最新-解三角形专项题型及高考题 精品

合集下载

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结【题型目录】题型一:利用正余弦定理面积公式解题题型二:解三角形与三角恒等变换结合题型三:三角形面积最大值,及取值范围问题题型四:三角形周长最大值,及取值范围问题题型五:角平分线相关的定理题型六:有关三角形中线问题题型七:有关内切圆问题(等面积法)题型八:与向量结合问题题型九:几何图形问题题型十:三角函数与解三角形结合【典例例题】题型一:利用正余弦定理面积公式解题【例1】△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3+.【详解】:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为3【例2】的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆面积为2,求b .【答案】(1)1517;(2)2.【详解】:(1)()2sin 8sin 2B A C +=,∴()sin 41cos B B =-,∵22sin cos 1B B +=,∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =;(2)由(1)可知8sin 17B =,∵1sin 22ABC S ac B =⋅=,∴172ac =,∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=,∴2b =.【例3】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =332ABC S ∆=,求ABC ∆的周长.【答案】(1)3C π=(2)5+【详解】:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 6222∆=⇒=⋅⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为5+【例4】已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,c ccosA =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆,求b ,c .【答案】(1)3A π=(2)b c ==2【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C-=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭,又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A ,故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==2【例5】(2022·陕西·安康市教学研究室高三阶段练习(文))在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边.sin sin 2A C c b C +=.(1)求角B 的大小;(2)若112,2tan tan tan b A C B+==,求ABC 的面积.,【题型专练】1.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,(1)求角A (2)若2a =,ABC ∆的面积为;求,b c .【答案】(1)(2)b=c=2【解析】:(1)由及正弦定理得sin cos sin sin sin 0A C A C B C --=,因为B A C π=--sin cos sin sin 0A C A C C --=.由于sin 0C ≠,所以1sin(62A π-=.又0A π<<,故3A π=.(2)ABC ∆的面积1sin 2S bc A ==4bc =,而2222cos a b c bc A =+-,故228b c +=.解得2b c ==.2.已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积.【答案】(1)14;(2)1【解析】:(1)由题设及正弦定理可得22b ac=又a b =,可得2,2b c a c==由余弦定理可得2221cos 24a cb B ac +-==(2)由(1)知22b ac=因为90B = ,由勾股定理得222a cb +=故222a c ac +=,得c a ==所以的面积为13.(2021新高考2卷)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则37sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.4.(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos sin B a B =+.(1)求角A 的大小;(2)若2sin a B C ==,求ABC 的面积.5.(2022·安徽省宿松中学高二开学考试)在ABC 中,角,,A B C 的对边分别为,,,tan sin a b c B A C B ==.(1)求角C 的大小;(2)若ABC 的面积为196,求ABC 外接圆的半径.题型二解三角形与三角恒等变换结合【例1】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C =22,求C .【答案】(1;(2)15︒.【分析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B ==;(2)30A C +=︒ ,sin sin(30)A C C C∴=︒-+1cos sin(30)222C C C =+=+︒=,030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒.【例2】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【分析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【例3】在ABC ∆中,满足222sin cos sin cos A B A B C -+=-.(1)求C ;(2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,,求tan α的值.【详解】(1)∵221cos B sin B =-,221cos C sin C =-,∴222sin A cos B cos C -=-变形为22211sin A sin B sin C --+=--()(),即222sin A sin B sin C ++=,利用正弦定理可得:222a b c ++=,由余弦定理可得cosC=22-,即C=34π.(2)由(1)可得cos (A+B )=2,A+B=4π,又cosAcosB=cos()cos 3225A B A B ++-=(),可得72cos(A B)10-=,同时cos (αA +)cos (αB +)=72cos(2α)cos(2αA B)cos A B 41022π+++++-=(),∴22272272cos(2α)sin2αcos(αA)cos(αB)410210222cos cos cos πααα++-+++===222222722sinαcosα2102cos sin cos sin cos ααααα--++()=222622552cos sin cos ααα+-=2510tan α+- 2tan α=5,∴2tan 5tan 62αα-+=,∴ 1tan α=或4.【题型专练】1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)3A π=;(2)sin 4C +=.【分析】【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C-=-+=-即:222sin sin sin sin sin B C A B C+-=由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈ 3A π∴=(2)2b c +=,由正弦定理得:sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C22sin cos 1C C += (()223sin 31sin C C ∴=-解得:62sin 4C =或624因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故62sin 4C +=.(2)法二:2b c += sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C ,即3sin 6C C C π⎛⎫=- ⎪⎝⎭sin 62C π⎛⎫∴-= ⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+62sin sin()464C ππ=+=.2.(2022·重庆巴蜀中学高三阶段练习)已知在锐角ABC 中,sin tan 1cos B A B =+.(1)证明:2B A =;(2)求tan tan 1tan tan B A A B-的取值范围.,再逆用正切的差角公式,结合第一问的结论得到3.在ABC 中,已知223sin cos sin cos sin 222A CB +=.(1)求证:2a c b +=;(2)求角B 的取值范围.【详解】证明:(1)223sin cossin cos sin 222C A A C B += 1cosC 1cos 3sin sin sin 222A A C B++∴+=()()sin 1cosC sin 1cos 3sin A C A B ∴+++=sin sin sin cosC sin cos 3sin A C A C A B∴+++=()sin sin sin C 3sin A C A B ∴+++=C A B π++= A C B π∴+=-()sin sin A C B∴+=sin sin 2sin A C B∴+=根据正弦定理得:2a c b +=,得证.(2)由(1)知在ABC 中,2a c b+=又222cos 2a c b B ac +-=消去b 化简得:()2231611cos 84842a c ac B ac ac +=-≥-=当且仅当a c =时取等号,又B 为三角形的内角,0,3B π⎛⎤∴∈ ⎥⎝⎦题型三:三角形面积最大值,及取值范围问题【例1】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2AB C +=,且2a =,则ABC 的面积的最大值为A .33B .32CD.【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例2】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1)3B π=;(2)33(,)82.【分析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=.0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)解法一:因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =,由三角形面积公式有:222sin()111sin 33sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅==⋅22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=⋅-=+.又因3,tan 623C C ππ<<>,故3313388tan 82C <+<,故3382ABC S <<.故ABC S 的取值范围是33,82解法二:若ABC ∆为锐角三角形,且1c =,由余弦定理可得b ==,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<,可得ABC ∆面积1sin 23S a π==∈.【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acacac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCa c ac a c Sac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=注:此题也可用椭圆轨迹方程做【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()AB .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c c c c c cc A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤注:此题也可用圆轨迹方程做【题型专练】1.已知分别为三个内角的对边,,且,则面积的最大值为____________.【解析】:由,且,故()()()a b sinA sinB c b sinC +-=-,又根据正弦定理,得()()()a b a b c b c +-=-,化简得,222b c a bc +-=,故222122b c a cosA bc +-==,所以060A =,又224b c bc bc +-=≥,故12BAC S bcsinA ∆=≤2.已知,,分别为△ABC 角,,的对边,cos 2−cos 2−cos 2=cosvos +cos −cos2,且=3,则下列结论中正确的是()A.=3B.=23C.△ABC D.△ABC 【答案】B【解答】解∵cos 2−cos 2−cos 2=cosvos +cos −cos2,∴(1−sin 2p −(1−sin 2p −(1−sin 2p =cosvos −cos(+p −(1−2sin 2p ,∴sinLin +sin 2+sin 2−sin 2=0,由正弦定理可得B +2+2−2=0,∴cos =2+2−22B=−12,又0<<,∴=23,即2=3=2+2−23=2+2+B⩾2B +B =3B ,当且仅当==1时取等号,∴B⩽1,∴=12Bsin 故选:B .3.ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B (2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+4.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin A cos B =sin B (2﹣cos A ).(1)若b +c =3a ,求A ;(2)若a =2,求△ABC 的面积的最大值.【解析】(1)∵sin A cos B =sin B (2﹣cos A ),结合正、余弦定理,可得a •2+2−22B=b •(2−2+2−22B),化简得,c =2b ,代入b +c =3a ,得a =3b ,由余弦定理知,cos A =2+2−22B =2+42−322δ2=12,∵A ∈(0,π),∴A =3.(2)由(1)知,c =2b ,由余弦定理知,cos A =2+2−22B =52−442=5412,∴△ABC 的面积S =12bc sin A =b 21−c 22=b 2=16=当b 2=209时,S 取得最大值,为43.5.在ABC ∆中,内角、、A B C 所对的边分别为,,a b c ,D 是AB 的中点,若1CD =且1()sin ()(sin sin )2a b A c b C B -=+-,则ABC ∆面积的最大值是___【答案】5如图,设CDA θ∠=,则CDB πθ∠=-,在CDA ∆和C D B ∆中,分别由余弦定理可得22221144cos ,cos()c c b a c cθπθ+-+-=-=,两式相加,整理得2222()02c a b +-+=,∴2222()4c a b =+-.