概率论和数理统计模拟考试题目和答案解析

合集下载

概率论和数理统计考试试题和答案解析

概率论和数理统计考试试题和答案解析

一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。

2、一个袋子中有大小相同的红球6只、黑球4只。

(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。

3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为: 0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。

7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。

8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。

概率论与数理统计模拟试卷和答案

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。

一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。

[A] P (A)=1-P (B ) [B] P (A │B)=0 [C] P (A │B )=1[D] P (A B )=02、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。

[A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A │B )=P (B )[D] P (A │B )=P(A )3、若A 、B 相互独立,则下列式子成立的为( )。

[A] )()()(B P A P B A P = [B] 0)(=AB P [C])()(A B P B A P = [D])()(B P B A P =4、下面的函数中,( )可以是离散型随机变量的概率函数。

[A] {}11(0,1,2)!e P k k k ξ-=== [B] {}12(1,2)!e P k k k ξ-=== [C] {}31(0,1,2)2k P k k ξ=== [D] {}41(1,2,3)2k P k k ξ===--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。

概率论和数理统计试题及答案

概率论和数理统计试题及答案

概率论和数理统计试题及答案一、填空题:1 11、 设 A 与 B 相互独立,P(A) = , P(B)=,贝U P (B-A)=.3 2 ----------------11 1解: P(B _A)二 P(B)[1 _P(A)](1 ): 23 32、 设 X~U[1,3](均匀分布),则 E(X 2)=, D(2X)二 ______________.E(5X _2) = ___________________ ,解: E(X)二 2;D(X) =1/ 3E(X 2) = D(X) E(X)2 =13/3 D( 2X 4D (X =)4 / 3E(5X - 2)= 5E X ) 2 102Y~ P(3),Z ~ N(3,2 ),且 X , Y,Z 相互独立,则3、设随机变量X 服从指数分布,即X ~ E(2),定义随机变量2,X 3 Y £,X =3-1,X :3解:F Y (Y)=P(Jy)二 P(丫 乞 一1) = P(X :: 3)2e'x dx = -e^x 0F Y (Y)二 P(Y D二 P(—1 :: 丫 乞1) = P(X 空 3)3=2e "dx =-e'xF Y (Y)二 P(丫 乞 y)二 P(1 :: Y ^2) = P(X 3)则Y 的分布列为二 1 —e ■6 -2C其中二是与y 无关的量2e"dx _ -e^x4、设 X ~ B(200,0.1)E(2X -3Y -Z 5) = , D(2X -3Y -Z 5)二 ____________________2XE(D(2X -3Y -Z 5) =4D(X) 9D(Y) D(Z) =72 27 4 =10325、设总体X ~ N(j 匚),X i, X2, X3 为来自X 的样本,二0.5/ • 0.1X2 - ax 3 是未知参数丄的无偏估计,则a =。

解:因为是无偏估计所以E(?)=E(0.X+ 0.x1— ax =) 0E5x 什)E.2X-( aJEj x ()= (0.5 0.-1 E)X(=)( 0.5- 01"口二)(0.5 0•中=)1a ~ -0. 46、设X〜N(叫,打),Y~N(」2,/),X与丫相互独立,且X与丫分别为X,Y的样2 2本均值,样本容量分别为n i,n2。

概率论与数理统计试卷及问题详解

概率论与数理统计试卷及问题详解

模拟试题一一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y, X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。

9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。

考研数学一(概率论与数理统计)模拟试卷45(题后含答案及解析)

考研数学一(概率论与数理统计)模拟试卷45(题后含答案及解析)

考研数学一(概率论与数理统计)模拟试卷45(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设二维随机变量(X,Y)满足E(XY)=EXEY,则X与YA.相关.B.不相关.C.独立.D.不独立.正确答案:B解析:因E(XY)=EXEY,故Cov(X,Y)=E(XY)一EXEY=0,X与Y不相关,应选(B).知识模块:概率论与数理统计2.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于A.一1.B.0.C..D.1.正确答案:A解析:依题意,Y=n—X,故ρXY=一1.应选(A).一般来说,两个随机变量X与Y的相关系数ρXY满足|ρXY|≤1.若Y=aX+b,则当a>0时,ρXY=1,当a-arxcosX,即U=一V+,由于U是V的线性函数,且其增减变化趋势恰恰相反,所以其相关系数ρ=-1.应选(A).知识模块:概率论与数理统计5.设随机变量X1,X2,…,Xn(n>1)独立同分布,且方差σ2>0,记,则X1一的相关系数为A.一1.B.0.C..D.1.正确答案:B解析:由于Xi独立同分布,故DXi=σ2,,Cov(X1,Xi)=0(i≠1),故应选(B).(注:容易计算D(X1一) 知识模块:概率论与数理统计6.设随机变量X的方差存在,并且满足不等式P{|X—EX|≥3|≤,则一定有A.DX=2.B.P{|X—EX|<3}.C.DX≠2.D.P{|X—EX|<3}≥.正确答案:D解析:因事件{|X—EX|,即选项(D)正确.进一步分析,满足不等式P{l|X—EX|≥3}≤的随机变量,其方差既可能不等于2,亦可以等于2,因此结论(A)与(C)都不能选.比如:X服从参数为P的0—1分布,DX=pq}=0.因此(A)不成立.若X服从参数n=8,P=0.5的二项分布,则有EX=4,DX=2.但是P{|X—EX|≥3}=P{|X一4|≥3}P{X=0}+P{X=1}+P{X=7}+P{X =8}=.因比(B)也不成立.知识模块:概率论与数理统计7.设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,当n→∞时依概率收敛于其数学期望,只要{Xn,n≥1}A.有相同的期望.B.有相同的方差.C.有相同的分布.D.服从同参数p的0-1分布.正确答案:D解析:由于辛钦大数定律除了要求随机变量X1,X2,…,Xn,…相互独立的条件之外,还要求X1,X2,…,Xn,…同分布与期望存在,只有选项(D)同时满足后面的两个条件,应选(D).知识模块:概率论与数理统计8.设随机变量X1,…,Xn,…相互独立,记Yn=X2n一X2n-1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn,n≥1 }A.数学期望存在.B.有相同的数学期望与方差.C.服从同一离散型分布.D.服从同一连续型分布.正确答案:B解析:由于Xn相互独立,所以Yn相互独立.选项(A)缺少“同分布”条件;选项(C)、(D)缺少“数学期望存在”的条件,因此它们都不满足辛钦大数定律,所以应选(B).事实上,若EXn=μ,DXn=σ2存在,则根据切比雪夫大数定律:对任意ε>0有即依概率收敛到零.知识模块:概率论与数理统计填空题9.两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中的概率为pi(0解析:每位射手的射击只有两个基本结果:中与不中,因此两射手的每次射击都是一个伯努利试验.每位射手直到他有一次命中时方停止射击,因此此时的射击次数应服从几何分布;此时的射击次数一1:未击中的次数.以Xi表示第i 名射手首次命中时的脱靶数,则此时他的射击次数Xi+1服从参数为pi的几何分布,因此P{Xi=k}}=(1一pi)kpi=1,2,且E(Xi+1)=,i=1,2,于是EXi =E(Xi+1)一1=—1,两射手脱靶总数X=X1+X2的期望为EX=EX1+EX2=. 知识模块:概率论与数理统计10.将长度为L的棒随机折成两段,则较短段的数学期望为______.正确答案:解析:设X为折点到左端点的距离,Y为较短段的长,则X~U(0,L),且于是E(Y)=E[g(X)]=g(x)f(x)dx 知识模块:概率论与数理统计11.设随机变量X和Y的相关系数为0.9,若Z=2X一1,则Y与Z的相关系数为______.正确答案:0.9解析:Cov(Y,Z)=Cov(Y,2X一1)=2Cov(X,Y),DZ=D(2X一1)=4DX.Y 与Z的相关系数ρYZ为知识模块:概率论与数理统计12.设随机变量X和Y的相关系数为0.5,EX=EY=0,EX2=EY2=2,则E(X+Y)2=______ .正确答案:6解析:DX=EX2一(Ex)2=2,DY=2,Cov(X,Y)=ρXY=1,E(X+Y)=EX+EY=0,E(X+Y)2=D(X+Y)+[E(X+y)]2=D(X+Y)=DX+2Cov(X,Y)+DY=2+2+2=6.知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学二(概率论与数理统计)模拟试卷3(题后含答案及解析)

考研数学二(概率论与数理统计)模拟试卷3(题后含答案及解析)

考研数学二(概率论与数理统计)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.关于随机事件{X≤a,Y≤b}与{X>a,Y>b},下列结论正确的是( ) A.为对立事件.B.为互不相容事件.C.为相互独立事件.D.P{X≤a,Y≤b}>P{X>a,Y>b}.正确答案:B解析:如图3—1所示,选项(A)、(D)都是不一定成立的.如果{X≤a,Y≤b}与{X>a,Y>b}相互独立,则应P{(X≤a,Y≤b)(X>a,Y>b)}=0,不一定与P{X≤a,Y≤b}P{X>a,Y>b}相等,故(C)不正确.综上,应选B.知识模块:概率论与数理统计2.设随机变量(X,Y)的分布函数为F(x,y),则(X,X)的分布函数G(x,y)为( )A.F(x,y).B.F(y,x).C.F(一x,一y).D.F(一y,一x).正确答案:B解析:G(x,y)=P{Y≤x,x≤y}=P{x≤y,Y≤x}=F(y,x).故应选B.知识模块:概率论与数理统计3.设二维随机变量(X,Y)的分布函数为F(x,y)=,则常数A和B的值依次为( )A.B.C.D.正确答案:C解析:V(x,y)能够作为分布函数,则需满足0≤F(x,y)≤1,F(+∞,+∞)=1,F(一∞,一∞)=F(x,一∞)=F(一∞,y)=0,关于x,y单调不减且右连续,故F(+∞,+∞)=Aπ(B+)=1,满足此条件的只有(C).知识模块:概率论与数理统计4.设随机变量X和Y相互独立,且有相同的分布函数F(x),Z=X+Y,FZ(z)为Z的分布函数,则下列成立的是( )A.FZ(2z)=2F(z).B.FZ(2z)=[r(z)2C.FZ(2z)≤[F(z)]2.D.FZ(2z)≥[,(z)]2.正确答案:D解析:如图3—2所示,FZ(2z)=P{Z≤2z}=P{X+Y≤2z},X+Y≤2z对应区域为A,由于X和Y相互独立,且有相同的分布函数F(z),从而[p(z)]2=F(z)F(z)=P{X≤z}P{y≤z}=P{X≤z,Y≤z},X≤z,y≤z对应区域B,显然BA,故FZ(2z)≥[F(z)]2,因此选(D).知识模块:概率论与数理统计5.设X1和X2是两个相互独立的连续型随机变量,其概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则下列说法正确的是( ) A.f1(x)+f2(x)必为某一随机变量的概率密度.B.f1(x)f2(x)必为某一随机变量的概率密度.C.F1(x)+F2(x)必为某一随机变量的分布函数.D.F1(x)F2(x)必为某一随机变量的分布函数.正确答案:D解析:由已知条件,有∫-∞+∞f1(x)dx=∫-∞+∞f2(x)dx=1,F1(+∞)=F2(+∞)=1,∫-∞+∞[f1(x)+f2(x)]dx=∫-∞+∞f1(x)dx+∫-∞+∞f2(x)dx=1,选项(A)不正确;例如令f1(x)=,故选项(B)不正确;F1(+∞)+F2(+∞)=2,故选项(C)不正确,因此选(D).知识模块:概率论与数理统计6.已知随机变量X和Y相互独立,其概率分布为则下列式子正确的是( )A.X=YB.P{X=Y}=0.?C.P{X=Y}=.D.P{X=Y}=1.正确答案:C解析:P{X=Y}=P{X=一1,Y=一1}+P{x=1,Y=1}=P{X=一1}P{Y=一1}+P{X=1}P{Y=1} = 知识模块:概率论与数理统计7.设二维随机变量(X,Y)在平面区域G上服从均匀分布,其中G是由x 轴,y轴以及直线y=2x+1所围成的三角形域,则(X,Y)的关于X的边缘概率密度为( )正确答案:B解析:由已知条件,如图3—4所示。

