2数学思想方法的几次突破
数学思想方法的几次突破
第二章数学思想方法的几次突破一、要点解析主要内容指导:1、西方资本主义社会初期的数学思想2、代数学的发展(1)采用印度—阿拉伯数字(2)系统采用数学符号(3)数学基础的新起点3、解析几何的产生(1)解析几何的基本思想(2)解析几何的意义4、微积分产生的响影难点指导:确定数学和随机数学的区别是本章的难点。
确定数学是研究确定性现象数量关系的数学分支,随机数学是研究随机现象数量关系的数学分支。
因此区别确定数学和随机数学的关键是区别确定性现象和随机现象。
确定性现象的特点是:在一定的条件下,其结果完全被决定,或者完全肯定,或者完全否定,不存在其他可能。
即在一定的条件下必然会发生,或者必然不会发生某种结果。
这种现象的条件和结果之间存在着必然的联系,而随机现象的条件和结果之间不存在这种必然性,其特点是:在一定的条件下,可能发生,也可能不发生某种结果,带有一定的偶然性。
因此随机现象无法用确定数学来研究。
二、典型例题1. 分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。
解答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。
代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。
它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。
2. 比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。
解答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。
决定性现象的特点是:在一定的条件下,其结果可以唯一确定。
因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。
随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。
《数学思想方法》综合练习(含答案)
《数学思想方法》综合练习一、填空题1.《九章算术》思想方法的特点是开放的归纳体系算法化的内容模型化的方法。
2.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以《九章算术》为典范。
3.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的《几何原本》。
4.《几何原本》所开创的公理化方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。
5.推动数学发展的原因主要有两个:①实践的需要,②理论的需要:数学思想方法的几次突破就是这两种需要的结果。
6.变量数学产生的数学基础是解析几何,标志是微积分。
7.数学基础知识和数学思想方法是数学教学的两条主线。
&随机现象的特点是在一定条件下,可能发生某种结果,也可能不发生某种结果。
9.等腰三角形的抽象过程,就是把一个新的特征:两边相等,加入到三角形概念中去,使三角形概念得到强化。
10.学生理解或掌握数学思想方法的过程有如下三个主要阶段、①潜意识阶段,②明朗化阶段,③深刻理解阶段。
11.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为数学的各个分支相互渗透和相互结合的趋势。
12.抽象的含义:取其共同的本质属性或特征,舍去其非本质的属性或特征的思维过程13.强抽象就是指,通过把一些新特征加入到某一概念中去而形成新概念的抽象过程。
14.菱形概念的抽象过程就是把一个新的特征:一组邻边相等,加入到平行四边形概念中去,使平行四边形概念得到了强化。
15.演绎法与归纳法被认为是理性思维中两种最重要的推理方法。
16.所谓类比,是指由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种推理方法:常称这种方法为类比法,也称类比推理。
17.反例反驳的理论依据是形式逻辑的矛盾律。
18.在反例反驳中,构造一个反例必须满足条件(1)反例满足构成猜想的所有条件(2)反例与构成猜想的结论矛盾。
【精选资料】数学思想方法课程教学大纲
《数学思想方法》课程教学大纲第一部分大纲说明一、课程的地位、性质与任务《数学思想方法》是研究数学思想方法及其教学的一门课程。
随着现代科学技术的迅速发展和素质教育的全面实施,对科学思想、科学方法有着全局影响的数学思想方法其重要性日益凸现。
