椭圆分类复习(基础)
椭圆各类题型分类汇总
椭圆经典例题分类汇总1. 椭圆第一定义的应用例1椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.例2 椭圆19822=++y k x 的离心率21=e ,求k 的值.例3 方程13522-=-+-ky k x 表示椭圆,求k 的取值围.例4 1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值围.例5 动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的部与其相切,求动圆圆心P 的轨迹方程.2.焦半径及焦三角的应用例1 椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?假设存在,那么求出点M 的坐标;假设不存在,请说明理由.例2椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积〔用a 、b 、α表示〕.3.第二定义应用例1椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.例2椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.例3椭圆15922=+y x 有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标.4.参数方程应用例1求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆接矩形的最大面积.例3椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,假设这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值围.5.相交情况下--弦长公式的应用例1椭圆1422=+y x 及直线m x y +=.〔1〕当m 为何值时,直线与椭圆有公共点?〔2〕假设直线被椭圆截得的弦长为5102,求直线的方程.例2长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.6.相交情况下—点差法的应用例1中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.例2椭圆1222=+y x ,求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在的直线方程.例3椭圆1222=+y x ,〔1〕求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; 〔2〕求斜率为2的平行弦的中点轨迹方程;〔3〕过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程;〔4〕椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例4椭圆13422=+y x C :,试确定m 的取值围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例5)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程.椭圆经典例题分类汇总1.椭圆第一定义的应用例1椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:〔1〕当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; 〔2〕当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进展讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k . 说明:此题易出现漏解.排除错误的方法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进展讨论.例5 方程13522-=-+-ky k x 表示椭圆,求k 的取值围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值围是53<<k ,且4≠k .说明:此题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值围是53<<k . 出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例6 1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值围.分析:依据条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈. 说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易无视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值围时,应注意题目中的条件πα<≤0 例5动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的部与其相切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如下图,设动圆P 和定圆B 切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径,即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:此题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.焦半径及焦三角的应用例1 椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?假设存在,那么求出点M 的坐标;假设不存在,请说明理由.解:假设M 存在,设()11y x M ,,由条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x ,∴14x MN +=.又由焦半径公式知: 111212x ex a MF -=-=,112212x ex a MF +=+=. ∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x . 整理得048325121=++x x .解之得41-=x 或5121-=x .① 另一方面221≤≤-x .②那么①与②矛盾,所以满足条件的点M 不存在.例2椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积〔用a 、b 、α表示〕. 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积. 解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.① 由椭圆定义知: a PF PF 221=+②,那么-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ααsin cos 12212+=b 2tan 2αb =. 3.第二定义应用例1椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:此题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由:4=a ,2=c .所以21=e ,右准线8=x l :. 过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:此题关键在于未知式MF AM 2+中的“2〞的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.例2 椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离. 分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e . 由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b e PF d 3211==,即P 到左准线的距离为b 32.解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b e PF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-.说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否那么就会产生误解. 椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,那么用椭圆的第二定义.例3椭圆15922=+y x 有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:此题考察椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.此题假设按先建立目标函数,再求最值,那么不易解决;假设抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线. 建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下列图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标一样为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.4.参数方程应用例1 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,那么点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd .当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆接矩形的最大面积. 分析:此题考察椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1)⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,那么122sin 12sin 2cos 34≤=⨯⨯=θθθS故椭圆接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.例3椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,假设这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的围建立关于a 、b 、c 的一个不等式,转化为关于e的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,那么椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ∴1cos =θ〔舍去〕,11222<-<-b a b ,又222c a b -= ∴2022<<c a ,∴22>e ,又10<<e ,∴122<<e .说明:假设椭圆离心率围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?5.相交情况下--弦长公式的应用例1椭圆1422=+y x 及直线m x y +=. 〔1〕当m 为何值时,直线与椭圆有公共点? 〔2〕假设直线被椭圆截得的弦长为5102,求直线的方程. 解:〔1〕把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . 〔2〕设直线与椭圆的两个交点的横坐标为1x ,2x ,由〔1〕得5221m x x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式.用弦长公式,假设能合理运用韦达定理〔即根与系数的关系〕,可大大简化运算过程. 例2长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长. 分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,那么m AF -=122,n BF -=122.在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=6.相交情况下—点差法的应用例1 中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=, 4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:〔1〕此题求椭圆方程采用的是待定系数法;〔2〕直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.