①由()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭及正弦定理得()()1c b 2a b a c b ⎛⎫-=+- ⎪⎝⎭,整理得2222aba b c +-=,②由余弦定理的推论可得2221cos 24a b c C ab +-==,所以sin 4C =.把①代入②整理得2242aba b ++=,又222a b ab +≥,当且仅当a b =时等号成立,所以54222ab ab ab ≥+=,故得85ab ≤.所以118sin 22545ABCab C S ∆=≤⨯=.即ABC ∆面积的最大值是5.故答案为5.6.(2023·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c,且cos sin a b C B -=.(1)求B ;(2)若2a =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.题型四:三角形周长最大值,及取值范围问题【例1】在锐角ABC 中,内角A ,B ,C 所对的边分别为a,b ,c ,若ABC 的面积为()2224a b c +-,且4c =,则ABC 的周长的取值范围是________.【答案】4,12]+【解析】因为ABC 的面积为()2224a b c +-,所以()2221sin 42a b c ab C +-=,所以222sin 2a b c C ab +-=.由余弦定理可得222cos 2a b c C ab +-=,sin C C =,即tan C ,所以3Cπ=.由正弦定理可得sin sin sin 3a b c A B C ===,所以83832(sin sin )sin sin 8sin 3336a b A BA A A ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为ABC 为锐角三角形,所以62A ππ<<,所以sin 126A π⎛⎫<+ ⎪⎝⎭,则ssin()86A π<+,即8a b <+≤.故ABC 的周长的取值范围是4,12]+.【例2】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c sin sin cos sin B CC C A++=(1)求A ;(2)若ABC 的外接圆的半径为1,求22b c +的取值范围.c【例3】(2022·重庆八中高三阶段练习)在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sinsin ,2A Ca b A b +==(1)求角B 的大小;(2)求2a c -的取值范围.【例4】(2022·四川省仁寿县文宫中学高三阶段练习(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin 2B Ca A B c ++=.(1)求角A 的大小;(2)若角B 为钝角,求b的取值范围.【题型专练】1.在ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知222cos sincos sin sin A B C A B =++.(1)求角C 的大小;(2)若c ,求ABC ∆周长的取值范围.【答案】(1)23π;(2)(2+(1)由题意知2221sin sin 1sin sin sin A B C A B -=+-+,即222sin sin sin sin sin A B C A B +-=-,由正弦定理得222a b c ab+-=-由余弦定理得2221cos 222a b c ab C ab ab +--===-,又20,3C C ππ<<∴=.(2)2,2sin ,2sin 2sin sin sin sin3a b c a A b BA B C π====∴==,则ABC ∆的周长()2sin sin 2sin sin 2sin 33L a b c A B A A A ππ⎡⎤⎛⎫⎛⎫=++=++++++ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦230,,sin 1333323A A A πππππ⎛⎫<<∴<+<<+≤ ⎪⎝⎭ ,2sin 23A π⎛⎫∴<++≤ ⎪⎝⎭,ABC ∴∆周长的取值范围是(2+.2.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【分析】【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴ 周长的最大值为3+.3.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos )a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.【详解】(1)由题意知()(cos )sin cos sin sin a C C b c A C C B C =+⇒+=+,所以()()sin cos sin sin A C C A C C +=++,即sin cos sin sin cos cos sin sin A C A C A C A C C+=++sin cos sin sin A C A C C =+,因0sin ≠C cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭又50,,666A A ππππ⎛⎫<<∴-∈- ⎪⎝⎭ ,所以66A ππ-=,所以3π=A (2)由余弦定理得:222222cos 25a b c b c A b c bc =+-⋅=+-=,即()2325b c b c +-⋅=.22b c b c +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当b c =时取等号),()()()22221253324b c b c b c b c b c +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:10b c +≤(当且仅当b c =时取等号),ABC ∴ 周长51015L a b c =++≤+=,ABC ∴ 周长的最大值为15.题型五:角平分线相关的定理【例1】在中ABC △,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,BD BC ⊥交AC 于点D ,且1BD =,则2a c +的最小值为.【详解】由题意知ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222ac B cBD ABD aBD CBD ∴=∠+∠,即1311111122222ac c a ∴⨯=⨯⨯+⨯⨯即2c a =+,所以12a c =+,所以))12422224333a c a c a c a c c a ⎛⎫⎫+++=+++≥+=⎪⎪⎝⎭⎝⎭【例2】△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC .(Ⅰ)求sin sin BC∠∠;(Ⅱ)若60BAC ∠= ,求B ∠.【详解】(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC∠=-∠+∠∠=所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠由(I )知2sin sin B C ∠=∠,所以3tan ,30.3B B ∠=∠= 【例3】(河南省豫北名校普高联考2022-2023学年高三上学期测评(一)文科数学试卷)在ABC 中,内角,,A B C的对边分别为,,a b c ,且______.在①cos cos 2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△ ;③tan tan tan A C A C +-这三个条件中任选一个,补充在上面的问题中,并进行解答.(1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.ABC ABD BCD S S S =+ ,12π1sin 232ac c ∴=⋅即333444ac c a =+,a c ac ∴+=,a ac +∴()11444552a c a c a c ac c a ⎛⎫∴+=++=++≥+ ⎪⎝⎭【题型专练】1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,23BAC π∠=,BAC ∠的平分线交BC 于点D ,1AD =,则b c +的最小值为.【详解】ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222bc A cAD BAD bAD CAD ∴=∠+∠,即11111222222bc c ∴⨯=⨯⨯+⨯⨯,即bc b c =+,所以111b c ∴=+,所以()111124b cb c b c b c c b ⎛⎫+=++=+++≥+= ⎪⎝⎭2.ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,ABD ∆面积是ADC ∆面积的2倍.(1)求sin sin BC;(2)若AD =1,DC =22,求BD 和AC 的长.【详解】,1sin 2ACD S AC AD CAD ∆=⋅⋅∠,∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =,∴BD =.设AC x =,则2AB x =,在△ABD 与△ACD中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅222232cos 2x AD CD AC ADC AD CD -+-∠==⋅∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,2232x -=,解得1x =,即1AC =.题型六:有关三角形中线问题遇到角平分线问题一般有两种思路:思路一:中线倍长法思路二:利用平面向量【例1】在ABC ∆中,,,a b c 分别是内角,,A B C 所对的边,且满足cos 0cos 2B bC a c+=+,(1)求角B 的值;(2)若2c =,AC 边上的中线32BD =,求ABC ∆的面积.【详解】(1)cos cos sin 00cos 2cos 2sin sin B b B BC a c C A C+=⇔+=++,()cos 2sin sin sin cos 0B A C B C ⇒++=2sin cos cos sin sin cos 0A B B C B C ⇒++=()2sin cos sin 0A B B C ⇒++=.()1sin 2cos 10,sin 0,cos 2A B A B ⇒+=≠∴=-.所以23B π=,(2)解法一:中线倍长法:延长BD 到E ,使BD=DE ,易知四边形AECD 为平行四边形,在BEC ∆中,EC=2,,因为23ABC π∠=,所以3BCE π∠=,由余弦定理2222cos BE EC BC EC BC BCE =+-⋅⋅∠,即223222cos3a a π=+-⋅⋅,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=解法二:BC BA BD +=,所以()22BC BA BD +=B+=即︒++=⎪⎪⎭⎫ ⎝⎛120cos 223222ac a c ,即⎪⎭⎫⎝⎛-⨯⨯++=21424432a a ,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=【例2】(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2π3A =.(1)若6a =,ABC的面积为D 为边BC 的中点,求AD 的长度;(2)若E 为边BC上一点,且AE =,:2:BE EC c b =,求2b c +的最小值.【题型专练】1.(2022·广东广州·一模)在ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足cos sin 2B Cb a B +=.(1)求A ;(2)若a =,3BA AC ⋅=,AD 是ABC 的中线,求AD 的长.2.(2022·黑龙江·哈师大附中高三阶段练习)在①()()()()sin sin sin a c A B a b A B -+=-+;②2S BC =⋅;③cos sin b C a c B =;这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC 中,角、、A B C 的对边分别为,,a b c ,且______.(1)求角B 的大小;(2)AC 边上的中线2BD =,求ABC 的面积的最大值.题型七:有关内切圆问题(等面积法)【例1】在▵B中,sin2=B=1,B=5,则A.B=25B.▵B 的面积为32C.▵BD.▵B【答案】B【解答】解:∵sin2=∴cos=1−2sin22=1−2×2=35,又B=1,B=5,∴由余弦定理,B2=B2+B2−2B⋅B⋅cos=52+12−2×5×1×(35)=20,∴B=25,故A正确;∵cos=35且为三角形内角,∴sin=1−cos2=45,所以△B的面积为=1=12×1×5×45=2,故B错误;根据正弦定理B sin=2o其中表示外接圆的半径)得:2=45=即△B C正确;如图,设△B内切圆圆心为,半径为,连接B,B,B,因为内切圆与边B ,B ,B 相切,故设切点分别为,,,连接B ,B ,B ,可知:B =B =B =,且B ⊥B ,B ⊥B ,,根据题意:△B =12B ⋅B ⋅sin =12×5×1×45=2,利用等面积可得:△B +△B +△B =△B ,即:12B ⋅+12B ⋅+12=2,∴=4B+B+B==D 正确.故选ACD .【例2】(2022·四川·绵阳中学高二开学考试(理))已知在ABC 中,()254cos 4sin A B C ++=.(1)求角C 的大小;(2)若ABC 的内切圆圆心为O ,ABC 的外接圆半径为4,求ABO 面积的最大值.【题型专练】1.三角形有一个角是︒60,夹在这个角的两边长分别为8和5,则()A.三角形另一边长为6B.三角形的周长为20C.三角形内切圆面积为3D.【答案】B【解答】解:因为三角形有一个角是︒60,夹在这个角的两边长分别为8和5,A .由余弦定理得:三角形另一边长为82+52−2×8×5×cos60°=7,故A 错误;B .三角形的周长为8+5+7=20,故B 正确;C .设三角形内切圆的半径为,由面积法得到:12×8×5×sin60°=12×20×,解得=3,所以内切圆的面积为,故C 正确;D .设三角形外接圆的半径为,则由正弦定理得到7sin60°=2,解得=,故D 错误.故选BC .2.(2022·全国·清华附中朝阳学校模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos a cC Cb-=.(1)求角B 的大小;(2)若2b =,记r 为ABC 的内切圆半径,求r 的最大值.题型八:与向量结合问题【例1】锐角ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =与(cos ,sin )n A B = 平行.(1)求角A ;(2)若a =ABC ∆周长的取值范围.【解析】解:(1)因为://m n,所以:sin cos 0a B A =,由正弦定理,得:sin sin cos 0A B B A -=,又因为:sin 0B ≠,从而可得:tan A =,由于:0A π<<,所以:3A π=.(2)因为:由正弦定理知sin sin sin 3b c aB C A====,可得:三角形周长sin )3l a b c B C =++=+,又因为:23C B π=-,所以:2sin sin sin sin()36B C B B B ππ+=+-=+,因为:ABC ∆为锐角三角形,所以:62B ππ<<,2(,)633B πππ+∈,3sin sin (2B C +∈,所以:l ∈.