考点07 对称性——2021年高考数学专题复习真题附解析

合集下载

函数的奇偶性、周期性与对称性(重点)-备战2023年高考数学一轮复习考点微专题(原卷版)

 函数的奇偶性、周期性与对称性(重点)-备战2023年高考数学一轮复习考点微专题(原卷版)

考向08 函数的奇偶性、周期性与对称性【2022年新高考全国Ⅰ卷】(多选题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【2022年新高考全国II 卷】已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .11.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称. (2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称; 函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称. (3)若奇函数()y f x =在0x =处有意义,则有(0)0f =; 偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇. (8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-. ③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++ ④函数2()log (1)a f x x x =+或函数2()log (1)a f x x x =+. 注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1xmf x m m R a =-∈+. 偶函数:①函数()()x x f x a a -=±+. ②函数()log (1)2mx a mxf x a =+-. ③函数(||)f x 类型的一切函数. ④常数函数 2.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x af x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数3.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.4.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-. (2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(1)如果一个奇函数()f x 在原点处有定义,即(0)f 有意义,那么一定有(0)0f =. (2)如果函数()f x 是偶函数,那么()(||)f x f x =.2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性3.函数周期性常用结论对()f x 定义域内任一自变量的值x : (1)若()()f x a f x +=-,则2(0)T a a =>. (2)若1()()f x a f x +=,则2(0)T a a =>. (3)若1()()f x a f x +=-,则2(0)T a a =>. 4.对称性的三个常用结论(1)若函数()y f x a =+是偶函数,则函数()y f x =的图象关于直线x a =对称.(2)若对于R 上的任意x 都有(2)()f a x f x -=或()(2)f x f a x -=+,则()y f x =的图象关于直线x a =对称.(3)若函数()y f x b =+是奇函数,则函数()y f x =的图象关于点(,0)b 中心对称. 5.两个奇偶函数四则运算的性质(1)两个奇函数的和仍为奇函数; (2)两个偶函数的和仍为偶函数; (3)两个奇函数的积是偶函数; (4)两个偶函数的积是偶函数;(5)一个奇函数与一个偶函数的积是奇函数。

专题07 数列(习题)-2021届沪教版高考数学一轮复习(上海专用)

专题07 数列(习题)-2021届沪教版高考数学一轮复习(上海专用)

2021届高考数学一轮复习 专题07 数列一、填空题1.(2020·上海高三其他)设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= ________.【答案】24 【解析】设等差数列{}n a 的公差为d , 则,∴148a d +=. ∴.故答案为24.2.(2020·上海高三其他)设无穷等比数列n a 的公比为q ,首项10a >,则公比q 的取值范围是________. 【答案】 【解析】 因为21231lim()211n n a a qa a a a q q→∞•+++==>--,又10a >且01q <<, 解得2,13q ⎛⎫∈⎪⎝⎭. 3.(2017·上海闵行高三一模)已知数列的前n 项和为,则此数列的通项公式为___________. 【答案】 【解析】当1n =时,11211a S ==-=,当2n ≥时,()11121212n n n n n n a S S ---=-=---=,又1121-=,所以12n n a .故答案为:12n na .4.(2020·宝山上海交大附中高三其他)若n a 是()()*2,2,nx n N n x R +∈≥∈展开式中2x 项的系数,则 . 【答案】8 【解析】 由题意,,∴88n =-,∴23232228lim()lim(8)8n n n n a a a n →∞→∞++⋅⋅⋅+=-=.5.(2020·上海高三其他)已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. 【答案】(-3,+∞) 【解析】因为数列{a n }是单调递增数列, 所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0.所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ的取值范围为(-3,+∞).6.(2020·上海嘉定高三二模)设各项均为正数的等比数列的前n 项和为,则6S =______. 【答案】63. 【解析】 由,得()661126312S -⇒==-.故答案为: 637.(2020·上海普陀高三二模)设n S 是等差数列的前n 项和(n *∈N )若86286S S -=-,则2lim 2→∞=nn S n ______.【答案】12-【解析】∵数列{}n a 是等差数列,21()22n d dS n a n ∴=+-(其中d 是公差),,∵86286S S -=-, (86)22d∴-=-,2d =-. 即 21(1)n S n a n =-++,.故答案为:12-8.(2020·上海高三其他)设数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有01011012n na n S -=-,则1a =___ 【答案】1- 【解析】由011101011(2)1021212n n n n n na a a S n n S nn S -=-=++=---,令1n =,得11(2)10a a ++=,解得11a =-。

2021年高考数学试卷(上海)(秋考)(解析卷)

2021年高考数学试卷(上海)(秋考)(解析卷)

2021年上海市夏季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知121i,23i z z =+=+(其中i 为虚数单位),则12z z += .【思路分析】复数实部和虚部分别相加【解析】:1234z z i+=+【归纳总结】本题主要考查了复数的加法运算,属于基础题.2、已知{}{}21,1,0,1,A x x B =≤=-则 I A B = 【思路分析】求出集合A ,再求出A B I【解析】:{}1212A x x x x ìü=≤=≤íýîþ,所以{}1,0I A B =-【归纳总结】本题主要考查了集合的交集运算,属于基础题.3、若22240x y x y +--=,则圆心坐标为【思路分析】将圆一般方程化为标准方程,直接读取圆心坐标【解析】:22240x y x y +--=可以化为22125x y -+-=()()所以圆心为(1,2)【归纳总结】本题主要考查了圆的方程,属于基础题.4、如图边长为3的正方形,ABCD 则u u u r u u u rAB AC ⋅= 【思路分析】利用向量投影转化到边上.【解析】方法一:2=9u u u r u u u r u u u r AB AC AB ⋅=方法二:由已知||3AB =u u u r ,||AC =u u u r ,,4AC AB p<>=u u u r u u u r ,则39AB AC ⋅=´=u u u r u u u r ;【归纳总结】本题考查了平面向量的数量积的定义、正方形的几何性质;基础题;5、已知3()2,f x x=+则1(1)f -= 【思路分析】利用反函数定义求解.【解析】由题意,得原函数的定义域为:(,0)(0,)-¥+¥U ,结合反函数的定义,得312x=+,解得3x =-,所以,1(1)3f -=-;【归纳总结】本题主要考查了反函数的定义的应用,属于基础题.6.已知二项式()5x a +的展开式中,2x 的系数为80,则a =________.【思路分析】利用二项式展开式通项公式求解.【解析】5331553,80,2r r r r T C a x r C a a -+=⇒===【归纳总结】本题考查了二项式定理的通项公式、组合数公式与指数幂运算;基础题。

2021-2021高考浙江理科数学真题及答案详解(精校版)

2021-2021高考浙江理科数学真题及答案详解(精校版)

2021-2021高考浙江理科数学真题及答案详解(精校版)2021年普通高等学校招生全国统一考试(浙江卷)数学(理科)试题一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设函数f(x)????x,x?0,?x,x?0.2若f(?)?4,则实数?=C.-2或4D.-2或2A.-4或-2 B.-4或22.把复数z的共轭复数记作z,i为虚数单位,若z?1?i,则(1?z)?z= A.3-i B.3+i C.1+3i 3.若某几何体的三视图如图所示,则这个几何体的直观图可以是4.下列命题中错误的是..D.3A.如果平面??平面?,那么平面?内一定存在直线平行于平面? B.如果平面α不垂直于平面?,那么平面?内一定不存在直线垂直于平面? C.如果平面??平面?,平面??平面?,???=l,那么l?平面? D.如果平面??平面?,那么平面?内所有直线都垂直于平面??x?2y?5>0?5.设实数x,y满足不等式组?2x?y?7>0,若x,y为整数,则3x?4y的最小值是?x≥0,y≥0,?A.14B.16C.17D.196.若0<?<?2,-??1???3<?<0,cos(??)?,cos(?)?,则cos(??)? 2432423B.? A.3 33 31bC.53 9D.?6 91m”是a<或b>的 7.若a,b为实数,则“0<ab<A.充分而不必要条件B.必要而不充分条件1a第 - 1 - 页共 34 页C.充分必要条件 D.既不充分也不必要条件x2y2y22?1有公共的焦点,C1的一条渐8.已知椭圆C1:2?2?1(a>b>0)与双曲线C1:x?ab4近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则2A.a?13 2B.a2?13 2C.b?1 2D.b2?29.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A.1 5B.2 5C.34 D 5510.设a,b,c为实数,f(x)=(x+a)(x2?bx?c),g(x)?(ax?1)(ax2?bx?1).记集合S=xf(x)?0,x?R,T?xg(x)?0,x?R,若S,T分别为集合元素S,T的元素个数,则下列结论不可能的是...A.S=1且T=0 C.S=2且T=2B.S?1且T=1 D.S=2且T=3非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分11.若函数f(x)?x?x?a为偶函数,则实数a? = 。

