭⎫ ⎝⎛-22111ln dx x 收敛. 对⎰⎰⎰⎰--=--=⎪⎭⎫ ⎝⎛--2122121222121)1ln(ln 21ln 11ln dx x xdx dx x x dx x ,前一项为定积分,后一项以1=x 为瑕点.由于⎰⎰⎰-++=-2121212)1ln()1ln()1ln(dx x dx x dx x ,前一项为常义积分,而对后一项,由于0)1ln()1(lim 211=--+→x x x ,故⎰-21)1ln(dx x 收敛,因此⎰⎪⎭⎫ ⎝⎛--212111ln dx x 收敛,最后知道⎰∞+-⎪⎭⎫ ⎝⎛-12111ln dx x 收敛.(2)当1≥p 时,⎰+∞--01dx e x x p 是一无穷积分,收敛.当1<p 时,⎰⎰⎰+∞----+∞--+=111101dx e x dx e x dx e x x p x p x p ,后者为无穷积分收敛;对于前者,由于1)(lim 110=---→+x p px e x x,所以当11<-p ,即10<<p 时,⎰--11dx e x x p 收敛,当11≥-p ,即0≤p 时,⎰--11dx e xxp 发散.从而,当0>p 时,⎰+∞--01dx e x x p 收敛,当0≤p 时发散.(3)由于当0→x 时,x x →arctan ,所以当p q >时,pq pq x x x -~)(arctan ,)0(+→x ;p q =时,1)(arctan lim 0=+→pqx x x .故当p q ≥时,上述积分只是无穷积分而无瑕点.若1>p 且p q ≥,由qpp q x x x ⎪⎭⎫⎝⎛≤21)(arctan π≤x p 1)2(πq,收敛;若10≤<p 且p q ≥,则由)1(1)(arctan ≥≥x xx x pp q ,发散; 若0=p 且p q ≥时,当x 充分大时,)1(1)(arctan ≥≥x xx pq这时无穷积分发散; 若0<p 且p q ≥时,显然发散.当p q <时,积分可分为⎰⎰∞++110)(arctan )(arctan dx x x dx x x p qp q ,对于前者,pqx x )(arctan 与qp x -1是同阶无穷大量,故当10<-<q p ,即1+<<q p q 时收敛,而当1≥-q p 即1+≥q p 时发散.对于后者,同样在1>p 时收敛,1≤p 时发散.综上,当1+<<q p q 且1>p 时积分收敛,当p q <而1≤p 时积分发散. 因此,当1>≥p q 或1+<<q p q 且1>p 时积分收敛,其他情况发散.即当11+<<q p 时积分收敛,其他情况积分发散.(4)⎰⎰⎰+∞+∞+++=+11)1ln()1ln()1ln(dx xx dx xx dx xx ppp,因为1)1ln(lim 1=+-→+xx x pp x ,故前一积分当11<-p 即2<p 时收敛,当2≥p 时发散.而对后一积分,若1>p ,则00>∃ε,使得10>-εp ,且0)1ln(lim 0=++∞→εxx x ,故当x 充分大时,001)1ln(1)1ln(εεε--<+=+p p p x x x x x x ,由比较判别法,积分收敛.当1≤p 时,x x x p1)1ln(≥+(1-≥e x 时),所以这时积分发散. 因此,当21<<p 时,原积分收敛,否则发散. (5)⎰⎰⎰+∞+∞+=2211ln ln ln xx dxx x dx x x dx q p q p q p , 对于前者,因为0ln 1)1(lim 211=-+→xx x qp x ,故总是收敛的; 对于后者,1>p 或1=p 而1>q 时收敛,其他发散.故⎰+∞1ln x x dxq p 当1>p 或1=p 而1>q 时收敛,对于其他情况均发散.(6)⎰⎰⎰+∞+∞+++=+1100qp q p q p x x dx x x dx x x dx , 若q p =,则前者要求1<=q p 收敛,后者要求1>=q p 收敛,故这时积分发散.由q p ,的对称性,只需考虑q p >的情况.对于前者由)1(11+=+-qp q q p x x x x ,故当1<q 时收敛,1≥q 时发散.而对于后者,由于)1(11p q p q p x x x x -+=+,故当1>p 时收敛,1≤p 时发散.