例2 椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程. 分析一:一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,那么直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122kkk x x +-=+. ∵P 是弦中点,∴121=+x x .故得21-=k . 所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --.解法二:设过⎪⎭⎫ ⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,那么由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x .⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:〔1〕有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.〔2〕解法二是“点差法〞,解决有关弦中点问题的题较方便,要点是巧代斜率. 〔3〕有关弦及弦中点问题常用的方法是:“韦达定理应用〞及“点差法〞.有关二次曲线问题也适用.例3 椭圆1222=+y x ,〔1〕求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; 〔2〕求斜率为2的平行弦的中点轨迹方程;〔3〕过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程;〔4〕椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,那么⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121 ①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,那么上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤〔1〕将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.〔2〕将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .〔椭圆局部〕 〔3〕将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .〔椭圆局部〕〔4〕由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即 12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例4椭圆13422=+y x C :,试确定m 的取值围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:假设设椭圆上A ,B 两点关于直线l 对称,那么条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122y x n x y 消去y 得 0481681322=-+-n nx x ①。
高二数学选修2-1 第三章 第1节 椭圆北师大版(理)知识精讲
高二数学选修2-1 第三章 第1节 椭圆北师大版(理)【本讲教育信息】一、教学内容:选修2—1 椭圆的标准方程及其几何性质二、教学目标:1、熟练地掌握椭圆的定义及标准方程的形式,能根据已知条件求出椭圆的标准方程。
2、掌握椭圆简单的几何性质,理解椭圆的准线、离心率、焦点,定义椭圆的方法及椭圆的参数方程的应用。
3、理解用方程的思想、函数的思想、数与形结合、分类讨论的思想及参数法、待定系数法等数学思想方法解决椭圆的有关问题。
三、知识要点分析: (一)椭圆的基本概念1、椭圆的第一定义:平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的集合叫椭圆。
点集M={P| |PF 1|+|PF 2|=2a>|F 1F 2|}(1)到两个定点F 1,F 2的距离之和等于|F 1F 2|的点的集合是线段F 1F 2. (2)到两个定点F 1,F 2的距离之和小于|F 1F 2|的点的集合是空集。
椭圆的第二定义:平面内一动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数e 的点的集合叫椭圆。
点集M={P |}1e 0,e d|PF |<<= 2、椭圆的标准方程:)0(,12222>>=+b a b y a x (焦点在x 轴上),22221c b a ).0,c (F ),0,c (F =-- )0(,12222>>=+b a ay b x (焦点在y 轴上),22221c b a ).c ,0(F ),c ,0(F =-- 3、点),(00y x P 与椭圆)0b a (1by a x 2222>>=+的位置关系。
点1by a x )0b a (1b y a x )y ,x (P 220220222200<+⇔>>=+内部在椭圆点1by ax )0b a (1by ax )y ,x (P 22022222200=+⇔>>=+上在椭圆点1b y a x )0b a (1b y a x )y ,x (P 220220222200>+⇔>>=+外部在椭圆4、椭圆的参数方程:椭圆12222=+b y a x 上任意一点P (x ,y ),则R b y a x ∈⎩⎨⎧==θθθ,sin cos(二)椭圆的几何性质:焦点在x 轴上焦点在y 轴上图形性质X 围 |x|≤a ,|y|≤b|x|≤b ,|y|≤a对称性关于x 轴、y 轴、坐标原点对称 顶点A 1(-a ,0) A 2(a ,0)B 1(0,-b ) B 2(0,b ) A 1(0,-a ) A 2(0,a ) B 1(-b ,0) B 2(b ,0)离心率离心率e=ac,0<e<1,(焦距与长轴的比)(对椭圆定型) 准线 x=ca 2±y=ca 2±焦点半径公式|0201||,|ex a PF ex a PF -=+=|0201||,|ey a PF ey a PF -=+=注:1、在确定椭圆的标准方程时若不能确定焦点的位置,可进行讨论焦点:在x 轴上、y 轴上的两种情形或把所求的椭圆标准方程设为:),0,0(,122B A B A By Ax ≠>>=+ .2、与椭圆)0(,12222>>=+b a b y a x 共焦点的椭圆可设为:kb y k a x +++2222=1,(a>b>0)3、椭圆上任意一点P 到焦点F 的距离的最大值是|PF|=a+c ,最小值是|PF|=a -c .4、椭圆上任意一点P 到两焦点的距离之积的最大值是a 2,此时P 点与椭圆的短轴的两端点重合5、注意利用平面几何知识解决椭圆问题。
高三数学第一轮复习椭圆的定义、性质及标准方程知识精讲
高三数学第一轮复习:椭圆的定义、性质及标准方程【本讲主要内容】椭圆的定义、性质及标准方程椭圆的定义及相关概念、椭圆的标准方程、椭圆的几何性质【知识掌握】 【知识点精析】1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a bx a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距)0(221>=c c F F)0(221>=c c F F3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PFe d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
关于椭圆的第一定义和第二定义(关于椭圆的第一定义和第二定义的最值转化问题)
关于椭圆的第一定义和第二定义(关于椭圆的第一定义和第二定义的最值转化问题)首页>生活常识 >正文关于椭圆的第一定义和第二定义(关于椭圆的第一定义和第二定义的最值转化问题)发布日期:2023-09-21 12:26:22 次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的'并、补、交、非'也就解决了。
还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。
另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。
二次函数的零点的δ判别法,这个需要你看懂定义,多画多做题。
这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。
考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。
这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。
次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。
还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。
关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)
专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。
椭圆的性质与分类解析
椭圆的性质与分类解析椭圆是我们学习数学时经常遇到的一种几何图形,具有许多独特的性质和分类方法。
在本文中,我们将深入探讨椭圆的性质与分类,并逐一进行解析。
1. 椭圆的定义与基本性质椭圆可以被定义为平面上到两个给定点距离之和等于常数的点的轨迹。
这两个给定点被称为焦点,而等于这两个距离之和的常数则被称为椭圆的离心率。
椭圆的性质之一是其离心率小于1,因此椭圆是一个有限的闭合曲线。
另外,椭圆还具有以下基本性质:- 椭圆的中心点是焦点连线的中点。
- 焦点和椭圆上的任意一点的距离之和等于椭圆的长轴长度。
- 椭圆的长轴是椭圆的最长直径,而短轴是椭圆的最短直径。
- 椭圆的两条焦点与椭圆的中心点在同一条直线上,并且与该直线上的任意一点的距离之和等于椭圆的长轴长度。
2. 椭圆的参数方程与标准方程椭圆的参数方程描述了椭圆上每个点的坐标,其形式为:x = a * cos(θ)y = b * sin(θ)其中,a和b分别表示椭圆的半长轴和半短轴长度,而θ表示椭圆上每个点对应的角度。
椭圆的标准方程则是以中心为原点的坐标系下,椭圆上每个点的坐标满足的方程,其形式为:(x^2 / a^2) + (y^2 / b^2) = 13. 椭圆的分类根据椭圆的长轴与短轴之间的长度关系,我们可以将椭圆分为以下几种类型:- 当椭圆的长轴与短轴长度相等时,即a=b,此时椭圆为一个圆。
圆是椭圆的特殊情况,其性质与椭圆相似,但圆上的每个点到圆心的距离都相等。
- 当椭圆的长轴大于短轴长度时,即a>b,此时椭圆的形状更接近于一个水平拉长的圆形。
- 当椭圆的长轴小于短轴长度时,即a<b,此时椭圆的形状更接近于一个垂直拉长的圆形。
4. 椭圆的应用椭圆在日常生活和科学领域中有许多应用。
以下是一些典型的应用场景:- 天体轨道:行星和其他天体的运动轨道可以被建模为椭圆,其中太阳处于焦点之一。
这一模型对研究天体力学和预测天体运动具有重要意义。
- 平面建筑:椭圆的形状常常被应用在许多建筑设计中,如公园中的喷泉、广场与花坛的装饰等。
椭圆二级结论大全
椭圆二级结论大全一、椭圆的定义椭圆是一种常见的椭圆形,它由一个椭圆的中心独立的对称的二次多项式所确定,它始终存在。
一般来说,椭圆形由以下方程定义:(x-a)2/a2 + (y-b)2/b2 = 1其中,a和b为椭圆的两个半径,a>b,中间位置是椭圆的中心(a,b),这个方程代表的是以a和 b为半径的椭圆。
二、椭圆分类由于椭圆在几何学上有很多不同的特性和性质,因此根据不同的特性和性质,椭圆可以分为不同的类别。
(1)根据椭圆的形状可以分为完美椭圆和不完美椭圆;完美椭圆的中心的切点的三角距离总是相等的,即长轴长短轴短;而不完美椭圆的中心的切点中,三角距离相互不等,即长轴和短轴的长度可以不一样,它的形状上就和完美椭圆有一定的偏з宁。
(2)根据椭圆的鞍点可以分为完美椭圆,无鞍点椭圆和有鞍点椭圆;完美椭圆没有鞍点;无鞍点椭圆只有一种形式,它的中心(a,b)是非空的;而有鞍点椭圆,其鞍点为空,此外它的中心也可以在椭圆的任何一方。
(3)根据椭圆的焦距分为完美椭圆,无焦距椭圆和有焦距椭圆;完美椭圆没有焦距;无焦距椭圆,它的总焦距是a和b的总和,非光滑;有焦距椭圆,它的总焦距大于a和b的总和,光滑而完整。
三、椭圆的性质(1)椭圆的两个焦点椭圆的焦点是一对对称的数学点,决定椭圆形状,在椭圆方程中,焦点分别是椭圆的中心(a,b)和椭圆的平行线上的(a,b)的对称点(-a,b)。
(3)椭圆的两个半径椭圆的两个半径一般表示为a和b,它们决定椭圆的形状,椭圆的总长是a的2倍,而短轴的长度则为b的2倍。
(4)椭圆的两个切点椭圆的两个切点也是一对对称的点,它们分别位于椭圆方程中最右端的切点(a,0)和最左端的切点(-a,0)。
椭圆的定义及标准方程课件高三数学一轮复习
第五节 椭圆第1课时 椭圆的定义及标准方程
必备知识·逐点夯实 核心考点·分类突破
【课标解读】 【课程标准】 1.掌握椭圆的定义及标准方程. 2.会利用待定系数法确定椭圆的标准方程. 【核心素养】 数学运算、直观想象、逻辑推理.