高考数学复习考点知识与题型专题讲解6---函数的奇偶性、周期性与对称性

高考数学复习考点知识与题型专题讲解6---函数的奇偶性、周期性与对称性

高考数学复习考点知识与题型专题讲解函数的奇偶性、周期性与对称性考试要求1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称.(2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b 2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )为奇函数,则f (0)=0.(×)(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.(×)(3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.(√)(4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.(√)教材改编题1.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案B解析根据偶函数的定义知偶函数满足f(-x)=f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,+∞),不具有奇偶性;D选项既不是奇函数,也不是偶函数.2.若f(x)是定义在R上的周期为2的函数,当x∈[0,2)时,f(x)=2-x,则f(2023)=______.答案1 2解析∵f(x)的周期为2,∴f(2023)=f(1)=2-1=1 2.3.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x<2时,f(x)>0;当2<x≤5时,f(x)<0,又f(x)是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性命题点1判断函数的奇偶性例1判断下列函数的奇偶性:(1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎨⎧ x 2+x ,x <0,-x 2+x ,x >0; (3)f (x )=log 2(x +x 2+1).解(1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3, 即函数f (x )的定义域为{-3,3},从而f (x )=3-x 2+x 2-3=0.因此f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知,对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.(3)显然函数f(x)的定义域为R,f(-x)=log2[-x+(-x)2+1]=log2(x2+1-x)=log2(x2+1+x)-1=-log2(x2+1+x)=-f(x),故f(x)为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.命题点2函数奇偶性的应用例2(1)(2022·哈尔滨模拟)函数f(x)=x(e x+e-x)+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为()A.-2B.0C.2D.4答案C解析依题意,令g(x)=x(e x+e-x),显然函数g(x)的定义域为R,则g(-x)=-x(e-x+e x)=-g(x),即函数g(x)是奇函数,因此,函数g(x)在区间[-2,2]上的最大值与最小值的和为0,而f(x)=g(x)+1,则有M=g(x)max+1,N=g(x)min+1,于是得M+N=g(x)max+1+g(x)min+1=2,所以M+N的值为2.(2)(2021·新高考全国Ⅰ)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=________.答案1解析方法一(定义法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.方法二(取特殊值检验法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )() A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数答案C解析由9-x 2≥0且|6-x |-6≠0,解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0},关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x, 又f (-x )=9-(-x )2x =-9-x 2-x =-f (x ), 所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎨⎧ g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________. 答案-1解析∵f (x )为奇函数且f (-1)=g (-1),∴f (-1)=-f (1)=-(-1)=1,∴g (-1)=1,∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1(1)(2021·全国乙卷)设函数f (x )=1-x 1+x ,则下列函数中为奇函数的是() A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案B解析f(x)=1-x1+x=2-(x+1)1+x=21+x-1,为保证函数变换之后为奇函数,需将函数y=f(x)的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f(x-1)+1.(2)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=2x-2x+a,则a=________;当x<0时,f(x)=________.答案-1-2-x-2x+1解析∵f(x)是定义在R上的奇函数,∴f(0)=0,即1+a=0,∴a=-1.∴当x≥0时,f(x)=2x-2x-1,设x<0,则-x>0,∴f(-x)=2-x-2(-x)-1=2-x+2x-1,又f(x)为奇函数,∴f(-x)=-f(x),∴-f(x)=2-x+2x-1,∴f(x)=-2-x-2x+1.题型二函数的周期性例3(1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝ ⎛⎭⎪⎫132等于() A .-94B .-14C.14D.94答案A解析由f (x -2)=f (x +2),知y =f (x )的周期T =4,又f (x )是定义在R 上的奇函数,∴f ⎝ ⎛⎭⎪⎫132=f ⎝ ⎛⎭⎪⎫8-32 =f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫32=-94. (2)函数f (x )满足f (x )=-f (x +2),且f (1)=2,则f (2023)=________.答案-2解析f (x )=-f (x +2),∴f (x +4)=-f (x +2)=f (x ),∴f (x )的周期为4,∴f (2023)=f (3)=-f (1)=-2.教师备选若函数f (x )=⎩⎨⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2023)=________.答案-1解析当x>0时,f(x)=f(x-1)-f(x-2),①∴f(x+1)=f(x)-f(x-1),②①+②得,f(x+1)=-f(x-2),∴f(x)的周期为6,∴f(2023)=f(337×6+1)=f(1)=f(0)-f(-1)=20-21=-1.思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2023)等于() A.336B.338C.337D.339答案B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2021)+f(2022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2021)+f(2022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2021)+f(2022)=0.题型三函数的对称性例4(1)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f(-x)=f(x),则下列结论正确的是________.(填序号)①f(x)的图象关于直线x=2对称;②f(x)的图象关于点(2,0)对称;③f(x)的周期为4;④y=f(x+4)为偶函数.答案①③④解析∵f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称,故①正确,②错误;∵函数f(x)的图象关于直线x=2对称,则f(-x)=f(x+4),又f(-x)=f(x),∴f(x+4)=f(x),∴T=4,故③正确;∵T=4且f(x)为偶函数,故y=f(x+4)为偶函数,故④正确.(2)函数f(x)=lg|2x-1|图象的对称轴方程为________.答案x=1 2解析内层函数t=|2x-1|的对称轴是x=12,所以函数f(x)=lg|2x-1|图象的对称轴方程是x =12.教师备选已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案-1解析因为f (x )关于点(0,1)对称,所以f (x )+f (-x )=2,故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2,解得a =0,所以f (x )=x 3+bx +1,又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1,所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3(1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2025)=________.答案1解析∵f (x )的周期为6,则f (2025)=f (3),又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称,∴f (3)=f (1)=1,∴f (2025)=1.(2)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是________.(填序号)①f (x )的图象关于y 轴对称;②f (x )的图象关于原点对称;③f (x )的图象关于直线x =π2对称;④f (x )的图象关于点(π,0)对称.答案②③④解析∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x =-f (x ),∴f (x )为奇函数,图象关于原点对称,故①错误,②正确.∵f ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x , f ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x ,∴f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故③正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故④正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上()A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5答案C解析因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5.2.若函数f (x )=12x -1+a 为奇函数,则a 的值为() A .-2B .-12C.12D .2答案C解析方法一(定义法)∵f (x )为奇函数,∴f (-x )=-f (x ),∴12-x -1+a =-⎝ ⎛⎭⎪⎫12x -1+a , ∴2a =-⎝ ⎛⎭⎪⎫12-x -1+12x -1=1, ∴a =12.方法二(特值法)f (x )为奇函数,且x ≠0,∴f (-1)=-f (1),∴a -2=-(a +1),∴a =12.3.(2022·南昌模拟)函数f (x )=9x +13x 的图象()A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案B解析f(x)=32x+13x=3x+3-x,f(-x)=3-x+3x,∴f(-x)=f(x),故f(x)为偶函数,其图象关于y轴对称.4.已知函数f(x)的图象关于原点对称,且周期为4,f(3)=-2,则f(2021)等于()A.2B.0C.-2D.-4答案A解析依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(3)=-2,则有f(2021)=f(-3+506×4)=f(-3)=-f(3)=2,所以f(2021)=2.5.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=|f(x)|C.y=xf(x) D.y=f(x)+x答案D解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,|f(-x)|=|-f(x)|=|f(x)|,为偶函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.6.(2022·南昌模拟)已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=x2+ax+b,则a+b等于()A.0B.-1C.-2D.2答案C解析因为f(x)是定义在R上的奇函数,且x∈[0,2]时,f(x)=x2+ax+b,所以f(0)=b=0,f(-x)=-f(x),又对任意的x∈R都有f(x+2)=-f(x),所以f(x+2)=f(-x),所以函数图象关于直线x=1对称,所以-a2=1,解得a=-2,所以a+b=-2.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案1 3解析因为f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则有(a-1)+2a=3a-1=0,则a=13,同时f(-x)=f(x),即ax2+bx+1=a(-x)2+b(-x)+1,则有bx =0,必有b =0.则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝ ⎛⎭⎪⎫352=12,则m =______. 答案12解析由f (1-x )=f (1+x ),f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫352=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12=12, ∴14+12m =12,∴m =12.9.已知函数f (x )=⎩⎨⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于()A .-7B .-3C .3D .7答案B解析设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ),即f (x )-2=-f (-x )+2,故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=2x +a ,则g (1)等于()A .a +54B.54C.34D .a +34答案C解析依题意⎩⎨⎧ f (1)+g (1)=2+a ①f (-1)+g (-1)=12+a ,②又f (x )为偶函数,g (x )为奇函数,∴②式可化为f (1)-g (1)=12+a ,③由①③可得g (1)=34. 13.已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则下列结论正确的是________.(填序号)①f (x )的图象关于点(2,0)对称;②f (x )的图象关于直线x =2对称;③f (x )的周期为4;④f (x )的周期为8.答案①④解析∵f (x )为偶函数,∴f (x )的图象关于y 轴对称,f (-x )=f (x ),又∵f (x +2)是奇函数,∴f (-x +2)=-f (x +2),∴f (x )的图象关于(2,0)对称,又∵f (x +8)=-f (x +4)=f (x ),∴f (x )为周期函数且周期为8.14.已知函数f (x )对任意实数x 满足f (-x )+f (x )=2,若函数y =f (x )的图象与y =x +1有三个交点(x 1,y 1),(x 2,y 2),(x 3,y 3),则y 1+y 2+y 3=________.答案3解析因为f (-x )+f (x )=2,则f (x )的图象关于点(0,1)对称,又直线y =x +1也关于点(0,1)对称,因为y =f (x )与y =x +1有三个交点,则(0,1)是一个交点,另两个交点关于(0,1)对称,则y 1+y 2+y 3=2+1=3.15.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=________. 答案11011解析因为f (x )=4x4x +2, 所以f (x )+f (1-x )=4x 4x +2+41-x41-x +2=4x 4x +2+44x 44x +2=4x 4x +2+44x 4+2·4x 4x=4x 4x +2+44+2·4x=2·4x +44+2·4x =1,设f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=m ,① 则f ⎝ ⎛⎭⎪⎫20222023+…+f ⎝ ⎛⎭⎪⎫32023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫12023=m ,② ①+②得2022=2m ,即m =1011,故f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=1011. 16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P .(1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值.解(1)因为函数y =x 是增函数,所以函数y =x 不具有性质P ,当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立,所以y =cos x 具有性质P .(2)设x ∈(-π,0],则x +π∈(0,π], 由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝ ⎛⎭⎪⎫-π2=12.。

