第五章晶体中电子能带理论2

合集下载

固体物理第五章_晶体的能带理论

固体物理第五章_晶体的能带理论

e 1 iN1k1 a1
N1k1 a1 2l1 b1 a1 2

k1
l1 N1
b1
满足上式,得到
Байду номын сангаас(
a1
)

i
e
l1 N1
b1
a1
同理可以得到
k2

l2 N2
b2
( a2
)

ei
l2 N2
b2
a2
k3

l3 N3
b3
(
a3
)

i l3
e N3
b3 a3
11
具有波矢的意义
17
简约布里渊区
为了使本征函数与本征值一一对应,即使电子 的波矢k与本征值E(k)一一对应,必须把波矢的 取值限制在一个倒格原胞区间内

bi 2

ki

bi 2
i 1,2,3
这个区间为简约布里渊区或第一布里渊区。
18
b3 O b2
b1 简约布里渊区
19
简约布里渊区内,电子的波矢数目等于晶体的 原胞数目
第五章 晶体中电子能带理论
1.孤立原子中电子受原子束缚,处于分立能级; 晶体中的电子不再束缚于个别原子,而是在一 个周期性势场中作共有化运动。在晶体中该类 电子的能级形成一个带。 2. 晶体中电子的能带在波矢空间具有反演对 称性,且是倒格子的周期函数。 3. 能带理论成功的解释了固体的许多物理特 性,是研究固体性质的重要理论基础。
本征值
13
(3) 电子波函数是按晶格周期调幅的平面波
( r Rn ) eikRn ( r )
!构造波函数

第五章 晶体中电子能带理论

第五章 晶体中电子能带理论

第五章固体电子论基础在前面几章中,我们介绍了晶体的结构、晶体的结合、晶格振动及热学性质以及晶体中缺陷与扩散,其内容涉及固体中原子(或离子)的状态及运动规律,属于固体的原子理论。

但要全面深入地认识固体,还必须研究固体中电子的状态及运动规律,建立与发展固体的电子理论。

固体电子理论的发展是从金属电子理论开始的。

金属具有良好的导热和导电能力,很早就为人们所应用的研究。

大约 1900年左右,特鲁德首先提出:金属中的价电子可以在金属体内自由运动,如同理想气体中的粒子,电子与电子、电子与离子之间的相互作用都可以忽略不计。

后来洛仑兹又假设:平衡时电子速度服从麦克斯韦——玻耳曼兹分布律。

这就是经典的自由电子气模型。

自由电子的经典理论遇到根据性的困难——金属中电子比热容等问题。

量子力学创立以后,大约在 1928年,索末菲提出金属自由电子论的量子理论,认为金属内的势场是恒定的,金属中的价电子在这个平均势场中彼此独立运动,如同理想气体中的粒子一样是“自由”的;每个电子的运动由薛定谔方程描述,电子满足泡利不相容原理,故电子不服从经典的统计分布而是服从费米——狄拉克统计律。

这就是现代的金属电子理论——通常称为金属的自由电子模型。

这个理论得到电子气对晶体热容的贡献是很小的,解决了经典理论的困难。

但晶体为什么会分为导体、绝缘体和半导体呢?上世纪30年代初布洛赫和布里渊等人研究了周期场中运动的电子性质,为固体电子的能带理论奠定了基础。

能带论是以单电子在周期性场中运动的特征来表述晶体中电子的特征,是一个近似理论,但对固体中电子的状态作出了较为正确的物理描述,因此,能带论是固体电子论中极其重要的部分。

本章首先讲述了金属的自由电子模型;然后介绍单电子在周期场中的运动;并用两种近似方法——近自由电子近似和紧束缚近似,讨论周期场中单电子的本征值和本征态,得出能带论的基本结果;在讲述晶体中电子的准经典运动后,介绍了金属、绝缘体和半导体的能带模型等。

固体物理-第5章-晶体中电子能带理论-5.6

固体物理-第5章-晶体中电子能带理论-5.6

C
D
kz
B
O ky
kx
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
B
a (1,1,0) C
2
a (1,0,1) D a (0,1,1)
2
2
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
结果Es
E Emax Emin 12J1
能带宽度由两因素决定:
(1)重叠积分J1的大小;
2)J1 前数字,即最近邻格点数目 (晶体的配位数)
因此,波函数重叠程度越大,配位数越大,能带越宽,反之.
5.6 紧束缚方法 第五章 晶体中电子能带理论
四、原子能级与能带的对应
EkiJ0RsJ最近邻
k
s
J
0
4J
cos
kxa 2
cos
kya 2
cos kxa cos kza
2
2
cos
kya 2
cos
kza 2
5.6 紧束缚方法 第五章 晶体中电子能带理论
适用性
1.前面讨论的是最简单的情况,只适用于s态电子,一个原子能级 i
5.6 紧束缚方法 第五章 晶体中电子能带理论
解:设 J1 J Rs
简立方结构的最近邻格点数为6,位置矢量的坐标: (a,0,0),(0,a,0),(0,0,a) (其中a为晶格常量)
Ek
i
J0
Rs