【例2】(2022·河北沧州·高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos ,3b c A a C a -==.(1)求角A ;(2)若点D 满足1233BD BA BC =+,求BCD △面积的最大值.【题型专练】1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC = ,1cos 3B =,3b =.求:(1)a 和c 的值;(2)cos()B C -的值.【解析】解:(1)2BA BC= ,1cos 3B =,3b =,可得cos 2ca B =,即为6ac =;2222cos b a c ac B =+-,即为2213a c +=,解得2a =,3c =或3a =,2c =,由a c >,可得3a =,2c =;(2)由余弦定理可得2229947cos 22339a b c C ab +-+-===⨯⨯,sin C ==,sin B ==,则17224223cos()cos cos sin sin 393927B C B C B C -=+=⨯+⨯.2.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若1AB AC BA BC ==.解答下列问题:(1)求证:A B =;(2)求c 的值;(3)若||AB AC +=ABC ∆的面积.【解析】证明:(1)因AB AC BA BC =,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得sin cos sin cos B A A B =,故sin()0A B -=,因为A B ππ-<-<,故0A B -=,故A B =.⋯(4分)(2)因1AB AC = ,故cos 1bc A =,由余弦定理得22212b c a bc bc+-=,即2222b c a +-=;又由(1)得a b =,故22c =,故c =.⋯(10分)(3)由||AB AC += 22||||2||6AB AC AB AC ++=,即2226c b ++=,故224c b +=,因22c =,故b =,故ABC ∆是正三角形,故面积23342ABC S ∆=⨯=.⋯(16分)题型九:几何图形问题【例1】在ABC ∆中,3B π∠=,15AB =,点D 在边BC 上,1CD =,1cos 26ADC ∠=.(1)求sin BAD ∠;(2)求ABC ∆的面积.【解析】解:(1)由1cos 26ADC ∠=,可得153sin 26ADC ∠==,则11sin sin()sin cos cos sin 333226BAD ADC ADC ADC πππ∠=∠-=∠-∠=-⨯.(2)在ABD ∆中,由正弦定理可得sin sin BD AB BAD ADB =∠∠=,解得7BD =,所以718BC =+=,所以ABC ∆的面积11sin 158sin 223S AB BC ABD π=⋅⋅∠=⨯⨯⨯=【例2】如图,在ABC ∆中,6B π∠=,AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(1)求sin BAD ∠;(2)求BD ,AC 的长.【解析】解:(1)在ADC ∆中,因为1cos 7ADC ∠=,所以sin 7ADC ∠=,所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B=∠-∠433117272=-⨯1114=.(2)在ABD ∆中,由正弦定理得11sin 1411sin 437AB BADBD ADB⋅∠===∠,在ABC ∆中,由余弦定理得:222222cos 13213492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯.所以7AC =.【例3】如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2BD DC =,ACD ∆sin sin BADCAD∠∠的值.【解析】解:(1)ABC ∆ 中,1cos 3B =,22sin 3B ∴=.34ADC π∠= ,4ADB π∴∠=.ABD ∆=,83AD ∴=;(2)设DC a =,则2BD a =,2BD DC = ,ACD ∆,1222323a ∴=⨯⨯⨯,2a ∴=AC ∴==由正弦定理可得42sin sin BAD ADB=∠∠,sin 2sin BAD ADB ∴∠=∠.242sin sin CAD ADC =∠∠,2sin 4CAD ADC ∴∠=∠,sin sin ADB ADC ∠=∠ ,∴sin sin BADCAD∠=∠【例4】如图,在平面四边形ABCD 中,45A ∠=︒,90ADC ∠=︒,2AB =,5BD =.(1)求sin ADB ∠;(2)若DC =,求BC .【解析】解:(1)ABD ∆中,45A ∠=︒,2AB =,5BD =,由正弦定理得sin sin AB BDADB A=∠,即25sin sin 45ADB =∠︒,解得2sin 5ADB ∠=;(2)由90ADC ∠=︒,所以2cos sin 5BDC ADB ∠=∠=,在BCD ∆中,由余弦定理得:222222cos 52525BC BD DC BD DC BDC =+-⋅⋅∠=+-⨯⨯,解得5BC =.【例5】在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【答案】(1)5;(2)5.【分析】(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin45sin ADB =∠o,所以2sin 5ADB ∠=.由题设知,90ADB ∠<o ,所以cos 5ADB ∠==;(2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD ∆中,由余弦定理得22222cos 25825255BC BD DC BD DC BDC =+-⋅⋅⋅∠=+-⨯⨯=.所以5BC =.【题型专练】1.如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值;(2)若cos BAD ∠=21sin 6CBA ∠=,求BC 的长.【解析】解:1AD =,2CD =,AC =(1)在ADC ∆中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠= .∴cos CAD ∠=;(2)设BAC α∠=,则BAD CAD α=∠-∠,cos 21sin 7321sin 143sin 2CAD BAD CAD BAD α∠=∠=-∴∠=∠=∴=,在ABC ∆中,由正弦定理,sin sin BC ACCBAα=∠,解得:3BC =.即BC 的长为3.2.在平面四边形ABCD中,,2,2,AB BC AB BD BCD ABD ABD ⊥==∠=∠∆的面积为2.(1)求AD 的长;(2)求CBD ∆的面积.【解析】解:(1)由已知11sin 2sin 222ABD S AB BD ABD ABD ∆=∠=⨯∠= ,所以sin ABD ∠=(0,2ABD π∠∈,所以cos ABD ∠=在ABD ∆中,由余弦定理得:2222cos 5AD AB BD AB BD ABD =+-∠= ,所以AD =.(2)由AB BC⊥,得2ABD CBD π∠+∠=,所以5sin cos 5CBD ABD ∠=∠=,又42,sin 2sin cos 5BCD ABD BCD ABD ABD ∠=∠∠=∠∠=,()222BDC CBD BCD ABD ABD ABD CBD ππππ∠=-∠-∠=--∠-∠=-∠=∠,所以CBD ∆为等腰三角形,即CB CD =,在CBD ∆中,由正弦定理得:sin sin BD CDBCD CBD=∠∠,所以sin 51155455,sin 4sin 42244585CBDBD CBDCD S CB CD BCD BCD∆∠====∠=⨯⨯⨯=∠.3.如图,在平面四边形ABCD 中,2AB =,6BC =,4AD CD ==.(1)当四边形ABCD 内接于圆O 时,求四边形ABCD 的面积S ;(2)当四边形ABCD 的面积最大时,求对角线BD的长.【解析】(本题满分为14分)解:(1)连接BD ,由余弦定理可得:222222cos 24224cos BD AB AD AB AD A A =+-=+-⨯⨯⨯ ,222222cos 46246cos BD BC CD BC CD C C =+-=+-⨯⨯⨯ ,可得:2016cos 5248cos A C -=-,2⋯分又四边形ABCD 内接于圆O ,则又A C π+=,所以:2016cos 5248cos()A A π-=--,化简可得:1cos 2A =-,又(0,)A π∈,所以23A π=,3C π=,4⋯分所以12124sin 46sin 2323ABD BCD S S S ππ∆∆=+=⨯⨯⨯+⨯⨯⨯=,6⋯分(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=+ ,可得:222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-=+- ,8⋯分可得:22221124sin 46sin 2224224cos 46246cos S A C A C ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,可得:sin 3sin 423cos cos S A CC A⎧=+⎪⎨⎪=-⎩,平方后相加,可得:24106sin sin 6cos cos 16S A C A C +=+-,即:266cos()16S A C =-+,10⋯分又(0,2)A C π+∈,当A C π+=时,216S 有最大值,即S 有最大值.此时,A C π=-,代入23cos cos C A =-,可得:1cos 2C =,又(0,)C π∈,可得:3C π=,12⋯分在BCD ∆中,可得:222222cos 46246cos 283BD BC CD BC CD C π=+-=+-⨯⨯⨯= ,可得BD =.14⋯分4.如图所示,已知圆内接四边形ABCD ,记tan tan tan tan 2222A B C D T =+++.(1)求证:22sin sin T A B=+;(2)若6AB =,3BC =,4CD =,5AD =,求T 的值及四边形ABCD 的面积S.【解析】解:(1)sincos sin cos222222tan tan tan tan tan cot tan cot 22222222sin sin cos sin cos sin 2222A AB BA B A B A A B B T A A B B A Bππ--=+++=+++=+++=+.(2)由于:6AB =,3BC =,4CD =,5AD =,由题知:cos cos 0BAD BCD ∠+∠=,可得:22222222470227AB AD BD BC CD BD BD AB AD BC CD +-+-+=⇒= ,则3cos 7A =,sin A =则1()sin 2S AD AB CD BC A =+= ,则1610()sin sin 219S AB BC AD CD ABC ABC =+∠=∠=,22sin sin T A B =+==5.如图,角A ,B ,C ,D 为平面四边形ABCD 的四个内角,6AB =,3BC =,4CD =.(1)若60B =︒,30DAC ∠=︒,求sin D ;(2)若180BAD BCD ∠+∠=︒,5AD =,求cos BAD ∠.【解析】解:(1)在ABC ∆中,222361cos 2362AC B +-==⨯⨯,222363627AC ∴=+-⨯=,AC ∴=ACD ∆中,由正弦定理sin sin DAC D CD AC∠=,sin sin sin 30AC D DAC CD ∴=⋅∠=︒=.(2)在ABD ∆中,22256cos 256BD BAD +-∠=⨯⨯,在BCD ∆中,22234cos 234BD BCD +-∠=⨯⨯,180BAD BCD ∠+∠=︒ ,cos cos 0BAD BCD ∴∠+∠=,∴22222256340256234BD BD +-+-+=⇒⨯⨯⨯⨯可得:222(2536)5(916)0120BD BD +-++-=,可得:22261252550BD BD ⨯-+⨯-=,可得27247BD =,则BD =22224725365637cos 256607BDBAD +-+-∴∠===⨯⨯.6.某市欲建一个圆形公园,规划设立A ,B ,C ,D 四个出入口(在圆周上),并以直路顺次连通,其中A ,B ,C 的位置已确定,2AB =,6BC =(单位:百米),记ABC θ∠=,且已知圆的内接四边形对角互补,如图,请你为规划部门解决以下问题.(1)如果4DC DA ==,求四边形ABCD 的区域面积;(2)如果圆形公园的面积为283π万平方米,求cos θ的值.【解析】解:(1)连结BD ,可得四边形ABCD 的面积为:11sin sin 22ABD CBD S S S AB AD A BC CD C ∆∆=+=+ , 四边形ABCD 内接于圆,180A C ∴+=︒,可得sin sin A C =.11sin sin 22S AB AD A BC CD C =+ 1()sin 2AB AD BC CD A =+1(2464)sin 2A =⨯+⨯16sin A =.(*)⋯在ABD ∆中,由余弦定理可得:222222cos 24224cos 2016cos BD AB AD AB AD A A A =+-=+-⨯⨯=- ,同理可得:在CDB ∆中,222222cos 64264cos 5248cos BD CB CD CB CD C C C =+-=+-⨯⨯=- ,2016cos 5248cos A C ∴-=-,结合cos cos(180)cos C A A =︒-=-,得64cos 32A =-,解得1cos 2A =-,(0,180)A ∈︒︒ ,120A ∴=︒,代入(*)式,可得四边形ABCD面积16sin120S =︒=.(2) 设圆形公园的半径为R ,则面积为283π万平方米,可得:2283R ππ=,可得:2213R =,∴由正弦定理2sin AC R B ==sin θ==由余弦定理可得:AC ==sin θ∴==214sin 159cos θθ=-,22sin cos 1θθ+= ,∴2159cos cos 114θθ-+=,整理可得:2214cos 9cos 10θθ-+=,∴解得:1cos 7θ=,或12.7.ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.【答案】(1)23π,4;(2)3.【解析】(1)sin 3cos 0,tan 3A A A +=∴=- ,20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =.(2)2222cos c b a ab C =+- ,162842272cos C ∴=+-⨯⨯⨯,22cos ,72cos 77AC C CD C∴=∴===,12CD BC ∴=,1134223222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=,132ABD ABC S S ∆∆∴==.8.四边形的内角与互补,.(1)求和;(2)求四边形的面积.【答案】(1)60C =︒,7BD =;(2)23.【详解】:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC=+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得54cosC +,求cos C 的值,进而求C 和的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形等于ABD ∆和CBD ∆的面积.(1)由题设及余弦定理得2222cos BD BC CD BC CD C=+-⋅.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②。