鉴于数学思想方法在素质教育中的重要作用,《数学思想方法》被列为中央广播电视大学小学教育专业的一门重要的必修课。
通过本课程的学习,使学员比较系统地获得对数学思想方法的认识,掌握实施数学思想方法教学的特点,并能运用这些理论指导小学数学教学实践。
通过各个教学环节,逐步培养学员实施数学思想方法教学的能力和综合运用所学知识分析问题、解决有关实际问题的能力,为成为适应新世纪需要的高素质的小学教师打下坚实基础。
二、课程主要内容及要求本课程的主要内容包括:数学思想与方法的两个源头、数学思想与方法的几次重要突破、数学的真理性、现代数学的发展趋势、演绎与化归、抽象与概括、猜想与反驳、计算与算法、应用与建模、数学思想与方法与素质教育、数学思想与方法教学、数学思想与方法教学案例。
通过本课程的学习,关键在于使学员建构起关于数学思想方法的认知结构,认识数学思想方法的重要性,增强数学思想方法教学的自觉性,提高实施数学思想方法教学的水平和能力。
通过“数学思想方法的发展”部分学习,帮助学员了解数学思想方法的源头、几次重要突破和现代数学的发展趋势,并能正确理解数学的真理性,确立动态的、拟经验主义的数学观。
通过“数学思想方法例解"部分学习,使学员掌握数学教学中常用的数学思想方法及其应用。
通过“数学思想方法教学"部分学习,使学员掌握数学思想方法教学的特点,并能将所学数学思想方法初步应用于小学数学教学。
三、教学媒体1.文字教材:文字教材是学生学习课程的主要用书,是学生获得知识和能力的重要媒体,是教和学的根本依据。
文字教材名称:《数学思想与方法》(顾泠沅主编,中央电大出版社出版)。
2.音像教材:《数学思想与方法》录像教材共18讲,由首都师范大学副教授姚芳主讲。
《数学思想方法》课程教学大纲
《数学思想方法》课程教学大纲第一部分大纲说明一、课程的地位、性质与任务《数学思想方法》是研究数学思想方法及其教学的一门课程。
随着现代科学技术的迅速发展和素质教育的全面实施,对科学思想、科学方法有着全局影响的数学思想方法其重要性日益凸现。
鉴于数学思想方法在素质教育中的重要作用,《数学思想方法》被列为中央广播电视大学小学教育专业的一门重要的必修课。
通过本课程的学习,使学员比较系统地获得对数学思想方法的认识,掌握实施数学思想方法教学的特点,并能运用这些理论指导小学数学教学实践。
通过各个教学环节,逐步培养学员实施数学思想方法教学的能力和综合运用所学知识分析问题、解决有关实际问题的能力,为成为适应新世纪需要的高素质的小学教师打下坚实基础。
二、课程主要内容及要求本课程的主要内容包括:数学思想与方法的两个源头、数学思想与方法的几次重要突破、数学的真理性、现代数学的发展趋势、演绎与化归、抽象与概括、猜想与反驳、计算与算法、应用与建模、数学思想与方法与素质教育、数学思想与方法教学、数学思想与方法教学案例。
通过本课程的学习,关键在于使学员建构起关于数学思想方法的认知结构,认识数学思想方法的重要性,增强数学思想方法教学的自觉性,提高实施数学思想方法教学的水平和能力。
通过“数学思想方法的发展”部分学习,帮助学员了解数学思想方法的源头、几次重要突破和现代数学的发展趋势,并能正确理解数学的真理性,确立动态的、拟经验主义的数学观。
通过“数学思想方法例解"部分学习,使学员掌握数学教学中常用的数学思想方法及其应用。
通过“数学思想方法教学"部分学习,使学员掌握数学思想方法教学的特点,并能将所学数学思想方法初步应用于小学数学教学。
三、教学媒体1.文字教材:文字教材是学生学习课程的主要用书,是学生获得知识和能力的重要媒体,是教和学的根本依据。
文字教材名称:《数学思想与方法》(顾泠沅主编,中央电大出版社出版)。
2.音像教材:《数学思想与方法》录像教材共18讲,由首都师范大学副教授姚芳主讲。
数学发展史中的几次重大思想方法的突破图文稿
数学发展史中的几次重大思想方法的突破集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-1. 承认“无理数”是对“万物皆数”的思想解放古希腊有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。
他们认为“数”是万物的本源,是数学严密性和次序性的唯一依据,是在宇宙体系里控制着自然的永恒关系,数是世界的准则和关系,是决定一切事物的,“数统治着宇宙”,支配着整个自然界和人类社会。
因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。
他们所说的数是指整数。
分数的出现,使“数”不那样完整了。
但分数都可以写成两个整数之比,所以他们的信仰没有动摇。