专题07 对称性-2021年高考数学一轮复习专题讲义附真题及解析

专题07 对称性-2021年高考数学一轮复习专题讲义附真题及解析

3 . 已 知 函 数 f x 的 图 象 关 于 原 点 对 称 , 且 满 足 f (x 1) f 3―x 0 , 且 当 x (2,4) 时 ,
f (x) log1 (x 1) m ,若 f (2021) 1 f (1) ,则 m
.
2
2
4.已知函数 y f (x 1) 是定义在 R 上的奇函数,函数 y g(x) 的图象与函数 y f (x) 的图象关于直线
2.【答案】 f ( 2) f (20) f (0.3)
【解析】因为
f
1 2
x
f
1 2
x
,所以
f
(x)
的图象关于直线
x
1 2
对称,

f
1 2
x
f
1 2
x
可知
f
(x)
f
(1
x) ,
又函数是 R 上的奇函数,所以 f (x) f (x) f (1 x) ,
所以 f (x 2) f (x 1) f (x) ,即函数的周期T 2 ,所以 f (20) f (0)
因为奇函数
f
(x)
在区间
1 2
, 0
上递增,所以
f
(x)
在[
1 2
,
1] 2
上递增,
因为 f (x) 的图象关于直线 x 1
对称,所以
f
(x)
在[1
,
3 ]
上递减,
2
22
所以 f ( 2) f (1)=f (0) f (20)= f (0.3)=f (0.7) .
3.【答案】
f
7 2
<f
1<f
5 2

2021年高考数学2.3 函数的奇偶性、周期性与对称性

2021年高考数学2.3 函数的奇偶性、周期性与对称性

函数的概念与基本性质高考第一轮复习第 三节 函数的奇偶性、周期性与对称性1高考引航2必备知识3关键能力高考引航f (-x )=f (x )f (-x )=-f (x )答案知识清单必备知识f(x+T)=f(x)最小最小正数答案答案基础训练解析1答案解析-3非奇非偶题型归纳题型一 函数奇偶性的判断解析关键能力点拨:判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称.这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域.(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性时,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.答案解析DA题型二 函数奇偶性的应用答案解析-31-5点拨:与函数奇偶性有关的问题及解题策略(1)求函数的值:利用奇偶性将待求值转化为已知区间上的函数值求解.(2)求函数解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.(3)求解析式中的参数值:在定义域关于原点对称的前提下,利用f(x)为奇函数⇔f(-x)=-f(x),f(x)为偶函数⇔f(x)=f(-x),列式求解,也可利用特殊值法求解.对于在x=0处有定义的奇函数f(x),可利用f(0)=0求解.答案B解析CD题型三 函数周期性的应用答案B解析点拨:函数周期性的有关问题的求解策略: 求解与函数周期性有关的问题,应根据题目的特征及周期的定义,求出函数的周期.CC答案解析题型四 函数性质的综合应用答案B− ,点拨:(1)已知函数单调递增且为奇函数,求自变量的范围或比较大小,常利用奇、偶函数图象的对称性.(2)已知f(x)是周期函数且为偶函数,求函数值的范围,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)函数的周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.答案CC方法突破方法一 整体代换思想在求解函数问题中的应用答案C方法二 转化与化归思想在求解函数问题中的应用答案谢谢观赏。

考点07 对称性——2021年高考数学专题复习真题练习

考点07 对称性——2021年高考数学专题复习真题练习

考点7 对称性【题组一 对称轴】1.定义在上的奇函数满足,且当时,,则R ()f x ()()11f x f x +=-[]0,1x ∈()()32f x x x =- .312f ⎛⎫= ⎪⎝⎭2.已知定义在上的函数满足,,且当时,R ()f x ()()f x f x -=()()11f x f x +=-[]0,1x ∈,则 .()()2log 1f x x =+()2019f = 3.已知奇函数的定义域为,若为偶函数,且,则()f x R ()2f x +()11f -=-()()20172016f f += .4已知函数f (x )满足f (x )=f (﹣x +2),且f (x )在(﹣∞,1]上单调递增,则f (﹣1)、f (1)、f(4)的大小关系 。

5.已知偶函数,当时,. 设,,(2f x π+(,)22x ππ∈-13()sin f x x x =+(1)a f =(2)b f =(3)c f =,则的大小关系 。

a b c 、、6.对于任意,函数满足,且当时,,若x ∈R ()f x ()()2f x f x -=1x ≥()2lg f x x x =+()2a f =,,,则,,之间的大小关系是 ,()πlog 3b f =()1c f =-a b c【题组二 对称中心】1.已知函数的图象关于点对称,则点的坐标是 。

1()42x f x =-P P2.设函数的定义域为,若对于任意、,当时,恒有()y f x =D 1x 2x D ∈122x x a +=,则称点为函数图象的对称中心.研究函数的()()122f x f x b +=(),a b ()y f x =()sin 3f x x x π=+-某一个对称中心,并利用对称中心的上述定义,可得到的值为 。

1234030403120162016201620162016f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3.函数是偶函数,且函数的图象关于点成中心对称,当时,(1)()f x x R -∈()f x (1,0)[1,1]x ∈-,则 。

2021年高考数学高分套路 函数的周期性、对称性(解析版)

2021年高考数学高分套路 函数的周期性、对称性(解析版)

1
f(4).因为 f(2+2)=
,所以 f(4)=- =-
=-2- 3.故 f(2 020)=-2- 3.
-f2
f2 2- 3
(3) ∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即 f(x+6)=f(x),
∴f(x)是周期为 6 的周期函数,∴f(919)=f(153×6+1)=f(1).
【修炼套路】---为君聊赋《今日诗》,努力请从今日始
考向一 周期性
x1-x,0≤x≤1, 【例 1】(1)若函数 f(x)(x∈R)是周期为 4 的奇函数,且在[0,2]上的解析式为 f(x)=
sin πx,1<x≤2,
29
41
则 f 4 +f 6 =________.
1
(2)已知定义在 R 上的函数 f(x)满足 f(2)=2- 3,且对任意的 x 都有 f(x+2)=
函数的周期性与对称性
【套路秘籍】---千里之行始于足下
一.对称性 (一)对称轴 1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中 的轴对称,该直线称为函数的对称轴。 2.常见函数的对称轴 ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线 均为它的对称轴 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线 均为它的对称轴 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 x=-b/(2a) ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与 y=-x 均为它的对称轴 ⑤指数函数:既不是轴对称,也不是中心对称 ⑥对数函数:既不是轴对称,也不是中心对称 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是 y 轴;而其他的幂函数不具备对称性 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2 是它的对称轴 ⑨正弦型函数:正弦型函数 y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出 x,就是 它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2 中解出 x,就是它的对称轴;需要注意 的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化 ⑩余弦函数:既是轴对称又是中心对称,其中 x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心 ⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有 的同学会误以为对称中心只是(kπ,0) ⑿对号函数:对号函数 y=x+a/x(其中 a>0)因为是奇函数所以是中心对称,原点是它的对称中心。 ⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性 得因题而异。 ⒁绝对值函数:这里主要说的是 y=f(│x│)和 y=│f(x)│两类。前者显然是偶函数,它会关于 y 轴对称; 后者是把 x 轴下方的图像对称到 x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如 y=│lnx │就没有对称性,而 y=│sinx│却仍然是轴对称

2024年高考数学高频考点题型总结一轮复习 函数的基本性质Ⅱ-奇偶性、周期性和对称性(基础+重难点)

2024年高考数学高频考点题型总结一轮复习 函数的基本性质Ⅱ-奇偶性、周期性和对称性(基础+重难点)