概率论与数理统计模拟试题及答案

概率论与数理统计模拟试题及答案

概率论与数理统计试题 考试时间:120分钟 试卷总分100分 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 评卷教师一、填空题(满分15分)1.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则=)(A P 。

2.设随机变量X 服从参数为二项分布,且21}0{==X P ,则=p 。

3.设),3(~2σN X ,且1.0}0{=<X P ,则=<<}63{X P4.已知DX=1,DY=2,且X 和Y 相互独立,则D(2X-Y)=5.已知随机变量X 服从自由度为n 的t 分布,则随机变量2X 服从的分布是 。

二、选择题(满分15分)1.抛掷3枚均匀对称的硬币,恰好有两枚正面向上的概率是 。

装订线(A )0.125, (B )0.25, (C )0.375, (D )0.5 2.有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。

(A )γγn ! (B )γγn C r n ! (C )nn γ! (D) n n n C γγ! 3.设随机变量X 的概率密度为||)(x ce x f -=,则c = 。

(A )-21(B )0 (C )21 (D )14.掷一颗骰子600次,求“一点” 出现次数的均值为 。

(A )50 (B )100 (C )120 (D )1505.设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为 。

(A )x 1 (B )∑=-n i i X n 111 (C )∑=-n i i X n 1211 (D )x 三、计算题(满分60分)1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。

2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。

(8413.0)1(=Φ,9772.0)2(=Φ)3.在区间(0,1)中随机地取两个数,求事件“两数之和小于56”的概率。

最新2020概率论与数理统计期末模拟考试288题(含标准答案)

最新2020概率论与数理统计期末模拟考试288题(含标准答案)
求(1)A;(2)分布函数F (x);(3)P (-0.5 < X <1)。)
解:
(3) P(-0.5<X<1)=F(1)—F(-0.5)=1
8.已知随机变量 的概率密度为 ,令 ,则Y的概率密度 为(A)。
A. B. C. D.
9.已知随机向量(X,Y)的协差矩阵V为
计算随机向量(X+Y, X-Y)的协差矩阵(课本116页26题)
.解:由于零件的长度服从正态分布,所以
所以 的置信区间为 经计算
的置信度为0.95的置信区间为 即(5.347,6.653)
3.设系统L由两个相互独立的子系统L1.L2串联而成,且L1.L2的寿命分别服从参数为 的指数分布。求系统L的寿命Z的密度函数。
解:令X.Y分别为子系统L1.L2的寿命,则系统L的寿命Z=min (X, Y)。
13.设随机变量X的密度函数为f (x),则Y = 7—5X的密度函数为(B)
14.设 是任意两个互相独立的连续型随机变量,它们的概率密度分别为 和 ,分布函数分别为 和 ,则(B)。
A. 必为密度函数B. 必为分布函数
C. 必为分布函数D. 必为密度函数
15.连续型随机变量X的密度函数f (x)必满足条件(C)。
解:DX=4, DY=9, COV(X,Y)=6
D(X+Y)= DX + DY +2 COV(X,Y)=25
D(X-Y) = DX + DY -2 COV(X,Y)=1
COV(X+Y, X-Y)=DX-DY=-5
故(X+Y, X-Y)的协差矩阵
10.某厂生产铜丝,生产一向稳定,现从其产品中随机抽取10段检查其折断力,测得 。假定铜丝的折断力服从正态分布,问在显著水平 下,是否可以相信该厂生产的铜丝折断力的方差为16?

考研数学一(概率论与数理统计)模拟试卷50(题后含答案及解析)

考研数学一(概率论与数理统计)模拟试卷50(题后含答案及解析)

考研数学一(概率论与数理统计)模拟试卷50(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是( ).A.B.C.P(AB)=P(A)P(B)D.P(A—B)=P(A)正确答案:D解析:因为A,B不相容,所以P(AB)=0,又P(A—B)=P(A)一P(AB),所以P(A-B)=P(A),选(D).知识模块:概率统计2.设X~N(μ,42),Y~N(μ,52),令P=P(X≤μ一4),q=P(Y≥μ+5),则( ).A.p>qB.p<qC.p=qD.p,q的大小由μ的取值确定正确答案:C解析:知识模块:概率统计3.设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有( ).A.E[(X—C)]2=E[(X一μ)]2B.E[(X-C)]2≥E[(X—μ)]2C.E[(X—C)]2=E(X2)一C2D.E[(X-C)2]<E[(X一μ)2]正确答案:B解析:E[(X-C)2]-E[(X-μ)2]=[E(X2)一2CE(X)+C2]一[E(X2)一2μE(X)+μ2]=C2+2E(X)[E(X)-C]一[E(X)]2=[C—E(X)]2≥0,选(B).知识模块:概率统计4.设随机变量X~F(m,n),令P{X>Fα(m,n)}=α(0<α<1),若P(X <k)=α,则k等于( ).A.Fα(m,n)B.F1-α(m,n)C.D.正确答案:B解析:根据左右分位点的定义,选(B).知识模块:概率统计5.若事件A1,A2,A3两两独立,则下列结论成立的是( ).A.A1,A2,A3相互独立B.两两独立C.P(A1A2A3)=P(A1)P(A2)P(A3)D.相互独立正确答案:B解析:由于A1,A2,A3两两独立,所以也两两独立,但不一相互独立,选(B).知识模块:概率统计6.设随机变量X服从参数为1的指数分布,则随机变量y=min{X,2}的分布函数( ).A.是阶梯函数B.恰有一个间断点C.至少有两个间断点D.是连续函数正确答案:B解析:FY(y)=P(Y≤y)=P{min(X,2)≤y}=1一P{min(X,2)>y}=1一P(X>y,2>y)=1一P(X>y)P(2>y)当y≥2时,FY(y)=1;当y<2时,FY(y)=1一P(X>y)=P(X≤y)=FX(y),而FX(x)=,所以当0≤y<2时,FY(y)=1-e-y;当y<0时,FY(y)=0,即FY(y)=,显然FY(y)在y=2处间断,选(B).知识模块:概率统计7.若(X,Y)服从二维正态分布,则①X,Y一定相互独立;②若ρXY=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任一线性组合服从一维正态分布,上述几种说法中正确的是( ).A.①②③B.②③④C.①③④D.①②④正确答案:B解析:因为(X,Y)服从二维正态分布,所以X,Y都服从一维正态分布,aX+bY 服从一维正态分布,且X,Y独立与不相关等价,所以选(B).知识模块:概率统计填空题8.设事件A,B相互独立,P(A)=0.3,且P(A+)=0.7,则P(B)=________.正确答案:解析:知识模块:概率统计9.设随机变量X服从参数为λ的泊松分布,且P(X=0)=P(X=1),则P(X≥1)=________.正确答案:1一e-2解析:X的分布律为P(X=k)=e-λ(k=0,1,2,…),由P(X=0)=P(X=1)得λ=2,P(X≥1)=1一P(X=0)=1一e-2.知识模块:概率统计10.设X~P(1),Y~P(2),且X,Y相互独立,则P(X+Y=2)=_________.正确答案:解析:P(X+Y=2)=P(X=0,Y=2)+P(X=1,Y=1)+P(X=2,Y=0),由X,Y相互独立得P(X+Y=2)=P(X=0)P(Y=2)+P(X=1)P(Y=1)+P(X=2)P(Y=0)= 知识模块:概率统计11.设随机变量X在[一1,2]上服从均匀分布,随机变量Y=,则D(Y)=_________.正确答案:解析:随机变量X的密度函数为f(x)=,随机变量Y的可能取值为一1,0,1,知识模块:概率统计12.设X为总体,E(X)=μ,D(X)=σ2,X1,X2,…,Xn为来自总体的简单随机样本,S2=,则E(S2)=_________·正确答案:σ2解析:知识模块:概率统计13.设A,B是两个随机事件,且P(A)=0.4,P(B)=0.5,=_________.正确答案:0.2解析:因为相互独立,故=P(A)[1一P(B)]=0.4×0.5=0.2 知识模块:概率统计14.设一次试验成功的概率为p,进行100次独立重复试验,当p=_______时,成功次数的标准差最大,其最大值为________.正确答案:p=,最大值为5解析:设成功的次数为X,则X~B(100,p),D(X)=100p(1-p),标准差为.令f(p)=p(1-p)(0<P<1),由f’(p)=1—2p=0得=一2<0,所以时,成功次数的标准差最大,最大值为5.知识模块:概率统计15.设随机变量X的密度函数为f(x)=,则E(X)=__________,D(X)=_________.正确答案:E(X)=1,D(X)=解析:因为知识模块:概率统计16.设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体X的样本,S2=,则D(S2)=_________.正确答案:解析:知识模块:概率统计解答题解答应写出文字说明、证明过程或演算步骤。

概率论和数理统计模拟考试题目和答案解析

概率论和数理统计模拟考试题目和答案解析

概率论和数理统计模拟考试题目和答案解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN概率论与数理统计复习题(一)一. 填空1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求: (1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。

考研数学三(概率论与数理统计)模拟试卷11(题后含答案及解析)

考研数学三(概率论与数理统计)模拟试卷11(题后含答案及解析)

考研数学三(概率论与数理统计)模拟试卷11(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设随机变量X1,…,Xn,…相互独立,记Yn=X2n一X2n-1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn:n≥1}( ) A.数学期望存在.B.有相同的数学期望与方差.C.服从同一离散型分布.D.服从同一连续型分布.正确答案:B解析:因为Xn相互独立,所以Yn相互独立.选项A缺少“同分布”条件;选项C、D缺少“数学期望存在”的条件,因此它们都不满足辛钦大数定律,所以选择B.事实上,若E(Xn)=μ,D(Xn)=σ2存在,则根据切比雪夫大数定理:对任意ε>0有知识模块:概率论与数理统计2.设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,依概率收敛于其数学期望,只要{Xn:n≥1}( )A.有相同的期望.B.有相同的方差.C.有相同的分布.D.服从同参数p的0一1分布.正确答案:D解析:由于辛钦大数定律除了要求随机变量X1,X2,…,Xn,…相互独立的条件之外,还要求X1,X2,…,Xn,…同分布与期望存在.只有选项D同时满足后面的两个条件,应选D.知识模块:概率论与数理统计3.设X1,X1,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时,以φ(x)为极限的是( )A.B.C.D.正确答案:C解析:由于X1,X2,…,Xn,…相互独立同分布,其期望和方差都存在,且E(Xi)=λ,D(Xi)=λ,根据方差与期望的运算法则,有因此当n→∞时,以φ(x)为极限,故应选C.知识模块:概率论与数理统计4.设随机变量X1,X2,…,Xn相互独立同分布,其密度函数为偶函数,且DXi=1,i=1,2,…,n,则对任意ε>0,根据切比雪夫不等式直接可得( ) A.B.C.D.正确答案:C解析:由题意知E(Xi)=0,i=1,2,…,n.记根据切比雪夫不等式,有故选C.知识模块:概率论与数理统计5.设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn( )A.有相同的数学期望.B.有相同的方差.C.服从同一指数分布.D.服从同一离散型分布.正确答案:C解析:本题考查中心极限定理的应用条件,列维一林德伯格中心极限定理成立的条件是随机变量X1,X2,…,Xn独立同分布,且具有有限的数学期望和非零方差.而选项A、B不能保证随机变量X1,X2,…,Xn同分布,故均不入选;选项D不能保证其期望、方差存在及方差非零,故也不入选,因此选C.知识模块:概率论与数理统计6.设总体X服从正态分布N(μ,σ2),其中μ已知,σ未知,X1,X2,…,Xn为取自总体X的简单随机样本,则不能作出统计量( )A.B.C.D.正确答案:C解析:因为σ2未知,故选C.知识模块:概率论与数理统计7.假设总体X的方差D(X)存在,X1,X2,…,Xn是取自总体X的简单随机样本,其均值和方差分别为则E(X2)的矩估计量是( )A.B.C.D.正确答案:D解析:根据矩估计量的定义确定选项因为E(X2)=D(X)+E2(X),而D(X)与E(X)矩估计量分别为选择D.知识模块:概率论与数理统计8.设是从总体X中取出的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果( )A.X~N(μ,σ2).B.X服从参数为μ的指数分布.C.P{X=m}=μ(1一μ)m-1,m=1,2,….D.X服从[0,μ]上均匀分布.正确答案:A解析:若X~N(μ,σ2),则E(X)=μ,μ的矩估计为应选A.若X服从参数为μ的指数分布,则对于选项C,X服从参数为μ的几何分布,E(X)= 知识模块:概率论与数理统计填空题9.假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i ≤2n),如果则当常数c=_________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布.正确答案:解析:记Zi=X2i—X2i-1,则Zi(1≤i≤n)独立同分布,且E(Zi)=0,D(Zi)=2.由独立同分布中心极限定理可得,当n充分大时,知识模块:概率论与数理统计10.设随机变量X1,X2,…,Xn…相互独立且都在(一1,1)上服从均匀分布,则=_____(结果用标准正态分布函数φ(x)表示).正确答案:解析:由于Xn相互独立且都在(一1,1)上服从均匀分布,所以E(Xn)=0,D(Xn)=根据独立同分布中心极限定理,对任意x∈R有知识模块:概率论与数理统计11.设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16与32之间的概率α=____.(φ(3)=0.9987,φ(1)=0.8413)正确答案:0.84解析:令X=“在100次独立重复试验中成功的次数”,则X服从参数为(n,p)的二项分布,其中n=100,p=0.20,且根据棣莫弗一拉普拉斯中心极限定理,可知随机变量近似服从标准正态分布N(0,1).因此试验成功的次数介于16和32之间的概率知识模块:概率论与数理统计12.设随机变量X与Y相互独立,且X~B(5,0.8),Y~N(1,1),则P{0<X+Y<10}≥_______.正确答案:0.928解析:因为E(X)=4,D(X)=0.8,E(Y)=1,DY=1,所以E(X+Y)=E(X)+E(Y)=5,D(X+Y)=D(X)+D(Y)=1.8.根据切比雪夫不等式,可得P{0<X+Y<10}=P{|X+Y一5|<5}≥即尸{0<X+Y<10}≥0.928.知识模块:概率论与数理统计13.D(X)=2,则根据切比雪夫不等式有估计P{|X—E(X)|≥2}≤________.正确答案:解析:根据切比雪夫不等式,有知识模块:概率论与数理统计14.设随机变量X1,X2,…Xn,Y1,Y2,…Yn相互独立,且Xi服从参数为λ的泊松分布,Yi服从参数为的指数分布,i=1,2,…,n,则当n充分大时,近似服从_______分布,其分布参数为_________与_______。