故⎰+∞+0qp xx dx当1>p 且1<q 或1<p 且1>q 时收敛,其他情况下均发散. (7)⎰⎰⎰--+--=--∞+2321322103232)2()1()2()1()2()1(x x x dx x x x dx x x x dx⎰⎰+∞--+--+33232332)2()1()2()1(x x x dx x x x dx由于332321)2()1(lim =--+→x x x xx , 1)2()1()1(lim32321=---→x x x x x ,33231221)2()1(2lim=---→x x x x x , 1)2()1(1lim 3234=--+∞→x x x xx ,以上四个积分均收敛,故原积分收敛.(8)令t x =-,则-∞=x 时,+∞=t ,当0=x 时,0=t 仍记t 为x .⎰⎰⎰⎰⎰+∞--+∞-∞+-∞-+==-=11ln ln ln ln ln xdx e xdx e xdx e xdx e dx x e x xxxx.由于当x 充分大时,21ln xx ex≤-,而⎰+∞121dx x 收敛,故⎰+∞-1ln xdx e x收敛,又0ln lim 0=-→+x e x x x ,故⎰-1ln xdx e x 亦收敛,所以⎰⎰+∞-∞-=00ln ln xdx e dx x e x x 收敛.4.讨论下列积分的收敛性与绝对收敛性: (1)⎰+∞2sin dx x ;(2)⎰∞+0sin dx x x q p,其中0>p ; (3))0(1sin 0≥+⎰∞+q dx xxx qp ; (4)⎰∞++0)1sin(dx xx x n . 解 (1)由于0sin lim 0=+→xx x ,所以0=x 不是瑕点,由Dirichlet 判别法,无穷积分⎰+∞sin dx xx 收敛,因此,⎰⎰⎰⎰+∞+∞→+∞→+∞→===00002sin 21sin lim 212sin limsin lim2dt ttdt t t t dtt dx x A A A A AA所以,⎰+∞2sin dx x 收敛.但xx xxx xx 22cos 21sin sin 2-=≥,由于⎰+∞121dx x发散,同样用Dirichlet 判别法知⎰+∞122cos dx xx 收敛,故⎰+∞-1)22cos 21(dx xx x发散,由比较判别法知⎰∞+1sin dx xx 发散,因而⎰∞+0sin dx xx 发散,但⎰⎰⎰+∞→+∞→+∞→==A A AA AA dt tt dt t tdx x 002sin lim 212sin limsin lim不存在,故⎰+∞2sin dx x 发散,因而⎰+∞2sin xdx 条件收敛.(2)⎰⎰⎰∞+∞++=1100sin sin sin dx xx dx x x dx x x q pq p q p,先考虑⎰10sin dx x x q p ,由于pp x x ~sin )0(+→x ,所以q p x x sin 与p q x-1是同阶变量)0(+→x ,从而当1<-p q 时,即1+<p q 时该积分收敛,1+≥p q 时积分发散.且由于0sin ≥qpxx ,故是绝对收敛的. 再看⎰⎰⎰∞+-+∞+-∞+==1111111sin 11sin sin dt xtp dt t p x t x t dx x x pq p p q pqp ,故当011>-+p q 时,即1>+p q 时积分收敛,否则发散.且当1>q 时绝对收敛,11≤<-q p 条件收敛.所以当p q p +<<-11时,积分收敛,否则发散. 当p q +<<11时绝对收敛,11≤<-q p 时条件收敛.(3)⎰⎰⎰∞+∞++++=+11001sin 1sin 1sin dx xx x dx x x x dx x xx q pq p q p , 先考虑积分⎰+11sin dx x x x q p ,由于111sin lim 1sin lim 010=+=+++→--→q x q p p x xx x x x x x ,所以积分⎰+11sin dx x xx qp 仅当11<--p 即2->p 时收敛,且是绝对收敛的,而当2-≤p 时发散.再考虑积分⎰∞++11sin dx x x x qp ,若q p ≥,则1>∀A ,必存在正整数N ,使A N >+42ππ,且当42ππ+≥N x 时,恒有311>+q p x x .于是对42ππ+='N A ,22ππ+=''N A ,有 62sin 311sin =>+⎰⎰''''''A A A A qp xdx dx x x x ,由Canchy 收敛原理,积分⎰∞++11sin dx x xx qp 发散.