但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。
万物皆数以数为一个价值尺度去解释自然,揭示了自然界的部分道理,可把数绝对化就不行了,就制约了人的思维。
无理数的发现推翻了毕达哥拉斯等人的信条,打破了所谓给定任何两个线段,必定能找到第三个线段使得给定的线段都是这个线段的整数倍。
这样,原先建筑在可公度量上的比例和相似性的理论基础就出问题了。
这是数学史上的第一次危机。
2.2 微积分的产生是第二次思想解放第二次数学危机源于极限概念的提出。
作为极限概念确立的伟大成果的微积分是不能不讲的。
微积分的问题,实际上就是解决连续与极限的问题,我们也曾讲过,芝诺反对无限连续,他在连续的门坎前设了四道屏障,这就是他提出的四个有名的悖论。
二分法悖论、阿基里斯悖论、箭的悖论、操场悖论。
牛顿在发明微积分的时候,牛顿合理地设想:Δt越小,这个平均速度应当越接近物体在时刻t时的瞬时速度。
这一新的数学方法,受到数学家和物理学家热烈欢迎。
大家充分地运用它,解决了大量过去无法问津的科技问题。
但由于它逻辑上的不完备也招来了哲学上的非难甚至嘲讽与攻击。
贝克莱主教曾猛烈地攻击牛顿的微分概念。
实事求是地讲,把瞬时速度说成是无穷小时间内所走的无穷小的距离之比,即“时间微分”与“距离微分”之比,是牛顿一个含糊不清的表述。
国开(中央电大)本科《数学思想与方法》网上形考、机考试题及答案(Word最新版)
国开(中心电大)本科《数学思想与方法》网上形考、机考试题及答案通过整理的国开(中心电大)本科《数学思想与方法》网上形考、机考试题及答案相关文档,渴望对大家有所扶植,感谢观看!国开(中心电大)本科《数学思想与方法》网上形考、机考试题及答案说明:试卷号1863,适用于国开中心电大小学教化本科学员国开平台网上形考;同时资料也是期末机考的重要资料。
形考作业第一关试题及答案巴比伦人是最早将数学应用于( )的。
在现有的泥板中有复利问题及指数方程。
[答案]商业《九章算术》成书于( ),它包括了算术、代数、几何的绝大部分初等数学学问。
[答案]西汉末年金字塔的四面都正确地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确,无疑是运用了( )的方法。
[答案]天文测量在丢番图时代(约250)以前的一切代数学都是用( )表示的,甚至在十五世纪以前,西欧的代数学几乎都是用( )表示。
[答案]文字,文字古埃及数学最辉煌的成就可以说是( )的发觉。
[答案]四棱锥台体积公式《几何原本》中的素材并非是欧几里得所独创,大部分材料来自同他一起学习的( )。
[答案]柏拉图学派古印度人对时间和空间的看法与现代天文学特殊相像,他们认为一劫(劫指时间长度)的长度就是( ),这个数字和现代人们计算的宇宙年龄特殊接近。
[答案]100亿年依据亚里士多德的想法,一个完整的理论体系应当是一种演绎体系的结构,学问都是从( )中演绎出的结论。
[答案]初始原理欧几里得的《几何原本》几乎概括了古希腊当时全部理论的( ),成为近代西方数学的主要源泉。
[答案]数论及几何学数学在中国萌芽以后,得到较快的发展,至少在( )已经形成了一些几何与数目概念。
[答案]六七千年前形考作业其次关试题及答案欧几里得的《几何原本》是一本极具生命力的经典著作,它的著名的平行公设是( )。
[答案]同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧确定相交《九章算术》是我国古代的一本数学名著。
数学思想与方法期末复习参考题
中央广播电视大学开放教育课程《数学思想方法》复习参考题一、填空题1、古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以为典范。
2、在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的。
3、《几何原本》所开创的方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。
4、推动数学发展的原因主要有两个:;数学思想方法的几次突破就是这两种需要的结果。
5、变量数学产生的数学基础是,标志是。
6、是数学教学的两条主线。
7、随机现象的特点是。
8、等腰三角形的抽象过程,就是把一个新的特征:,加入到三角形概念中去,使三角形概念得到强化。
9、学生理解或掌握数学思想方法的过程有如下三个主要阶段。
10、数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为的趋势。
11、强抽象就是指,通过而形成新概念的抽象过程。