数学-解三角形大题解析版

数学-解三角形大题解析版

解三角形大题(1)证明:sinsin BD ABDC ACαβ⋅=⋅;(2)若D为靠近B的三等分点,在ABC 中,由余弦定理得:2222b a c =+-a b c h AE +=+≥ ,即(c h +41123h c ∴<+≤1413tan2C ∴<≤,3tan 42C ∴≤222sincos 2tan22sin sin cos 1tan 22C C C C C ==++设tan2C t =,3,14t ⎡⎫∈⎪⎢⎣⎭,1t t +1252,12t t ⎛⎤∴+∈ ⎥⎝⎦,即1tan tan 2C +24sin 125C ∴≤<9.在ABC 中,3,AB AC ==(1)若3BC =,求CD 与AD ;因为AD 平分BAC ∠,所以因此32BD CD =,又3BC =,所以在ABC 中,3,AB BC AC ==在ACD 中,由余弦定理可得(2)如下图所示:因为AD 平分BAC ∠,DAC ∠所以60,120B C θθ=︒-=︒-()()sin 120sin 60AB ACθθ=︒-︒-展开并整理得333cos sin 22θ-10.ABC 中,,D E 是边BC (1)若3BC =,求ABC 面积的最大值;则()()0,0,3,0B C ,设(),A x y ,则2222(3)3x y x y -+=⨯+,整理得到:即点A 的轨迹是以3,02⎛⎫- ⎪⎝⎭圆心,故ABC 的BC 边上的高的最大值为在APC △中,由正弦定理可得故133cos 22α⎛- ⎝因为α为锐角,故故P 存在且sin ABP ∠法二:如图,设∠同理30PCA ∠=︒-而3sin sin CPAPC α=∠在PBC 中,由余弦定理可得:整理得到:4cos =所以24cos 4sin α+整理得到:38tan =但α为锐角,故tan 故P 存在且sin ABP ∠11.在ABC 中,内角(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠【答案】(1)5sin 5C =;(2)tan DAC ∠【分析】(1)方法一:利用余弦定理求得(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以所以()sin sin DAC DAC π∠=-∠(sin ADC =∠在(1)的方法二中可得1,2,AE CE AC ==由4cos 5ADC ∠=-,可得4cos ,sin 5ADE ∠=∠在Rt ADE △中,5,sin 3AE AD DE ADE ===∠由(1)知5sin 5C =,所以在Rt CDG △中,11515AG AC CG =-=.[方法4]:坐标法以D 为坐标原点,DC 为设BDC α∠=,则(5cos B 从而2(05cos )AB α=-+cos sin 1cos ADB α∠==-(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,225(22)2522=+-⨯⨯[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法;方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现.(2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法.方法二:利用几何知识,解直角三角形,简单易算.19.在锐角△ABC 中,角(I )求角B 的大小;(II )求cos A +cos B +cos C 【答案】(I )3B π=;(II )【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角(1)求cos C及线段BC的长;(2)求ADEV的面积.【答案】(1)1cos4C=,BC(2)3158【分析】(1)利用二倍角正弦公式结合正弦定理推出(2)求出15sin4C=,即可求出【详解】(1)由题意在ABC【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法;方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值;方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小(2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用25.ABC中,sin2A-sin(1)求A;(2)若BC=3,求ABC【答案】(1)23π;(2)3【分析】(1)利用正弦定理角化边,配凑出(2)方法一:利用余弦定理可得到而2b ac =,即sin sin ADB ∠=故有ADB ABC ∠=∠,从而∠由2b ac =,即b c a b =,即CA CB 故AD AB AB AC =,即23b c c b=,又2b ac =,所以23c a =,则2227cos c a b ABC +-==∠由2AD DC =,得,3c DE EC =在BED 中,2(3cos BED =∠在ABC 中2cos 2a BC c A +=∠因为cos cos ABC BED ∠=-∠所以22222()(332223a c a c b a ac ++-=-⋅由(1)知,3BD b AC ===设()(),33B x y x -<<,则2x 由2b ac =知,BA BC AC ⋅=即222(2)(1)x y x y ++⋅-+联立⑤⑥解得74x =-或72x =代入⑥式得36||,2a BC c ==由余弦定理得cos a ABC ∠=则11sin 122ADC S AD DC ADC =⋅∠=⨯ 在ABD △中,2π3ADB ∠=,由余弦定理得35.记ABC 的内角,,A B C (1)求bc ;(2)若cos cos 1cos cos a B b A b a B b A c--=+,求【答案】(1)1(2)34【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出【详解】(1)因为22a b =+37.如图,在锐角ABC 中,角(1)求ABC 面积的最大值;(2)若AB 边上的点D 满足2AD DB =,求线段【答案】(1)934(2)3+1【分析】(1)利用余弦定理结合基本不等式求出(2)根据2AD DB =得到13CD CA = 求出222222442||1⎛⎫+ ⎪++⎝⎭==+-⎛⎫+ ⎪⎝⎭b a b ab a CD a b ab b a 角形,得到311,32⎛⎫=+=+∈ ⎪⎝⎭b m t a ,从而利用基本不等式,求出线段【详解】(1)由余弦定理得:cos 60︒所以222212992+-⋅=⇒=+a b ab a b ∴9ab ≤,当且仅当3a b ==时取“=”∴1393sin 244==≤△ABC S ab C ab ,∴ABC 面积的最大值为934.(2)由2AD DB =,可得:23AD AB =(1)求角A ;(2)若D 为线段BC 延长线上一点,且∠【答案】(1)3A π=(2)963--【分析】(1)运用正弦定理以及诱导公式求解;(2)根据条件运用正弦定理求解.【详解】(1)由条件及正弦定理可得:()sin sin cos sin cos sin cos B C A A B A C +--即sin cos cos sin sin cos cos B A B A C A -+-故()()sin sin 0B A C A -+-=,则有sin 又()(),,,B A C A ππππ-∈--∈-,故有。