【命题说明】
考向 椭圆是历年高考的重点内容,其中求椭圆的标准方程时常出现在解 考法 答题的第一问中.
对点训练
1.(2024·丽江模拟)一动圆P与圆A:(x+1)2+y2=1外切,而与圆B:(x-1)2+y2=64内切,那么
动圆的圆心P的轨迹是( )
A.椭圆
B.双曲线
C.抛物线
D.双曲线的一支
【解析】选A.设动圆P的半径为r,又圆A:(x+1)2+y2=1的半径为1,
圆B:(x-1)2+y2=64的半径为8,则|PA|=r+1,|PB|=8-r,
可得|PA|+|PB|=9,又9>2=|AB|,
则动圆的圆心P的轨迹是以பைடு நூலகம்,B为焦点,长轴长为9的椭圆.
考点二 椭圆的标准方程 考情提示 高考对椭圆方程的考查常以解答题的形式出现,有关椭圆的几何性质的求解也常以 选择题和填空题的形式出现.
解题技法 根据条件求椭圆方程的主要方法
(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义. (2)待定系数法:根据题目所给的条件确定椭圆中的a,b.若焦点位置不确定,可设方程 为mx2+ny2=1(m>0,n>0,m≠n),用待定系数法求出m,n的值即可.
(3,4)∪(4,5)
核心考点·分类突破
考点一 教考衔接
椭圆的定义及应用 类题串串联
椭圆各类题型分类汇总
椭圆各类题型分类汇总文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]椭圆经典例题分类汇总 1. 椭圆第一定义的应用 例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.2.焦半径及焦三角的应用例1 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项若存在,则求出点M 的坐标;若不存在,请说明理由.例2 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).3.第二定义应用例1 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.例2 已知椭圆142222=+b y b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.例3 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 4.参数方程应用例1 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆内接矩形的最大面积. 例3 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.5.相交情况下--弦长公式的应用例1 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点(2)若直线被椭圆截得的弦长为5102,求直线的方程. 例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长. 6.相交情况下—点差法的应用例1 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为,椭圆的短轴长为2,求椭圆的方程.例2 已知椭圆1222=+y x ,求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在的直线方程. 例3 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例4 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例5 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程. 椭圆经典例题分类汇总1.椭圆第一定义的应用例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例5 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k . 出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例6 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈. 说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0 例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.焦半径及焦三角的应用例1 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得 2=a ,3=b ,∴1=c ,21=e .∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知: 111212x ex a MF -=-=,112212x ex a MF +=+=. ∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x . 整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在.例2 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积. 解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.① 由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =. 3.第二定义应用例1 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标. 分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.例2 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e . 由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离, ∴b e PF d 3211==,即P 到左准线的距离为b 32.解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b e PF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解. 椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.例3 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x . ∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.4.参数方程应用例1 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫ ⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆内接矩形的最大面积. 分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.例3 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明5.相交情况下--弦长公式的应用例1 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点 (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式.用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长. 分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB += 6.相交情况下—点差法的应用例1 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=, 4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.例2 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x . 说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.例3 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法. 解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y y x .⑤ (1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为:0342=-+y x . ⑥将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分) (3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 : ()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例4 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得0481681322=-+-n nx x ①。