12、菱形概念的抽象过程就是把一个新的特征:,加入到平行四边形概念中去,使平行四边形概念得到了强化。
13、演绎法与被认为是理性思维中两种最重要的推理方法。
14、所谓类比,是指;常称这种方法为类比法,也称类比推理。
15、反例反驳的理论依据是形式逻辑的。
16、猜想具有两个显著特点:。
17、三段论是演绎推理的主要形式。
三段论由三部分组成。
18、化归方法是指,。
19、在化归过程中应遵循的原则是。
20、在计算机时代,已成为与理论方法、实验方法并列的第三种科学方法。
21、算法具有下列特点:。
22、算法大致可以分为两大类。
23、匀速直线运动的数学模型是。
24、所谓数学模型方法是。
25、分类必须遵循的原则是。
26、所谓数形结合方法,就是在研究数学问题时,的一种思想方法。
27、所谓特殊化是指在研究问题时,的思想方法。
28、面对一个问题,经过认真的观察和思考,通过归纳或类比提出猜想,然后从两个方面入手:演绎证明此猜想为真;或者,并且进一步修正或否定此猜想。
国家开放大学《数学思想与方法》期末复习题参考答案(可下载编辑)
国家开放大学《数学思想与方法》期末复习题参考答案模拟试卷A卷一、填空题(每题3分,共30分)1.算法的有效性是指(如果使用该算法从它的初始数据出发,能够得到这一问题的正确解)2.数学的研究对象大致可以分成两大类:(数量关系,空间形式)3.所谓数形结合方法,就是在研究数学问题时,(由数思形、见形思数、数形结合考虑问题)的一种思想方法。
4.推动数学发展的原因主要有两个:(实践的需要,理论的需要),数学思想方法的几次突破就是这两种需要的结果。
5.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(《九章算术》)为典范。
6.匀速直线运动的数学模型是(一次函数)。
7.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合)的趋势。
8.不完全归纳法是根据(对某类事物中的部分对象的分析),作出关于该类事物的一般性结论的推理方法。
9.学生理解或掌握数学思想方法的过程一般有三个主要阶段:(潜意识阶段、明朗化阶段、深刻理解阶段)10.在实施数学思想方法教学时,应该注意三条原则:(化隐为显原则、循序渐进原则、学生参与原则)二、判断题(每题4分,共20分。
在括号里填上是或否)1.计算机是数学的创造物,又是数学的创造者。
(是)2.抽象得到的新概念与表述原来的对象的概念之间一定有种属关系。
(否)3.一个数学理论体系内的每一个命题都必须给出证明。
(否)4.贯穿在整个数学发展历史过程中有两个思想,一是公理化思想,一是机械化思想。
(是)5.提出一个问题的猜想是解决这个问题的终结。
(否)三、简答题(每题10分,共50分)1.为什么说《几何原本》是一个封闭的演绎体系?参考答案:(1)因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。
数学思想与方法形考一(模拟卷A)
数学思想与方法形考一(模拟卷A)一、填空题(每题3分,共30分)1.算法的有效性是指()答案:如果使用该算法从它的初始数据出发,能够得到这一问题的正确解2.数学的研究对象大致可以分成两大类:()答案:①研究数量关系,②研究空间形式。
3.所谓数形结合方法,就是在研究数学问题时,()的一种思想方法。
答案:由数思形、见形思数、数形结合考虑问题4.推动数学发展的原因主要有两个:(),数学思想方法的几次突破就是这两种需要的结果。
答案:①实践的需要,②理论的需要5.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以()为典范。
答案:长于计算和实际应用6.匀速直线运动的数学模型是()。
答案:一次函数7.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为()的趋势。
答案:数学的各个分支相互渗透相互结合8.不完全归纳法是根据(),作出关于该类事物的一般性结论的推理方法。
答案:从一类对象中部分对象都具有某种性质推出这类对象全体都具有这种性质的归纳推理方法9.学生理解或掌握数学思想方法的过程一般有三个主要阶段:()答案:①潜意识阶段,②明朗化阶段,③深刻理解阶段。
10.在实施数学思想方法教学时,应该注意三条原则:()化隐为显原则、循序渐 进原则、学生参与原则答案:二、判断题(每题4分,共20分。
在括号里填上是或否)1.计算机是数学的创造物,又是数学的创造者。
选择一项:对错2.抽象得到的新概念与表述原来的对象的概念之间一定有种属关系。
选择一项:对错3.一个数学理论体系内的每一个命题都必须给出证明。