2024年高考数学高频考点题型归纳与方法总结第08讲函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练)【A组在基础中考查功底】一、单选题....【答案】A【分析】首先判断函数的奇偶性,再代入计算)π和2f π⎛⎫⎪⎝⎭的值即可得到正确答案【详解】因为()()2cos cos sin f x x x x x f x -=+=,且函数定义域为R ,关于原点对称,所以是偶函数,其图象关于y 轴对称,排除)22πcosππsinπππ=+=-<2πππππcos sin 22222⎛⎫=+= ⎪⎝⎭故选:A.2023·高三课时练习)设f 上的偶函数,且()f x 在[0,1的解集为().1,12⎛⎫ ⎪⎝⎭11,2⎛⎫-- ⎪⎝⎭111,,122⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭.111,,122⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭U【答案】C【解析】由函数为偶函数可将不等式化为12f ⎛⎫⎪⎝⎭,即可利用单调性求解【详解】 ()f x 是定义在(11122f f ⎛⎛⎫-= ⎪⎝ ⎪⎝⎭⎭⎫=,则不等式()1f x <为()f x <12⎫⎪⎭,()x 在[)0,1上是严格减函数,12>,解得12x <-或x >)1,1,故不等式的解集为11,2⎛⎫-- ⎪⎝⎭二、多选题9.(2023·全国·高三专题练习)已知定义在R 上的奇函数()f x 的图象连续不断,且满足()()2f x f x +=,则以下结三、填空题11.(2023秋·吉林长春·高三长春市第二中学校考期末)设()y f x =是定义在R 上的奇函数,且()()2f x f x +=-,又当[]0,1x ∈时,()2f x x =,则()25.5f 的值为______.【答案】1【分析】由已知可得函数的周期为4,然后根据函数解析式结合周期性奇偶性可求得结果.【详解】因为()()2f x f x +=-,所以()()42f x f x +=-+,所以()()4f x f x +=,所以()y f x =的周期为4,因为()y f x =是定义在R 上的奇函数,当[]0,1x ∈时,()2f x x =,所以()()25.546 1.5f f =⨯+()1.5f =()0.52f =-+()0.5f =--()0.5f =20.51=⨯=,故答案为:112.(2023·全国·高三对口高考)已知函数()y f x =,x ∈R ,()y f x =是奇函数,且当0x ≥时,()32x f x x a =++,则0x <时,()f x =________.【答案】321x x --+【分析】由奇函数性质得1a =-,再根据奇函数求解析式即可.【详解】解:因为()f x 为R 上的奇函数,当0x ≥时,()32xf x x a =++,所以()0010f a =++=,解得1a =-.【B 组在综合中考查能力】一、单选题A .()sin 2e e x xx xf x -=-C .()cos 2e ex xx xf x -=-【答案】A【分析】根据给定的函数图象特征,利用函数的奇偶性排除【详解】对于B ,[2,0)(0,2]x ∈-⋃,f 对于C ,[2,0)(0,2]x ∈-⋃,()x f x --=对于D ,[2,0)(0,2]x ∈-⋃,cos (1)e e f =-对于A ,[2,0)(0,2]x ∈-⋃,()x f x --=且()1sin 210e ef -=>-,A 符合题意.故选:由(6)()f x f x -=②,得()f x 的图象关于直线3x =对称;由①②可得:(6)(2)f x f x -=--,即(4)()f x f x +=-,所以()(4)f x f x =--,故(4)(4)f x f x +=-,所以函数()f x 的周期8T =;所以(5)(1)20,(12)(4)(2)4f f a b f f f ==+====-,即1a b +=-,联立201a b a b +=⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,故2()22x f x x =-.所以()32(2023)(1)(3)22310f f f =-=-=--⨯=.故选:A.二、多选题三、填空题四、解答题【C 组在创新中考查思维】一、单选题1.(2023·辽宁·校联考二模)设函数()f x 在(),-∞+∞上满足()()22f x f x -=+,()()55f x f x -=+,且在闭区间[]0,5上只有()()130f f ==,则方程()0f x =在闭区间[]2020,2020-上的根的个数().A .1348B .1347C .1346D .1345【答案】B【分析】根据周期函数性质可知,只需求出一个周期里的根的个数,可求得()f x 在[]2,7上的零点个数,再分区间[)2022,2-和[]0,2020讨论即可.【详解】()f x 在R 上满足(2)(2)f x f x -=+,(5)(5)f x f x -=+,()f x 关于直线2x =和直线5x =对称,()(4)f x f x ⇒=-,()(10)f x f x =-,(4)(10)f x f x ⇒-=-,二、多选题三、填空题四、解答题。

新高考II卷:《数学》科目2021年考试真题与答案解析

新高考II卷:《数学》科目2021年考试真题与答案解析

高考精品文档新高考II卷数学科目·2021年考试真题与答案解析目录单选题…………01页多选题…………04页填空题…………06页简答题…………06页新高考II 卷:《数学》2021年考试真题与答案解析一、单选题本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数213ii--在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:A2.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =ð( )A .{3}B .{1,6}C .{5,6}D .{1,3} 答案:B3.抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2C.22D.4答案:B4.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km(轨道高度是指卫星到地球表面的距离)。

将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为2=-(单位:2S rπα2(1cos)km),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%答案:C5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20123+B.282C.563D.2823答案:D6.某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .σ越小,该物理量在一次测量中大于10的概率为0.5C .σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D .σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等 答案:D7.已知581log 2,log 3,2a b c ===,则下列判断正确的是( ) A .c b a << B .b a c << C .a c b << D .a b c << 答案:C8.已知函数()f x 的定义域为R ,(2)f x +为偶函数,(21)f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .(1)0f -=C .(2)0f =D .(4)0f = 答案:B二、多选题本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列统计量中,能度量样本12,,,n x x x 的离散程度的是( )A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数答案:AC10.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP 的是( )A .B .C .D .答案:BC11.已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( ) A .若点A 在圆C 上,则直线l 与圆C 相切 B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离 D .若点A 在直线l 上,则直线l 与圆C 相切 答案:ABD12.设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅其中{0,1}i a ∈,记01()k n a a a ω=+++.则( )A .(2)()n n ωω=B .(23)()1n n ωω+=+C .(85)(43)n n ωω+=+D .()21nn ω-=答案:ACD三、填空题本题共4小题,每小题5分,共20分.13.已知双曲线2222:1(0,0)x y C a b a b -=>>,离心率2e =,则双曲线C 的渐近线方程为_______.答案:3y x =±14.写出一个同时具有下列性质①②③的函数():f x _______. ①()()()1212f x x f x f x =; ②当(0,)x ∈+∞时,()0f x '>; ③()f x '是奇函数。

专题12 对称性问题解析版-2021届高三突破满分数学之圆锥曲线

专题12 对称性问题解析版-2021届高三突破满分数学之圆锥曲线

专题十二 对称性问题一、考情分析通过近几年各地高考试题可以发现,对对称性问题的考查在逐渐加深,并与圆锥曲线相结合在一起命题,成为一个新的动向.与圆相关几何性质、最值问题、轨迹问题等都能与椭圆、双曲线和抛物线想结合可以呈现别具一格的新颖试题.二、经验分享1.对于圆锥曲线的相交的动点问题,设出交点,由交点(或韦达定理)结合条件解决问题,在求解过程中、数形结合是常用的打开思路的方式、形是引路、数是依据、二者联手,解决问题就易如反掌、设面不求、灵活消参是常用的策略。

2. 中点弦问题(点差法)的呈现有多种形式,处理重直问题最好的方法是应用向量的坐标形式转化,常规的思路是:联立方程组消去 成y,得到一个二次方程,设交点,韦达定理 代人垂直的数量积坐标公式整理求解。

3.涉及弦长要注意圆的几何性质的应用。

三、题型分析(一)中点弦问题(点差法)例1.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1 B .x 236+y 227=1 C .x 227+y 218=1 D .x 218+y 29=1【答案】D【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b+-+-+=, ∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D.【变式训练1】过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于 .【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得1212121222()()()()0x x x x y y y y a b -+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 【变式训练2】(2011陕西)设椭圆C: ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 【解析】(Ⅰ)将(0,4)代入C 的方程得2161b=, ∴b =4又35c e a == 得222925a b a -= 即2169125a -=,∴a =5 ∴C 的方程为2212516x y +=. ( Ⅱ)过点()3,0且斜率为45的直线方程为()435y x =-,设直线与C的交点为11(,)A x y ,22(,)B x y ,将直线方程()435y x =-代入C 的方程,得()22312525x x -+=,即2380x x --=,解得1x =,2x =,∴AB 的中点坐标12322x x x +==,()1212266255y y y x x +==+-=-,即中点为36,25⎛⎫- ⎪⎝⎭. (二)点关于直线对称例2.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM的斜率为10. (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b,又OM k =,从而2b a =,进而得,2a c b ===,故5c e a ==. (2)由题设条件和(I )的计算结果可得,直线AB1yb+=,点N的坐标为1,)22b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T的坐标为117,)4244x b +-+.又点T 在直线AB 上,且1NS ABk k ⋅=-,从而有11744171x b b b +-++=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b = 故椭圆E 的方程为221459x y +=.【变式训练1】已知椭圆C :()222210x y a b a b+=>>,点()01P ,和点 ()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M . (Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.【解析】(Ⅰ)由题意得2221,,2.b c aa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=.设M (N x ,0).因为0m ≠,所以11n -<<。

2021高考数学重难点07 选考系列(解析版)

2021高考数学重难点07  选考系列(解析版)