(完整版)解三角形高考大题-带答案

(完整版)解三角形高考大题-带答案

解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。

(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。

解三角形专题高考题练习【附答案】

解三角形专题高考题练习【附答案】

解三角形专题(高考题)练习【附答案】1、在ABC ∆中,已知内角3A π=,边23BC =.设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 2、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC , 记→→∙=BC AB f )(θ,(1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域;3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值;(2)若b =2,求△ABC 面积的最大值. 4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量()2sin ,3m B =-,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。

(I )求锐角B 的大小;(II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。

5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值. 6、在ABC ∆中,5cos 5A =,10cos 10B =. (Ⅰ)求角C ;(Ⅱ)设2AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足(I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。

AB C1209、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l.求:(I )角C 的大小;(II )△ABC 最短边的长.10、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a+b=5,c=7,且.272cos 2sin 42=-+C B A (1)求角C 的大小;(2)求△ABC 的面积. 11、已知△ABC 中,AB=4,AC=2,23ABC S ∆=. (1)求△ABC 外接圆面积.(2)求cos(2B+3π)的值. 12、在ABC ∆中,角A B C 、、的对边分别为a b c 、、,(2,)b c a =-m ,(cos ,cos )A C =-n ,且⊥m n 。

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。

2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)

2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)

专题7解三角形一、解答题1.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A,由(1)得2250b c ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B.(1)若23C ,求B ;(2)求222a b c 的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos 2A B A B 化成 cos sin A B B ,再结合π02B ,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B ,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ,即 1sin cos cos sin sin cos cos 2B A B A B A BC ,而π02B ,所以π6B ;(2)由(1)知,sin cos 0BC ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B ,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B B B BB .当且仅当22cos 2B 时取等号,所以222a b c的最小值为5.3.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C .(1)求sin A 的值;(2)若11b ,求ABC 的面积.【答案】(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab以及4a 可解出a ,即可由三角形面积公式in 12s S ab C 求出面积.(1)由于3cos 5C ,0πC ,则4sin 5C.因为4a ,由正弦定理知4sin A C,则sin 45A C .(2)因为4a ,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a ,即26550a a ,解得5a ,而4sin 5C ,11b ,所以ABC 的面积114sin 51122225S ab C .4.(2022·北京·高考真题)在ABC 中,sin 2C C.(1)求C ;(2)若6b ,且ABC 的面积为ABC 的周长.【答案】(1)6 (2)6+【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.(1)解:因为 0,C ,则sin 0C2sin cos C C C ,可得cos 2C ,因此,6C .(2)解:由三角形的面积公式可得13sin 22ABC S ab C a,解得a .由余弦定理可得2222cos 48362612c a b ab C ,c所以,ABC 的周长为6a b c .5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B.(1)求ABC 的面积;(2)若sin sin A C,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b ac B A C,即可求解.(1)由题意得22221231,,2S a S S,则222123S S S a b c 即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则22cos 3B ,1cos 4ac B ,则12sin 28ABC S ac B ;(2)由正弦定理得:sin sin sin b a c B A C,则229sin sin sin sin sin 423b a c ac B A C A C ,则3sin 2b B ,31sin 22b B .6.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得 sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B ,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C.(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a cb bc a b c a a b c ,化简得:2222a b c ,故原等式成立.7.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB m ,15AD m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20 ,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)【答案】(1)23.3m(2)当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.14【解析】【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD ,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值.(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD 则AE EH ,所以直角ADE 与直角HED △全等所以20ADE HDE在直角HED △中,tan 2015tan 20EH DH90250HDF ADE在直角FHD △中,tan 5015tan 50HF ADsin 20sin 5015tan 20tan 5015cos 20cos50EF EH HFsin 2050sin 20cos50cos 20sin 501515cos 20cos50cos 20cos50sin 70151523.3cos 20cos50cos50(2)设ADE ,902HDF ,则15tan AE ,15tan 902FH 115151515tan 15tan 90215tan 222tan 2EFD S EF DHV 11515tan 22ADE S AD AE V 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEF S S S22512253tan 4tan 42当且当13tan tan ,即tan 时取得等号,此时15tan 158.73AE即当tan 3 时,梯形AEFD 的面积取得最小值2则此时梯形FEBC 的面积有最大值1530255.142所以当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.148.(2022·全国·模拟预测)在 ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且 sin sin sin 6b a b c A B C S .(1)求角B 的大小;(2)若1a b ,2c b ,求cos A ,cos C 的值.【答案】(1)3(2)17,1114【解析】【分析】(1)由三角形的面积公式结合正弦余弦定理化简即可得到答案;(2)由余弦定理计算即可.(1)由in 12s S ab C ,又 sin sin sin 3sin b a b c A B C ab C ,由0b ,则 sin sin sin 3sin a b c A B C a C .由正弦定理得 3a b c a b c ac ,所以222a c b ac .由余弦定理得2221cos 222a cb ac B ac ac ,因为0B ,所以3B .(2)因为222a c b ac ,1a b ,2c b ,所以 2221212b b b b b ,解得7b ,所以8a ,5c .所以2222227581cos 2707b c a A bc ,22222287511cos 211214a b c C ab .9.(2022·全国·模拟预测)在ABC 中,角A B C ,,的对边长分别为a b c ,,,ABC 的面积为S ,且24cos cos tan S a B ab A B.(1)求角B 的大小;(2)若322AB BC ,,点D 在边AC 上,______,求BD 的长.请在①AD DC ;②DBC DBA ;③BD AC 这三个条件中选择一个,补充在上面的横线上,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3B (2)答案不唯一,具体见解析【解析】【分析】(1)根据面积公式可得2cos cos cos c B a B b A ,利用正弦定理以及和角关系可得1cos 2B ,进而可求.(2)根据余弦定理可求出AC ,然后在ABD △和在DBC △中分别用余弦定理即可求①.根据面积公式即可求解②③.(1)因为24cos cos tan S a B ab A B ,所以214sin 2cos cos sin cos ac B a B ab A B B,所以22cos cos cos ac B a B ab A ,即2cos cos cos c B a B b A .由正弦定理,得2sin cos sin cos sin cos C B A B B A ,所以 2sin cos sin sin C B A B C .因为 0,πC ,所以sin 0C ,所以1cos 2B.又 0,πB ,所以π3B.(2)若选①.法一:在ABC 中,由余弦定理,得2222233π132cos 222cos 2234AC AB BC AB BC B ,所以ACAD DC 在ABD △中,由余弦定理,得2222cos AB BD DA BD DA ADB ,即2134cos 16BD BD ADB .在DBC △中,由余弦定理,得2222cos BC BD DC BD DC CDB ,即2913cos 416BD CDB .又πADB CDB ,所以cos cos 0ADB CDB .所以29134248BD ,所以374BD .法二:因为AD DC ,所以D 为AC 的中点,所以 12BD BA BC ,所以222124BD BA BC BA BC 19337422cos6044216.所以BD BD 若选②.在ABC 中,ABC ABD CBD S S S ,即1π1π1πsin sin sin 232626BA BC BA BD BD BC ,即1311131222222222BD BD ,解得BD 若选③.在ABC 中,由余弦定理,得2222cos AC AB BC AB BC B2233π13222cos 2234 ,所以AC .因为1sin 2ABC S BA BC B △12ABC S BD AC △,BD 10.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C A B C ,a b .(1)求角B ;(2)若3a ,7b ,D 为AC 边的中点,求BCD △的面积.【答案】(1)23B (2)1538【解析】【分析】(1)根据同角三角函数的关系,结合两角和差的正余弦公式化简即可(2)由余弦定理可得5c ,再根据BCD △的面积为ABC 面积的一半,结合三角形的面积公式求解即可(1)由cos 2cos tan sin C A B C,有tan sin cos 2cos B C C A ,两边同乘cos B 得sin sin cos cos 2cos cos B C B C A B ,故 cos 2cos cos B C A B ,即cos 2cos cos A A B .因为a b ,所以A 为锐角,cos 0A ,所以1cos 2B .又因为 0,B ,所以23B .(2)在ABC 中,由余弦定理2221cos 22a c b B ac ,即2949162c c ,故23400c c ,解得5c 或8c 舍).故11235sin 223BCD ABC S S △△11.(2022·福建·三明一中模拟预测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos c b a C .(1)求角A ;(2)若M 为BC 的中点,AM ABC 面积的最大值.【答案】(1)π3A 【解析】【分析】(1)解法一:根据正弦定理边化角求解即可;解法二:利用余弦定理将cos C 用边表示再化简即可;(2)解法一:根据基底向量的方法得1()2AM AB AC ,两边平方化简后可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可;解法二:设BM MC m ,再分别在ABM ,ACM △和ABC 中用余弦定理,结合cos cos 0AMB AMC 可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可(1)解法一:因为22cos c b a C ,由正弦定理得:sin 2sin 2sin cos C B A C ,所以sin 2sin()2sin cos C A C A C 2sin cos 2cos sin 2sin cos 2cos sin A C A C A C A C ,因为sin 0C ,所以12cos 1,cos 2A A,为0πA ,所以π3A .