概率论与数理统计模拟试题集(6套,含详细答案)

概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

考研数学一(概率论与数理统计)模拟试卷83(题后含答案及解析)

考研数学一(概率论与数理统计)模拟试卷83(题后含答案及解析)

考研数学一(概率论与数理统计)模拟试卷83(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设随机变量X1,X2,...,Xn相互独立,Sn=X1+X2+...+Xn,则根据列维一林德伯格中心极限定理,当n充分大时Sn近似服从正态分布,只要X1,X2, (X)A.有相同期望和方差.B.服从同一离散型分布.C.服从同一均匀分布.D.服从同一连续型分布.正确答案:C 涉及知识点:概率论与数理统计2.假设随机变量X1,X2,…相互独立且服从同参数A的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律条件的是A.X1,X2,…,Xn,…B.X1+1,X2+2,…,Xn+n,…C.X1,2X2,…,nXn,…D.X1,X2, (X)正确答案:C 涉及知识点:概率论与数理统计3.设随机变量序列X1,…,Xn,…相互独立,根据辛钦大数定律,当n →∞时Xi依概率收敛于其数学期望,只要{Xn,n≥1}A.有相同的数学期望.B.有相同的方差.C.服从同一泊松分布.D.服从同一连续型分布,f(χ)=(-∞<χ<+∞).正确答案:C解析:辛钦大数定律要求:{Xn,n≥1}独立同分布且数学期望存在.选项A、B缺少同分布条件.选项D虽然服从同一分布但期望不存在,因此选C.知识模块:概率论与数理统计4.设Xn表示将一枚匀称的硬币随意投掷n次其“正面”出现的次数,则A.B.C.D.正确答案:C解析:由于Xn~B(n,),且EXn=np=,DXn=npq=,因此根据“二项分布以正态分布为极限分布”定理,有故选C.知识模块:概率论与数理统计5.设随机变量X服从F(3,4)分布,对给定的α(0<α<1),数Fα(3,4)满足P{X>Fα(3,4)}=α,若P{X≤χ}=1-α,则χ=A.B.C.Fα(4,3).D.F1-α(4,3).正确答案:A解析:因X~F(3,4),故~F(4,3).又1-α=P{X≤χ}=P{X<χ}=,所以=F1-α(4,3),即χ=.因此选A.知识模块:概率论与数理统计6.设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,记Y =a(X1-2X2)2+b(3X3-4X4)2,其中a,b为常数.已知Y~χ2(n),则A.n必为2.B.n必为4.C.n为1或2.D.n为2或4.正确答案:C解析:依题意Xi~N(0,22)且相互独立,所以X1-2X2~N(0,20),3X3-4X4~N(0,100),故且它们相互独立.由χ2分布的典型模式及性质知(1)当时,Y~χ2(2):(2)当a=,b=0,或a=0,b=时,Y~χ2(1).由上可知,n=1或2,即应选C.知识模块:概率论与数理统计7.设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S2为样本均值和样本方差,则A.服从标准正态分布.B.Xi2服从自由度为n-1的χ2分布.C.n服从标准正态分布.D.(n-1)S2服从自由度为n-1的χ2分布.正确答案:D解析:显然,(n-1)S2服从自由度为n-1的χ2分布,故应选D.其余选项不成立是明显的,对于服从标准正态分布的总体,,n~N(0,n).由于X1,X2,…,Xn相互独立并且都服从标准正态分布,可见Xi2服从自由度为n的χ2分布.知识模块:概率论与数理统计8.设随机变量X服从n个自由度的t分布,定义tα满足P{X≤tα}=1一d-α(0<α<1) .若已知P{|X|>χ}=b(b>0),则χ等于A.t1-b.B..C.tb.D..正确答案:D解析:根据t分布的对称性及b>0,可知χ>0.从而P{X≤χ}=1-P{X>χ}=1-P{|X|>χ}=1-.根据题设定义P{X≤tα}=1-α,可知χ=.应选D.知识模块:概率论与数理统计填空题9.将一颗骰子连续重复掷4次,以X表示4次掷出的点数之和,则根据切比雪夫不等式,P{10<X<18}≥_______.正确答案:解析:以Xk(k=1,2,3,4)表示第k次掷出的点数,则Xk独立同分布:P{Xk=i}=(i=1,2,…,6).所以EXk=(1+2++…+6)=,EXk2=(1+22+…+62)=,DXk=EXk2-(EXk)2=.又由于X=X1+X2+X3+X4,而Xk(k=1,2,3,4)相互独立,所以EX=4×=14,DX=4×.因此,根据切比雪夫不等式,有P{10<X<18}=P{-4<X-14<4}=P{|X -14|<4} =P{|X-EX|<4}≥1-.知识模块:概率论与数理统计10.设随机变量X1,…,Xn相互独立同分布,EXi=μ,DXi=8(i=1,2,…,n),则概率P{μ-4<<μ+4}≥_______,其中正确答案:1-解析:由于X1,…,Xn相互独立同分布,因此有E=μ,.应用切比雪夫不等式,有P{μ-4<<μ+4}=P{|-μ|<4}≥1-,即P{μ-4<<μ+4}≥1-.知识模块:概率论与数理统计11.已知随机变量X与Y的相关系数ρ=,且EX=EY,DX=DY,则根据切比雪夫不等式有估计式P{|X-Y|≥}≤_______.正确答案:解析:由于E(X-Y)=EX-EY=0,D(X-Y)=DX+DY-2Cov(X,Y)=DY+DY-2.ρ=所以P{|X-Y|≥知识模块:概率论与数理统计12.将一枚骰子重复掷n次,则当n→∞时,n次掷出点数的算术平均值依概率收敛于_______.正确答案:7/2解析:设X1,X2,…,Xn是各次掷出的点数,它们显然独立同分布,每次掷出点数的数学期望EX=21/6=7/2.因此,根据辛钦大数定律,依概率收敛于7/2.知识模块:概率论与数理统计13.设随机变量序列X1,…,Xn,…相互独立且都服从正态分布N(μ,σ2),记Yn=X2n-X2n-1根据辛钦大数定律,当n→∞时Yi2依概率收敛于_______.正确答案:2σ2解析:由于{Xn,n≥1}相互独立,故Yn=X2n-X2n-1(n≥1)相互独立并且都服从N(0,2σ2),所以{Yn2,n≥1}独立同分布且EYn2=DYn+(EYn)2=2σ2,根据辛钦大数定律,当n→∞时Yi2依概率收敛于2σ2.知识模块:概率论与数理统计14.设随机变量序列X1,Xn,…相互独立且都在(-1,1)上服从均匀分布,则=_______(结果用标准正态分布函数Ф(χ)表示).正确答案:Ф()解析:由于Xn相互独立且都在(-1,1)上服从均匀分布,所以EXn=0,DXn=,根据独立同分布中心极限定理,对任意χ∈R有取χ=,得.知识模块:概率论与数理统计15.设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率α=_______.正确答案:0.84解析:以X表示“在100次独立重复试验中成功的次数”,则X服从参数为(n,p)的二项分布,其中n=100,p=0.20,且EX=np=20,=4.由棣莫弗-拉普拉斯中心极限定理,知随机变量Un=近似服从标准正态分布N(0,1).因此试验成功的次数介于16和32次之间的概率α=P{16≤X≤32}=≈Ф(3)-Ф(-1)=Ф(3)-[1-Ф(1)]=0.9987-(1-0.8413)=0.84,其中Ф(u)是标准正态分布函数.知识模块:概率论与数理统计16.设总体X~E(λ),则来自总体X的简单随机样本X1,X2, (X)的联合概率密度f(χ1,χ2,…,χn)=_______.正确答案:解析:总体X的概率密度f(χ)=由于X1,X2,…,Xn相互独立,且与总体X服从同一指数分布,因此f(χ1,χ2,…,χn)=知识模块:概率论与数理统计17.设总体X~P(λ),则来自总体X的简单随机样本X1,X2, (X)的样本均值的概率分布为_______.正确答案:解析:由泊松分布的可加性可知,当X1,X2独立时,X1+X2-P(2λ),继而有X1,X2,…,Xn独立同为P(λ)分布时,Xi=n~P(nλ).于是,对任意n>2,n的概率分布为P{n=k}=e-nλ,k=0,1,2,…,而P{n=k}=,所以知识模块:概率论与数理统计18.已知χ2~χ2(n),则E(χ2)=_______.正确答案:n解析:由χ2分布的典型模式χ2=X12+X22+…+Xn2=Xi2知,E(χ2)=E(χi2),而χi~N(0,1),且Xi相互独立,由于E(Xi2)=D(Xi)+[E(Xi)]2=1+0=1,所以E(χ2)=E(Xi2)=n.知识模块:概率论与数理统计19.已知X1,X2,X3相互独立且服从N(0,σ2),则服从的分布及参数为_______.正确答案:解析:记Y1=X2+X3,Y2=X2-X3,则Y1~N(0,2σ2),Y2~N(0,2σ2).由于Cov(Y1,Y2)=E(Y1Y2)-E(Y1)E(Y2)=E[(X2+X3)(X2-X3)] =E(X22)-E(X32)=σ2-σ2=0,所以Y1与Y2相互独立,且与X1独立.又由X1+X2+X3=X1+Y1~N(0,3σ2),可知(X1+X2+X3)~N(0,1),~χ2(1),且X1+X2+X3与X2-X3相互独立,于是按t分布定义有知识模块:概率论与数理统计20.设总体X的密度函数f(χ)=又,S2分别为取自总体X容量为n的样本的均值和方差,则E=_______;D=_______;ES2=_______.正确答案:0,解析:由于E=EX,,ES2=DX,由题设有EX=∫-∞+∞χf(χ)dχ=∫-11χ|χ|dχ=0.DX=EX2-(EX)2=∫-∞+∞χ2f(χ)dχ=∫-11χ2|χ|dχ=2∫01χ2dχ=所以E=0,,ES2=.知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