2

所以,点 P 的直角坐标为 (1,
3) , SOPQ
1 2
OQ
yP
1 8 2
34
3

(2)设顶点 P 的极坐标为 , ,
OPQ 1 POQ 1 OQP 3
由题意,
2
2,
2,
8
在△OPQ 中,由正弦定理得 sin 2
sin
3 2

sin

2
8 sin
2
,化简得
x 1
x4
7

x 1
1 x 4
x 4
可化为:
x
1
x
4
7
,或
x
1
x
4
7
,或
x
1
x
4
7

解得: 2 x 1 ,或 1 x 4 ,或 4 x 5 ,
综上不等式的解集为2,5 .
f (x) x 1 x 4 = x 1 4 x | x 1 4 x | 5
(2)因为

当且仅当 1 x 4 时,等号成立.
9.(2021·云南昆明市·昆明一中高三月考(理))已知函数

(1)求不等式 f (x) 7 的解集;
(2)若不等式 f (x) log2 m2 4m 的解集为空集,求实数 m 的取值范围.
2, 5
4,0 4,8
【答案】(1)
;(2)
.
【分析】(1)由不等式
f (x) 7 可得:
f (x)
,所以 C1 的普通方程为
x2 3
y2
1
.
对于曲线
C2

sin

解析2021年普通高等学校招生全国统一考试 理科数学 (全国乙卷) 解析版 含答案

解析2021年普通高等学校招生全国统一考试 理科数学 (全国乙卷) 解析版 含答案

2021年普通高等学校招生全国统一考试(全国乙卷) 数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =( ) A.12i - B.12i + C.1i + D.1i - 答案: C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T =( )A.∅B.SC.TD.Z 答案: C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S ,S T T =.故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是( ) A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x -- B.1()1f x -+ C.1()1f x +- D.1()1f x ++ 答案: B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( ) A.2πB.3πC.4πD.6π答案: D 解析:如图,1PBC ∠为直线PB 与1AD 所成角的平面角. 易知11ABC ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A.60种 B.120种 C.240种 D.480种 答案: C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =( )A.7sin()212x π-B.sin()212x π+C.7sin(2)12x π-D.sin(2)12x π+答案: B 解析:逆向:231sin()sin()sin()412212y x y xy x ππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍. 故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( ) A.79 B.2332 C.932 D.29答案: B 解析:由题意记(0,1)x ∈,(1,2)y ∈,题目即求74x y +>的概率,绘图如下所示. 故113311123224411132ABCDAM AN S P S ==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”.GC 与EH 的差称为“表目距的差”,则海岛的高AB =( )A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案: A 解析:连接DF 交AB 于M ,则ABAM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=. 而tan FG GCβ=,tan ED EHα=.所以11()()tan tan tan tan MB MB GC EH GC EHMB MB MB FG ED ED βαβα--=-=⋅-=⋅. 故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 答案: D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<. 综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b+=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是( )A.2[2B.1[,1)2C.22D.1(0,]2答案: C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(1)22y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,c ∈.12.设2ln1.01a =,ln1.02b =,1c =,则( )A.a b c <<B.b c a <<C.b a c <<D.c a b << 答案: B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =+,则(0.01)a c g -=,易得2()21g x x '==+.当02x ≤<1x =+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >. 综上,a c b >>. 二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为 . 答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x =,则有0m =(舍去),3m =,故焦距为24c =. 14.已知向量(1,3)a =,(3,4)b =,若()a b b λ-⊥,则λ= . 答案:35解析:由题意得()0a b b λ-⋅=,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为, 60B =︒,223a c ac +=,则b = .答案:解析:1sin 2ABC S ac B ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==,5BA BC ==,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y , 样本方差分别己为21s 和22S . (1)求x ,y ,21s ,22s : (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 ( 如果2212210s s y x +-≥ , 否 则不认为有显著提高 ) 。