解法二:因为22cos c b a C ,由余弦定理得:222222a b c c b a ab,整理得222bc b c a ,即222a b c bc ,又由余弦定理得2222cos a b c bc A所以12cos 1,cos 2A A,因为0πA ,所以π3A .(2)解法一:因为M 为BC 的中点,所以1()2AM AB AC ,所以222124AM AB AB AC AC ,即22132cos 43c b bc ,即2212b c bc ,而222b c bc ,所以122bc bc 即4bc ,当且仅当2b c 时等号成立所以ABC 的面积为113sin 4222ABC S bc A △即ABC 解法二:设BM MC m ,在ABM 中,由余弦定理得2232cos c m AMB ,①在ACM △中,由余弦定理得2232cos b m AMC ,②因为πAMB AMC ,所以cos cos 0AMB AMC 所以①+②式得22262b c m .③在ABC 中,由余弦定理得22242cos m b c bc A ,而π3A ,所以2224m b c bc ,④联立③④得:22222212b c b c bc ,即2212b c bc ,而222b c bc ,所以122bc bc ,即4bc ,当且仅当2b c 时等号成立.所以ABC 的面积为11sin 4222ABC S bc A △ABC 12.(2022·北京市第十二中学三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a B A .(1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求ABC 的面积.条件①:3a ;条件②:b ;条件③:2cos 3C ;条件④:2c .【答案】(1)6B(2)答案不唯一,见解析【解析】【分析】(1)由正弦定理化简可得出tan B 的值,结合角B 的取值范围可求得角B 的值;(2)选①②,利用余弦定理可判断ABC 不唯一;选①③或②③或③④,利用三角形的内角和定理可判断ABC 唯一,利用正弦定理结合三角形的面积可判断ABC 的面积;选①④,直接判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积;选②④,利用余弦定理可判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积.(1)解:由cos sin a B A 及正弦定理可得sin cos sin A B A B ,A ∵、 0,B ,则sin 0A ,cos 0 B B ,tanB 6B .(2)解:若选①②,由余弦定理可得2222cos b a c ac B ,即210c ,解得 c ,此时,ABC 不唯一;若选①③,已知3a ,6B,21cos 32C ,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A C B C C由正弦定理sin sin b a B A 可得 92sin sin 11a B b A,所以, 9211sin 32211ABC S ab C △;若选①④,已知3a ,6B,2c ,此时ABC 唯一,1322sin ABC S ac B;若选②③,已知b 6B ,21cos 32C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A CBC C 由正弦定理sin sin b c B C 可得sin 410sin 3b C c B ,所以,120385sin 29ABC S bc A △;若选②④,已知b 6B,2c ,由余弦定理可得2222cos b a c ac B ,可得240a ,0a ∵,解得a ABC 唯一,1sin2ABC S ac B △若选③④,已知6B ,2c ,231cos 322C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,5sin 3C, 152sin sin sin cos cos sin 666A CBC C ,由正弦定理sin sin b c B C 可得sin sin 5c B b C ,1sin 210ABC S bc A △.13.(2022·内蒙古·海拉尔第二中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为,,a b c ,且sin cos (cos )sin .232B BC C (1)当π3B,求sin sin C A 的值(2)求B 的最大值.【答案】(1)sin C +sin A =1(2)2π3【解析】【分析】(1)代入π3B ,解得313sin cos 223C C ,对sin sin C A 变形得到1sin sin sin cos 12C A C C ,求出答案;(2)对题干条件两边同乘以2cos2B ,变形得到sin sin sin C A B ,利用正弦定理得到a c ,利用余弦定理和基本不等式求出B 的最大值.(1)由题意得:ππsin coscos )sin 66C C ,1cos 2C C则π31sin sin sin sin sin cos sin cos 1322C A C C C C C C(2)sin cos cos )sin 22B B C C ,两边同乘以2cos 2B 得:22sin cos cos )2sin cos 222B B B C C ,即 sin 1cos cos )sin C B C B ,整理得:sin sin sin C A B ,由正弦定理得:3a cb ,由余弦定理得: 2222222cos 1226ac b ac a c b b B ac ac ac,因为 22143a c acb ,当且仅当ac 时等号成立,此时21cos 162b B ac ,由于 0,πB ,而cos y x 在 0,π上单调递减,故B 的最大值为2π314.(2022·广东·大埔县虎山中学模拟预测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222ab a b c .(1)求角C ;(2)若△ABC 的面积534S ,且c △ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用余弦定理求得cos C 的值,进而求得角C 的值;(2)依据题给条件得到关于a b ,的方程组,求得+a b 的值,进而求得△ABC 的周长.(1)因为222ab a b c ,由余弦定理,得到2221cos 22a b c C ab ,又0πC ,所以π3C ;(2)因为△ABC 的面积4S ,且c π3C所以有221sin 212S ab C ab a b ,联立22526ab a b ,则6a b ,所以△ABC 的周长为6a b c 15.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C .(1)求角A 的大小;(2)若2B D D C ,2AD ,且AD 平分BAC ,求ABC 的面积.【答案】(1)60A (2)332【解析】【分析】(1)由两角和的正切公式化简后求解(2)由AD 是角平分线得到2c b ,再利用面积公式求解(1)tan tantan tan tan tan 0tan()1tan tan B C B C B C B C B C故tan A 60A ;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h ,11sin 22ABC S AC AD DAC CD h 又AD 是角平分线,所以BAD DAC所以AB BD AC DC,即2c b ,又ABC ABD ACD S S S ,则111sin 602sin 302sin 30222bc c b ,解得b c ,133sin 6022ABC S bc △.16.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,3a ,2b ,sin A m .(1)若ABC 唯一确定,求m 的值;(2)设I 是ABC 的内切圆圆心,r 是ABC 内切圆半径,证明:当21c r 时,IC IA IB .【答案】(1)1(2)证明见解析【解析】【分析】(1)若01m ,根据sin A m ,b a ,可知A 可以为锐角,也可以为钝角,ABC 有两种情况,若1m ,则三角形为直角三角形,ABC 有唯一解.(2)由21c r 可推导出ABC 为直角三角形,故可计算出,,IC IA IB 的值,即得证.(1)设AB 边上的高为c h ,则sin 20c h b A m .当1m 时,由勾股定理,若A 为锐角,则c A 为钝角,则c ABC 存在两种情况,不能被唯一确定.当1m 时,ABC 为直角三角形,其中A 为直角顶点,c 可以唯一确定,即ABC 唯一确定,故m 的值为1.(2)当21c r 时,由余弦定理,22223cos 23a b c r r C ab ,故由同角三角函数的关系可得sin C所以ABC 的面积1sin 2S ab C另一方面, 132S a b c r r r3r r ,两边平方可得 213r r r r ,解得r ,21c r ABC 是以A 为直角顶点的直角三角形.因此有222112922IC,IC22211322IA 2IA ;22211322IB ,IB 所以有IC IA IB 成立.17.(2022·上海市光明中学模拟预测)已知在三角形ABC 中,2a b ,三角形的面积12S .(1)若4b ,求 tan A B ;(2)若3sin 5C ,求sin sin A B ,.【答案】(1)(2)25sin 5A ,sin B 或6205sin 205A ,sin B 【解析】【分析】(1)根据面积公式及4b ,得到3sin 4C ,分C 为锐角和C 为钝角时,求出cos C ,进而求出tan C ,求出 tan A B ;(2)由面积公式求出b a ,分C 为锐角和C 为钝角,由余弦定理和正弦定理求出答案.(1)∵2113sin 2sin 16sin 12sin 224S ab C b C C C 而sin tan()tan(π)tan cos CA B C C C分情况讨论,当C 为锐角时,cos 0cos C C∴tan()A B当C 为钝角时,cos 0cos C Ctan()A B (2)22113sin 2sin 12225S ab C b C b ,因为0b ,所以b a分情况讨论,当C 为锐角时,4cos 0cos 5C C由余弦定理,222cos 366c a b ab C c由正弦定理,10sin sin sin sin sin sin 5a b c A A B C A B ,sin 5B当C 为钝角时,4cos 0cos 5C C ,由余弦定理,222cos 164c a b ab C c由正弦定理,sin sin sin sin a b c A A B C,sin B 18.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c,已知cos sin B b C .(1)求C 的大小;(2)若ABC为锐角三角形且c 22a b 的取值范围.【答案】(1)3C(2)(5,6]【解析】【分析】(1)利用正弦定理边化角,再分析求解即可;(2)22224sin 4sin 3a b A A,再利用三角函数求值域即可.(1)cos sin B b C及正弦定理可得sin sin sin )B C B C A B Ccos sin B C B C ,所以sin sin cos B C B C ,因为B 、(0,)C ,则sin 0Bsin 0C C,则tan C 3C.(2)依题意,ABC为锐角三角形且c2sin sin sin a b c A B C ,所以2sin a A ,2sin 2sin()2sin 3b B A C A,所以222221cos 21cos 234sin 4sin 44322A A a b A A142cos 2222cos 222c 2cos 2222os 23A A A A A2c 42co os 242sin 246s 2cos 2sin 2A A A A A A,由于23A B ,所以022032A A,解得62A ,所以23A ,52666A ,所以푠� 2�∈12,1,所以2sin 2(1,2]6A ,所以2sin 24(5,6]6A.所以22a b 的取值范围是(5,6].19.(2022·辽宁实验中学模拟预测)在① sin sin sin sin A C a b c B C ,② 2222cos 2a b c a c B a,③ sin cos 6a B C B b这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________.(1)求B(2)若b ABC 的平分线交AC 于点D ,且5BD,求ABC 的面积.【答案】(1)=3B【解析】【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件②,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件③,先用三角形的内角之和为 ,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S △△△,结合余弦定理和三角形的面积公式即可(1)选择条件①:根据正弦定理,可得:a c abc b c 可得:222a c b ac 根据余弦定理,可得:2221cos 22a cb B ac 0,,=3B B 选择条件②:根据余弦定理,可得:2cos (2)cos =cos 2abC a c B b C a根据正弦定理,可得:(2sin sin )cos sin cos A C B B C整理可得:2sin cos sin()sin A B B C A可得:1cos 2B 0,,=3B B选择条件③:易知:A B C可得:sin cos()6a A B b根据正弦定理,可得:sin sin cos(sin 6A A B B可得:1sin cos()sin 62B B B B整理可得:tan B 0,,=3B B(2)根据题意,可得:ABC ABD BCDS S S △△△可得:1143143sin sin sin 23256256ac a 整理可得:54a c ac 根据余弦定理,可得:2222cosb ac ac ABC可得:2213=a c ac ,即2()313a c ac 可得:225()482080ac ac 解得:4ac 或5225ac (舍)故1=sin 23ABC S ac △20.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos 2B C B C A .(1)求角A 的大小;(2)若a 2bc 的最大值.【答案】(1)3A (2)【解析】【分析】(1)利用两角和的余弦公式、二倍角的余弦公式可得出关于cos A 的方程,结合1cos 1A 可求得cos A 的值,再结合角A 的取值范围可求得角A 的值;(2)由正弦定理结合三角恒等变换化简得出 2b c B ,结合正弦型函数的有界性可求得2b c 的最大值.(1)解:由已知可得 cos 25cos cos sin sin cos 25cos A B C B C A B C 2cos 25cos 2cos 5cos 13A A A A ,即22cos 5cos 20A A ,0A ∵,则1cos 1A ,解得1cos 2A ,因此,3A .(2)解:由正弦定理可得2sin sin sin b c aBC A,所以, 24sin 2sin 4sin 2sin 4sin 2sin 3b c B C B B A B B 4sin sin 5sin B B B B B B,其中 为锐角,且tan,因为3A ,则203B ,23B ,所以,当2B 时,即当2B 时,2b c 取得最大值。