概率论与数理统计模拟试题及解答

概率论与数理统计模拟试题及解答

模拟试题(一)参考答案一.单项选择题(每小题2分,共16分)1、设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或(D) AB 未必是不可能事件解 若AB 为零概率事件,其未必为不可能事件.本题应选D.2、设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( )(A) )1(3p - (B) 3)1(p - (C) 31p - (D) 213)1(p p C -解 所求事件的对立事件为“3次都不成功”,其概率为3p ,故所求概率为31p -.若直接从正面去求较为麻烦.本题应选C.3、若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续解 由连续型随机变量概率密度的定义可知,)(x f 是定义在),(+∞-∞上的非负函数,且满足⎰∞+∞-=1d )(x x f ,所以A 一定成立.而其它选项不一定成立.例如服从]21,31[上的均匀分布的随机变量的概率密度⎪⎩⎪⎨⎧≤≤=其他,0,2131,6)(x x f在31=x 与21=x 处不连续,且在这两点的函数值大于1.因而本题应选A. 4、若随机变量X 的概率密度为)( e21)(4)3(2+∞<<-∞=+-x x f x π,则=Y ( ))1,0(~N(A)23+X (B)23+X (C)23-X (D)23-X 解 X 的数学期望3-=EX ,方差2=DX ,令23+=X Y ,则其服从标准正态分布.故本题应选A.5、若随机变量Y X ,不相关,则下列等式中不成立的是( ) (A) 0),cov(=Y X (B) DY DX Y X D +=+)((C) DY DX DXY ⋅=(D) EY EX EXY ⋅=解 因为0=ρ,故0),cov(=⋅=DY DX Y X ρ,DY DX Y X DY DX Y X D +=++=+),cov(2)(, 但无论如何,都不成立DY DX DXY ⋅=.故本题应选C.6、设样本n X X X ,,,21⋅⋅⋅取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X(B) )1,0(~N Xn(C))(~212n X ni i χ∑=(D))1(~-n t SX解 )1,0(~nN X ,),0(~n N X n ,)1(~-⋅n t S X n ,只有C 选项成立.本题应选C. 7、样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量(A)∑=ni iX1(B) X(C) )46(1.01n X X +(D) 321X X X -+解 由无偏估计量的定义计算可知,∑=ni iX1不是无偏估计量,本题应选A.8、在假设检验中,记0H 为待检假设,则犯第一类错误指的是( ) (A) 0H 成立,经检验接受0H (B) 0H 成立,经检验拒绝0H (C) 0H 不成立,经检验接受0H (D) 0H 不成立,经检验拒绝0H解 弃真错误为第一类错误,本题应选B.二.填空题(每空2分,共14分)1、同时掷三个均匀的硬币,出现三个正面的概率是________,恰好出现一个正面的概率是________. 解81;83. 2、设随机变量X 服从一区间上的均匀分布,且31,3==DX EX ,则X 的概率密度为________. 解 设],[~b a X ,则,3112)( ,322=-==+=a b DX b a EX 解得2=a , 4=b , 所以X 的概率密度为⎪⎩⎪⎨⎧≤≤=.0,42,21)(其他x x f3、设随机变量X 服从参数为2的指数分布, Y 服从参数为4的指数分布,则=+)32(2Y X E ________. 解 473])([232)32(222=++=+=+EY EX DX EY EX Y X E . 4、设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6||{Y X P ________.解 根据切比雪夫不等式,12136),cov(26)(}6||{2=++=+≤≥+Y X DY DX Y X D Y X P . 5、假设随机变量X 服从分布)(n t ,则21X 服从分布________(并写出其参数).解 设)(~n t nZY X =,其中)1,0(~N Y ,)(~2n Z χ,且)1(~22χY ,从而)1,(~122n F Y n ZX =. 6、设n X X X ,,,21 )1(>n 为来自总体X 的一个样本,对总体方差DX 进行估计时,常用的无偏估计量是________.解 ∑=--=ni i X X n S 122)(11. 三.(本题6分)设1.0)(=A P ,9.0)|(=A B P ,2.0)|(=A B P ,求)|(B A P . 解 由全概率公式可得27.02.09.09.01.0)|()()|()()(=⋅+⋅=+=A B P A P A B P A P B P .31)()|()()()()|(===B P A B P A P B P AB P B A P .四.(本题8分)两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起.又知第一台加工的零件数是第二台加工的零件数的2倍.求:(1) 任取一个零件是合格品的概率,(2) 若任取一个零件是废品,它为第二台车床加工的概率.解 设21,A A 分别表示第一台,第二台车床加工的零件的事件.B 表示产品是合格品的事件. (1) 由全概率公式可得973.098.03197.032)|()()|()()(2211≈⋅+⋅=+=A B P A P A B P A P B P . (2) 247.0973.0102.031)()|()()()()|(2222≈-⋅===B P A B P A P B P B A P B A P . 五.(本题14分)袋中有4个球分别标有数字1,2,2,3,从袋中任取一球后,不放回再取一球,分别以Y X ,记第一次,第二次取得球上标有的数字,求:(1) ) ,(Y X 的联合分布; (2) Y X ,的边缘分布; (3) Y X ,是否独立;(4) )(XY E .解 (1) YX 1 2 3 1 061 121 2 61 61 613 121 61(2)41)1(==X P ,21)2(==X P ,41)3(==X P .41)1(==Y P ,21)2(==Y P ,41)3(==Y P .(3)因为)1()1(1610)1,1(===≠===Y P X P Y X P ,故Y X ,不独立. (4)613261226112121316121)(⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=XY E 612312113⋅⋅+⋅⋅+623=.六.(本题12分)设随机变量X 的密度函数为)( e )(||2+∞<<-∞=-x Ax x f x ,试求:(1) A 的值; (2) )21(≤<-X P ; (3) 2X Y =的密度函数. 解 (1) 因⎰∞+∞-x x f d )(⎰∞+-===0214d e 2A x x A x ,从而41=A ; (2) ⎰⎰⎰---+==≤<-20201221d e 41d e 41d )(}21{x x x x x x f X P xx 12e 45e 251----=;(3) 当0≤y 时,0)(=y F Y ;当0>y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,所以,两边关于y 求导可得,.e 4121e 4121e 41)(yyyY y yy yy y f ---⋅=-⋅⋅-⋅⋅=故Y 的密度函数为⎪⎩⎪⎨⎧>⋅≤=-.0,e 41,0,0)(y y y y f yY七.(本题6分)某商店负责供应某地区1000人商品,某种产品在一段时间内每人需用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%7.99的概率保证不会脱销?(假定该商品在某一段时间内每人最多买一件).解 设⎩⎨⎧=人购买该种商品第人不购买该种商品第i i X i ,1,,0(1000,,2,1 =i ),X 表示购买该种商品的人数,则)6.0,1000(~B X .又设商品预备n 件该种商品,依题意,由中心极限定理可得)240600240600()()(-≤-=-≤-=≤n X P DXEX n DX EX X P n X P997.0)240600(=-Φ≈n .查正态分布表得75.2240600=-n ,解得6436.642≈=n 件.八.(本题10分)一个罐内装有黑球和白球,黑球数与白球数之比为R .(1) 从罐内任取一球,取得黑球的个数X 为总体,即⎩⎨⎧=白球,,黑球,,01X 求总体X 的分布;(2) 从罐内有放回的抽取一个容量为n 的样本n X X X ,,,21 ,其中有m 个白球,求比数R 的最大似然估计值.解(1) X 1 0 PR R +1 R+11即R R R R R x X P xxx+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+==-1111)(1 )1,0(=x ; (2)nx ni i iR R x XP R L i)1()()(1+∑===∏=,两边取对数,)1ln()(ln R n x R R L i +-∑=,两边再关于R 求导,并令其为0,得011=+-∑R nx i , 从而∑∑-=ii x n xR ˆ,又由样本值知,m n x i-=∑,故估计值为1ˆ-=m n R . 九.(本题14分)对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω):A 批:0.140,0.138,0.143,0.141,0.144,0.137;B 批:0.135,0.140,0.142,0.136,0.138,0.141. 已知元件电阻服从正态分布,设05.0=α,问:(1) 两批电子元件的电阻的方差是否相等? (2) 两批电子元件的平均电阻是否有显著差异? (2281.2)10(025.0=t ,15.7)5,5(025.0=F )解 (1) 2221122210 σσσσ≠=:,:H H .检验统计量为2221S S F =)5 ,5(~F (在0H 成立时),由05.0=α,查得临界值15.7)5 ,5(025.02/==F F α,15.712/1=-αF . 由样本值算得962.00000078.00000075.0==F ,由于2/2/1ααF F F <<-,故不能拒绝10H ,即认为两批电子元件的电阻的方差相等.(2) 211210 μμμμ==:,:H H . 统计量2)1()1()11(2122221121-+-+-+-=n n sn s n n n YX T )10(~t (在0H 成立时),查表得临界值228.2)10(025.02/==t t α.再由样本值算得005.2120000078.00000075.0139.01405.0=+-=T ,因为2/||αt T <,故接收0H .即认为两批电子元件的平均电阻无显著差异.模拟试题(二)参考答案一.单项选择题(每小题2分,共16分)1.设C , ,B A 表示3个事件,则C B A 表示( ). (A) C , ,B A 中有一个发生(B) C , ,B A 中不多于一个发生(C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生 解 本题应选C. 2.已知)(,61)|(,31)()(B A P B A P B P A P 则====( ). (A) 187 (B) 1811 (C) 31 (D) 41解 181)|()()(==A B P A P AB P ,187)()()(1)(1)()(=+--=-==AB P B P A P B A P B A P B A P . 故本题应选A.3.设两个相互独立的随机变量X 与Y 分别服从正态分布)1,0(N 和)1,1(N ,则( )(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}1{=≤-Y X P解 )2,1(~N Y X +,)2,1(~--N Y X ,故本题应选B.4.设X 与Y 为两随机变量,且6.0,1,4===XY DY DX ρ,则=-)23(Y X D ( ) (A) 40 (B) 34 (C) 25.6 (D) 17.6解 2.1),cov(=⋅=DY DX Y X XY ρ,6.25),cov(1249)23(=-+=-Y X DY DX Y X D .故本题应选C.5.若随机变量X 服从参数为λ的泊松分布,则2X 的数学期望是( )(A) λ(B)λ1 (C) 2λ (D) λλ+2 解 222)(λλ+=+=EX DX EX ,本题应选D.6.设n X X X ,,,21 是来自于正态总体),(2σμN 的简单随机样本,X 为样本方差,记∑=--=n i i X X n S 122)(111 ∑=-=n i i X X n S 1222)(1 ∑=--=n i i X n S 1223)(11μ ∑=-=n i i X n S 1224)(1μ 则服从自由度为1-n 的t 分布的随机变量是( )(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) 1/3--=n S X t μ(D) 1/4--=n S X t μ解 ),(~2nN X σμ,)1(~)(1122--∑=n t X Xni iσ,再由t 分布的定义知,本题应选B.7.