选择一项:对错4.贯穿在整个数学发展历史过程中有两个思想,一是公理化思想,一是机械化思想。
选择一项:对错5.提出一个问题的猜想是解决这个问题的终结。
选择一项:对错三、简答题(每题10分,共50分)1.为什么说《几何原本》是一个封闭的演绎体系?①《几何原本》以少数原始概念和公设、公理为基础,运用逻辑规则将当时所知的几何学中的主要命题(定理)全都推出来,从而形成一个井然有序的整体.在这个体系中,除了逻辑规则外,每个定理的证明所采用的论据均是公设、公理或dS面已证明的定理,并且引入的概念(除原始概念)也基本上符合逻辑上对概念下定义的要求,原则上不再依赖其它东西.②另外.《几何原本)回避任何与社会生产现实生括有关的应用问题,对社会生活的各个领域来说也是封闭的.因此,(几何原本)是一个相对封闭的演绎体系.2.为什么说最早使用数学模型方法的是中国人?因为在中国汉代的古算书《九章算术》中就已经系统地使用了数学模型。
2020年国家开放大学电大《数学思想与方法》期末考试复习试题答案小抄
2020年国家开放大学《数学思想与方法》期末考试复习试题答案小抄一、填空题1、古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以《九章算术》为典范。
2、在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的《几何原本》。
3、《几何原本》所开创的公理化方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。
4、推动数学发展的原因主要有两个:实践的需要;理论的需要;数学思想方法的几次突破就是这两种需要的结果。
5、变量数学产生的数学基础是解析几何,标志是微积分。
6、数学基础知识和数学思想方法是数学教学的两条主线。
7、随机现象的特点是在一定条件下,可能发生某种情况,也可能不发生某种情况。
8、等腰三角形的抽象过程,就是把一个新的特征:两边相等,加入到三角形概念中去,使三角形概念得到强化。
9、学生理解或掌握数学思想方法的过程有如下三个主要阶段潜化阶段、明朗阶段、深入理解阶段。
10、数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为数学的各个分支相互渗透和相互结合的趋势。
11、强抽象就是指,通过把一些新特征加入到某一概念中去而形成新概念的抽象过程。
12、菱形概念的抽象过程就是把一个新的特征:一组邻边相等,加入到平行四边形概念中去,使平行四边形概念得到了强化。
13、演绎法与归纳法被认为是理性思维中两种最重要的推理方法。
14、所谓类比,是指由一类事物具有某种属性,推测与其类似的某种事物也具有该属性的推测方法;常称这种方法为类比法,也称类比推理。
15、反例反驳的理论依据是形式逻辑的矛盾律。
16、猜想具有两个显著特点:具有一定的科学性、具有一定的推测性。
17、三段论是演绎推理的主要形式。
三段论由大前提、小前提、结论三部分组成。
18、化归方法是指,把待解决的问题,通过某种转化过程,归结到一类已经能解决或较易解决的问题中,最终获得原问题解答的一种方法。
数学思想方法的几次重大转折
数学思想方法的几次重大转折历史表明,数学的发展,不仅表现为量的积累,而且还表现为质的飞跃。
数学思想方法在历史上经历了四次重大转折:从算术到代数,从常量数学到变量数学,从必然数学到或然数学,从明晰数学到模糊数学,就充分说明这一点。
回顾、总结和分析这四次重大转折,将有助于我们全面了解数学思想方法演变的历史及其规律。
1.从算术到代数算术和代数,作为最基础而又最古老的两个分支学科,有着不可分割的亲缘关系。
算术是代数产生的基础,代数是算术发展到一定阶段的必然产物。
从算数发展到代数,是人们对数及其运算在认识上的突破,也是数学在思想方法上的一次重大转折。
在算术解题法中,未知数是不允许作为运算的对象的,它们没有参加运算的权利。
而在代数解题法中,所列出的方程作为一种条件等式,已是由已知数和未知数构成的有机统一体。
在这个统一体中,未知数和已知数有着同等的权利,即未知数在这里也变成了运算的对象,它们不再是消极、被动地静等在等式的一边,而是和已知数一样,可以接收各种运算指令,并可以依照某种法则从等式的一边移到另一边。
解方程的过程,实质上就是未知数和已知数进行重新组合的过程,也是未知数向已知数转化的过程。
解方程是古典(经典)代数最基本的内容。
方程在数学中占有重要的地位,它的出现不仅极大地扩充了数学应用的范围,使得许多算术解题法不能解决的问题能够得以解决,而且对整个数学的进程产生巨大的影响。