椭圆基本题型总结(基础题、压轴小题分类总结七大题型)
椭圆基本题型总结(小题压轴题、基础题分类)题型一、椭圆定义的运用1、 已知1F 、2F 是椭圆的两个焦点,AB 是经过焦点1F 的弦且8AB =,若椭圆长轴长是10,求21F A F B +的值;2、已知A、B是两个定点,4AB =,若点P的轨迹是以A,B为焦点的椭圆,则PA PB +的值可能为( )A 2 B 3 C 4 D 53、椭圆221259x y +=的两个焦点为1F 、2F ,P为椭圆上一点,若01290F PF ∠=,求12F PF ∆的面积。
4、设P是椭圆221499x y +=上的点,1F 、2F 是椭圆的两个焦点,,若12PF =,则2PF =5、椭圆221259x y +=上一点M到焦点1F 的距离为2,N是1MF 中点,则ON =( )A 2 B 6 C 4 D 326、在椭圆2219y x +=上有一点P ,1F 、2F 分别是椭圆的上下焦点,若122PF PF =,则2PF = ;7、已知1F 、2F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A 、B 两点,若2212F A F B +=,则AB = ;8、设1F 、2F 为椭圆221496x y +=的两个焦点,P 是椭圆上的点,且12=43PF PF ::,求12F PF ∆的面积。
9、0m n >>是方程221mx ny +=表示焦点在y 轴上的椭圆的 条件;10、若方程22125x y k k+=−−表示椭圆,则的取值范围为 ;11、已知ABC ∆的顶点在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ;题型二、椭圆的标准方程1. 如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.2.设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程.题型三、离心率1、1F 、2F 分别是椭圆22221(0)x y a b a b+=>>的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与该椭圆的两个交点,且2F AB ∆是等边三角形,则椭圆的离心率为 ;242、已知1F 、2F 是椭圆的两个焦点,点P 在椭圆上,且01260F PF ∠=,求椭圆的离心率的取值范围;3、设1F 、2F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,若在其右准线上存在点P ,使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是 ;4、在平面直角坐标系xoy 中,设椭圆22221(0)x y a b a b+=>>的焦距为2C ,以点O 为圆心,a 为半径作圆M,若过点2(,0)a P c所作圆M的两条切线相互垂直,则该椭圆的离心率为 ;5、已知椭圆22221(0)x y a b a b+=>>的左焦点为 F ,(,0),(0,)A a B b −为椭圆的两个顶点,若F 到AB,则椭圆的离心率为 ; 6、已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,且122F F c =,点A 在椭圆上,1120AF F F ⋅=,212AF AF c ⋅=,则椭圆的离心率为 ;7、已知1F 、2F ,是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A、B两点,若2ABF ∆是等腰直角三角形,则这个椭圆的离心率为 ;8、椭圆22221(0)x y a b a b+=>>的右焦点为F ,其右准线与x 轴的交点为A 。
高考椭圆大题专题分类
高考椭圆大题专题分类一、求椭圆的方程以及面积x2 y2 6 1.已知椭圆G:a2+b2=1(a>b>0)的离心率为3 ,右焦点为(2 2,0).斜率为 1 的直线l 与椭圆G 交于A,B 两点,以AB 为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G 的方程;(2)求△PAB 的面积.解析c 6 (1)由已知得c=2 2,a= 3 .解得a=2 3,又b2=a2-c2=4. x2 y2 所以椭圆G 的方程为12+ 4 =1. (2)设直线l 的方程为y=x+m. y=x+m,? ? 由? x2 y2 得4x2+6mx+3m2-12=0.①+=1 ? ?12 4 设A、B 的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB 中点为E(x0,y0),则x0=x1+x2 3m m 2 =- 4 ,y0=x0+m= 4 .因为AB 是等腰△PAB 的底边,所以PE⊥AB. m 2-4所以PE 的斜率k=3m=-1.解得m=2. -3+4此时方程①为4x2+12x=0.解得x1=-3,x2=0. 所以y1=-1,y2=2.所以|AB|=3 2. 此时,点P(-3,2)到直线AB:x-y+2=0 的距离d=1 9 所以△PAB 的面积S=2|AB|·d=2. y2 x2 ?x1 y1? 2.(2013·烟台一模)设A(x1,y1),B(x2,y2)是椭圆C:a2+b2=1(a>b>0)上两点,已知m=? b ,a ?,n ? ? 3 ?x2 y2? =? b , a ?,若m· n =0 且椭圆的离心率e=2 ,短轴长为2,O 为坐标原点.? ? |-3-2+2| 3 2 = 2 ,2(1)求椭圆的方程;(2)△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.解析a2-b2 c 3 (1)∵2b=2,∴b=1,∴e=a=a = 2 .y2 2 ∴a=2,c=3.∴椭圆的方程为4 +x =1. (2)①当直线AB 的斜率不存在,即x1=x2 时,y1=-y2,由m· n=0 得又2 2 y1 2 x1-=0,∴y1 =4x2 1.42 2 4x1 A(x1,y1)在椭圆上,∴x1+=1,42 1 1 ∴|x1|=2 ,|y1|=2,△AOB 的面积S=2|x1||y1-y2|=2|x1|·2|y1|=1. y2 2 ②当直线AB 的斜率存在时,设AB 的方程为y=kx+b(其中b≠0),代入 4 +x =1,得(k2+4)x2+2kbx+b2-4=0.Δ=(2kb)2-4(k2+4)(b2-4)=16(k2-b2+4),-2kb b2-4 x1+x2= 2 ,x1x2=2 ,k +4 k +4 y1y2 由已知m· n=0 得x1x2+4 =0,(kx1+b)(kx2+b)∴x1x2+=0,代入整理得2b2-k2=4,代入Δ 中,满足题意,4 |b| 4k2-4b2+16 1 |b| 1 4b2 2 ∴△AOB 的面积S=2· |AB|=2|b|·(x1+x2)-4x1x2==2|b| =1. k2+4 1+k2 ∴△AOB 的面积为定值1 x2 y2 3 3、已知椭圆C:a2+b2=1(a>b>0)的离心率为 2 .双曲线x2-y2=1 的渐近线与椭圆 C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程。
数学椭圆的解题技巧
数学椭圆的解题技巧数学的复习策略及其椭圆技巧对考生来说极其重要。
下面要为大家分享的就是数学椭圆的解题技巧,希望你会喜欢!一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
其中点可以设为等,如果是在椭圆上的点,还可以设为。
一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为。
还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设,如果只是过定点,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时可以设直线的参数方程。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。