设总体X 均值μ与方差2σ都存在,且均为未知参数,而,,,21 X X n X 是该总体的一个样本,X 为样本方差,则总体方差2σ的矩估计量是( )(A) X (B) ∑=-n i i X n 12)(1μ(C) ∑=--n i i X X n 12)(11 (D) ∑=-n i i X X n 12)(1 解 本题应选D.8.在假设检验时,若增大样本容量,则犯两类错误的概率( ) (A) 都增大 (B) 都减小(C) 都不变 (D) 一个增大一个减小 解 本题应选B.二.填空题(每空2分,共14分)1.设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为________.解 设A 表示两件中有一件不合格品,B 表示两件都是不合格品.则所求的极限为51)()()()()|(===A PB P A P AB P A B P2.设随机变量X 服从)8.0 ,1(B 分布,则X 的分布函数为________.解 X 服从0-1分布,其分布函数为⎪⎩⎪⎨⎧≥<≤<=.11,10,2.0,0,0)(x x x x f3.若随机变量X 服从均值为2,方差为2σ的正态分布,且6.0}40{=<<X P ,则}0{<X P =________.解 2=μ,即其密度函数关于2=x 对称.由对称性知2.026.01}0{=-=<X P . 4.设总体X 服从参数为p 的0-1分布,其中)10(<<p p 未知.现得一样本容量为8的样本值:0,1,0,1,1,0,1,1,则样本均值是________,样本方差是________.解 由定义计算知85=X ;56152=S . 5.设总体X 服从参数为λ的指数分布,现从X 中随机抽取10个样本,根据测得的结果计算知27101=∑=i ix,那么λ的矩估计值为________.解 27101ˆ==X λ.6.设总体) ,(~2σμN X ,且2σ未知,用样本检验假设00μμ=:H 时,采用的统计量是________. 解 )1(~0--=n t nSX T μ (0H 为真时).三.(本题8分)设有三只外形完全相同的盒子,Ⅰ号盒中装有14个黑球,6个白球;Ⅱ号盒中装有5个黑球,25个白球;Ⅲ号盒中装有8个黑球,42个白球.现在从三个盒子中任取一盒,再从中任取一球,求:(1)取到的球是黑球的概率;(2)若取到的是黑球,它是取自Ⅰ号盒中的概率.解 设321,,A A A 分别表示从第Ⅰ,Ⅱ,Ⅲ号盒中取球,B 表示取到黑球. (1) 由全概公式可得≈⋅+⋅+⋅==∑=5083130531201431)|()()(31i i i A B P A P B P 0.342; (2) 由贝叶斯公式得≈=)()|()()|(111B P A B P A P B A P 0.682.四.(本题6分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,,,,002cos 21)(πx x x f , 对X 独立地重复观察4次,用Y 表示观察值大于3π地次数,求2Y 的数学期望. 解 21d 2c o s 21)3(3==>⎰πππx x X P ,)21,4(~B Y ,从而 5)(22=+=EY DY EY .五.(本题12分) 设),(Y X 的联合分布律为YX 0 1 2 1 0.1 0.05 0.35 2 0.3 0.1 0.1 问:(1) Y X ,是否独立;(2) 计算)(Y X P =的值;(3) 在2=Y 的条件下X 的条件分布律. 解 (1) 因为)0()1(4.05.02.01.0)0,1(===⋅=≠===Y P X P Y X P , 所以Y X ,不独立; (2) 15.01.005.0)2,2()1,1()(=+===+====Y X P Y X P Y X P ;(3) 9745.035.0)2()2,1()2|1(========Y P Y X P Y X P ,92971)2|2(=-===Y X P .六.(本题12分)设二维随机变量) ,(Y X 的概率密度为⎩⎨⎧≤≤≤=,,0,10,12),(2其他x y y y x f 求:(1) X 的边缘密度函数)(x f X ;(2) )(XY E ; (3) )1(>+Y X P . 解 (1)⎩⎨⎧≤≤⎪⎩⎪⎨⎧=≤≤==⎰⎰∞+∞-.,0,104,0,10,d 12d ),()(302其他其他x xx y y y y x f x f x X(2) 21d 12d )(0310==⎰⎰y xy x XY E x ;(3) ==>+⎰⎰-y y x Y X P x x d 12d )1(1212187.七.(本题6分)一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总长度为)1.020(±mm 时产品合格,试求产品合格的概率.解 设i X 表示第i 部分的长度,10,,2,1 =i ,X 表示部件的长度.由题意知2=i EX ,0025.0=i DX ,且∑==101i i X X ,20=EX ,025.0=DX .由独立同分布的中心极限定理知,产品为合格品的概率为)025.01.0|025.020(|)1.0|20(|≤-=≤-X P X P4714.01)025.01.0(2=-Φ=. 八.(本题7分)设总体X 具有概率密度为⎪⎩⎪⎨⎧>-=--,,0,0,e )!1()(1其他x x k x f x k k θθ 其中k 为已知正整数,求θ的极大似然估计.解 设n X X X ,,,21 是来自总体X 的样本,当0,,,21>n x x x 时,似然函数∑-===-=-=∑∏ni ix ni k innkni i xk x f L 1e])!1[()()(111θθθ,两边取对数,∑-+--===-∑ni i ni k ix x k n nk L 111ln )!1ln(ln )(ln θθθ,关于θ求导,并令其为0,得0)(ln 1=∑-==ni i x nkL θθ,从而解得θ的极大似然估计为XkX nkni i=∑==1ˆθ. 九.(本题14分)从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:230.01=x ,1337.021=n s , )9(1=n 西支:269.02=x ,1736.022=n s , )8(2=n 若东、西两支矿脉的含锌量都服从正态分布,问东、西两支矿脉含锌量的平均值是否可以看作一样?)05.0(=α53.4)7 ,8( (025.0=F ,90.4)8 ,7(025.0=F ,) 1315.2)15(0025.0=t解 本题是在未知方差,又没有说明方差是否相等的情况下,要求检验两总体均值是否相等的问题,故首先必须检验方差是否相等,在相等的条件下,检验总体均值是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,接受0H ,即可认为东、西两支矿脉含锌量的平均值相等.(请参见模拟试题(一)第九大题)十.(本题5分) 设总体X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,0,3)(23其它θθx x x f其中θ为未知参数,n X X X ,,,21 为来自总体X 的样本,证明:X 34是θ的无偏估计量.证明 ⎰∞+∞-===x x xf EX X E X E d )(343434)34(θθθ==⎰033d 334x x , 故X 34是θ的无偏估计量.模拟试题(三)参考答案一.填空题(每小题2分,共14分)1.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8180,则该射手的命中率为 .解 设A 表示一次射击中击中目标,依题意,四次都没击中的概率为81801)(4-=A P ,解得31)(=A P ,从而射手的命中率为32)(=A P . 2.若事件A ,B 独立,且p A P =)(,q B P =)(则=+)(B A P . 解 pq p B P A P B P A P B A P +-=-+=1)()()()()( .3.设离散型随机变量X 服从参数为λ(0>λ)的泊松分布,已知==)1(X P )2(=X P ,则λ= .解 )2(e 2e)1(2=====--X P X P λλλλ,从而解得2=λ.4.设相互独立的两个随机变量X ,Y 具有同一分布律,且X 的分布律为:X 0 1P 21 21则随机变量},max{Y X Z =的分布律为 . 解 Z 的可能取值为0,1.412121)0()0()0,0()0(=⋅========Y P X P Y X P Z P .43411)1(=-==Z P .5.设随机变量X ,Y 的方差分别为25=DX ,36=DY ,相关系数4.0=XY ρ,则),(Y X Cov = .解 12),cov(=⋅=DY DX Y X XYρ.6.设总体X 的期望值μ和方差2σ都存在,总体方差2σ的无偏估计量是21)(∑=-n i i X X n k ,则=k .解 1-=n n k . 7.设总体),(~2σμN X ,μ未知,检验2020σσ=H :,应选用的统计量是 .解)1(~)(2212--∑=n X Xni iχσ (0H 为真时)二 .单项选择题(每小题2分,共16分)1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( )(A)!10!6!4 (B)107 (C)!10!7!4 (D)104 解 本题应选C.2.若事件B A ,相互独立,则下列正确的是( ) (A) =)|(A B P )|(B A P (B) =)|(A B P )(A P (C) )|(B A P )(B P =(D) =)|(B A P )(1A P -解 由独立性的定义知,==)()|(A P B A P )(1A P -,故本题应选D.3.设随机变量X 服从参数为n ,p 的二项分布,且6.1=EX ,28.1=DX ,则n ,p 的值为( ) (A) n =8,p =2.0 (B) n =4,p =4.0 (C) n =5,p =32.0(D) n =6,p =3.0解 由6.1=np ,28.1)1(=-p np ,解得n =8,p =2.0,本题应选A.4.设随机变量X 服从正态分布)1,2(N ,其概率密度函数为)(x f ,分布函数为)(x F ,则有( ) (A) =≥)0(X P =≤)0(X P5.0 (B) =≥)2(X P =≤)2(X P 5.0 (C) )(x f =)(x f -,),(∞+-∞∈x (D) =-)(x F -1)(x F , ),(∞+-∞∈x解 2=EX ,故其密度函数关于2=x 对称,故本题应选B.5.如果随机变量X 与Y 满足:)(Y X D +)(Y X D -=,则下列式子正确的是( ) (A) X 与Y 相互独立 (B) X 与Y 不相关 (C) 0=DY(D) 0=⋅DY DX解 由)(Y X D +)(Y X D -=,可得0),cov(=Y X ,从而可知X 与Y 不相关,故本题应选B.6.设n X X X ,,,21 是来自总体),(~2σμN X 的样本,X 为样本均值,令=Y 212)(σ∑=-ni iX X,则~Y ( )(A) )1(2-n χ (B) )(2n χ (C) ),(2σμN (D)),(2nN σμ解 本题应选A.7.设n X X X ,,,21 是取自总体),0(2σN 的样本,可以作为2σ的无偏估计量的统计量是( )(A) ∑=n i i X n 121 (B) ∑=-n i i X n 1211 (C) ∑=n i i X n 11 (D)∑=-ni i X n 111 解 由无偏估计的定义及期望的性质知,2221212)(1)1(σ==+===∑∑==DX EX DX EX EX n X n E ni i n i i ,故A 选择正确,同理验算其他选项,B,C,D 均不正确.故本题应选A.8.样本n X X X ,,,21 来自正态总体),(2σμN ,若进行假设检验,当( )时,一般采用统计量nS X t /0μ-=(A) μ未知,检验2σ=20σ(B) μ已知,检验2σ=20σ(C) 2σ未知,检验 μ=0μ(D) 2σ已知,检验μ=0μ解 本题应选C. 三.(本题8分)有两台车床生产同一型号螺杆,甲车床的产量是乙车床的5.1倍,甲车床的废品率为%2,乙车床的废品率为%1,现随机抽取一根螺杆检查,发现是废品,问该废品是由甲车床生产的概率是多少?解 设21,A A 分别表示螺杆由甲,乙车床生产的事件.B 表示螺杆是废品的事件.由贝叶斯公式可得)|()()|()()|()()|(2211111A B P A P A B P A P A B P A P B A P +=75.001.05202.05302.053=⋅+⋅⋅=. 四.(本题8分)假设一部机器在一天内发生故障的概率为2.0,机器发生故障时全天停止工作.若一周五个工作日里无故障,可获利润10万元,发生一次故障获利润5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万元,问一周内期望利润是多少?解 设X 表示一周中所获的利润,其分布律为:X 0 5 10 P 548.08.02.051-⋅⋅- 48.02.05⋅⋅ 58.0从而由期望的定义计算可得216.5=EX .五.(本题12分)1.设随机向量X ,Y 的联合分布为:X Y 1 2 31 0 61 1212 61 61 613 121 61(1) 求X ,Y 的边际分布;(2) 判断X ,Y 是否独立. 