特别是数学中的许多重大发现都与它密切相关,例如,∙对二次方程的求解,导致虚数的发现;∙对五次和五次以上方程的求解,导致群论的诞生;∙对一次方程组的研究,导致线性代数的建立;∙应用方程解决几何问题,导致解析几何的形成;∙等等。
显然,代数解题法(相对于算术解题法)更具有新奇性和简单性(算术解题法需要更强的技巧)2.从常量数学到变量数学算术、初等代数、初等几何和三角,构成了初等数学的主要内容。
它们都以常量即不变的数量和固定的图形为其研究对象,因此这部分内容,也称为常量数学。
数学发展史中的几次重大思想方法的突破
数学发展史中的几次重大思想方法的突破1. 承认“无理数”是对“万物皆数”的思想解放古希腊有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。
他们认为“数”是万物的本源,是数学严密性和次序性的唯一依据,是在宇宙体系里控制着自然的永恒关系,数是世界的准则和关系,是决定一切事物的,“数统治着宇宙”,支配着整个自然界和人类社会。
因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。
他们所说的数是指整数。
分数的出现,使“数”不那样完整了。
但分数都可以写成两个整数之比,所以他们的信仰没有动摇。
但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。
万物皆数以数为一个价值尺度去解释自然,揭示了自然界的部分道理,可把数绝对化就不行了,就制约了人的思维。
无理数的发现推翻了毕达哥拉斯等人的信条,打破了所谓给定任何两个线段,必定能找到第三个线段使得给定的线段都是这个线段的整数倍。
这样,原先建筑在可公度量上的比例和相似性的理论基础就出问题了。
这是数学史上的第一次危机。
2.2 微积分的产生是第二次思想解放第二次数学危机源于极限概念的提出。
作为极限概念确立的伟大成果的微积分是不能不讲的。
微积分的问题,实际上就是解决连续与极限的问题,我们也曾讲过,芝诺反对无限连续,他在连续的门坎前设了四道屏障,这就是他提出的四个有名的悖论。
二分法悖论、阿基里斯悖论、箭的悖论、操场悖论。
牛顿在发明微积分的时候,牛顿合理地设想:Δt越小,这个平均速度应当越接近物体在时刻t时的瞬时速度。
这一新的数学方法,受到数学家和物理学家热烈欢迎。
大家充分地运用它,解决了大量过去无法问津的科技问题。
但由于它逻辑上的不完备也招来了哲学上的非难甚至嘲讽与攻击。
贝克莱主教曾猛烈地攻击牛顿的微分概念。
实事求是地讲,把瞬时速度说成是无穷小时间内所走的无穷小的距离之比,即“时间微分”与“距离微分”之比,是牛顿一个含糊不清的表述。
数学思想方法的几次重要突破
第二章数学思想方法的几次重要突破一、数学思想方法的几次重要突破内容概述从数学思想方法的角度来认识数学的发展是理解数学的重要方面。
《数学思想方法》这门课程的第二章主要从思想方法的角度分析了从算术到代数、从常量数学到变量数学、从确定性数学到随机数学转变的背景、原因、过程和意义。
从数学发展的角度来看,认真理解数学上的这几次突破对于我们学员从整体上理解数学思想方法都是十分必要的。
因此,本章的主要内容有:● 算术、算术的局限性和代数的产生、意义;● 常量数学局限性,变量数学的产生、发展和意义;● 确定性数学的局限性、随机数学的产生、发展和意义。
下面分别从这三个方面来分析:1. 算术、算术的局限性、代数的产生和意义● 算术算术是我们每一个人开始学习数学时必须学习的、不可回避的内容,也是一门古老的、原始的数学。
而算术式的思维是一个人数学思维发展的基础,离开了算术思维和直观几何思维来理解数学是十分困难的。
那么什么是算术呢?古代算术的主要研究的内容是正整数、零和正分数的性质与四则运算。
算术理论的形成标明人类在现实世界数量关系认识上迈出了具有决定性意义的第一步。
算术作为重要的数学工具之一,在人类社会中有着广泛的应用。
通过它,人类能够行之有效地解决在社会实践中遇到的大量问题,如行程问题,工程问题,流水问题,分配问题和盈亏问题等。
● 算术的局限性但是随着社会的发展,人类认识到算术在理论上限制了其自身的发展,在应用上面临了不能满足社会实践的需要。
这主要表现在它限制抽象的未知数参与运算,只允许具体的、已知的数进行运算。
因而导致其在解决问题的方法上存在局限性。
这是因为算术解题方法的基本思想是:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出用已知数据表示所求数量的算式,然后通过四则运算求得算式的结果。
这种方法的关键之处是列算式。
但是面临具有较为复杂数量关系的实际问题时,列算式是非常困难的,因此这种方法比较笨拙,甚至无法解决问题。