2021年高考数学多选题之知识梳理与训练附解析

2021年高考数学多选题之知识梳理与训练附解析

一、函数的概念与基本初等函数多选题1.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩. 故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =为减函数,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤.所以(1a m m =-=-,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确. 对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.2.已知函数()3log ,092sin ,91744x x f x x x ππ⎧<<⎪=⎨⎛⎫+≤≤ ⎪⎪⎝⎭⎩,若()()()()f a f b f c f d ===,且a b c d <<<,则( )A .1ab =B .26c d π+=C .abcd 的取值范围是()153,165D .+++a b c d 的取值范围是31628,9⎛⎫⎪⎝⎭【答案】ACD 【分析】作出函数()f x 的图象,利用对数的运算性质可判断A 选项的正误,利用正弦型函数的对称性可判断B 选项的正误;利用二次函数的基本性质可判断C 选项的正误;利用双勾函数的单调性可判断D 选项的正误. 【详解】由3log 2x ≤可得32log 2x -≤≤,解得199x ≤≤. 作出函数()f x 的图象如下图所示:由图象可得1191115179a b c d <<<<<<<<<, 由33log log a b =,可得33log log a b -=,即()333log log log 0a b ab +==,得1ab =,A 选项正确;令()442x k k Z ππππ+=+∈,解得()41x k k Z =+∈,当()9,17x ∈时,令94117k <+<,解得24k <<,由于k Z ∈,3k ∴=, 所以,函数[]()2sin 9,1744x y x ππ⎛⎫=+∈⎪⎝⎭的图象关于直线13x =对称, 则点()(),c f c 、()(),d f d 关于直线13x =对称,可得26c d +=,B 选项错误;()()()22613169153,165abcd c c c =-=--+∈,C 选项正确;126a b c d a a+++=++,下面证明函数1y x x =+在()0,1上为减函数,任取1x 、()20,1x ∈且12x x <,则()12121212121111y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1212211212121x x x x x x x x x x x x ---=-+=, 1201x x <<<,则120x x -<,1201x x <<,所以,12y y >,所以,函数1y x x=+在()0,1上为减函数, 119a <<,则13162628,9a b c d a a ⎛⎫+++=++∈ ⎪⎝⎭,D 选项正确. 故选:ACD. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b-> ,当220a b -≤时,b 恒成立,()f x ∴“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立,()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.4.已知函数1(),f x x x =+221()g x x x=+则下列结论中正确的是( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是偶函数 C .()()f x g x +的最小值为4 D .()()f x g x ⋅的最小值为2【答案】BC 【分析】利用奇偶性的定义可得A 错B 对;利用均值不等式可得C 对;利用换元求导可得D 错. 【详解】2211()()f x g x x x x x+=+++ ()22221111()()()f x g x x x x x x x x x ∴-+-=-++-+=+++-- ()()()()f x g x f x g x ∴+=-+- ()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得3t >或3t <- 2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC.【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.5.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n 是互质的正整数),则1()1mm fp f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >,综上对所有正实数x ,有()1f x >,C 正确, 设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.6.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFB S SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xx e e e f x f x e e e------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确.故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.7.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<t ≤<t <t ≤<,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.8.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y=+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误; 故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121x y z m ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.9.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.10.已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( ) A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-. 因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦, 故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.二、导数及其应用多选题11.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( )A .当1a =时,()f x 在0x =处的切线方程为y x =B .若函数()f x 在()π,π-上恰有一个极值,则0a =C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项. 【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解, 令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解, 则sin xxa e-=在()π,π-上恰有一个解, 即y a =与()sin xxg x e-=的图象在()π,π-上恰有一个交点, ()sin cos xx xg x e-'=,()π,πx ∈-, 令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0g x '<,()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫ ⎪⎝⎭上单调递增, 所以极大值为343204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为4204g e ππ⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinx g x e-=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinx g x e-=的图象在()π,π-上恰有一个交点, 即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x x a e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e--'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<, ()h x ∴在,4ππ⎛⎫-- ⎪⎝⎭上单调递增,在3,44ππ⎛⎫- ⎪⎝⎭上单调递减,在3,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为42204h eππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos xxh x e =在()π,πx ∈-上的最大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以422a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当422a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确; 对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数x y e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点, 则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.12.已知0a >,0b >,下列说法错误的是( ) A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D.2lnaab be e-<恒成立【答案】AD【分析】对A式化简,通过构造函数的方法,结合函数图象,说明A错误;对B不等式放缩22a be a e b+>+,通过构造函数的方法,由函数的单调性,即可证明B正确;对C不等式等价变型()ln ln ln1-≥-⇔≥-a ba ab a bb a,通过10,ln1∀>>-x xx恒成立,可得C正确;D求出ln-aab be的最大值,当且仅当11abe=⎧⎪⎨=⎪⎩时取等号,故D错误.【详解】A. 1ln ln0⋅=⇔+=a ba b a a b b设()lnf x x x=,()()0∴+=f a f b由图可知,当1+→b时,存在0+→a,使()()0f a f b+=此时1+→a b,故A错误.B. 232+=+>+a b be a e b e b设()2xf x e x=+单调递增,a b∴>,B正确C. ()ln ln ln1-≥-⇔≥-a ba ab a bb a又10,ln1∀>>-x xx,ln1∴≥-a bb a,C正确D. max1=⇒=xxy ye e当且仅当1x=;min1ln=⇒=-y x x ye当且仅当1=xe;所以2ln-≤aab be e,当且仅当11abe=⎧⎪⎨=⎪⎩时取等号,D错误.故选:AD【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.13.已知(0,1)x ∈,则下列正确的是( ) A .cos 2x x π+<B .22xx <C .22sin 24x x x >+ D .1ln 1x x <- 【答案】ABC 【分析】构造函数()sin f x x x =-证明其在0,2π⎛⎫⎪⎝⎭单调递减,即可得sin 22x x ππ⎛⎫-<-⎪⎝⎭即可判断选项A ;作出2yx 和2x y =的函数图象可判断选项B ;作出()sin2xf x =,()224x h x x =+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.【详解】对于选项A :因为()0,1x ∈,所以022x ππ<-<,令()sin f x x x =-,()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫⎪⎝⎭单调递减,所以()()00f x f <=,即sin x x <,所以sin 22x x ππ⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正确, 对于选项B :由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;对于选项C :要证22sin 24xx x >+, 令()sin 2xf x =,()224x h x x =+ ()()f x f x -=-,()sin2xf x =是奇函数, ()()h x h x -=,()224x h x x =+是偶函数, 令2224144x t x x ==-++ ,则y t =, 因为24y x =+在()0,∞+单调递增,所以2414t x =-+在()0,∞+单调递增,而y t =单调递增,由符合函数的单调性可知()224x h x x =+在()0,∞+单调递增, 其函数图象如图所示:由图知当()0,1x ∈时22sin 24xx x >+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()221110x g x x x x-'=-=<, 所以()1ln 1x g x x=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x+->,可得1ln 1x x >-,故选项D 不正确.故选:ABC 【点睛】思路点睛:证明不等式恒成立(或能成立)一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.14.设函数()ln f x x x =,()212g x x =,给定下列命题,其中正确的是( ) A .若方程()f x k =有两个不同的实数根,则1,0k e⎛⎫∈- ⎪⎝⎭; B .若方程()2kf x x =恰好只有一个实数根,则0k <;C .若120x x >>,总有()()()()1212m g x g x f x f x ->-⎡⎤⎣⎦恒成立,则m 1≥;D .若函数()()()2F x f x ag x =-有两个极值点,则实数10,2a ⎛⎫∈ ⎪⎝⎭. 【答案】ACD 【分析】利用导数研究函数的单调性和极值,且将题意转化为()y f x =与y k =有两个不同的交点,即可判断A 选项;易知1x =不是该方程的根,当1x ≠时,将条件等价于y k =和ln xy x=只有一个交点,利用导数研究函数的单调性和极值,从而可推出结果,即可判断B 选项;当120x x >>时,将条件等价于1122()()()()mg x f x mg x f x ->-恒成立,即函数()()y mg x f x =-在(0,)+∞上为增函数,通过构造新函数以及利用导数求出单调区间,即可求出m 的范围,即可判断C 选项;2()ln (0)F x x x ax x =->有两个不同极值点,根据导数的符号列出不等式并求解,即可判断D 选项. 【详解】解:对于A ,()f x 的定义域(0,)+∞,()ln 1f x x '=+, 令()0f x '>,有ln 1x >-,即1x e>, 可知()f x 在1(0,)e 单调递减,在1+e∞(,)单调递增,所以极小值等于最小值, min 11()()f x f e e∴==-,且当0x →时()0f x →,又(1)0f =,从而要使得方程()f x k =有两个不同的实根,即()y f x =与y k =有两个不同的交点,所以1(,0)k e∈-,故A 正确; 对于B ,易知1x =不是该方程的根,当1x ≠时,()0f x ≠,方程2()kf x x =有且只有一个实数根, 等价于y k =和ln xy x=只有一个交点,2ln 1(ln )-'=x y x ,又0x >且1x ≠, 令0y '>,即ln 1x >,有x e >, 知ln xy x=在0,1()和1e (,)单减,在+e ∞(,)上单增, 1x =是一条渐近线,极小值为e ,由ln xy x=大致图像可知0k <或=k e ,故B 错误; 对于C ,当120x x >>时,[]1212()()()()m g x g x f x f x ->-恒成立, 等价于1122()()()()mg x f x mg x f x ->-恒成立, 即函数()()y mg x f x =-在(0,)+∞上为增函数, 即()()ln 10y mg x f x mx x =-''--'=≥恒成立, 即ln 1+≥x m x 在(0,)+∞上恒成立, 令ln 1()x r x x +=,则2ln ()xr x x-'=, 令()0r x '>得ln 0x <,有01x <<,从而()r x 在(0,1)上单调递增,在(1,)+∞上单调递减, 则max ()(1)1r x r ==,于是m 1≥,故C 正确;对于D ,2()ln (0)F x x x ax x =->有两个不同极值点, 等价于()ln 120F x x ax +-'==有两个不同的正根, 即方程ln 12x a x+=有两个不同的正根, 由C 可知,021a <<,即102a <<,则D 正确. 故选:ACD.【点睛】关键点点睛:本题考查导数的应用,利用导数研究函数的单调性和极值,以及利用导数解决函数的零点问题和恒成立问题从而求参数范围,解题的关键在于将零点问题转化成两个函数的交点问题,解题时注意利用数形结合,考查转化思想和运算能力.15.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦,则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.16.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( )A .()()()m x f x g x =-在0x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1- D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2ey =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断. 【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x+'∴=+=>, 当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以21480k b ∆=+≤,所以0b ≤, 又12kx b x≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误;对于D ,函数()f x 和()h x 的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线方程为(2ey k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R ),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =此时隔离直线方程为:2e y =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x存在唯一的隔离直线2ey =-,D 正确.故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.17.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有( )A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+ C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC 【分析】 构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误. 【详解】 由()()f x f x x '<知:()()0xf x f x x'-<, 令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()0()g x g x x f x x f x x x x x x x --=<-- 当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >;A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+; B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+; C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <; D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小. 故选:ABC 【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x '-<, 1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=. 2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减. 3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.18.已知函数()()2214sin 2x xe xf x e -=+,则下列说法正确的是( )A .函数()y f x =是偶函数,且在(),-∞+∞上不单调B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2x x xxe x ef x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e--++---=-=, ()y f x ∴=是偶函数,其图像关于y 轴对称, ()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xxf x e x e '=-+, 11()2sin()=(2sin )()x xx xf x e x e x f x e e --''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xxg x e x e =-+, 则1()+2cos 2+2cos 0xxg x e x x e '=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.19.若方程()2110x m x -+-=和()120x m ex -+-=的根分别为()1212,x x x x <和3x ,()434x x x <,则下列判断正确的是( )A .3201x x <<<B .1310x x -<<C .(),1m ∈-∞- D.11x ⎫∈-⎪⎪⎝⎭【答案】ABD 【分析】根据题意将问题转化为,1x ,2x 和3x ,4x 分别是y m =与11y x x =--和12x xy e-=-交点的横坐标,再用导数研究函数11y x x =--和12x xy e-=-的单调性与取值情况,作出函数图象,数形结合即可解决问题. 【详解】解:由题,1x ,2x 和3x ,4x 分别是11m x x =--和12x xm e-=-的两个根, 即y m =与11y x x =--和12x xy e-=-交点的横坐标. 对于函数11y x x =--,定义域为{}0x x ≠,21'10y x=+>,所以函数在(),0-∞和()0,∞+上单调递增,且1x =时,1y =-;对于函数12x x y e -=-,11'x xy e--=,所以函数在(),1-∞上单调递增,在()1,+∞单调递减,且当,2x y →+∞→-,0x =时,2y =-,1x =时,1y =-; 故作出函数11y x x =--,12x xy e-=-的图像如图所示, 注意到:当()0,1x ∈时,11122x xx x x e---<-<-, 由图可知,3201x x <<<,()2,1m ∈--, 从而()11112,1x x --∈--,解得11x ⎫∈-⎪⎪⎝⎭, 所以选项AD 正确,选项C 错误, 又121310x x x x -=<<. 故选:ABD .【点睛】本题考查利用导数研究函数的零点问题,考查化归转化思想与数形结合思想,是中档题.20.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.三、三角函数与解三角形多选题21.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈,()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.22.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( ) A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当。