解 (1) X 的边际分布为: Y 的边际分布为:X 1 2 3 Y 1 2 3P 41 21 41 P 41 21 41(2) X 与Y 不相互独立.2.设随机变量),(Y X 的联合密度函数为:),(y x f =⎩⎨⎧<<-其他,,,,00e y x y求概率)1(≤+Y X P .解 ==≤+⎰⎰--y x Y X P x xy d e d )1(1210211e2e 1---+.六.(本题8分)设连续型随机变量X 的分布函数为:=)(x F ⎪⎩⎪⎨⎧≤>+-,,,,000e 22x x B A x 求: (1) 系数A 及B ;(2) 随机变量X 的概率密度; (3) )9ln 4ln (≤≤X P .解 (1) 由分布函数的性质知1)e(lim )(22==+=+∞-+∞→A B A F x x ,)0(0)e(lim )(lim 202F B A B A x F x x x ==+=+=-→→++,从而1-=B ;(2) 分布函数的导数即为其概率密度,即)(x f =⎪⎩⎪⎨⎧≤>-000e 22x x x x ,,,(3) 61)4ln ()9ln ()9ln 4ln (=-=≤≤F F X P . 七.(本题8分)设n X X X ,,,21 为总体X 的一个样本,X 的概率密度为:)(x f =⎪⎩⎪⎨⎧≤≤-其他,,,,0101x x θθ其中0>θ,求未知参数θ的矩估计量与极大似然估计量.解 令X x x EX =+==⎰1d 10θθθθ,从而解得θ的矩估计量为2)1(XX -=θ. 极大似然估计为:∑∑==+=ni ini iXX n 11ln ln θ.(具体做法类似与模拟试卷二第八题)八.(本题10分)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为5.66分,标准差为15分,问在显著水平05.0下,是否可认为全体考生的平均成绩为70分?解 假设0H :70=μ,选取统计量ns X T /μ-=)1(~-n t , (0H 为真时)在05.0=α下,查t 分布的双侧临界值表知0301.2025.0=t . 另一方面,计算统计量的值0301.24.136/15705.66||<=-=T ,从而接受原假设,即可认为全体考生的平均成绩为70分.九.(本题12分)两家银行分别对21个储户和16个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为x =2600元和y =2700元,样本标准差相应地为811=S 元和1052=S 元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异?(10.0=α)解 此题要求检验21μμ=,由于t 检验必须在方差相等的条件下进行,因此必须先检验21σ与22σ是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,拒绝0H ,即两家银行的储户的平均年存款余额有显著差异.(请参见模拟试题(一)第九大题)十.(本题4分)设总体X 服从参数为λ的泊松分布,λ为未知参数,⎩⎨⎧-=为偶数,,为奇数,,X X X T 11)(证明:)(X T 是λ2-e的一个无偏估计量.证明 ∑∞===)()()]([x x X P x T X T E∑∞=-=0!)(x xex x T λλ=-=∑∞=-0!)1(n nne n λλλ2-e ,所以)(X T 是λ2-e的一个无偏估计量.模拟试题(四)参考答案一.填空题(每小题2分,共20分)1.设)(A P =0.4,)(B P =0.5.若,7.0)(=B A P 则=+)(B A P . 解 55.0)|()()()()(=-+=+B A P B P B P A P B A P2.若随机变量X 服从二项分布,即)1.0,5(~B X ,则=-)21(X D .解 8.19.01.0544)21(=⋅⋅⋅==-DX X D . 3.三次独立重复射击中,若至少有一次击中的概率为6437,则每次击中的概率为 . 解43. 4.设随机变量X 的概率密度是:⎩⎨⎧<<=,,0,10,3)(2其他x x x f 且,784.0)(=≥a X P 则=a .解 由784.0)(=≥a X P 知,10<<α.故,784.01d 3)(132⎰=-==≥ααx x a X P 从而6.0=α. 5.利用正态分布的结论,有:=+-⎰∞+∞---x x x x d e )44(212)2(22π .解 令t x =-2,则原式1)(d e212222=+==⎰∞+∞--EX DX t t t π,这里)1,0(~N X .6.设总体X 的密度函数为:⎩⎨⎧<<=-,,0,10,)(1其他x x x f αα)0(>αα为参数其中,n x x x ,,,21 是来自总体X 的样本观测值,则样本的似然函数=);,,,(21αn x x x L .解 ∏=-ni i nx 11αα.7.设X ,Y 是二维随机向量,DX ,DY 都不为零,若有常数0>a 与b 使1)(=+-=b aX Y P ,这时X 与Y 是 关系.解 完全相关.8.若),(~2σμN X ,n X X X ,,,21 是来自总体X 的样本,2,S X 分别为样本均值和方差,则SnX )(μ-服从 分布.解 )1(-n t .9.设),(~211σμN X ,),(~222σμN Y ,X 与Y 相互独立.从X ,Y 中分别抽取容量为21,n n 的样本,样本均值分别为Y X ,,则Y X -服从分布 .解 ),(22212121n n N σσμμ+-.10.设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z 的相关系数为____________. 解 9.0),cov()4.0,cov(),cov(==-=X Y X Y Z Y . 二.单项选择题(每小题2分,共12分)1. 设随机变量X 的数学期望EX 与2σ=DX 均存在,由切比雪夫不等式估计概率}4{σ<-EX X P 为( )(A) 161≥(B) 161≤(C) 1615≥(D) 1615≤解 本题应选C.2.B A ,为随机随机事件,且A B ⊂,则下列式子正确的是( ). (A) )()(A P B A P =(B) )()()(A P B P A B P -=-(C) )()(A P AB P = (D) )()(B P A B P =解 本题应选A.3. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其他,,,,010)(x B Ax x f 且127=EX ,则( ).(A) 5.0,1-==B A(B) 1,5.0=-=B A(C) 1,5.0==B A (D) 5.0,1==B A 解 令1d )(10=+⎰x B Ax ,127d )(1=+⎰x x B Ax ,解得5.0,1==B A ,故本题应选D. 4.若随机变量X 与Y 不相关,则有( ). (A) )(9)()3(Y D X D Y X D -=- (B) )()()(Y D X D XY D ⨯= (C) 0)]}()][({[=--Y E Y X E X E(D) 1)(=+=b aX Y P 解 本题应选C.5.已知随机变量),(~21n n F F ,且αα=>)},({21n n F F P ,则=-),(211n n F α( ).(A) ),(121n n F α(B)),(1121n n F α-(C)),(112n n F α(D) ),(1211n n F α-解6.将一枚硬币独立地掷两次,记事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件( ).(A) 321,,A A A 相互独立 (B) 432,,A A A 相互独立 (C) 321,,A A A 两两独立(D) 432,,A A A 两两独立解 21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,再由事件独立的充分必要条件可知321,,A A A 两两独立,本题应选C.三.计算题(每小题8分,共48分)1.某厂由甲,乙,丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%,12%.现从该厂产品中任意抽取一件,求:(1) 取到不合格产品的概率;(2) 若取到的是不合格品,求它是由甲厂生产的概率. 解 (1) 运用全概率公式, 0.09;(2) 运用贝叶斯公式, 0.44.(具体做法参见模拟试卷(一)第四题)2.一实习生用一台机器接连独立地制造三个同样的零件,第i 个零件是不合格品的概率为)3,2,1(11=+=i ip i ,以X 表示三个零件中合格品的个数,求:(1) X 的概率分布; (2) X 的方差DX .解 (1)12234132411241=⋅+⋅+=EX , (2)2741924114412=⋅+⋅+=EX ,故521.0)(22=-=EX EX DX . 3.设总体X ),0(~2σN ,2σ为未知参数,n x x x ,,,21 是来自总体X 的一组样本值,求2σ的最大似然估计.解 似然函数21221222222e )21(e)21()(σσσπσπσ∑=∑===--ni i ni i x nx nL ,两边取对数212222ln 22ln 4)(ln σσπσ∑---==ni ix nn L ,关于2σ求导,并令其为零,得0)(21222122=∑+⋅-=σσni ix n , 从而解得极大似然估计量为∑==n i i x n 1221ˆσ. 4.二维随机变量(X ,Y )的联合概率密度:⎩⎨⎧>>=+-其它,,,,00,0e 2),()2(y x y x f y x求: (1) X 与Y 之间是否相互独立,判断X 与Y 是否线性相关;(2) )1(≤+X Y P . 解 (1) ⎪⎩⎪⎨⎧≤>==⎰⎰∞++-∞+∞-0,0,0,d e 2d ),()(0)2(x x y y y x f x f y x X341⎩⎨⎧≤>=-.0,0,0,e x x x 同理⎩⎨⎧≤>=-.0,0,0,e )(2y y yf y Y 从而)()(),(y f x f y x f Y X =,故X 与Y 相互独立,因而X 与Y 一定不相关.(2) =≤+)1(X Y P =⎰⎰-+-y x x y x d 2e d 10)2(1021)e 1(--.5.某人乘车或步行上班,他等车的时间X (单位:分钟)服从参数为51的指数分布,如果等车时间超过10分钟他就步行上班.若此人一周上班5次,以Y 表示他一周步行上班的次数.求Y 的概率分布;并求他一周内至少有一次步行上班的概率.解 此人每天等车时间超过10分钟也即步行上班的概率为210e d e 51)10(--∞+==>⎰x X P sx. 故)e ,5(~2-B Y .52)e 1(1)1(---=≥Y P .6.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈⋅=其他,,,,0]8,1[31)(32x x x f )(x F 是X 的分布函数.求随机变量)(X F Y =的概率分布.解 ⎪⎪⎩⎪⎪⎨⎧>≤<-≤=.8,1,81,1,1,0)(31x x x x x F(3) 当0<y 时,0)()(=≤=y Y P y F Y ;当10<≤y 时,))1(()1()()(331+≤=≤-=≤=y X P y X P y Y P y F Yy y F X =+=))1((3;当1≥y 时,1)()(=≤=y Y P y F Y . 故对)(y F Y 求导可得Y 的概率密度,⎩⎨⎧<<=其它,,,,0101)(y y f Y 即]10[~,U Y 四.应用题(第1题7分、第2题8分,共15分)21 1.假设对目标独立地发射400发炮弹,已知每一发炮弹的命中率等于0.2,用中心极限定理计算命中60发到100发之间的概率.解 设⎩⎨⎧=发炮弹命中第发炮弹没有命中第i i X i ,1,,0 (400,,2,1 =i ),则 ∑==4001i i X X )2.0,400(~B表示400发炮弹命中的发数,且80=EX ,64=DX ,故由中心极限定理知,)6420|6480(|)20|80(|)10060(<-=<-=<<X P X P X P9876.01)820(2=-Φ=. 2.某厂生产铜丝,生产一向稳定.现从该厂产品中随机抽出10段检查其折断力,测后经计算:5.160)(,5.28712=-=∑=n i i x x x .假定铜丝折断力服从正态分布,问是否可以相信该厂生产的铜丝的折断力方差为16?(1.0=α)解 16162120≠=σσ:,:H H .采用统计量 2221S n σχ-=,在0H 成立时,)9(~22χχ.由1.0=α,查得临界值 325.3)9(295.022/1==-χχα, 919.16)9(205.022/==χχα, 由样本值算得03.10165.1602≈=χ,由于22/222/1ααχχχ<<-,所以不拒绝0H ,即该厂生产的铜丝的折断力方差为16. 五.证明题(5分)若随机变量X 的密度函数)(x f ,对任意的R x ∈,满足:)()(x f x f -=,)(x F 是其分布函数.证明:对任意实数a ,有⎰-=-a x x f a F 0d )(21)(. 证明 ⎰⎰⎰-∞--∞-+==-a ax x f x x f x x f a F 00d )(d )(d )()(⎰-+=a x x f 0d )(21 (令x t -=) ⎰⎰⎰-=-=--=a a a x x f t t f t t f 000d )(21d )(21d )(21.。