2021年国开电大《数学思想与方法》形考任务答案第一关 -第十关
2021年国开电大《数学思想与方法》形考任务答案第一关至第十关第一关巴比伦人是最早将数学应用于()的。
在现有的泥板中有复利问题及指数方程。
正确答案是:C.商业《九章算术》成书于(),它包括了算术、代数、几何的绝大部分初等数学知识。
正确答案是:C.西汉末年金字塔的四面都正确地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确,无疑是使用了()的方法。
正确答案是:C.天文测量在丢番图时代(约250)以前的一切代数学都是用()表示的,甚至在十五世纪以前,西欧的代数学几乎都是用()表示。
正确答案是:A.文字,文字古埃及数学最辉煌的成就可以说是()的发现。
正确答案是:A.四棱锥台体积公式《几何原本》中的素材并非是欧几里得所独创,大部分材料来自同他一起学习的()。
正确答案是:B.柏拉图学派古印度人对时间和空间的看法与现代天文学十分相像,他们认为一劫(“劫”指时间长度)的长度就是(),这个数字和现代人们计算的宇宙年龄十分接近。
正确答案是:C.100亿年根据亚里士多德的想法,一个完整的理论体系应该是一种演绎体系的结构,知识都是从()中演绎出的结论。
正确答案是:B.初始原理欧几里得的《几何原本》几乎概括了古希腊当时所有理论的(),成为近代西方数学的主要源泉。
正确答案是:C.数论及几何学数学在中国萌芽以后,得到较快的发展,至少在()已经形成了一些几何与数目概念。
正确答案是:C.六七千年前第二关欧几里得的《几何原本》是一本极具生命力的经典著作,它的著名的平行公设是()。
正确答案是:D.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交《九章算术》是我国古代的一本数学名著。
“算”是指(),“术”是指()。
正确答案是:B.算筹解题方法《几何原本》就是用()的链子由此及彼的展开全部几何学,它的诞。
数学思想方法的重大突破
数学思想方法的重大突破数学思想方法的最大突破一、数学思想方法的重大突破之从算术到代数【编者按】数学的发展并不是一些新概念、新命题、新方法的简单积累,它包含着数学本身许多根本的变化,也即质的飞跃。
历史上发生的数学思想方法的几次重大突破,就充分说明了这一点。
算术和代数是数学中最基础而又最古老的分支学科,两者有着密切的联系。
算术是代数的基础,代数由算术演进而来。
从算术演进到代数,是数学在思想方法上发生的一次重大突破。
一、代数学产生的历史必然性代数学作为数学的一个研究领域,其最初而又最基础的分支是初等代数。
初等代数研究的对象是代数式的运算和方程的求解。
从历史上看,初等代数是算术发展的继续和推广,算术自身运动的矛盾以及社会实践发展的需要,为初等代数的产生提供了前提和基础。
我们知道,算术的主要内容是自然数、分数和小数的性质与四则运算。
算术的产生,表明人类在现实世界数量关系认识上迈出了具有决定性意义的第一步。
算术是人类社会实践活动中不可缺少的数学工具,在人类社会各部门都有广泛而重要的应用,离开算术这一数学工具,科学技术的进步几乎难以相象。
在算术的发展过程中,由于算术理论和实践发展的要求,提出了许多新问题,其中一个重要问题就是算术解题法的局限性在很大程度上限制了数学的应用范围。
算术解题法的局限性,主要表现在它只限于对具体的、已知的数进行运算,不允许有抽象的、未知的数参加运算。
也就是说,利用算术解应用题时,首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过加、减、乘、除四则运算求出算式的结果。
许多古老的数学应用问题,如行程问题、工程问题、流水问题、分配问题、盈亏问题等,都是借助这种方法求解的。
算术解题法的关键是正确地列出算术,即通过加、减、乘、除符号把有关的已知数据连结起来,建立能够反映实际问题本质特征的数学模型。
对于那些只具有简单数量关系的实际问题,列出相应的算式并不难,但对于那些具有复杂数量关系的实际问题,在列出相应的算式,往往就不是一件容易的事了,有时需要很高的技巧才行。
2数学思想方法的几次突破
2数学思想方法的几次突破数学思想方法的几次突破就数学发展的历史进程来看,从算术到代数、从常量数学到变量数学、从确定性数学到随机性数学是数学思想方法的几次重要的突破。
第一节从算术到代数一、算术的局限性随着社会的发展,人类认识到算术在理论上的限制了其自身的发展,主要表现在他限制抽象的未知数参与运算,只允许具体的、已知的数进行运算,因而导致其在解决问题的方法上存在局限性。
这种局限性在很大程度上限制了其应用范围,从而促使了新的数学分支――代数的产生。