J
近邻
Rs
e ikRs
vvvv
k kxi ky j kzk

固体物理第五章习题及答案

固体物理第五章习题及答案

.
从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量 m* 变 为 . 此时电子的加速度
a= 1 F =0
m*
,
即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反. 11. 万尼尔函数可用孤立原子波函数来近似的根据是什么?
[解答] 由本教科书的(5.53)式可知, 万尼尔函数可表示为
m* = 1 m 1 + 2Tn
Vn <1.
10. 电子的有效质量 m* 变为 的物理意义是什么?
[解答] 仍然从能量的角度讨论之. 电子能量的变化
(dE)外场力对电子作的功 = (dE)外场力对电子作的功 + (dE)晶格对电子作的功
m*
m
m
=
1 m
(dE ) 外场力对电子作的功
− (dE)电子对晶格作的功
i 2 nx
V (x) = Vne a
n
中, 指数函数的形式是由什么条件决定的?
[解答] 周期势函数 V(x) 付里叶级数的通式为
上式必须满足势场的周期性, 即
V (x) = Vneinx
n
显然
V (x + a) = Vnein (x+a) = Vneinx (eina ) = V (x) = Vneinx
Es (k)
=
E
at s
− Cs

Js
e ik Rn
n
即是例证. 其中孤立原子中电子的能量 Esat 是主项, 是一负值, − Cs和 − J s 是小量, 也是负 值. 13. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么?