概率论与数理统计

概率论与数理统计

概率论与数理统计(经管类模拟练习题)一.单项选择题1. 有10张奖券,8张为20元,2张为50元,从中随机抽取1张,则所得奖金的平均值是( )A. 26B. 78C. 120D. 90答案:A2. 甲、乙两人同时向目标射击,已知甲击中目标的概率为0.6,乙击中目标的概率为0.7,目标被击中的概率为A. 0B. 0.42C. 0.5D. 0.88答案:D3. 连续型随机变量X 的密度函数)(x f 必满足条件( )。

A. 1)(0≤≤x fB. 在定义域内单调不减 若随机变量X 的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X 为连续型随机变量,f(x)称为X 的概率密度函数(分布密度函数)。

C.⎰+∞∞-=1)(dx x f D.1)(lim =+∞→x f x答案:C4. 下列关于正态分布的说法中正确的是( ) A. 随机变量),(~2σμN X ,则 σ=)(X D B. 随机变量),(~2σμN X ,则σ=)(X E C. 随机变量),(~2σμN X ,则2)(μ=X E D. 随机变量),(~2σμN X ,则2)(σ=X D答案:D5. 已知A 、B 、C 为三个随机事件,则A 、B 、C 不都发生的事件为( ) A. ABC B. C B A C. C B A D. ABC 答案:B6. 以A 表示事件“甲乙都击中目标”,则其对立事件A 是( )A. 甲击中目标,乙没有击中目标B. 甲乙都没有击中目标;C. 甲没有击中目标或者乙没有击中目标D. 甲没有击中目标,乙击中目标 答案:C7. 抛掷2枚均匀对称的硬币,恰好有两枚正面向上的概率是( )A. 0.125B. 0.25C. 0.375D. 0.5答案:B8. 下列事件运算关系正确的是( )A. A B BA B +=B. A B BA B +=C. A B BA B +=D. B B -=1 答案:A9. 下列说法中正确的是( )A. 如果事件B A ,有∅=B A ,称B A ,互为对立事件B. 若A 与B 相互独立,则A 与B 也相互独立C. 设B A ,是两个事件,有)()()(A P B P A B P -=-D. 设B A ,是两个事件,有)()()(B P A P B A P +=答案:B10. 设A ,B 是两个随机事件,则下列等式中不正确的是( ) A. )()()(B P A P AB P =,其中B A ,互不相容; B. )|()()(B A P B P AB P =,其中0)(≠B P C. )()()(B P A P AB P =,其中B A ,相互独立 D. )|()()(A B P A P AB P =,其中0)(≠A P 答案:A11. 设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤>=-.0,0,0,)(x x e x f x ,记X Y 2=,则=)(Y E ( )A. 1-B. 0C. 1D. 2答案:D12. 有甲,乙两种味道和颜色极为相似的名酒各4杯。

概率论与数理统计模拟试题参考答案

概率论与数理统计模拟试题参考答案

概率论与数理统计模拟试题参考答案概率论与数理统计模拟试题参考答案LELE was finally revised on the morning of December 16, 2020练习题一一、填空题。

1、已知P(A)=,P(A+B)=,则当 A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。

2、已知X ~),(p n B ,且8EX =, 4.8DX =, 则n =__________,X 的最可能值为__________。

3、若)(~λP X ,则=EX ,=DX 。

4、二维离散型随机变量),(ηξ的分布律为:则η的边缘分布_____________,ξ,η是否独立_ ____________(填独立或不独立)。

5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n=++服从__________。

6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为, , , 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为。

7、设连续型随机变量ξ的概率密度为1 -1 0()1 010 x x x x x ?+≤<??=-≤≤其它,则E ξ=__________。

二、判断题。

1、服从二元正态分布的随机变量),(ηξ,它们独立的充要条件是ξ与η的相关系数0ρ=。

()2、设12(,,,)n X X X 是来自正态总体2(,)N μσ的样本,S 是样本方差,则222(1)~()n S n χσ-。

()3、随机变量Y X ,相互独立必推出Y X ,不相关。

()4、已知θ是θ的无偏估计,则2θ一定是2θ的无偏估计。

()5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为。

()三、选择题。

1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。

概率论与数理统计模拟试题5套带答案

概率论与数理统计模拟试题5套带答案

06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。

考研数学一(概率论与数理统计)模拟试卷22(题后含答案及解析)

考研数学一(概率论与数理统计)模拟试卷22(题后含答案及解析)

考研数学一(概率论与数理统计)模拟试卷22(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设X1,…,Xn为相互独立的随机变量,Sn=X1+…+Xn,则根据列维一林德贝格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,…XnA.有相同的数学期望;B.有相同的方差;C.服从同一指数分布;D.服从同一离散型分布.正确答案:C 涉及知识点:概率论与数理统计2.设总体X~N(μ,σ2).从中抽得简单样本X1,X2,…,Xn.记则Y1~χ2(n),Y2~χ2(n-1)且A.Y1、Y2均与独立.B.Y1、Y2均与不独立.C.Y1与独立,而Y2未必.D.Y2与独立,而Y1未必.正确答案:D 涉及知识点:概率论与数理统计填空题3.对随机变量X,Y,已知3X+5Y=11,则X和Y的相关系数为_____.正确答案:涉及知识点:概率论与数理统计4.设总体X~N(μ,σ2),从X中抽得容量为16的简单样本,S2为样本方差,则D(S2)=________.正确答案:χ涉及知识点:概率论与数理统计5.设X~F(n,n),且P(|X|<A)=0.3,则=______.(其中A为一常数).正确答案:0.7 涉及知识点:概率论与数理统计6.设X1,…,Xn是来自总体N(μ,σ2)的简单样本,其中μ、σ2均未知.记,则假设H0:μ=0的t检验使用的统计量t=______.正确答案:涉及知识点:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

7.对随机变量X和Y,已知EX=3,EY=一2,DX=9,DY=2,E(XY)=一5.设U=2X—Y一4,求EU,DU.正确答案:EU=2EX—EY-4=2×3+2—4=4,DU=D(2X—Y一4)=4DX+DY一4cov(X,Y)=4×9+2—4EE(XY)一EX.EY]=36+2—4(一5+3×2)=34.涉及知识点:概率论与数理统计8.对随机变量X,Y,已知EX2和EY2存在,证明:[E(XY)]2≤E(X2).E(Y2).正确答案:t∈R1,有0≤E(X+tY)2=E(X2)+2tE(XY)+t2E(Y2),故此二次型(变量为t)无实根或有重根,所以其判别式△≤0,而△=4[E(XY)]2一4EX2.EY2,即得[E(XY)]2≤E(X2).E(Y2).涉及知识点:概率论与数理统计9.设X1,X2,…,Xn是同分布的随机变量,且EX1=0,DX1=1.不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.(不熟者可对n=2证明)正确答案:由已知可知:E(Xi2)=DXi+(EXi)2=1,i=1,…,n.设(X1,…,Xn)的概率密度为f(x1,x2,…,xn) 涉及知识点:概率论与数理统计10.两家影院竞争1 000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(φ(2.328)=0.990 0)正确答案:设甲影院(乙影院完全同理)应设N个座位才符合要求,而这1 000名观众中有X名选择甲影院,则X~B由题意有:P(X≤N)≥0.99.而由中心极限定理知:涉及知识点:概率论与数理统计11.(1)设系统由100个相互独立的部件组成.运行期间每个部件损坏的概率为0.1.至少有85个部件是完好时系统才能正常工作,求系统正常工作的概率.=0.952 2.(2)如果上述系统由n个部件组成,至少有80%的部件完好时系统才能正常工作.问n至少多大才能使系统正常工作的概率不小于0.95?φ(1.645)=0.95.正确答案:(1)设有X个部件完好,则X~B(100,0.9)∴EX=90,DX=9,∴P{系统正常工作}=P{X≥85}=(2)设有Y个部件完好,则Y~B(n,0.9),∴EX=0.9n,DX=0.09n∴P{X≥0.8n}=得n≥24.35即n≥25.涉及知识点:概率论与数理统计12.对随机变量X,已知EekX存在(k>0常数),证明:正确答案:不失一般性,设X为连续型随机变量,概率密度为f(x),则EekX=∫-∞+∞ekx.f(x)dx,而P{x≥ε}= 涉及知识点:概率论与数理统计13.当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.9?试用切比雪夫不等式和中心极限定理来分别求解.正确答案:没抛掷n次硬币,正面出现X次,则X~B(n,0.5).现要求.即P(0.4n<X<0.6n)≥0.9.(1)用切比雪夫不等式:P(0.4n<X<0.6n)=P(|X 一0.5n|<0.1n)≥得n≥250;(2)用中心极限定理:P(0.4n<X<0.6n)=∴n ≥67.65即n≥68.涉及知识点:概率论与数理统计14.利用中心极限定理证明:正确答案:引随机变量Xk~π(1)(参数为1的泊松分布),k=1,2,…,且{Xk}相互独立.由泊松分布的再生性知涉及知识点:概率论与数理统计15.设总体X具有概率密度:f(x)=从此总体中抽得简单样本X1,X2,X3,X4,求T=正确答案:T的分布函数为FT(t)=P(T≤t)==P(X1≤t,…,X4≤t)=[P(X1≤t)]4= 涉及知识点:概率论与数理统计16.设总体X~N(μ,σ2),X1,…,Xn为取自X的简单样本,记|Xi一μ|,求E(d),D(d).正确答案:涉及知识点:概率论与数理统计17.设总体X~N(72,100),为使样本均值大于70的概率不小于0.95,样本容量n至少应取多大?φ(1.645)=0.95正确答案:由题意知:∴n≥67.65,即n≥68 涉及知识点:概率论与数理统计18.从一正态总体中抽取容量为10的样本,设样本均值与总体均值之差的绝对值在4以上的概率为0.02,求总体的标准差(φ(2.33)=0.99).正确答案:设总体X~N(μ,σ2),则,由题意得:涉及知识点:概率论与数理统计19.设总体X~N(μ,σ2),从X中抽得样本X1,…,Xn,Xn+1,记试求的分布.正确答案:相互独立,故涉及知识点:概率论与数理统计20.设k个总体N(μi,σ2)(i=1,…,k)相互独立,从第i个总体中抽得简单样本:Xi1,Xi2…,Xin,记正确答案:由~χ2(ni一1),i=1,2,…,k.且χ12,…,χk2相互独立,∴即T~χ2(n一k) 涉及知识点:概率论与数理统计21.从总体X~N(0,σ2)中抽得简单样本X1,…,Xn+m,求正确答案:,i=1,…,n+m,且诸Xi相互独立,故:又∵相互独立,故涉及知识点:概率论与数理统计22.设总体的密度为:其中θ>0,而θ和μ为未知参数.从X中抽得简单样本X1,X2,…,Xn.试求θ和μ的矩估计和最大似然估计.正确答案:涉及知识点:概率论与数理统计23.设总体X在区间(μ一ρ,μ+ρ)上服从均匀分布,从X中抽得简单样本X1,…,Xn,求μ和ρ(均为未知参数)的矩估计,并问它们是否有一致性.正确答案:涉及知识点:概率论与数理统计24.设总体X在区间[0,θ]上服从均匀分布,其中θ>0为未知参数,而X1,…,Xn为从X中抽得的简单样本,试求θ的矩估计和最大似然估计,并问它们是否是θ的无偏估计?正确答案:涉及知识点:概率论与数理统计25.设Y=lnX~N(μ,σ2),而X1,…,Xn为取自总体的X的简单样本,试求EX的最大似然估计.正确答案:涉及知识点:概率论与数理统计26.从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为X1和X2.试证:对任意满足a+b=1的常数a、b,都是μ的无偏估计.并确定a、b,使D(T)达到最小.正确答案:涉及知识点:概率论与数理统计27.总体X~N(2,σ2),从X中抽得简单样本X1,…,Xn.试推导σ2的置信度为1一α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.237.下侧分位数.)正确答案:涉及知识点:概率论与数理统计28.为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下侧分位数).正确答案:设施肥与不施肥的农作物产量分别为总体X与Y,X~N(μ1,σ2),Y~N(μ2,σ2),本题中n=6,=4,1一α=0.95,故μ1一μ2的置信下限为涉及知识点:概率论与数理统计29.某种清漆的9个样品的干燥时间(小时)为:6.5,5.8,7,6.5,7,6.3,5.6,6.1,5.设干燥时间X~N(μ,σ2),求μ的置信度为0.95的置信区间.在(1)σ=0.6(小时);(2)σ未知.两种情况下作.(u0.975=1.96,t0.975(8)=2.306 0,下侧分位数)正确答案:涉及知识点:概率论与数理统计30.随机地取某种炮弹9发做试验,得炮口速度的样本标准差S=11.设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差的置信度为0.95的置信区间.正确答案:设炮口速度为总体X,X~N(μ,σ2),而n=9,α=0.05.∴α的置信下限为,σ的置信上限为涉及知识点:概率论与数理统计31.一个罐子里装有黑球和白球.黑、白球数之比为R:1,现有放回地一个接一个地抽球,直到抽到黑球为止,记X为所抽的白球数.这样做了n次以后,我们获得一组样本:X1,X2,…,Xn.基于此,求R的最大似然估计.正确答案:由题意,总体X的分布律为:P{X=k}=,k=0,1,2,…似然函数为L= 涉及知识点:概率论与数理统计32.用过去的铸造方法,零件强度的标准差是1.6 kg/mm2.为了降低成本,改变了铸造方法,测得用新方法铸出的零件强度如下:52,53,53,54,54,54,54,51,52.设零件强度服从正态分布,取显著性水平α=0.05,问改变方法后零件强度的方差是否发生了变化?(χ0.9752(8)=17.535,χ0.0252(8)=2.180,下侧分位数)正确答案:设零件强度为总体X,则X~N(μ,σ2),检验H0:σ2=1.62.拒绝域为.故接受H0.涉及知识点:概率论与数理统计33.一批矿砂的4个样品中镍含量测定为(%):3.25,3.26,3.24,3.25.设测定值总体服从正态分布,问在α=0.01下能否接受假设:这批矿砂镍含量的均值为3.26.(t0.99(3)=5.840 9,下侧分位数).正确答案:设这批矿砂的镍含量为总体X,则X~N(μ,σ2).检验H0:μ=μ0.这儿μ0=3.26,n=4,拒绝域为:涉及知识点:概率论与数理统计34.测得两批电子器材的部分电阻值为:A批:140,138,143,142,144,139;B批:135,140,142,136,135,140.设两批电子器材的电阻均服从正态分布,试在α=0.05下检验这两批电子器材的平均电阻有无显著差异.(t0.975(10)=2.2281,F0.975(5,5)=7.15,下侧分位数.提示:先检验方差相等)正确答案:设A、B批电子器材的电阻值分别为总体X和Y,则X~N(μ1,σ12),Y~N(μ2,σ22).①先检验H0:σ12= 涉及知识点:概率论与数理统计。