二、代数的产生算术的内容反映了物体集合数量关系,这些内容是在分析和概括大量实际经验的基础上加以抽象出来的,从而产生了纯粹形式上的算术。
符号化一方面推动了算术的发展,另一方面也为代数的产生奠定了基础。
代数讨论正整数、正分数和零,还讨论负数、虚数和复数。
其特点是用字母符号表示各种数,最初的研究的对象主要是代数式的运算和方程的求解。
代数解题的基本思想是:首先依据问题的条件组成内含移植术和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。
因此,代数是一门关于形式运算的学说。
代数学形成的三大阶段:文字代数阶段;简写代数阶段;符号代数阶段。
因此,代数是一门关于形式运算的学说。
代数学形成的三大阶段:文字代数阶段:即全部解法都用文字语言表达;简写代数阶段:即用简化的文字表达一些经常出现的量、关系和运算;符号代数阶段:即普遍使用抽象符号,这时采用的各种符号同它们的实际内容和思想几乎没有明显的联系。
三、代数学体系结构的形成17世纪初期,韦达和笛卡尔等人在数学中系统地引入了符号,人们才真正把代数理解为对文字计算的理论。
当时代数涉及的面非常广,不属于纯几何的内容都是它研究的对象,如级数、对数、解代数方程、解方程组以及解不定方程等。
伽罗瓦建立的理论称为伽罗瓦理论,给数学中的最古老的用尺规作图的可能性问题提供了一个判别方法。
从而引进了群和域等抽象代数的概念,使代数学的发展进入了抽象数学的阶段。
2数学思想方法的几次突破
2数学思想方法的几次突破
数学思想方法在历史上有多次突破,其中最重要的有三次突破:第一
次突破是古希腊人希赫罗的费马小定理;第二次突破是17世纪威廉·布
鲁诺马尔可夫的法则;第三次突破是20世纪费马的原子模型。
以下将分
别阐述这三次数学思想方法的突破。
第一次突破是古希腊数学家希赫罗的费马小定理。
费马小定理是17
世纪希腊数学家希赫罗倡导的一个有趣的定理,它证明了一个简单的数学
命题:“一个整数的素因子之和等于它本身,则它是一个完全数”。
希赫
罗的费马小定理不仅提供了一个有趣的数学思想,而且对于数学史上又一
次产生了深远的影响。
在费马小定理的引导下,数学家开始在阶乘、素数、分数等范围内系统地探索数学问题,以及进行多角度的分析和比较,从而
发展出数学思想方法的突破。
第二次突破是17世纪威廉·布鲁诺马尔可夫的法则。
布鲁诺马尔可
夫的法则指的是一种归纳法,它指出:如果一个命题对所有的情形都是正
确的,则它总是正确的。
这一突破时期布鲁诺的定理得到了广泛的应用,
已经成为许多数学领域中的基本法则,从而极大地拓宽了数学的发展方向,并为数学思想方法提供了一定的依据。
数学思想方法的重大突破分析
数学思想方法的重大突破分析数学思想方法的重大突破分析一、机器证明的必要性和可能性定理机器证明的出现不是偶然的,而是有其客观必然性,它既是电子计算机和人工智能发展的产物,也是数学自身发展的需要。
首先,现代数学的发展迫切需要把数学家从繁难的逻辑推演中解放出来。
我们知道,任何数学命题的确立都需要严格的逻辑证明,而数学命题的证明是一种极其复杂而又富有创造性的思维活动,它不仅需要根据已有知识和给定条件进行逻辑推理的能力,而且常常需要相当高的技巧、灵感和洞察力。
有时为寻找一个定理的证明,还需要开拓一种全新的思路,而这种思路的形成竟要数学家们付出几十年、几百年乃至上千年的艰苦努力。
如果把定理的证明交给计算机去完成,那就可以使数学家从冗长繁难的逻辑推演中解放出来,从而可以把精力和聪明才智更多地用于富有开创性的工作,诸如建立新的数学概念,提出新的数学猜想,构造新的数学命题,创造新的数学方法,开辟新的数学领域等等,由此提高数学创造的效率。
其次,机器证明的必要性,还表现在数学中存在着大量传统的单纯人脑支配手工操作的研究方法难以奏效的证明问题。
这些问题往往因为证明步骤过于冗长,工作量十分巨大,使数学家在有生之年无法完成。
电子计算机具有信息储存量大,信息加工及变换的速度快等优越性,这就突破了人脑生理机制的局限性与时空障碍。
也就是说,如果借助电子计算机的优势就有可能使某些复杂繁难的证明问题得以解决。
“四色猜想”的证明就是一个令人信服的范例。
“四色猜想”提出于19世纪中叶,它的内容简单说来就是:对于平面或球面的任何地图,用四种颜色,就可使相邻的国家或地区区分开。
沿着传统的手工式证明的道路,数学家们做了各种尝试,结果都未能奏效。
直到1976年,由于借助于电子计算机才解决了这道百年难题。
为证明它,高速电子计算机花费了120个机器小时,完成了300多亿个逻辑判断。
如果这项工作由一个人用手工去完成,大约需要30万年。
第三,机器证明的可能性,从认识论上看,是由创造性工作和非创造性工作之间的关系决定的。