固体物理学基础晶体的电子结构与能带理论

固体物理学基础晶体的电子结构与能带理论

固体物理学基础晶体的电子结构与能带理论在固体物理学中,研究晶体的电子结构是一项重要的课题。

晶体是由周期性排列的原子或分子组成的固体,而其电子行为对于晶体的性质以及各种物理现象的理解至关重要。

能带理论是描述晶体中电子行为的一种重要模型,通过能带理论,我们可以更好地理解晶体材料的导电、绝缘和半导体特性等基本特性。

首先,让我们来了解晶体的电子结构。

晶体中的原子或分子排列成一定的周期性结构,这种结构会对电子的行为产生重要影响。

在晶体中,电子的行为可以近似地看作是存在于一系列能级中,称为能带。

能带可以被分为价带和导带,其中价带中的电子被束缚在原子核附近,而导带则存在着自由电子。

晶体的周期性结构使得电子在其中受到布里渊区的限制。

布里渊区是倒格子中一个基本单元,它是晶体中全部电子状态所覆盖的空间。

当电子在布里渊区内运动时,具有周期性的波动特性,其波矢量(k)和波函数(Ψ)可以描述电子在晶体中的运动。

能带理论则进一步解释了电子如何填充在能级中。

根据泡利不相容原理,每个能级只能容纳一个电子,因此能带在填充时会出现能级填充顺序的规律。

根据能带的填充情况,我们将晶体分为导体、绝缘体和半导体三类。

对于金属晶体,由于其导带和价带之间存在较小的能隙,几乎所有能级都可以被电子填充,因此金属具有良好的导电性能。

对于绝缘体晶体,导带和价带之间存在较大的能隙,这意味着电子必须获取足够的能量才能从价带跃迁到导带。

由于常温下绝缘体的电子很难获得足够的能量,因此导带中很少有电子,绝缘体表现出非常低的导电性能。

而在半导体晶体中,导带和价带之间的能隙处于介于绝缘体和金属之间的状态。

半导体的电导率可以通过控制掺杂或加热等方式进行调节。

除了以上三类基本晶体材料,还有一类特殊的材料,称为拓扑绝缘体。

拓扑绝缘体是一种新兴的研究领域,它们具有特殊的能带结构和边界态,可以展现出一些非常有趣的现象和性质。

总结起来,固体物理学中研究晶体的电子结构和能带理论是了解晶体导电、绝缘和半导体等基本特性的重要途径。

18、第五章晶体中电子能带理论-布洛赫波函数

18、第五章晶体中电子能带理论-布洛赫波函数
第五章
晶体电子能带理论
固体电子理论---研究固体电子运动规律 固体电子理论---研究固体电子运动规律 --- 世纪末到现在, 从19世纪末到现在,金属研究一直处在固体研究的中心。 世纪末到现在 金属研究一直处在固体研究的中心。 1897年:英国物理学家汤姆逊 年 (J.J.Thomson,1856—1940)在实验中发现电子。 在实验中发现电子。 在实验中发现电子 1906年,因测出电子的荷质比获诺贝尔物理学奖。 年 获诺贝尔物理学奖。 1900年:英国物理学家德鲁德(P.K.L 年 英国物理学家德鲁德( . . 德鲁德
第五章
晶体电子能带理论
1928年 1928年:在量子力学和量子统计的概念建立以 后,德国物理学家索末菲(Arnold Sommerfeld 德国物理学家索末菲(
1868-1951)建立了基于费密- 1868-1951)建立了基于费密-狄喇克统计的量子
自由电子气体的模型, 自由电子气体的模型,给出了电子能量和动量分 布的基本图像。 布的基本图像。 计算了量子的电子气体的热容量, 计算了量子的电子气体的热容量,解决了经 典理论的困难。 典理论的困难。 德鲁德模型和索末菲模型都是把金属中导电的电子看成自由电子。 德鲁德模型和索末菲模型都是把金属中导电的电子看成自由电子。 量子自由电子理论可以作为一种零级近似而归入能带理论。 量子自由电子理论可以作为一种零级近似而归入能带理论。
NZ 1 NZ 1 e2 Vee ( ri , r j ) = ∑ ∑ = ∑ v e ( ri ) 2 i =1 j ≠ i 4πε 0 ri − r j i =1
( 4)
v e ( ri )
代表电子i与所有其它电子的相互作用势能, 代表电子i与所有其它电子的相互作用势能,它不仅考虑了

能带理论基础2

能带理论基础2

所以, uk(r) 是一个周期函数。 同时也说明:
ik r (r ) k (r ) Ce u k (r )
是一个满足布洛赫定理要求 的波函数。它是由原子波函 数的线性组合来表示的。所 以又称为原子轨道线性组合 近似。是紧束缚近似的出发 点。 (r ) Cli (r Rl ) (2)
注意:该图不能用 来讨论近邻原子波 函数之间的相互重 叠的情况

12
能带宽度随原子间距离变化示意图
由于能带的宽度取决于γ。 而 γ 的大小取决于近邻原子波函 数之间的相互重叠的程度。所以, 当原子间的距离逐渐增大时,γ 的值会逐渐减小,能带的宽度也 随之变窄,最终会收缩为孤立原 子的能级。反之亦然。
Rm
r Rm
r
Eis —— 原子 s 态的能量本征值( s 能级的能量值)。 二、原子轨道线性组合近似 (LCAO) :
(1)原子轨道线性组合近似 (LCAO) : 晶体中的单电子 :它被认为是属于 N 个处在不同格点上的 原子,其零级波函数可以用这些原子波函数的线性组合来表示。
R2 ai R4 aj R6 ak
所以有:
Rn Nearest
e
i k Rn '
e
ik x a
e
ik x a
e
ik y a
e
ik y a
e
ik z a
e
ik z a
对简单立方可得: 讨论:
2(cosk x a cos k y a cos k z a)
2 2 [ Va (r Rm )] k (r ) [V (r ) Va (r Rm )] k (r ) E k (r ) 2m 2 2 [ Va (r Rm )] k (r ) V (r Rm ) k (r ) E k (r ) 2m 2 2 Ha Va (r Rm ) 定义: 2m

固体物理:第五章 晶体中电子能带理论

固体物理:第五章 晶体中电子能带理论

电子在一个具有晶格周期性的势场中运动
V r V
r
Rn
其中 Rn 为任意格点的位矢。
2 2 2m
V r
E
2. 布洛赫定理
当势场具有晶格周期性时,波动方程的解具有如下性质:
(
r
Rn
)
eikRn
(
r
),
其中 k
为电子波矢,Rn
n1 a1 n2 a2 n3 a3
是格矢。
个能级分裂成N个相距很近的能级, 形成一个准连续的能带。 N个原子继续靠近,次外壳层电子也开始相互反应,能级 分裂成能带。
能带理论
能带论是目前研究固体中的电子状态,说明固体性质最重 要的理论基础。
能带理论是用量子力学的方法研究固体内部电子运动的理 论。它曾经定性地阐明了晶体运动的普遍特点,并进而说 明了绝缘体与半导体、导体的区别所在,解释了晶体中电 子的平均自由程问题。
原子中的电子处在不同的能级上,形成电子壳层
原子逐渐靠近,外层轨道发生电子的共有化运动——能级分裂
原子外壳层交叠的程度最大,共有化运动显著,能级分裂的很厉害, 能带很宽;
原子内壳层交叠的程度小,共有化运动很弱,能级分裂的很小,能 带很窄。
N个原子相距很远时,相互作用忽略不计。 N个原子逐渐靠近,最外层电子首先发生共有化运动,每
第五章 晶体中电子 能带理论
表征、计算和实验观测电子结构是固体物理学的核心问题; 这是因为原则上研究电子结构往往是进一步解释或预言许 多其他物理性质的必要步骤。
晶体电子结构的内涵是电子的能级以及它们在实空间和动 量空间中的分布。
玻尔的原子理论给出这样的原子图像:电子在一些特定的可能轨道 上绕核作圆周运动,离核愈远能量愈高,当电子在这些可能的轨道 上运动时原子不发射也不吸收能量,只有当电子从一个轨道跃迁到 另一个轨道时原子才发射或吸收能量,而且发射或吸收的辐射是单 频的。