有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。
三、代数运算转化完条件就剩算数了。
很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。
有的题目可能需要算弦长,可以用弦长公式,设参数方程时,弦长公式可以简化为解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为和,AB与x轴交于D,则(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。
解析几何中很多题都有动点或动直线。
如果题目只涉及到一个动点时,可以考虑用参数设点。
若是只涉及一个过定点的动直线,题目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简单一些。
在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式。
3.1.1椭圆及其标准方程7题型分类(讲+练)(学生版) 24-25学年高二必修一数学同步知识题型
3.1.1椭圆及其标准方程7题型分类一、椭圆的定义1.定义:平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹.2.焦点:两个定点F1,F2.3.焦距:两焦点间的距离|F1F2|.4.几何表示:|MF1|+|MF2|=2a(常数)且2a>|F1F2|.二、椭圆的标准方程焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) a,b,c的关系b2=a2-c2(一)求椭圆的标准方程1.椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹.2.椭圆的标准方程焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) a,b,c的关系b2=a2-c2(二)椭圆的定义及其应用椭圆定义的应用技巧(1)椭圆的定义能够对椭圆上的点到焦点的距离进行转化.(2)椭圆上一点P与椭圆的两个焦点F1,F2构成的△PF1F2,称为焦点三角形,可以利用椭圆的定义,结合正弦定理、余弦定理、三角形的面积公式等知识求解.(3)椭圆上一点P与椭圆的两焦点F1,F2构成的△F1PF2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识.对于求焦点三角形的面积,若已知∠F1PF2,可利用S=12ab sin C把|PF1|·|PF2|看成一个整体,利用定义|PF1|+|PF2|=2a及余弦定理求出|PF1|·|PF2|,这样可以减少运算量.焦点三角形的常用公式:(1)焦点三角形的周长L=2a+2c.(2)在△PF1F2中,由余弦定理可得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2.(3)设P(x P,y P),焦点三角形的面积S△F1PF2=c|y P|=12|PF1||PF2|·sin∠F1PF2=b2tan∠F1PF22.(三)与椭圆有关的轨迹问题求轨迹方程的常用方法(1)直接法设出曲线上动点的坐标为(x,y)后,可根据几何条件直接转换成x,y间的关系式;(2)定义法若动点运动的几何条件满足某种已知曲线的定义,可用待定系数法求出轨迹方程;(3)相关点法(代入法)有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转一、单选题1.(2024高二上·福建漳州·期末)点P 在椭圆22:416E x y +=上,12F F 、是E 的两个焦点,若13PF =,则2PF =( )A .5B .6C .7D .82.(2024高二上·福建福州·期中)已知圆()221:125C x y ++=,圆()222:11C x y -+=,动圆M 与圆2C 外切,同时与圆1C 内切,则动圆圆心M 的轨迹方程为( )A .2213x y +=B .22132x y +=C .2219x y +=D .22198x y +=3.(2024高二上·新疆伊犁·期末)如果点(),M x y 在运动过程中,总满足关系式=M 的轨迹是( ).A .不存在B .椭圆C .线段D .双曲线4.(2024高三·全国·专题练习)已知ABC V 的周长为20,且顶点(0,4),(0,4)B C -,则顶点A 的轨迹方程是( )A .221(0)3620x y x +=¹B .221(0)2036x y x +=¹C .221(0)620x y x +=¹D .2212036x y +=5.(2024高二上·四川南充·期末)设定点()10,2F -,()20,2F ,动点P 满足条件125PF PF +=,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段6.(2024·陕西西安·一模)已知点M 在椭圆221189x y +=上运动,点N 在圆()2211x y +-=上运动,则MN 的最大值为( )A .1B .1+C .5D .67.(2024高二上·全国·课后作业)已知点F 1,F 2是椭圆2222x y +=的左、右焦点,点P 是该椭圆上的一个动点,那么12PF PF +uuu r uuu u r的最小值是( )A .0B .1C .2D .8.(2024高二上·河南信阳·期末)已知1F ,2F 是椭圆C 的两个焦点,P 为C 上一点,122PF PF =,若C,则12F PF Ð=( )A .150°B .120°C .90°D .60°9.(2024高二上·全国·课后作业)设12,F F 分别为椭圆22164x y +=的左右焦点,过1F 的直线交椭圆于A 、B 两点,则2ABF △的周长为( )A .12B .24C .D .10.(2024高二下·河南开封·期末)直线()0R mx y m +=Î与椭圆2251162x y +=交于,A B 两点,则,A B 与椭圆的两个焦点构成的四边形的周长为( )A .10B .16C .20D .不能确定11.(2024·四川南充·一模)已知直线20kx y -+=与椭圆2219x y m+=恒有公共点,则实数m 的取值范围( )A .(]4,9B .[)4,+¥C .[)()4,99,¥È+D .()9,+¥12.(2024高二下·四川南充·阶段练习)方程22123x y m m +=-表示椭圆的一个充分不必要条件是( )A .32m >且3m ¹B .4m >C .32m >D .0m >13.(2024高二上·吉林松原·期末)已知A 为椭圆2212516x y +=上一点,F 为椭圆一焦点,AF 的中点为P ,O为坐标原点,若2OP =则AF =( )A .8B .6C .4D .214.(2024高二上·山东威海·期末)已知椭圆2212y mx +=的焦距为2,则实数m =( )A .13B .16C .16或12D .13或115.(2024高二上·吉林·期末)方程222x ky +=表示焦点在x 轴上的椭圆的一个充分但不必要条件是( )A .0k >B .12k <<C .1k >D .01k <<16.(2024高二上·陕西宝鸡·期末)已知椭圆2221(0)9x y C b b +=>:上的动点P 到右焦点距离的最大值为3+则b =( )A .1B C D 17.(2024高三·全国·专题练习)已知椭圆2212516x y +=上一点P 到右准线的距离为10,则点P 到它的左焦点的距离为( )A .4B .6C .8D .1018.(2024·四川南充·模拟预测)已知焦点在y 轴上的椭圆22214x y m+=的焦距等于2,则实数m 的值为( )A .3或5B .C .3D .19.(2024高二上·上海嘉定·12=,化简的结果是( )A .221364x y +=B .2213632x y +=C .2213616x y +=D .2213616y x +=20.(2024高二上·山东·期中)已知椭圆222125x y m+=(0m >)的一个焦点为()10,4F -,则m =( )A B .3C .41D .921.(2024高二下·广东汕头·期末)已知椭圆方程221,43x y F +=是其左焦点,点()1,1A 是椭圆内一点,点P是椭圆上任意一点,若PA PF +的最大值为max D ,最小值为min D ,那么max min D D +=( )A .B .4C .8D .22.(2024·辽宁沈阳·三模)已知动点(),P x y 在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足1MF =uuur 且0MP MF ×=uuu r uuur,则PM uuuu r 的最大值为( )A B .C .8D .6323.