江苏省南京市秦淮中学2021届高考数学二轮复习 微专题2 函数的对称性-解析版

江苏省南京市秦淮中学2021届高考数学二轮复习 微专题2 函数的对称性-解析版

微专题 函数的对称性问题(轴对称和中心对称)记住常见的几种对称结论: 轴对称:函数)(x f 满足()()f x a f b x +=-时,函数()y f x =的图像关于直线2a bx +=对称; 推论1:函数)(x f 满足()()f x f x =-时,函数)(x f 为偶函数,关于y 轴对称推论2:函数)(x f 满足()()f a x f a x +=-时,函数()y f x =的图像关于直线x a =对称;中心对称:函数)(x f 满足()()c f x a f b x ++-=时,函数()y f x =的图像关于点(,)22a b c+对称; 推论1:()()0f x f x +-=函数)(x f 为奇函数,函数图像关于(0,0)对称( 即0a b c ===)推论2:()()2f a x f a x b ++-=函数)(x f 图像关于(,)a b 对称(比较常用)变形:函数若满足()()22f x f a x b +-=则函数图像关于点(),a b 对称 推论3:()()0f a x f a x ++-=则函数图像关于点(),0a 对称 变形:函数若满足()()20f x f a x +-=则函数图像关于点(),0a 对称推论4:()cx d f x ax b +=+的对称中心是(,)b ca a-(证明略) 其他二级结论:1.函数()y f x a =+的图像与函数()y f b x =-的图像关于直线2b ax -=对称. 2.三次函数32()(0)f x ax bx cx d a =+++≠必有对称中心,其对称中心为()00,()x f x (其中0()0f x ''=).编者的话:函数的对称性,很多学生之所以畏惧,皆是因为舍其“形”找其“性”,解决此类题目,应变其“形”(熟悉的函数模型),用其“性”(单调性,奇偶性,周期性)本文作者QQ :15194599,有错误请联系告知,不甚感激 反比例函数的对称性1.(2020·扬州中学五月考·13)圆22640x y x y ++-=与曲线243x y x +=+相交于,,,A B C D 点四点,O 为坐标原点,则OA OB OC OD +++=_______.【答案】413【分析】注意发现圆与一次分式函数243x y x +=+的图象均关于点(−3, 2)对称,利用三角形中线的向量表示,将所求转化即可.【解析】由圆方程22640x y x y ++-=,可得()()223213x y ++-=,圆心坐标为(−3, 2)242(3)222333x x y x x x ++-===-+++,其对称中心为(−3, 2).在同一直角坐标系中,画出圆和函数图像如右图所示:数形结合可知,圆和函数都关于点M (−3, 2)对称,故可得其交点A 和C ,B 和 D 都关于点M (−3, 2)对称. 故2OA OC OM +=,2OB OD OM +=所以4413OA OB OC OD OM +++==.对称性+周期性2.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[)1,1x ∈-时,()2x f x =,则(2021)(2022)+=f f ( ) A .1B .4C .8D .10【答案】A【分析】根据函数的奇偶性,对称性判断函数的周期并求解.【解析】因为(1)f x +是定义在R 上的奇函数,所以()y f x =图象的对称中心为(1,0),且(1)0f =.因为(4)(2)f x f x +=-,所以()y f x =图象的对称轴方程为3x =,故()f x 的周期8T =,(2021)(5)==f f (1)0f =,(2022)(6)(0)1===f f f ,从而(2021)(2022)1+=f f ,3.已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( ) A .669 B .670 C .2008 D .1 【答案】D【解析】由()32f x f x ⎛⎫=-+⎪⎝⎭得()()3f x f x =+,又()()11,02f f -==-, (1)(13)(2)f f f ∴-=-+=,(0)(3)f f =,()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,所以()1131()()(1),(1)(2)(3)0222f f f f f f f -=--=-+=∴++=,由()()3f x f x =+可得()()()()()()122008669123(1)(1)(1)1f f f f f f f f f ++⋅⋅⋅+=⨯+++==-=⎡⎤⎣⎦故选D.对称性+数形结合4.定义在R 上的偶函数()f x 满足()()22f x f x +=-,当[]2,0x ∈-时,()2f x x =+,设函数()()2e26x h x x --=-<<(e 为自然对数的底数),则()f x 与()h x 的图象所有交点的横坐标之和为( ) A .5 B .6C .7D .8【答案】D【分析】根据已知条件求出()f x 的周期,利用周期性和偶函数作出()f x 在区间()2,6-的图象,以及()()2e26x h x x --=-<<的图象,数形结合即可求解.【解析】因为()f x 满足()()22f x f x +=-,所以()f x 图象关于直线2x =对称,因为()f x 是R 上的偶函数,所以()f x 图象关于直线0x =对称,所以()f x 的周期为4,()()2e26x h x x --=-<<的图象关于直线2x =对称,由[]2,0x ∈-时,()2f x x =+,作出()f x 图象如图和()()2e 26x h x x --=-<<的图象由图知()f x 与()h x 的图象在区间()2,6-有四个交点,设交点横坐标分别为1234,,,x x x x ,且1422x x +=,2322x x +=,所以12348x x x x +++=,所以()f x 与()h x 的图象所有交点的横坐标之和为8,5.函数()()(1)sin 1810f x x x x π=---<<的所有零点之和为________. 【答案】16【解析】原函数的零点可看作函数f (x )=sin πx 与g (x )=1x -1的交点的横坐标,因为函数f (x )与g (x )均关于点(1,0)对称,所以由图象可得:在区间[0,2]上没有交点,在区间[2,10]上共有8个交点,在[-8,0]上共有8个交点,且8组都关于点(1,0)对称,故所有零点之和为16.【点评】由于三角函数的图象具有对称性和周期性,所以对于在多个周期的零点个数问题可以利用图象和周期性来判断零点的个数,如果需要计算零点的和,可以利用对称轴或对称中心来计算.6.设函数()f x 为定义域为R 的奇函数,且()(2)f x f x =-,当[]0,1x ∈时,()sin f x x =,则函数()cos ()g x x f x π=-在区间59,22⎡⎤-⎢⎥⎣⎦上的所有零点的和为( )A .6B .7C .13D .14【答案】A【解析】由题意,函数()()f x f x -=--,()(2)f x f x =-,则()(2)f x f x --=-,可得,(4)()f x f x +=即函数的周期为4,且()y f x =的图象关于直线1x =对称.()cos ()g x x f x π=-在区间59,22⎡⎤-⎢⎥⎣⎦上的零点,即方程cos ()x f x π=的零点,分别画cos y x π=与()y f x =的函数图象,因为两个函数的图象都关于直线1x =对称,所以方程cos ()x f x π=的零点关于直线1x =对称,由图象可知交点个数为6个,可得所有零点的和为6,故选A .7.设函数22(1)sin ()1x xf x x ++=+的最大值为M ,最小值为m ,则M m + = . 【答案】2【解析】将函数解析式适当变形,遇分式想部分分式,整化零,222(1)2sin 2sin ()111x x x x xf x x x ++++==+++,设22sin ()()11x xg x f x x +=-=+,显然()g x 为奇函数,由题意知其最大值、最小值一定存在,根据函数图象的对称性,最大值与最小值互为相反数,其和为0,所以,本题应填2.【点评】本题欲求最大值与最小值的和,上述解法没有运用常规的求最值的基本工具,如:求导、基本不等式、单调性、反解等,而是充分利用函数的性质——奇偶性,舍弃解析式其外在的“形”转而研究函数的“性”,这种策略和方法在解题中经常涉及.由于考生受定势思维的影响,此类题目多为考生所畏惧.8.跟踪训练函数42sin ()1()1xf x xR x x 的最大值与最小值之和为___________【答案】2三次函数的对称性9.在平面直角坐标系xOy 中,已知直线22ykxk 与曲线32y x x 依次交于C B A ,,点,若点P 使2PA PC +=,则PB 的值为_____.【答案】1 【解析】22ykxk 过定点(2,2), 对于三次函数32y x x ,令()12(2)0f x x ''=-= 得2x =,又(2)2f =,所以x x y +-=3)2(2也关于点(2,2)对称,所以2PA PC PB +=,1PB =. 说明:三次函数32()(0)f x ax bx cx d a =+++≠必有对称中心,其对称中心为()00,()x f x (其中0()0f x ''=).10.已知函数()2x x xe f x e e-=-与函数()3121x x g x =-++的图象交点分别为()111,P x y ,()22,P x y ()()*,,k k P x y k N ⋅⋅⋅∈,则1212()()k k x x x y y y ++⋯++++⋯+=( )A .2-B .0C .2D .4【答案】D【分析】先证明函数(),()f x g x 关于点(0,1)对称,再作出两函数的图象分析得解.【解析】由题意化简,()1x x x x e e f x e e --+=+-,因为函数x xx x e e y e e --+=-是奇函数,所以函数()1x xx x e e f x e e--+=+-关于点(0,1)对称.因为函数312y x x =-+是奇函数,所以函数()3121x x g x =-++关于点(0,1)对称.又()()222401xxe f x e'=<--,所以()f x 在()(),0,0,-∞+∞上单调递减,由题得()()2'34g x x =--,所以函数()g x 在()()2,2,-∞-+∞,上单调递减,在()2,2-上单调递增,由图象可知,()f x 与()g x 的图象有四个交点,且都关于点()0,1对称,所以123412340,02,2x x x x y y y y +=+=+=+=,,所以所求和为4,11.设函数3()(3)1f x x x =-+-,数列{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则127a a a ++⋅⋅⋅+=( )A 、0B 、7C 、14D 、21 【答案】D提示:根据函数值之和127()()()14f a f a f a ++⋅⋅⋅+=求自变量之和127a a a ++⋅⋅⋅+,很自然会去考虑函数的性质,而等式常常考查对称性,从而尝试去寻求函数3()(3)1f x x x =-+-的对称中心.函数3()(3)1f x x x =-+-可以视为由3(3)y x =-与1y x =-构成,它们的对称中心不一样,可以考虑对函数的图象进行平移, 比如3()2(3)(3)f x x x -=-+-,引入函数3()(3)2F x f x x x =+-=+,则该函数是奇函数,对称中心是坐标原点,由图象变换知识不难得出3()(3)1f x x x =-+-的图象关于点(3,2)中心对称.127a a a ++⋅⋅⋅+=2137=⨯12.已知函数()sin cos f x x x x =+-若直线44(1)kx y k π-=-与()y f x =图象的交点为()11,x y ,()22,x y ,(),m m x y ⋅⋅⋅则1()mi i i x y =+=∑( )A.2m πB. m πC.2m πD.4m π 【解析】转化44(1)kx y k π-=-得()44y k x ππ-=-,直线显然关于44ππ⎛⎫⎪⎝⎭,中心对称联想()4f x x x π⎛⎫=-⎪⎝⎭联想()4444f x x x ππππ+=++-() 自然联想到()()2f a x f a x b ++-=函数)(x f 图像关于(,)a b 对称,代入到本题得()4444f x x x ππππ-=-+--()即()()442f x f x πππ-++=即()f x 也关于44ππ⎛⎫ ⎪⎝⎭,对称,结合图像的对称性则有1234m x x x x m π+++⋅⋅⋅=⋅同理1234m y y y y m π+++⋅⋅⋅=⋅1()mi i i x y =∴+=∑2m π思考2:由于本题直线关于44ππ⎛⎫⎪⎝⎭,对称,联想到函数若满足()22f x f x b π⎛⎫+-= ⎪⎝⎭可以结合到奇变偶不变,符号看象限,很快得到()sin cos f x x x x =+-也关于44ππ⎛⎫⎪⎝⎭,对称。