晶体中电子能带理论

晶体中电子能带理论

m
m
mn
(i) f [x (m n)a] (i)n (i) f [x (m n)a]
NZ N
1
Ze2
i1 n1 40 ri Rn
电子和离子实之间的库仑势
式中 / 表示求和时 i j, ½ 源于考虑了两次相互作用
i, j
3
描写体系的薛定谔方程为:
H (r , R) (r , R)
(其中 r 代表 r1, r2 , r3 , , rN,Z R代表 R1, R2 , R3, , R)N
(1)引入平移对称算符 TRn
(2)说明: [Tˆ , Hˆ ] 0
路 (3) Tˆ (R n ) eikRn Rn n1a1 n2a2 n3a3
11
(1)引入平移对称算符 TRn
Rn n1a1 n2a2 n3a3
定义: TRn f (r ) f (r Rn )
性质:
T2 Rn
i 2π( n1l1 n2l2 n3l3 )
(Rn ) e N1 N2 N3
l1, l2 , l3 为整数
18
i 2π( n1l1 n2l2 n3l3 )
(Rn ) e N1 N2 N3
l1, l2 , l3 为整数
引入矢量: k l1b1 l2b2 l3b3
N1 N2 N3
Rn n1a1 n2a2 n3a3
7
§5.1 布洛赫波函数
本节主要内容: 一、 布洛赫定理及证明
(有关周期场中单电子薛定谔方程的本征函数)
二、 波矢k的取值与物理意义
8
布洛赫定理(Bloch theorem)及证明
布洛赫定理:
对于周期性势场,即 V r V r Rn 其中 Rn 取布拉维

固体物理-第5章-晶体中电子能带理论-5.11

固体物理-第5章-晶体中电子能带理论-5.11
导体的电阻率 ~ 106 cm 半导体的电阻率 ~ 102 109 cm 绝缘体的电阻率 ~ 1014 1022 cm
问题1:导体、绝缘体和半导体的能带论解释?
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
一、满带电子不导电
晶体中电子能量 En (k ) En (k )
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
金属和绝缘体的转变:Wilson转变
任何非导体材料在足够大的压强下可以实现价带和
导带的重叠,从而呈现金属导电性。
(金属化压强)
典型例子:低温下固化的隋性气体在足够高的压强 下可以发生金属化的转变。
Xe在高压下5d能带和6s能带发生交叠,呈现金属 化转变。
空带 禁带
空带 禁带
导体
有导带
绝缘体
绝缘体禁带宽
半导体
半导体禁带窄
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
取决于
晶体是否为导体
电子在能带中的分布情况 关键:是否具有不满的能带?
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
满带、导带、近满带和空带 (1)满带:能带中所有电子状态都被电子占据。 (2)导带:电子参与导电的能带。 (3)近满带:能带中大部分电子状态被电子占据,只有少数空态。 (4)空带:能带中所有电子状态均未被电子占据。 (5)价带:由价电子能级分裂而形成的能带。
电子受力
F
eE
动量的变化
d (k
)
F
dt
dk
1
eE
dt
即所有电子以相同速度沿电场反向运动

18、第五章晶体中电子能带理论-布洛赫波函数

18、第五章晶体中电子能带理论-布洛赫波函数
德鲁德模型和索末菲模型都是把金属中导电的电子看成自由电子。
量子自由电子理论可以作为一种零级近似而归入能带理论。
第五章 晶体电子能带理论
第2页
第五章 晶体电子能带理论
1928年:美国物理学家布洛赫(1905-1983)(出生 于瑞士的苏黎世)
考虑了晶格周期电势对电子的运动状态的影响,提出 了能带理论 清楚地给出了固体中电子动量和能量的多重关系,比 较彻底地解决了固体中电子的基本理论问题 建立了对包括金属、半导体、绝缘体的固体电性质的 统一理论。
Page 15
引进平移算符 Tˆ
其作用于任何函数 f ( x) 上的结果是使坐标x平移n个周期
Tˆf ( x) f ( x a) Tˆn f ( x) f ( x na)
(7) (8)
平移算符与哈密顿算符对易,即对于任意函数 f ( x)
第五章 晶体电子能带理论
第 15 页
§5.1 布洛赫波函数
第三项和第四项:是N个离子实的动能和库仑相互作用势能;
最后一项:是电子与离子实之间的库仑相互作用势能。
这是一个量级为 1023 / cm3 的NZ+N多体问题,无法直接求解,需要做一些
假设和近似,主要有三点:
第五章 晶体电子能带理论
第6页
第五章 晶体电子能带理论
Page 7
1、绝热近似
基于电子和离子实在质量上的巨大差别,电子的速度远大于原子核 的速度。因此,在考虑电子的运动时,认为核不动,而电子是在固定不 动的原子核(离子实)产生的势场中运动。
代表电子i与所有其它电子的相互作用势能,它不仅考虑了
其它电子对电子i的相互作用,而且也计入了电子i对其它电子的影响。
第五章 晶体电子能带理论
第8页