全国自考概率论与数理统计(经管类)模拟试卷28(题后含答案及解析)

全国自考概率论与数理统计(经管类)模拟试卷28(题后含答案及解析)

全国自考概率论与数理统计(经管类)模拟试卷28(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题 5. 应用题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A1、A2、A3为任意的三事件,以下结论中正确的是【】A.若A1、A2、A3相互独立,则A1、A2、A3两两独立B.若A1、A2、A3两两独立,则A1、A2、A3相互独立C.若P(A1A2A3)=P(A1)P(A2)P(A3),则A1、A2、A3相互独立D.若A1与A2独立,A2与A3独立,则A1、A3独立正确答案:A2.掷一颗骰子,观察出现的点数,则“出现偶数”的事件是【】A.基本事件B.必然事件C.不可能事件D.随机事件正确答案:D3.X服从正态分布N(2μ,σ2),其概率密度f(x)= 【】A.B.C.D.正确答案:D解析:由X服从正态分布N(2μ,σ2)及正态分布的定义知:f(x)=,-∞<x<+∞,其中σ2,μ为常数,σ>0.4.X~N(μ,σ2),则P{μ-kσ≤X≤μ+kσ)等于(k>0) 【】A.Ф(k)+Ф(-k)B.2Ф(k)C.2Ф(k-1)D.2Ф(k)-1正确答案:D5.随机变量X服从正态分布.N(0,4),则P{X<1}= 【】A.B.C.D.正确答案:C解析:由X~N(0,4)可知,X的概率密度为f(x)=,-∞<x<+∞.6.当随机变量X服从参数为3的泊松分布时,= 【】A.1B.C.3D.9正确答案:A解析:由X服从参数为λ(λ>0)的泊松分布,∴E(X)=λ=D(X),∴=1.7.若D(X)=16,D(Y)=25,ρXY=0.4,则D(2X-Y)= 【】A.57B.37C.48D.84正确答案:A解析:8.设x1,x2,…,xn是来自总体X的样本,X~N(0,1),则服从【】A.χ2(n-1)B.χ2(n)C.N(0,1)D.N(0,n)正确答案:B解析:由x1,x2,…,xn是来自X的样本且X~N(0,1),∴x1,x2,…,xn独立同分布于N(0,1),∴~χ2(n).9.下列关于置信区间与精度的关系说法不正确的是【】A.置信区间的长度可视为区间估计的精度B.当置信度1-α增大,又样本容量n固定时,置信区间长度增加,区间估计精度减低C.当置信度1-α减小,又样本容量n固定,置信区间长度减小,区间估计精度提高D.置信度1-α固定,当样本容量n增大时,置信区间长度增加,区间估计精度减低正确答案:D10.总体服从正态分布N(μ,σ2),其中σ2未知,随机抽取100个样本得到的样本方差为1,若要对其均值μ=10进行检验,则用【】A.u检验法B.χ2检验法C.t检验法D.F检验法正确答案:C解析:由已知可得,μ0=10,s2=1已知,σ2未知,H0:μ=μ0,故选择t 检验法,所用统计量为t=填空题请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

(1)求敌机被击落的概率;(2)若敌机被击落,求它中两弹的概率。

四.X 的概率密度为⎩⎨⎧<<=其它,0,0 ,)(c x kx x f 且E(X)=32。

(1)求常数k 和c ;(2) 求X 的分布函数F(x);五.(X,Y )的概率密度⎩⎨⎧<<<<+=otherwise,020,42 ),2(),(y x y kx y x f 。

求 (1)常数k ;(2)X 与Y 是否独立;(3)XY ρ;六..设X ,Y 独立,下表列出了二维随机向量(X ,Y )的分布,边缘分布的部分概率,试将其余概率值填入表中空白处.七.. 某人寿保险公司每年有10000人投保,每人每年付12元的保费,如果该年内投保人死亡,保险公司应付1000元的赔偿费,已知一个人一年内死亡的概率为0.006。

用中心极限定理近似计算该保险公司一年内的利润不少于60000元的概率.概率与数理统计复习题(一)一、填空1.P(A-B)=0.28 P(A-B)=0.3⇒⇒⎫⎫⎪⎬⎬⎭⎪⎭P(A)=0.4分析: P(B)=0.3 P(AB)=0.28 A,B 独立 P(AB)=P(A)*P(B)=0.12 P(AB)+P(AB)=P(A)()0.1()0.3()0.4P AB P AB P A =⎫⎫⇒⇒=⎬⎬=⎭⎭P(A+B)=P(A)+P(B)-P(AB)P(A+B)=0.6 P(A)=0.4 P(B)=0.32.()0.8P B =[])1()1()()()1()()0()0.8()0.2P A B P A P B P AB P A P B P B P A =-+=-+-⇒--=⎫⇒=⎬=⎭分析: P(AB)=P(AB)=P(A+B{}23.0.8μ== P x>0{}{}{}{}{}{}{}{}{}:2202221x 01(0)1142222240.3(4)(2)0.30.30x 2x 21x 22x 2120.5(2)0.50.50P P P F P x F F P P P P P F μμσσσσσσσμσ-=--=-≤=-=-Φ=-Φ=Φ--<<=⇒-=⇒Φ-Φ=⇒Φ==≥⇒<=-<⇒<=⇒-⎛⎫=⇒=⇒Φ=⇒=⇒ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭分析 x>0x<2 x<2{}00.8.8P x >=⎫⎪⎪⇒⎬⎪⎪⎭{}{}4.1010P P x x e≠=-≠ =1{}{}{}{}{}k11x k e P x=k e k!x , k!x 01x 0x x 111x 01eP P P E D P λλλ--⎫⎫===⎪⎪⇒⇒⎬⎬⎪⎪≠=-===⇒=⎭⎭≠=-分析: a. 服从泊松分布则{}{}{}x x 0x 01x 01P P =⇒≠=-==b.服从均匀分布,属连续分布,则P =0 {}65.x n 0.4P =={}n n n-n n n :x ~b(n,p)x npn 6p x np(1-p)x~b(n,p)P x=n p q p E(x)=2.4 D(x)=1.44 E D C ⇒=⎫⇒=⎫⎪⎪=⇒⎬⎬⇒==⎪⎭⎪⎭分析 =0.4 {}6x n 0.4P ==6.(x 2y 1)6D -+=:(x 2y 1)(x 2y)x (2y)cov(x,2y)x 4y 2cov(x,y)x 4y-2(Exy-ExEy)(x 2y 1)6E(x)=E(y)=0 Dx=Dy=2 Exy=1D D D D D D D D D -+=-=++-=+-=+⎫⇒-+=⎬⎭分析 {}17.2x y 1()0.5xy 05P P -<-<-=Φ-= {}2x ~(0,9)x y~N(-1,5)(x y)x y 011:y ~(1,16)(x y)x y 91625x y (1)(2)x,y N E E E N D D D F F ⎫⎫-=-=-=-⎧⎫⎪⎪⇒⇒⇒⎬⎨⎬⎬-=+=+==---⎩⎭⎪⎪⎭⎭- 分析P -2<-<-1相互独立{}x y x y cov(x,y)=0xy ρρΦΦΦΦΦ⇒⎫⎪⇒⎬⎪⎭-1-(-1)-2-(-1)11P -2<-<-1=()-()=(0)-(-)=()-0.55555,相互独立 =0{}x ≥78.P 2<<8 9{}{}{}{}22xx x 127x x x 53x 53139x 2D P P D εε⎫<≥-⎪⎪⎪⇒=-<⇒-<≥-=⎬⎪=⎪⎪⎭P -E 分析:由切比雪夫不等式 E =5 P 2<<8^29.θ^^^^1222^^^^^^2222^^^111111122^^^^^^222222222^^12()()()()()()()():()()()()()()()()()()E E E D E E E D E D D D E E E D E E E θθθθθθθθθθθθθθθθθθθθθθ⎫⇒==⎪⎪=-⇒=+⎪⇒>⇒⎬⎪=-⇒=+⎪⎪>⎭与均是未知参数的无偏估计分析更有效 10.,,高小变大12:()0.10.20.030.27()0.030.3P B P A A ⎫⎪⎫⎪⎪⎪⎪⎪⇒=+-=⎬⎪⇒=⎬⎪⎪⎪⎪⇒=⎪⎪⎪⎭⎭121212*********二.解:A 甲河流泛滥 A :乙河流泛滥 B:某地区受灾P(B)=P(A +A )=P(A )+P(A )-P(A A )P(A )=0.1(1)P(A )=0.2A P(A A )P()=0.3A P(A )120.03(2)()0.150.2A P A ===122P(A A )P(A )i 12333ii 3i i 3i 1i 1i i 222.:()0.2,()0.6,()1()()*()*(0.3)(0.7)*()0.2286()*()()0.496()A B B B B P P P A A A B B P B P A P C P A A B P A P A A P BP B -============∑∑三解设敌机中了弹 敌机被击落四、解:由密度函数的性质及数学期望的定义,有①⎩⎨⎧⎰⎰==⋅cc x f x f x 001)(32)( 即⎩⎨⎧⎰⎰==cc kxdx dx kx 002132}⇒{12==c k②由①知x 的密度函数为{1020)(<<=x x x f 其他当x 时0≤ ()0=x F ; 当10<<x 时 ()()202x tdt dt t f x F xx===⎰⎰∞-当1≥x 时 ()()⎰⎰===∞-112xdx dt t f x F x()110102≥<<∞≤⎪⎩⎪⎨⎧=∴x x x x x F五、由(x 、y )联合密度的性质有: ①.()⎰⎰+∞∞-+∞∞-=1,dxdy y x 即()361124220=⇒=+⎰⎰k dxdy y kx ②. 由①可求出(x ,y )的联合密度:()()其他20,,4202361,<<<<⎪⎩⎪⎨⎧+=y x y x y x f()()()x dy y x dy y x f x f X 612361,20=+==⎰⎰()20<<y ()()()()y dx y x dx y x f y f Y +=+==⎰⎰+∞∞-2612361,42 ()42<<x()⎪⎩⎪⎨⎧∴061x x f X 其他20<<y ()()⎪⎩⎪⎨⎧+=0261y y f Y 其他42<<x ()()()y f x f y x f Y X ⋅=∴, 故x, y 相互独立。

③. 由②知()y x ,相互独立。

0=∴xy ρ六、略七、解:令x 为一年内死亡人数,题中10000人投标,每人每年死亡率0.006且每人每年死亡相互独立,故x~ N (10000*0.006,10000*0.006*0.994)即x~ N (60,59.64) 设A :保险公司一年内的利润不少于60000元。

即A :10000*12-1000x ≥6000060≤⇒x()()()5.0064.59606060}60{000=Φ=⎪⎪⎭⎫⎝⎛-Φ=Φ=≤=x P A P5.060000元的概率为不少于该保险公司一年的利润∴概率论与数理统计复习题(二)本复习题中可能用到的分位数:8595.1)8(95.0=t ,8331.1)9(95.0=t ,306.2)8(975.0=t ,2662.2)9(975.0=t 。

相关文档
最新文档