考点06 周期性——2021年高考数学专题复习真题附解析

考点06 周期性——2021年高考数学专题复习真题附解析

考点六周期【题组一利用周期求值】2.已知函数()f x是定义在R上的偶函数,且对任意x∈R,()()20f x f x-+=.当[)0,1x∈时,3.已知()f x是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x-=+.若(1)2f=,则(50)f++6.定义在R 上的函数()f x 满足(3)(3)f x f x +=-,当31x -≤<-时2()(2)f x x =-+,当13x -≤<时()f x x =,则(1)(2)(3)(2019)f f f f ++++= 。

7.函数()f x 为定义在R 上的偶函数,且满足()(1)1f x f x ++=,当[]1,2x ∈ 时()3f x x =-,则(2015)f -= 。

【题组二 利用周期求解析式】1.已知周期为2的偶函数()f x 的定义域为R ,且当[0,1]x ∈时,3()log (32)f x x =-,则当[2019,2020]x ∈时,()f x 的解析式为________2.定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.3.设()f x 是定义在上以2为周期的偶函数,已知(0,1)x ∈,()()12log 1f x x =-,则函数()f x 在(1,2)上的解析式是【题组三 利用周期比大小】1.定义在R 上的偶函数()f x 满足()()2f x f x +=,且在[-1,0]上单调递减,设()2.8a f =-,()1.6b f =-,()0.5c f =,则a 、b ,c 大小关系是 。

2.定义在上的函数满足以下三个条件:①对于任意的,都有;②函数的图象关于轴对称;③对于任意的,都有则、、从小到大的关系是 。

3.已知函数在上单调递减,且是偶函数,则,,的大小关系是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点7 对称性
【题组一 对称轴】
1.定义在R 上的奇函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()()32f x x x =-,则
312f ⎛⎫
=
⎪⎝⎭ .
2.已知定义在R 上的函数()f x 满足()()f x f x -=,()()11f x f x +=-,且当[]0,1x ∈时,()()
2log 1f x x =+,则
()2019f =
.
3.已知奇函数()
f x 的定义域为R ,若
()
2f x +为偶函数,且
()11
f -=-,则
()()20172016f f +=
.
4已知函数f (x )满足f (x )=f (﹣x +2),且f (x )在(﹣∞,1]上单调递增,则f (﹣1)、f (1)、f (4)的大小关系 。

5.已知偶函数()2f x π+,当(,)22x ππ∈-时,
1
3
()sin f x x x =+. 设(1)a f =,(2)b f =,(3)c f =,则a b c 、、的大小关系 。

6.对于任意x ∈R ,函数()f x 满足()()2f x f x -=,且当1x ≥时,()2
lg f x x x =+,若()2a f =,
()πlog 3b f =,()1c f =-,则a ,b ,c 之间的大小关系是 ,
【题组二 对称中心】
1.已知函数1
()42x f x =
-的图象关于点P 对称,则点P 的坐标是 。

2.设函数()
y f x =的定义域为D ,若对于任意
1x 、
2x D
∈,当
122x x a
+=时,恒有
()()122f x f x b
+=,
则称点
(),a b 为函数()y f x =图象的对称中心.研究函数()sin 3f x x x π=+-的某一个对称中心,并利
用对称中心的上述定义,可得到1234030403120162016201620162016f f f f f ⎛⎫⎛⎫
⎛⎫
⎛⎫
⎛⎫
+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪

⎭⎝⎭
⎝⎭
⎝⎭
⎝⎭的值
为 。

3.函数(1)()f x x R -∈是偶函数,且函数()f x 的图象关于点(1,0)成中心对称,当[1,1]x ∈-时,
()1f x x ,则(2019)f = 。

4.奇函数()f x 的图象关于点(1,0)对称,(3)2f =,则(1)f =__________.
5.函数1
x a
y x a -=
--的图像的对称中心是()4,1P ,则实数a =______
6.设函数()y f x =的定义域为D ,若对于任意的12,x x D ∈,当122x x a +=时,恒有()()122f x f x b +=,则称点(),a b 为函数()y f x =图像的对称中心.研究函数()3
sin 2f x x x =++的某一个对称中心,并利用
对称中心的上述定义,可得到()()1919112020f f f f ⎛⎫⎛⎫
-+-
+⋅⋅⋅++= ⎪ ⎪⎝⎭⎝⎭
.
【题组三 函数性质综合运用】
1.已知定义在R 上的函数()f x 满足()()
1
f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是 。

A .()()()4.5 3.512.5f f f -<< B .()()()3.5 4.512.5f f f -<< C .()()()12.5 3.5 4.5f f f -<< D .()()()3.512.5 4.5f f f -<<
2.设()f x 是定义在R 上的函数,满足条件()()11f x f x +=-+,且当1x ≤时,()3x
f x e
-=-,则
()27a f log =,()2 1.533,3b f c f --⎛⎫
⎪⎝⎭
==的大小关系是 。

A .a b c >>
B .a c b >>
C .b a c >>
D .c b a >>
3.已知函数()1108
101
x x
f x ++=+,则()()()()3336lo
g log 6log log 3f f +的值为( ). A .7 B .9
C .14
D .18
4.已知函数()f x 满足()()()11f x f x x R -=+∈,且对任意()1212,(,1]x x x x ∈-∞≠的时,恒有
()()1212
0f x f x x x ->-成立,则当()()2222224f a a f a a ++<-+时,实数a 的取值范围为( )
A .2,3⎛⎫+∞
⎪⎝⎭
B .2,
3⎛
⎫-∞ ⎪⎝⎭
C .2,13⎛⎫
⎪⎝⎭
D .()2,11,3⎛⎫
+∞
⎪⎝⎭
5.已知函数y=f (x )的图象关于直线x=1对称,且在[1,+∞)上单调递减,f (0)=0,则f (x+1)>0的解集为( )
A .(1,+∞)
B .(﹣1,1)
C .(﹣∞,﹣1)
D .(﹣∞,﹣1)∪(1,+∞)
6.关于函数()ln(1)ln(3)f x x x =+--有下述四个结论:
①()f x 在(1,3)-单调递增 ②()y f x =的图像关于直线1x =对称 ③()y f x =的图像关于点(1,0)对称 ④()f x 的值域为R 其中正确结论的个数是( ) A .0 B .1 C .2 D .3
解析附后
考点7 对称性
【题组一 对称轴】
1.定义在R 上的奇函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()()32f x x x =-,则
312f ⎛⎫
=
⎪⎝⎭ .
【答案】-1
【解析】∵定义在R 上的奇函数
()f x ,()()
f x f x ∴-=-,
(1)(1)(1),(2)()f x f x f x f x f x ∴-+=+=--+=-,可得(4)(2)()f x f x f x +=-+=.
则()f x 的周期是4,31111144(31)122222f f f f
⎛⎫⎛⎫⎛⎫
⎛⎫⎡⎤
∴=⨯-=-=-=-⋅-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,
2.已知定义在R 上的函数()f x 满足()()f x f x -=,()()11f x f x +=-,且当[]0,1x ∈时,
()()
2log 1f x x =+,则
()2019f =
.
【答案】1
【解析】因为()()f x f x -=,所以函数为偶函数 所以()()11(1)f x f x f x +=-=-,即(2)()f x f x += 所以周期2T =,()22019(1)log 21f f ===
3.已知奇函数()
f x 的定义域为R ,若
()
2f x +为偶函数,且
()11
f -=-,则
()()20172016f f +=
.
【答案】1
【解析】
奇函数()f x 的定义域为R ,若(2)f x +为偶函数,
(0)0f ∴=,且(2)(2)(2)f x f x f x -+=+=--,。

相关文档
最新文档