第五章 晶体中电子能带理论

第五章 晶体中电子能带理论
i Rn Rm i Rn i Rm
e
e
e
上式只有当 和 Rn 成线性关系才成立,取 Rn k Rn 则 Rn eik R 可验证平面波 eik r 满足此式,所以 k 有波矢的含义,当 k 增加倒格矢 Kh h1b1 h2b2 h3b3 时,平面波 ei ( k Kh ) r 也满 足上式,因此电子波函数应是这些平面波的线性叠加。
H e e Ee e
H e Te Vee (ri , rj ) Ven (ri , Rn )
2. 单电子近似(平均场近似) (多电子问题单电子问题)
多电子问题中任何一个电子的运动不仅与自己 的位置有关,还与其他电子的位置有关,即所有电 子都是关联的,不能精确求解。 为此,用平均场代替价电子的相互作用,即 假定每个电子的库仑势相等,仅与该电子位置有 关,而与其他电子位置无关。
k ( x na ) ( i ) f ( x na ma)
m m
m mn

m
(i ) f [ x (m n)a] (i ) n (i )
m
l l


f [ x (m n)a]
n n ( x na ) ( i ) ( i ) f [ x la ] ( i ) k ( x) 令m-n=l, k
据布洛赫定理,eikna (i )n 即 e ika i
3 ka 2πn π 2
π π π 在简约布里渊区中,即 k , 取 k 2a a a
4. 布里渊区 1)定义:在波矢空间中,从原点出发做各倒格矢的 垂直平分面(线),这些面围绕原点构成一层层 的多面体(多边形),把最内层的多面体叫第一 布里渊区(简约布里渊区,中心布里渊区),第 二层多面体为第二布里渊区,依次类推。 布里渊区的边界上的波矢满足:

第五章 晶体中的电子状态

第五章 晶体中的电子状态

Ae
ik r
在单电子近似下,电子处在周期性势场中,其波函 数受周期性势场的调制,所以形式为调幅平面波
i k r r u ( r )e k k
1、当电子在原子之间运动时,势场起伏不大,其波 函数应类似于平面波,表示为平面波因子 e ik r 2、当电子运动到原子核附近将受到该原子的较强作 用,使其行为接近于原子中的电子,而强烈地体现 出原子的周期性排列,表示为带有原子波函数成分 (r ) 。 的周期函数 uk
d x 2 kx x 0 2 dx 2 d y 2 k y y 0 2 dy 2 d z 2 kz z 0 2 dz
2
2)电子波函数
x Ax e y Ay e z Az e
ik x x ik y y
ikz z
周期性边界条件 n x 2 kx L n y 2 (n , n , n N ) x y z ky L nz 2 kz L
球壳之间k的数量相对应:
dG
V 4kdk 3 ( 2 )
3 2 1 2
2 m 2 2 m E 2 mdE 2 k dk 2 g( E ) 2V ( 2 ) E h 2k
如果每个状态可以容纳两个电子:
g( E ) 4V ( 2m ) E C E 2 h
第五章 晶体中的电子状态
晶体的结构 晶体的结合 晶格振动 热学性质 晶体中缺陷 与扩散 固体的原子理论 固体性质
固体的电子理论
金属电子论 经典的自由电子模型(金属) 现代近自由电子模型
30年代 周期场中的电子状态,能带理论
近自由电子近似和紧束缚近似
导体、半导体和绝缘体的能带模型

固体物理第五章

固体物理第五章

l1 l3 l2 简约波矢 k b1 b2 b3 N1 N2 N3
第一布里ห้องสมุดไป่ตู้区体积
l1 l3 l2 简约波矢 k b1 b2 b3 N1 N2 N3
—— 在 空间中第一布里渊区均匀分布的点
每个代表点的体积
Vc 状态密度 ( 2 ) 3
(2 ) N 简约布里渊区的波矢数目 N 3 (2 )
三维晶体中单个电子在周期性势场中的运动问题处理 能量本征值的计算 —— 选取某个具有布洛赫函数形式的完全集合 晶体中的电子的波函数按此函数集合展开 —— 将电子的波函数代入薛定谔方程 确定展开式中的系数应满足的久期方程 求解久期方程得到能量本征值
三维晶体中单个电子在周期性势场中的运动问题处理 电子波函数的计算
实际上,受晶体的 离子和电子产生的 晶体势场的影响.
能带理论 —— 研究固体中电子运动的主要理论基础 能带理论 —— 定性阐明了晶体中电子运动的普遍 性的特点 —— 说明了导体、非导体的区别 —— 晶体中电子的平均自由程为什么远大于原子的 间距 —— 半导体理论问题的基础,推动了半导体技术的 发展
—— 根据能量本征值确定电子波函数展开式中的系数
得到具体的波函数
—— 在不同的能带计算模型和方法中 采取的理论框架相同,只是选取不同的函数集合
能带理论的局限性 一些过渡金属化合物晶体 —— 价电子的迁移率小 自由程与晶格间距相当, 电子不为原子所共有 周期场失去意义,能带理论不适用了 非晶态固体 —— 非晶态固体和液态金属只有短程有序 两种物质的电子能谱显然不是长程序的周期场的结果
第一节 布洛赫定理
布洛赫波
晶体电子在规则排列的正离子势场中运动, 势场具有晶格周期性. 周期场中运动的单电子的波函数不再是平面波, 而是调幅平面波,其振幅不再是常数。