若1-<q p ,取0>ε,使1-<+q p ε,即1>--εp q ,由于0sin 1lim sin 1lim =+=++∞→--+∞→εεxxx x x x x xq q x q p p q x ,所以,积分⎰∞++11sin dx x xx qp 绝对收敛.现设q p q <≤-1.先证⎰∞++11sin dx x x x qp 发散.事实上,此时,可取10>A ,使当A x ≥0时,3111>++qp xx ,故有 +∞=≥+=+⎰⎰⎰∞+∞++∞+00sin 31sin 11sin 1A A q p A qp dx x xdx x x xx dx x x x , 从而⎰∞++11sin dx xx x qp 发散.再证⎰∞++11sin dx x xx qp 收敛.若0=q ,则01<≤-p 此时积分⎰⎰∞+∞+=+11sin 211sin xdx x dx xx x pq p 收敛;若0>q ,由于[]0)1()()1(21<+--='+-q qp q p x x p q p x x x (当x 充分大时),故当x 充分大时,函数qpxx +1单调递减趋于0,而2cos 1cos sin 1≤-=⎰A xdx A有界,故积分⎰∞++11sin dx x xx qp 收敛.于是,得到⎰∞++01sin dx xxx qp 当2->p 且1+>p q 时绝对收敛;当2->p ,1+<<p q p 时条件收敛,其他情况发散.(4)当0≤n 时,积分是发散的当0>n 时,先考虑积分⎰∞++a n dx xx x )1sin( ()1>a .由于 ⎰⎰∞+∞+-+-=+a n a n dx xx x x x dx xx x )11()1sin()11()1sin(22,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 黎曼积分中,应该给出黎曼可积的Lebesgue准则。并且应该提一下斯蒂尔切斯积分,并举出一些物理中的例子方便查阅。
第九章多元微分学的部分,可以写一些点集拓扑的内容,简单的写一写,并给出一些好的参考书方便阅读。
讲向量值函数的导数时,应该说一下导数(线性映射的矩阵表示)与微分(线性映射)的联系,并将各种分析课本中的名词简单的交代清楚。同时,要说一下在不同基下导数的特点
讲泰勒公式时,最好将习题里的向量值函数的有限增量公式给出
反函数定理的证明中,向量值函数的泰勒公式用的很生硬,并且也不简洁。而利用向量值函数的有限增量公式,便可以将证明简化很多。Rudin的分析原理的书中介绍的就很好。在讲的时候书中前半部分的思想介绍的不错,可以参考一下张筑生先生的《数学分析新讲》其中就把隐函数定理证明的来由介绍的很明白,但我们的书中后一部分讲的过于简略,应该再细讲讲。同时可以多举一些低维的例子方便理解。还有,
分析功底很深,对某些内容讲解细致
大概学会了黎曼积分。点集拓扑学了一小点。对于多元来说,强烈的感觉到rudin的《数学分析原理》中对反函数定理证明是那样的美妙,相比之下,郇中丹大爷给出的证明中利用向量值函数的微分中值定理就显得多此一举并且并不美妙自然。
微分几何稍微讲了一点,挺好的。

受到学时的限制,所以在课上很难展开。所以,首先要增加学时。
第三章讲实数理论时,应该在最后增加实数的7个定义方式及其等价性的证明,可以将其当做阅读材料。
第五章讲函数极限时,直接把滤子基的概念给出来就很好,并且可以在后面讲一下基的用处(用作阅读材料)可以不讲,但是以后再看时就很方便。海涅收敛还是需要再看一下。还有,应该给出那个是“趋近基”但不是“数分趋近基”的例子
光滑函数的概念没有介绍就直接用了,因该加一下。
最后,书中的很多习题很不错,同时有很深的背景,应该介绍一下,很多定理也是。这可以参考一下陈天权的《数学分析讲义》多元微分与后面讲微分形式,曲线曲面上的积分内容也应该加一些。还有,书中列的参考资料确实比较少,还是多列一些好,很多内容可以不讲,可以不写,但是涉及到了,还是列一些参考资料的好。
其次,修改教材。
郇中丹,刘永平大爷的教材确实比王昆扬大爷的讲义易教易学,并且在前面讲解的更好。同时,多元微分部分处理也更漂亮。但是,有很多排版错误,还有很多东西应该扩写。
主要说郇老大爷教材的问题
从开头讲起,
讲集合论的时候,都讲了自然数的公理化定义了,整数的公理化定义,实际上就是介绍一下商集的概念,可以在丁石孙聂灵沼的《代数学引论》里找到。
相关文档
最新文档