(完整版)高考解三角形大题(30道)

(完整版)高考解三角形大题(30道)

专题精选习题 ---- 解三角形1.在 ABC 中,内角 A, B,C 的对边分别为cos A 2 cosC2c a a, b, c ,已知.cos Bb( 1)求sin C的值;sin A1, b( 2)若 cos B2 ,求 ABC 的面积 S .42.在 ABC 中,角 A, B,C 的对边分别是a, b, c ,已知 sin C cosC 1 sin C.( 1)求 sin C 的值;2( 2)若 a 2b 24(ab) 8,求边 c 的值 .3.在ABC 中,角 A, B,C 的对边分别是 a, b, c .( 1)若 sin( A) 2 cos A ,求 A 的值;6( 2)若 cos A1, b 3c ,求 sin C 的值 .34. ABC 中, D 为边 BC 上的一点, BD 33, sin B5, cos ADC 3 ,求 AD .13 55.在ABC 中,角A, B,C的对边分别是(1)求ABC的周长;(2)求cos( A C)的值 .6.在ABC 中,角A, B,C的对边分别是5( 1)当p4,b 1时,求 a,c 的值;( 2)若角B 为锐角,求 p 的取值范围.7.在ABC 中,角A, B,C的对边分别是(1)求A的值;(2)求sin B sin C的最大值 .8.在ABC 中,角A, B,C的对边分别是1a, b, c ,已知 a 1,b 2, cosC.4a, b, c .已知 sin A sin C p sin B( p R) ,且 ac 1 b2.4 a, b, c .且 2a sin A (2b c) sin B (2c b) sin C .1a, b, c ,已知 cos2C.4( 1)求sin C的值;( 2)当a2,2 sin A sin C 时,求 b, c的长.9.在 ABC 中,角 A, B,C 的对边分别是a, b, c ,且满足 cosA2 5, AB AC 3 .25( 1)求ABC 的面积;( 2)若 b c 6 ,求 a 的值 .10.在ABC 中,角 A, B, C 的对边分别是 a,b,c , cos(C) cos(C) 2 .442( 1) 求角 C 的大小;( 2)若 c 2 3 , sin A2 sin B ,求 a,b .11.在ABC 中,角 A, B,C 的对边分别是 a, b, c ,且 . a cosC1c b2( 1)求角 A的大小;( 2)若 a 1,求 ABC 的周长 l 的取值范围 .12.在ABC 中,角 A, B, C 的对边分别是 a,b,c ,且满足 (2b c) cos A a cosC0 .( 1)求角 A 的大小;( 2)若a3 3 3ABC 的形状,并说明原由 .,SABC4,试判断13.在ABC 中,角A, B, C的对边分别是a,b,c ,且 2(a2b2c2 )3ab.( 1)求sin2AB ;2( 2)若c 2,求ABC 面积的最大值.14.在ABC 中,角A, B, C的对边分别是a,b,c ,且满足 4a2 cos B 2ac cos B a2b2 c 2.( 1)求角B的大小;( 2)设m(sin 2 A, cos2C), n (3,1) ,求 m n 的取值范围.115.已知m(sin x,cos x), n (cos x, cos x)(0) ,若函数 f (x) m n的最小正周期为2 4.(1)求函数y f ( x)取最值时x的取值会集;( 2)在ABC 中,角A, B,C的对边分别是a, b, c ,且满足 ( 2a c) cos B bcosC ,求 f ( A) 的取值范围 .16.如图,ABC中,sin ABC 3, AB 2 ,点D在线段AC上,且 AD 2DC , BD 4 3.233 (1)求 BC 的长;A(2)求 DBC 的面积.DB C17.已知向量a(cos,sin), b(cos,sin ), a b 25.5( 1)求cos() 的值;( 2)若0,0, sin 5.2,求 sin21318.在ABC 中,角A, B,C 的对边分别是a,b,c ,已知 sin 2 2C sin 2C sin C cos 2C 1 ,且a b 5 ,c7 .(1)求角C的大小;(2)求ABC的面积 .119.在ABC 中,角A, B, C的对边分别是a,b,c ,且满足 cos A ( 3 sin A cos A).2( 1)求角A的大小;( 2)若a 2 2, S ABC 2 3 ,求b, c的长.20.已知函数 f ( x)3 sin x 1cos x, (x R),当x [ 1,1]时,其图象与x轴交于M , N两点,22最高点为 P .( 1)求PM , PN夹角的余弦值;( 2)将函数 f ( x) 的图象向右平移 1 个单位,再将所得图像上每点的横坐标扩大为原来的 2 倍,而得到函数 y g (x) 的图象,试画出函数y g( x) 在[2,8] 上的图象.3 321.已知函数f ( x)2a sin2 x 2 sin x cos x a (a为常数)在 x3处获取最大值 .( 1)求a8的值;( 2)求f( x) 在 [ 0,] 上的增区间.22.在ABC 中,角A, B, C的对边分别是a,b,c ,且 b2c2a2bc .( 1)求角A的大小;( 2)若函数f ( x) sin xcosxcos2x,当 f ( B)213 ,求b的值.2时,若a22223.在ABC 中,角A, B, C的对边分别是a, b, c,已知.B,sin A 3 , b335(1)求sin C的值;(2)求ABC的面积 .24.在ABC 中,角A, B, C的对边分别是a,b,c ,且 b cosC (3a c) cos B .(1)求sin B的值;(2)若b 2,且a c,求ABC的面积 .25.已知函数f ( x)3 sin xcos x cos2x1 222 2 .(1)求f ( x)的单调区间;( 2)在锐角三角形ABC 中,角A, B, C的对边分别是a, b, c ,且满足 ( 2b a) cosC c cos A ,求 f ( A) 的取值范围.26.在ABC 中,角A, B, C的对边分别是a,b,c , a sin Asin B b cos2 A2a .( 1)求b ;a( 2)若c2b23a2,求角B.27.港口A北偏东30方向的C处有一检查站,港口正东方向的 B 处有一轮船,距离检查站为 31海里,该轮船从 B 处沿正西方向航行20 海里后到达 D 处观察站,已知观察站与检查站距离为21海里,问此时轮船离港口A还有多远?28.某巡逻艇在 A 处发现在北偏东45 距 A 处8海里的 B 处有一走私船,正沿东偏南15 的方向以12海里 /小时的速度向我岸行驶,巡逻艇马上以12 3 海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方向.29.在海岛A上有一座海拔1km的山岳,山顶设有一个观察站P.有一艘轮船按一固定方向做匀速直线航行,上午11:00 时,测得此船在岛北偏东15 、俯角为 30 的 B 处,到11:10时,又测得该船在岛北偏西45、俯角为 60 的 C 处.( 1)求船航行速度;( 2)求船从 B 到 C 行驶过程中与观察站P 的最短距离 .30.以下列图,甲船由 A 岛出发向北偏东45 的方向做匀速直线航行,速度为船从 A 到出发的同时,乙船从 A 岛正南 40 海里处的 B 岛出发,朝北偏东匀速直线航行,速度为m 海里 / 小时 .(1)求 4 小时后甲船到 B 岛的距离为多少海里;(2)若两船能相遇,求 m.15 2 海里/小时,在甲( tan1)的方向做2。

2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习(附答案)

2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习(附答案)