晶体中电子能带理论和模型

晶体中电子能带理论和模型
H ) V((r v R )v n rv 2 h )m 2 V 2 (V rv)r v (r v)E (r v)
二、布洛赫定理
1. 定理描述:对于周期性势场
v R2n.
为任意格矢,单电子s. 方程:
H )(rv) 2 hm 2 2Vrv (rv)E(rv)
V(R vnrv)V(rv)
v
则系统的哈密顿为:
)
H
NZ i 1
h2 2m
2 i
1 2
i, j
/1 4 0
e2 rvi rvj
NZ个电子的动能和库仑势
N n 1
h2 2M
2 n
1 2
n,m
/
1 4 0
(Ze)2 vv Rn Rm
N个离子实的动能和库仑势
NZ N
1
i1 n1 4 0
Ze2
rvi
v Rn
电子和离子实之间的库仑势
要和外层电子有关,把内层电子和原子核看成一个离子实,那么晶体 就是由离子实和外层电子组成的系统。
假定晶体体积 V L3 , 含有N个带正电荷Ze的离子实,Z为
单原子的价电子数目,因而,晶体中有NZ个价电子。v 即: N个离子实,每个离子实带正电荷Ze,其位矢用 R n 表示;
NZ个价电子,简称为电子,其位矢用 rv i 表示。
2. 单电子近似(平均场近似) (多电子问题单电子问题)
多电子问题中任何一个电子的运动不仅与自己 的位置有关,还与其他电子的位置有关,即所有电 子都是关联的,不能精确求解。
为此,用平均场代替价电子的相互作用,即 假定每个电子的库仑势相等,仅与该电子位置有 关,而与其他电子位置无关。
Vee(rv i,rvj)1 2iN Z 1

第五章 晶体中电子能带理论讲解

第五章 晶体中电子能带理论讲解
的数量级,这是一个非常复杂多体问题,不做简
化处理根本不可能求解。
I.
Born - Oppenheimer (波恩 - 奥本海默)近似(绝热近
似):离子实质量比电子大,运动慢,而电子对离子的
运动响应非常迅速,以至于认为离子固定在瞬时位置上 。所有原子核都周期性地静止排列在其格点位置上, 电 子围绕着原子核在其固有势场中做高速运动。在这种近 似模型下原子核的动能等于零,而势能则是一个固定的
ˆ, H ˆ ] 0 证明平移算符与哈密顿算符对易:[T
ˆ 两者具有相同的本征函数:T

( Rn ) ei k R
n
利用周期性边界条件 确定平移算符的本征值,给出电子波函数的形式式
1、平移对称算符 T ( Rn )
T ( Rn ) f ( r ) f ( r Rn )
能带论的三个基本(近似)假设:

假定在体积 V=L3 晶体中有N 个带正电荷 Ze 的离子实,相应
地有NZ个价电子,那么该系统的哈密顿量为:

哈密顿量中有5部分组成,前两项为电子的动能和电子之间 的相互作用能,三、四项为离子实动能和相互作用能 ,第五 项为电子与离子实之间的相互作用能。

由于晶体中离子和电子数密度通常在1029/ 平方米
2. 布洛赫定理
当势场具有晶格周期性时,波动方程的解具有如下性质:
ik Rn ( r Rn ) e ( r ),
其中 k 为电子波矢, Rn n1 a1 n2 a2 n3 a3 是格矢。
布洛赫定理的证明
步骤
引入平移算符:T ( Rn )
到的原子实和其余电子的相互作用势具有平移对称性。