(2024高三·广西钦州·开学考试)设椭圆C :22221x y a b +=(a >0,b >0)的左、右焦点分别为1F ,2F ,离心率P 是C 上一点,且1F P ⊥2F P .若12PF F V 的面积为4,则a =A .1B .2C .4D .824.(2024高二上·河北唐山·期末)已知12,F F 是椭圆22:143x y C +=的左、右焦点,点P 在椭圆C 上.当12F PF Ð最大时,求12PF F S =△( )A .12B C D 25.(2024高二下·四川德阳·阶段练习)椭圆2222:1(0)x y C a b a b +=>>的左,右焦点为12,F F ,且2122b F F a =,点P 是椭圆C 上异于左、右端点的一点,若M 是12PF F V 的内心,且1122MPF MF F MPF S mS S =-△△△,则实数m =( )A 2+B 2C .2D .226.(2024高二上·广东广州·期末)椭圆2212516x y +=的一个焦点是F ,过原点O 作直线(不经过焦点)与椭圆相交于A ,B 两点,则ABF △的周长的最小值是( )A .14B .15C .18D .2027.(2024高二上·江苏·期中)已知椭圆221167x y +=的右焦点为,F A 是椭圆上一点,点()0,4M ,则AMF V 的周长最大值为()A .14B .16C .18D .2028.(2024高二上·河北石家庄·期中)设P 是椭圆2212516x y +=上一点,M ,N 分别是圆221:(3)1C x y ++=和222:(3)4C x y -+=上的点,则PM PN +的最大值为( )A .13B .10C .8D .7二、多选题29.(2024高二上·山东济南·期中)已知曲线22:1C mx ny +=( )A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线30.(2024高三·北京·强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的( )A .最大值为4B .最大值为4C .最小值为4D .最小值为4三、填空题31.(2024高二上·全国·课后作业)椭圆221169x y +=上的一点M 到左焦点1F 的距离为2,N 是1MF 的中点,则ON 等于 .32.(2024高二·全国·课后作业)下列命题是真命题的是.(将所有真命题的序号都填上)①已知定点12(1,0),(1,0)F F -,则满足|PF 1|+|PF 2|P 的轨迹为椭圆;②已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段;③到定点12(3,0),(3,0)F F -的距离相等的点的轨迹为椭圆.33.(天津市河西区2023-2024学年高二上学期期中数学试题)椭圆22110036x y +=上一点P 与它的一个焦点的距离等于6,那么点P 与另一个焦点的距离等于 .34.(2024·云南红河·模拟预测)已知12,F F 是椭圆2212y x +=的两个焦点,点P 在椭圆上,若12135PF F Ð=°,则点P 到焦点2F 的距离为 .35.(2024高二下·上海静安·期中)已知P 为椭圆2211612x y +=上一动点,记原点为O ,若2OP OQ =uuu r uuu r ,则点Q 的轨迹方程为 .36.(2024·上海普陀·二模)设椭圆22:184x y G +=的左、右两焦点分别为1F ,2F ,P 是G 上的点,则使得12PF F V 是直角三角形的点P 的个数为 .37.(2024高二上·陕西宝鸡·期末)已知1F ,2F 是椭圆22:14x C y +=的两个焦点,点M 在C 上,则12MF MF ×的最大值为 .38.(2024高二下·上海黄浦·期中)设1F 和2F 为椭圆22421x y +=的两个焦点,点P 在椭圆上,且满足12OP =,则12F PF V 的面积是 .39.(2024高二下·江西·开学考试)椭圆2212516x y +=的左右焦点分别为1F ,2F ,P 为椭圆上一点,则12PF F V 面积与12PF F V 周长的比值的最大值为 .40.(2024·河南开封·模拟预测)已知椭圆22195x y +=的左焦点为F ,P 是椭圆上一点,若点()1,1A -,则PA PF +的最小值为 .41.(2024高二上·天津和平·期中)椭圆2212516x y +=的左、右焦点为F 1、F 2,点P 在椭圆上,若Rt V F 1PF 2,则点P 到x 轴的距离为 .42.(2024高二上·北京朝阳·期中)如图,把椭圆221169x y +=的长轴AB 八等分,过每个分点作x 轴的垂线交椭圆的上半部分于1P ,2P ,L ,7P 七个点,F 是椭圆的一个焦点,则1237PF P F P F P F ++++L 的值为 .43.(2024高二上·吉林白城·期中)若方程22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围是 .44.(2024·上海静安·二模)已知(1,2)A ,)1B-两点在对称轴为坐标轴的椭圆上,则椭圆的标准方程为 .45.(2024高二·全国·课后作业)“17m <<”是“方程22171x y m m +=--表示的曲线为椭圆”的 条件.46.(2024高二·全国·课后作业)设方程8=;②2=.其中表示椭圆的方程是 .47.(2024高二上·天津和平·期中)已知椭圆22143x y +=的左、右焦点分别为1F ,2F ,点P 为椭圆上一点,点(4,4)A -,则2||PA PF -的最小值为 .48.(2024高三·广西柳州·阶段练习)已知F 是椭圆22:143x y C +=的右焦点,P 为椭圆C 上一点,(1,A ,则||||PA PF +的最大值为 .49.(2024高二上·天津和平·期中)已知12,F F 是椭圆22195y x +=的两个焦点,P 为椭圆上一点,且112PF F F =,则点P 到y 轴的距离为 .50.(2024高二上·全国·课后作业)已知ABC V 的三边a ,b ,c 成等差数列,且a b c >>,A 、C 两点的坐标分别为(1,0),(1,0)-,则顶点B 的轨迹方程为 .51.(2024高二上·上海宝山·期末)已知P 为椭圆2212516x y +=上的一点,若M N 、分别是圆22(3)3x y ++=和22(3)1x y -+=上的点,则PM PN +的最大值为.52.(2024高三·全国·专题练习)已知点)F ,动点(),M x y 到直线:l x =d ,且d =M 的轨迹为曲线C .求C 的方程;53.(2024高二·全国·课后作业)已知P 是椭圆221436x y +=上一点,(0,5)A ,求||PA 的最小值与最大值.54.(2024高二·全国·课后作业)已知椭圆以原点为中心,长轴长是短轴长的2倍,且过点()2,4--,求此椭圆的标准方程.。
椭圆参数方程参数的几何意义
椭圆参数方程参数的几何意义【导言】在数学和物理学中,椭圆是一个共同的概念。
椭圆参数方程提供一种描述椭圆形状的方式,同时它也揭示了椭圆形状的一些几何意义。
本文将通过分类讲解椭圆参数方程的几何意义,让读者深入理解椭圆的性质。
【第一部分:椭圆的基本定义】椭圆是平面内一组所有点到两个定点距离之和恒定的点的集合。
这两个定点称为椭圆的焦点,距离恒定的值称为椭圆的长轴长度,长轴的中点称为椭圆的中心。
通过椭圆的定义,我们可以得到椭圆方程的一般式:$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$其中,(h,k)表示椭圆的中心,a、b分别表示椭圆长轴和短轴的长度,为椭圆参数方程提供了基本的模型。
【第二部分:椭圆参数方程及其含义】椭圆参数方程的一般形式为:$x=a\cos(t)+h, y=b\sin(t)+k$其中,t为参数,(a,b)为椭圆的半轴长度,(h,k)为椭圆的中心。
通过椭圆参数方程式,我们可以看出椭圆的几何特性。
首先,我们可以看到当$t=0$时,点$P(h+a,k)$处于椭圆的右端顶点,当$t=\frac{\pi}{2}$时,点$P(h,k+b)$处于椭圆的上端顶点,以此类推。
其次,我们可以发现当$t=\pm\frac{\pi}{2}$时,椭圆的长轴和近似垂直的方向,而当$t=0,t=\pm\pi$时,椭圆的长轴和近似水平的方向。
最后,当$t$绕着椭圆一周走完时,点$P$恰好又回到了$P(h+a,k)$,因此$t$的范围也可以表示为$[0,2\pi]$。
在椭圆参数方程中,我们还可以观察到椭圆的离心率e。
椭圆的离心率e定义为椭圆的焦点之间的距离d与长轴长度a之比,即$e=\frac{d}{a}$。
而焦点之间的距离可根据$a,b$的值求得,因此通过椭圆参数方程,我们可以用简单的计算方法求出椭圆的离心率。