05---能带理论

05---能带理论

波函数的解
满足此薛定諤方程式,同时满足这样的边界条件的波函数为:
n 2 n A sin x A sin x L n
2 L 2 n n k
( k=nπ /L, n=1,2,…)
0
L L L L
0
L L L
0
0 0
0
0 0
L
能量的本征值
dn n n A cos x dx L L
2. 这里的kx, ky, kz是可正可负的量,同时是2π /L 的整数倍。 电子状态由一组量子数(nx、 ny、nz)来代表,它对应一 组状态角波数(kx、 ky、 kz)。
一个 k 对应电子的一个状态。
3) k空间
如果以 kx、 ky、 kz 为三个直角坐标轴,建立 一个假想的空间。这个空间称为波矢空间、 k 空间,或动量空间*。 在 k 空间中,电子的每个状态可以用 一个状态点来表示,这个点的坐标是
满足这样的边界条件的薛定諤方程式(3)的数学解一定是
k n (r ) exp(ikn r )
这是一种平面波,其波矢为:
(4)
kn k x i k y j k表电子状态的量子数。
2 2 k x nx nx (nx 0, 1, 2, ) Na L 2 2 k y ny ny (ny 0, 1, 2, ) Na L 2 2 k z nz nz (nz 0, 1, 2, ) Na L
这节课要搞清楚的问题:
使金属产生自由电子的原因是什么? 使电子能量量子化的原因是什么? 电子的状态用什么来描述? 使得电子能带不连续(禁带的出现)的原因是什么?
金属中的电子不是完全的自由电子
金属中的电子状态一直被认为是自由电子状态,然而这 是一种不完全面认识。 1. 如果是完全的自由电子,那么电子的能量应该可以连续变 化,然而金属中的自由电子的能量也是量子化的。 2. 量子化的电子能量分布应该是准连续分布的,然而实际晶 体中的电子在某些能量范围内是不能稳定存在的,也就是说 存在一些对电子来说是禁止的能量范围。 这些都是传统的自由电子理论不能解释的。 高分子、导电陶瓷中的自由电子也有同样的现象和问题。

晶体的能带理论

晶体的能带理论

晶体的能带理论(总12页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除晶体的能带理论一、能带理论(Energy band theory )概述能带理论是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。

它首先由 F.布洛赫和.布里渊在解决金属的导电性问题时提出,它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来交换作用,是一种晶体周期性的势场。

即认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动的;由此得出,共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。

二、能带的形成图1 1.电子共有化对于只有一个价电子的简单情况:电子在离子实电场中运动,单个原子的势能曲线表示如图1。

图2当两个原子靠得很近时:每个价电子将同时受到两个离子实电场的作用,这时的势能曲线表示为图2。

当大量原子形成晶体时,晶体内形成了周期性势场,周期性势场的势能曲线具有和晶格相同的周期性!(如图3所示)即:在N 个离子实的范围内,U 是以晶格间距d 为周期的函数。

实际的晶体是三维点阵,势场也具有三维周期性。

图3分析:1.能量为E1的电子,由于E1小,势能曲线是一种势阱。

因势垒较宽,电子穿透势垒的概率很微小,基本上仍可看成是束缚态的电子,在各自的原子核周围运动;2.具有较大能量E3 的电子,能量超过了势垒高度,电子可以在晶体中自由运动;3.能量E2 接近势垒高度的电子,将会因隧道效应而穿越势垒进入另一个原子中。