【第三部分:椭圆在几何中的应用】椭圆是应用广泛的几何形体之一,它在航天、导航、光学等领域都有重要的应用。
椭圆的几何性质要点梳理
高考数学复习点拨:椭圆的几何性质要点梳理椭圆的几何性质要点梳理山东刘乃东一、椭圆两个标准方程的几何性质:标准方程图形性质范围对称性关于轴、轴和原点对称顶点、、、、、、焦点、、轴长长轴长,短轴长焦距,离心率准线二、规律总结1.通过对椭圆的范围、对称性、特殊点(顶点、焦点、中心)、对称轴及其他特性的讨论,从整体上把握曲线的形状、大小和位置,进而掌握椭圆的性质。
学习过程中应注意:图形与性质对照,方程与性质对照,通过数形结合的方式牢固掌握椭圆的几何性质。
2 涉及直线与椭圆位置关系问题时,注意判别式及韦达定理的运用,特别是方程思想、整体思想在解题中的应用。
3.待定系数法是解决问题的一种重要方法,同时要注意方程思想、分类讨论思想在解题中的应用。
4.在由椭圆的标准方程写出椭圆的性质,如长轴长、短轴长、顶点坐标、焦点坐标等,要分清焦点在轴上还是在轴上,不要弄错。
三、范例点悟例 1 已知椭圆的离心率,求的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。
分析:解决本题的关键是确定的值,因此,应先将椭圆方程化为标准形式,用表示、、,再由求出的值。
解析:椭圆方程可化为。
∵,∴,即。
由得,∴。
∴椭圆的标准方程为,∴。
∴椭圆的长轴为2,短轴长为1;两焦点坐标分别为,;四个顶点分别为。
评注:解决有关椭圆问题,首先应弄清椭圆的类型,而椭圆的类型又决定于焦点的位置。
例2 求长轴长为20,离心率等于的椭圆的标准方程。
分析:根据椭圆的几何性质确定椭圆的标准方程。
解析:由已知,∴。
由于椭圆的焦点可能在轴上,也可能在轴上,∴所求椭圆的标准方程为。
解析:由椭圆的几何性质,求椭圆标准方程的一般步骤是:①求出、的值;②确定焦点所在的坐标轴;③写出标准方程。
例3 过椭圆内一点引一条弦,使弦被点平分,求此弦所在直线的方程。
分析:由题意可知,该题的实质是求出直线的斜率,而求斜率的方法很多,故可有以下三种解法。
解法1:设所求直线方程为,代入椭圆方程并整理得。
椭圆经典例题分类汇总情况-(学生版)
椭圆经典例题分类汇总一. 椭圆第一定义的应用例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值.说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例4 已知1c o s s i n22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0 例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P的轨迹方程.说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.二. 焦半径及焦三角的应用例1 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.例2 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).三. 第二定义应用例1 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.例2 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.例3 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标.说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.例1 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.例1 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.例2 已知椭圆1222=+y x ,求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在的直线方程.说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.例3 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例4 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.说明:涉及椭圆上两点A ,B 关于直线l 恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:(1)利用直线AB 与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式0>∆,建立参数方程.(2)利用弦AB 的中点),(00y x M 在椭圆内部,满足12020<+by a x ,将0x ,0y 利用参数表示,建立参数不等式.例5 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程.说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法.。
17知识讲解【基础】椭圆的方程
椭圆的方程【学习目标】1.经历从具体情境中抽象出椭圆模型的过程;2.掌握椭圆的定义和标准方程;3.能用椭圆的定义和标准方程解决简单的实际问题. 【要点梳理】 要点一、椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(21212F F a PF PF >=+),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.要点诠释:若1212PF PF F F +=,则动点P 的轨迹为线段12F F ;若1212PF PF F F +<,则动点P 的轨迹无图形. 要点二、椭圆的标准方程 标准方程的推导:由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴,建立直角坐标系(如图).设|F 1F 2|=2c(c >0),M(x ,y)为椭圆上任意一点,则有F 1(-1,0),F 2(c ,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF 1|+|MF 2|=2a }. (3)代数方程即:(4)化简方程 由22a c >可得222a cb -=,则得方程22221(0)x y a b a b+=>>关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.因此,方程22221(0)x y a b a b+=>>即为所求椭圆的标准方程.它表示的椭圆的焦点在x 轴上,焦点是F 1(-c ,0)、F 2(c ,0).这里c 2=a 2-b 2.椭圆的标准方程:1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;要点诠释:1.这里的“标准”指的是中心在坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有0a b >>和222b ac -=;3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为(,0)c ,(,0)c -;当焦点在y 轴上时,椭圆的焦点坐标为(0,)c ,(0,)c -;4. 在两种标准方程中,∵a 2>b 2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上. 要点三、求椭圆的标准方程求椭圆的标准方程主要用到以下几种方法:(1)待定系数法:①若能够根据题目中条件确定焦点位置,可先设出标准方程,再由题设确定方程中的参数a,b ,即:“先定型,再定量”.②由题目中条件不能确定焦点位置,一般需分类讨论;有时也可设其方程的一般式:221(,0m n)mx ny m n +=>≠且.(2)定义法:先分析题设条件,判断出动点的轨迹,然后根据椭圆的定义确定方程,即“先定型,再定量”。
椭圆的定义与性质(一)-江苏省南通市启秀中学