这样在晶体场内部就出现了一批属于整个晶体原子所共有的电子,称为电子共有化。

价电子受母原子束缚最弱,共有化最为显著!可借助图4理解电子共有化:图4晶体中大量的原子集合在一起,而且原子之间距离很近.致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容: 1、能带和布拉格反射 2、能带的三种图示法
近自由电子近似一般也称为弱周期场近似。 可以把弱周期势看成微扰,利用自由电子气体的结果,
采用量子力学中标准的微扰论方法来处理。
模型:假定周期场起伏较小,作为零级近似,用势能的 平均值V0代替V(x),把周期性起伏V(x)-V0作为微扰来处理。
亦即:假设布洛赫电子的哈密顿: H H0 H
x L, y, z x, y, z x, y L, z x, y, z x, y, z L x, y, z
e ik x L 1
e
ikY
L
1
e ikZ L 1
k
x
2πnx L
;
k
y
2πny L
;ห้องสมุดไป่ตู้
k
z
2πnz L
;
nx, ny, nz取值为整数,意味着波矢k取值是量子化的。
2
2 (r ) (r )
2m
得到电子的本征能量为:
2k 2 2m
2 2m
(
k
2 x
k
2 y
k
2 z
)
电子的动量:
电子处在 k (r )
1 eik r V
时,有确定的动量:
p k
电子的速度:
v p k mm
波矢k的取值 经典中的平面波矢k可取任意实数,对于量子模型中的电子 来说,应由边界条件来确定
2
H 0 是自由电子的哈密顿; H0 2m 2 V0 H 代表周期性的弱晶格势
一般取为零
H H0 H
H 0 是自由电子的哈密顿
H 代表周期性的弱晶格势
H0 的本征态就是自由电子的平面波
k
(r
)
1
eik •r
V
相应的本征能量为: 0
2k 2
k 2m
量子数 k 是自由电子平面波的波矢。
轴沿着立方体的三个边,则粒子势能可表示为:
V ( x, y, z) 0; V(x, y, z)
0 x, y, z L x, y, z 0,以及x, y, z L
因而薛定谔方程变为:
2
2 (r ) (r )
2m
2
薛定谔方程
2 (r ) (r )
2m
这和电子在自由空间运动的方程一样,方程有平面波解:
所以,周期性边界条件的选取,导致了波矢k取值的量子 化,从而单电子的本征能量也取分立值,形成能级。
E 2K 2 2m
2 2m
Kx2 Ky2 Kz2
2 2
2m L
2
nx 2
ny2
nz2
一维情形
设一维晶体的长度为L=Na, N为原胞数目,a为原胞的长度
单电子(布洛赫电子)的哈密顿:H H0 H
2
由于势能是实数,可得关系式:
Vn Vn*
2.方程解
i2πnx
上述讨论没有涉及周期性势场V (r )的具体形式,是普遍性
的结果.
H
(r
)
2
2m
2
V
r
(r
)
(r
)
将单电子波函数用某种函数集展开,及对势做合理的近似处理
一般选取某个具有布洛赫函数形式的完全集合,把晶体电子态的波 函数用此函数集合展开,然后带入薛定谔方程,确定展开式的系数 所必需满足的久期方程,据此可求得能量本征值,再依照本征值确 定波函数展开的系数。不同的方法仅在于选择不同的函数集合。
广泛使用周期性边界条件(Born-von Karman)
亦即:
x, y, z x L, y, z x, y, z x, y L, z x, y, z x, y, z L
(r ) 1 eik r 1 (eikxx eiky y eikz z )
k
V
V
由周期性边界条件:
傅里叶展开:
i2πnx
i 2π nx
V (x) Vne a V0 'Vne a V0 V
n
n
“/ ”表示求和不包括 n=0项
其 中V0
1 a
a
2 a
V
(
x)dx是






2
取V0=0
Vn
1 a
a
i 2 nx
2 a
V
(x)e
a
dx
2
(Vn
1 a
a
i 2 nx
2 a
V
(x)e
a
dx)
布洛赫定理:
对于周期性势场,即 V r V r Rn 其中 Rn 取布拉维
格子的所有格矢,则单电子薛定谔方程:
H
(r
)
2
2m
2
V
r
(r
)
(r
)
的本征函数是按布拉维格子周期性调幅的平面波,即
k (r ) eik•ruk (r ) 且 uk r uk r Rn
对 Rn 取布拉维格子的所有格矢成立。 Rn n1a1 n2a2 n3a3
固体能带的计算是一个专门的研究领域。单元素晶体的能带 已经都有计算结果,而化合物的能带计算还在研究过程当中。
本课程介绍两种特殊情形:
近自由电子近似对许多价电子为s电子、p电子的金属的 能带计算是很好的方法。(介绍相关的平面波方法)
紧束缚近似适用于过渡金属3d电子及固体中的其他内层电子 。
§5.2-3 一维晶格中的近自由电子近似
2
H0 2m 2 是自由电子模型的单电子哈密顿; H 代表周期性的微扰势
一维自由电子的单电子的本征函数和本征能量为:
(0) k
(
x)
1 eikx ; L
(0) k
2k 2 2m
L
0
(0) k
(x)
(0)* k
(x)dx
kk
k 2πn L
(上标(0)表示零级近似解)
1.势场
周期性势场 V (x) V (x ma) (a为晶格常数)
单电子本征态和本征能量
薛定谔方程及其解: 按照量子力学假设,单电子的状态用波函数 (r )描述. (r ) 满足薛定谔方程:
2
[ 2 V (r )](r ) (r )
2m
其中:V(r)为电子在金属中的势能,为电子的本征能量
2
[ 2 V (r )](r ) (r )
2m 对边长为L的立方体,可设势阱的深度是无限的。取坐标
(r ) Ceikr k
C 为归一化常数,
由正交归一化条件:
V
k
(r )
2dr
1
C 1 ,V L3 V
所以,波函数 可写为:
k (r )
1 eik r V
k 波矢, k 的方向为平面波的传播方向
K与电子的德布罗意波长的关系为:
k 2π
把波函数 k (r )
1 V
eik r
代回薛定谔方程
考虑周期性的边界条件(波恩-卡门条件)时,k 取值不再 任意,变为量子化。倒易空间的一个原胞中有N个k 的取
值(N为整个晶体的原胞数目)。本征能量亦量子化。
为计算方便设金属是边长为 L 的立方体, 金属的体积V=L3,自由电
子数目为N, 由于忽略了电子和离子实以及电子与电子之间的相互作用, 则 N 个电子的多体问题可转化为单电子问题。
相关文档
最新文档