椭圆的定义与性质(一)南通市启秀中学 严建新一、学习目标1.在小题训练中梳理知识,构建椭圆的定义与性质的知识网络,提升对知识的理解及整合能力.2.在复习过程中,着力培养自我构建、发展的能力,进一步体会数形结合及方程思想,逐步学会自主、合作、探究的学习方式.二、学习重点、难点重点是构建椭圆的知识框架.难点是数形结合、分类讨论思想的渗透与领悟.三、学习方法与手段“自学·议论·引导”教学法,采用多媒体辅助教学.四、学习过程:(一)阅练议论,回归梳理.1.椭圆的定义2.椭圆的第二定义练习1.ABC ∆中,已知B 、C 的坐标分别为(3-,0)和(3,0),且ABC ∆的周长等于16,则顶点A 的轨迹方程为_____________.2. 点P 与定点A (2,0)的距离和它到定直线8=x 的距离比是1∶2,则点P 的轨迹方程为_____________.3. 已知椭圆以坐标轴为对称轴且长轴是短轴的3倍,并且过点P (3,0),则椭圆方程为__________.【设计思考】对小题1、2的设计主要考虑到利用椭圆的第一、二定义的使用及选择.对小题3的设计,学生在求椭圆标准方程时,当由条件无法确定焦点位置时,应分焦点在x 轴和y 轴上两种情况讨论.而求解时不能简单变换x 、y .学生总结椭圆的几何性质.(二)演练小题,回归本源练习:1.椭圆的中心在原点,以坐标轴为对称轴且经过两点1P (6,1)、2P (3-,2-),则椭圆方程为____________. 【设计思考】椭圆方程形式的选择:当椭圆的焦点位置不明确而无法确定其标准方程时,有时设方程为221x y m n+=(m>0,n>0),可避免讨论和繁杂的计算,也可设为221Ax By +=(A>0,B>0),这种形式在解题中有时更简便.2.已知曲线C 上任一点到点F (2,0)的距离与到定直线5:=x l 的距离比为21,则此曲线C 的方程____________.【设计思考】此题与前一组题2作比较定直线l 的方程不同,所以结果不同,但还是椭圆方程.3.(08南京) 已知1F 、2F 是是椭圆C :1162522=+y x 上的两个焦点,P 为椭圆上一点,若02160=∠PF F ,则21F PF ∆的面积为__________.变①:(09上海)已知1F 、2F 是椭圆C :12222=+by a x (0>>b a )的两个焦点,且1⊥2PF ,21F PF∆的面积为9,则b = . 变②:已知1F 、2F 是椭圆C :12222=+by a x (0>>b a )的两个焦点,P 为椭圆上一点,且1PF ⊥2PF ,则椭圆离心率e 的范围为 .【设计思考】题3及两个变题:解几中求基本量取值范围是一类常见而较困难的题,其基本的解题思路有:建立目标函数,运用求函数值域方法解;建立目标变量的不等式,解不等式求解。
椭圆微分方程及其求解方法
椭圆微分方程及其求解方法椭圆微分方程是常见的一类偏微分方程,它在自然科学、工程技术、金融数学等诸多领域中都有着广泛的应用。
本文将介绍椭圆微分方程的基础概念、分类、本征值问题及求解方法等内容。
一、椭圆微分方程的基本概念椭圆微分方程通常具有形如$$\begin{cases}Lu(x)=f(x), & x\in \Omega, \\u(x)=g(x), & x\in \partial\Omega, \\\end{cases}$$其中,$Lu(x)$是一线性偏微分算子,$\Omega$为区域(一般指开集上的连通子集),$\partial\Omega$为$\Omega$的边界,$f(x)$和$g(x)$为已知函数,求解$u(x)$满足上述条件。
椭圆微分方程中的偏微分算子$Lu(x)$通常具有形如$$Lu(x)=\sum_{i,j=1}^na_{i,j}(x)\frac{\partial^2}{\partial x_i\partial x_j}u(x)+\sum_{k=1}^nb_k(x)\frac{\partial}{\partialx_k}u(x)+c(x)u(x),$$其中,$n$为空间维数,$a_{i,j}(x)$、$b_k(x)$和$c(x)$都是已知函数。
二、椭圆微分方程的分类根据椭圆微分方程中的偏微分算子$Lu(x)$的性质,椭圆微分方程可分为一般椭圆型、二阶椭圆型和高阶椭圆型三类。
其中,一般椭圆型指的是$Lu(x)$的主部分系数矩阵在$\overline{\Omega}$上正定(即对于任意$x\in\overline{\Omega}$和非零$u\in\mathbb{R}^n$,均满足$u^T A(x)u>0$),二阶椭圆型指的是$Lu(x)$仅包含二次微分项,而高阶椭圆型则指的是$Lu(x)$中至少包含有三次或以上的微分项。
三、椭圆微分方程的本征值问题对于某些特殊的椭圆微分方程,我们可以考虑它们的本征值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆分类复习 一.椭圆定义的应用。
a PF PF 221=+
1.椭圆116
2522=+y x 上的一点P,到椭圆一焦点的距离为3,则P 到另一焦点距离为______. 2.过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是________.
3.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是_______
二.求椭圆的标准方程。
(一)已知椭圆的焦点坐标和椭圆上的一点,求椭圆方程。
1.椭圆两个焦点的坐标分别是(-2,0),(2,0),且过点(2,3),求椭圆方程。
2.过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是________.
(二)涉及到已知离心率的求椭圆方程。
1.已知椭圆的长轴为8,离心率为21
,则椭圆的方程是_______
2.焦点在x 轴,离心率为23
,且过点(0,2)的椭圆的标准方程是________.
3.椭圆的焦点在x 轴上,离心率为
55,且过点P(2,1),则椭圆的方程 4.已知F 1、F 2为椭圆122
22=+b y a x (a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若
△AF 1B 的周长为16,椭圆离心率23
=e ,则椭圆的方程是________.
三.求椭圆中一个参数的值或取值范围。
1. 已知方程1352
2-=-+-k
y k x 表示椭圆,k 的取值范围是________. 2.方程1122
2=--m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是______. 3. 已知椭圆19
82
2=++y k x 的离心率21=e ,则k 的值_______. 4.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的3倍,则m 的值=_____
四.求椭圆离心率问题。
1.椭圆.x 236+y 2
16
=1 的离心率是______. 2.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则椭圆的离心率是( )
3.椭圆的短轴上的两个顶点与两个焦点构成一个正方形,则椭圆的离心率为_____.
4.椭圆的短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为_____.
5.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是____.
6.椭圆的一个焦点和短轴的两端点构成一个正三角形,则该椭圆的离心率是____.
五.焦半径及焦点三角形的应用
1.椭圆1342
2=+y x 的焦点为F 1、F 2,点P 在椭圆上. (1)若|PF 1|=4,则角∠F 1PF 2=___;此时△PF 1F 2的面积是______.
(2)若P 的横坐标为2,求△PF 1F 2的面积。
(3)若角∠F 1PF 2=60°,则P F 1*PF 2=___;此时△PF 1F 2的面积是______.
(4)若角∠F 1PF 2=90°,则△PF 1F 2的面积是______.
2.已知椭圆的方程为x 24+y 23
=1,椭圆上有一点P 满足∠PF 1F 2=90°.求△PF 1F 2的面积.
六.直线与椭圆位置关系及弦长公式的应用
1。
已知椭圆1422=+y x 及直线m x y +=.
(1)当m 为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为5
102,求直线的方程. 【解决直线与椭圆的交点问题考虑判别式∆;解决弦长问题用弦长公式.】
2.已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3
π的直线交椭圆于A ,B 两点,求弦AB 的长.
七.相交情况下—点差法的应用 1.已知)2,4(P 是直线l 被椭圆19
362
2=+y x 所截得的线段的中点,求直线l 的方程. 2.直线l 与椭圆1492
2=+y x 相交于A 、B 两点,并且线段AB 的中点为M (1,1),求l 直线方程.
3. 已知椭圆1222=+y x ,求过点⎪⎭
⎫ ⎝⎛2121,P 且被P 平分的弦所在的直线方程.
4. 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.
【有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.】。