2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习1.[2023ꞏ新课标Ⅰ卷]已知在△ABC中,A+B=3C,2sin (A-C)=sin B.(1)求sin A;(2)设AB=5,求AB边上的高.2.△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.3.[2023ꞏ新课标Ⅱ卷]记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC面积为3,D为BC的中点,且AD=1.(1)若∠ADC=π3,求tan B;(2)若b2+c2=8,求b,c.4.[2022ꞏ新高考Ⅰ卷,18]记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A 1+sin A=sin 2B1+cos 2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.5.[2023ꞏ全国乙卷(理)]在△ABC 中,已知∠BAC =120°,AB =2,AC =1. (1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.6.[2023ꞏ河北石家庄模拟]在①cos C =217 ,②a sin C =c cos ⎝⎛⎭⎫A -π6 ,这两个条件中任选一个,补充在下面问题中的横线处,并完成解答.问题:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B =π3 ,D 是边BC 上一点,BD =5,AD =7,且________,试判断CD 和BD 的大小关系________.注:如果选择多个条件分别解答,按第一个解答计分.7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2 a +b =2c ,求sin C .8.[2022ꞏ全国乙卷(理),17]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin (A -B )=sin B sin (C -A ).(1)证明:2a 2=b 2+c 2;(2)若a =5,cos A =2531 ,求△ABC 的周长.参考答案1.答案解析:方法一 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -π4 )=sin (3π4 -A ),展开并整理得2 (sin A -cos A )=22 (cos A +sin A ), 得sin A =3cos A ,又sin 2A +cos 2A =1,且sin A >0,所以sin A =31010 .(2)由正弦定理BCsin A =AB sin C ,得BC =AB sin C ×sin A =522×31010 =35 ,由余弦定理AB 2=AC 2+BC 2-2AC ꞏBC cos C ,得52=AC 2+(35 )2-2AC ꞏ35 cos π4 , 整理得AC 2-310 AC +20=0, 解得AC =10 或AC =210 ,由(1)得,tan A =3>3 ,所以π3 <A <π2 ,又A +B =3π4 ,所以B >π4 ,即C <B ,所以AB <AC ,所以AC =210 ,设AB 边上的高为h ,则12 ×AB ×h =12 ×AC ×BC sin C ,即5h =210 ×35 ×22 ,解得h =6,所以AB 边上的高为6.方法二 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -C )=sin [π-(A +C )]=sin (A +C ),所以2sin A cos C -2cos A sin C =sin A cos C +cos A sin C , 所以sin A cos C =3cos A sin C , 易得cos A cos C ≠0,所以tan A =3tan C =3tan π4 =3,又sin A >0,所以sin A =332+12 =31010 . (2)由(1)知sin A =31010 ,tan A =3>0,所以A 为锐角,所以cos A =10,所以sin B =sin (3π4 -A )=22 (cos A +sin A )=22 ×(1010 +31010 )=255 ,由正弦定理AC sin B =ABsin C ,得AC =AB ꞏsin Bsin C =5×25522=210 ,故AB 边上的高为AC ×sin A =210 ×31010 =6.2.答案解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ꞏAB .① 由余弦定理得BC 2=AC 2+AB 2-2AC ꞏAB cos A .②由①②得cos A =-12 .因为0<A <π,所以A =2π3 .(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23 ,从而AC =23 sin B ,AB =23 sin (π-A -B )=3cos B -3 sin B .故BC +AC +AB =3+3 sin B +3cos B =3+23 sin ⎝⎛⎭⎫B +π3 . 又0<B <π3 ,所以当B =π6 时,△ABC 周长取得最大值3+23 . 3.答案解析:(1)因为D 为BC 的中点,所以S △ABC =2S △ADC =2×12 ×AD ×DC sin ∠ADC =2×12 ×1×DC ×32 =3 , 解得DC =2,所以BD =DC =2,a =4.因为∠ADC =π3 ,所以∠ADB =2π3 .在△ABD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ꞏBD cos ∠ADB =1+4+2=7,所以c =7 .在△ADC 中,由余弦定理,得b 2=AD 2+DC 2-2AD ꞏDC ꞏcos ∠ADC =1+4-2=3,所以b =3 .在△ABC 中,由余弦定理,得cos B =c 2+a 2-b 22ac =7+16-32×4×7=5714 ,所以sin B =1-cos 2B =2114 .(2)因为D 为BC 的中点,所以BD =DC .因为∠ADB +∠ADC =π,所以cos ∠ADB =-cos ∠ADC ,则在△ABD 与△ADC 中,由余弦定理,得AD 2+BD 2-c 22AD ꞏBD =-AD 2+DC 2-b 22AD ꞏDC , 得1+BD 2-c 2=-(1+BD 2-b 2),所以2BD 2=b 2+c 2-2=6,所以BD =3 ,所以a =23 .在△ABC 中,由余弦定理,得cos ∠BAC =b 2+c 2-a 22bc =8-122bc =-2bc ,所以S △ABC =12 bc sin ∠BAC =12 bc 1-cos 2∠BAC=12 bc 1-⎝⎛⎭⎫-2bc 2=12 b 2c 2-4 =3 ,解得bc =4.则由⎩⎪⎨⎪⎧bc =4b 2+c 2=8 ,解得b =c =2. 4.答案解析:(1)由已知条件,得sin 2B +sin A sin 2B =cos A +cos A cos 2B .所以sin 2B =cos A +cos A cos 2B -sin A sin 2B =cos A +cos (A +2B )=cos [π-(B +C )]+cos [π-(B +C )+2B ]=-cos (B +C )+cos [π+(B -C )]=-2cos B cos C ,所以2sin B cos B =-2cos B cos C , 即(sin B +cos C )cos B =0.由已知条件,得1+cos 2B ≠0,则B ≠π2 ,所以cos B ≠0,所以sin B =-cos C =12 .又0<B <π3 ,所以B =π6 .(2)由(1)知sin B =-cos C >0,则B =C -π2 ,所以sin A =sin (B +C )=sin (2C -π2 )=-cos 2C .由正弦定理,得a 2+b 2c 2 =sin 2A +sin 2B sin 2C =cos 22C +cos 2Csin 2C =(1-2sin 2C )2+(1-sin 2C )sin 2C =2+4sin 4C -5sin 2C sin 2C=2sin 2C +4sin 2C -5≥22sin 2C ꞏ4sin 2C -5=42 -5,当且仅当sin 2C =22 时,等号成立,所以a 2+b 2c 2 的最小值为42 -5. 5.答案解析:(1)如图,由余弦定理得BC 2=AB 2+AC 2-2AB ꞏAC ꞏcos ∠BAC =22+12+2×2×1×12 =7,得BC =7 .方法一 由正弦定理ACsin ∠ABC =BC sin ∠BAC ,得sin ∠ABC =1×327=2114 .方法二 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ꞏBC =4+7-12×2×7 =5714 , 所以sin ∠ABC =1-cos 2∠ABC =21 .(2)方法一 由sin ∠ABC =2114 ,得tan ∠ABC =35 ,又tan ∠ABC =DA AB =DA 2 ,所以DA =235 ,故△ADC 的面积为12 DA ꞏAC ꞏsin (120°-90°)=12 ×235 ×1×12 =3 .方法二 △ABC 的面积为12 AC ꞏAB ꞏsin ∠BAC =12 ×1×2×32 =32 ,S △ADC S △BAD=12AC ꞏAD ꞏsin ∠CAD12AB ꞏAD ꞏsin ∠BAD =sin 30°2×sin 90° =14 ,故△ADC 的面积为15 S △ABC =15 ×3 =3.6.答案解析:设AB =x ,在△ABD 中由余弦定理可得:49=x 2+25-2ꞏx ꞏ5ꞏcos π3 =x 2+25-5x , 即x 2-5x -24=0,解得x =8. 方案一 选条件①.由cos C =217 得sin C =277 , ∵A +B +C =π,∴sin A =sin (B +C )=32 ×217 +12 ×277 =5714 ,在△ABC 中由正弦定理可得:BC 5714 =8277,解得:BC =10,∴CD =BD =5. 方案二 选条件②.由正弦定理可得:a =2R sin A ,c =2R sin C ,代入条件a sin C =c cos ⎝⎛⎭⎫A -π6 得:sin A sin C =sin C ꞏ⎝⎛⎭⎫32cos A +12sin A =32 cos A sin C +12 sin A sin C ,∴12 sin A sin C =3cos A sin C ,因为A 为三角形内角,所以tan A =3 ,故A =π3 , 所以△ABC 为等边三角形,所以BC =8,∴CD =3,所以CD <BD .7.答案解析:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12 . 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2 sin A +sin (120°-C )=2sin C ,即62 +3 cos C +12 sin C =2sin C ,可得cos (C +60°)=-2.由于0°<C <120°,所以sin (C +60°)=22 ,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60°=6+2 .8.答案解析:(1)证明:∵sin C sin (A -B )=sin B sin (C -A ),∴sin C sin A cos B -sin C cos A sin B =sin B sin C cos A -sin B cos C sin A , ∴sin C sin A cos B =2sin B sin C cos A -sin B cos C sin A . 由正弦定理,得ac cos B =2bc cos A -ab cos C .由余弦定理,得a 2+c 2-b 22 =b 2+c 2-a 2-a 2+b 2-c 22. 整理,得2a 2=b 2+c 2.(2)由(1)知2a 2=b 2+c 2.又∵a =5,∴b 2+c 2=2a 2=50.由余弦定理,得a 2=b 2+c 2-2bc cos A ,即25=50-5031 bc ,∴bc =312 .∴b +c =b 2+c 2+2bc =50+31 =9, ∴a +b +c =14.故△ABC 的周长为14.。

解三角形十类题型汇总(学生版)

解三角形十类题型汇总(学生版)

解三角形十类题型汇总近4年考情(2021-2024)考题统计考点分析考点要求2024年I卷第15题,13分高考对本节的考查不会有大的变化,仍将以考查正余弦定理的基本使用、面积公式的应用为主.从近五年的全国卷的考查情况来看,本节是高考的热点,主要以考查正余弦定理的应用和面积公式为主.(1)正弦定理、余弦定理及其变形(2)三角形的面积公式并能应用(3)实际应用(4)三角恒等变换2024年II卷第15题,13分2024年甲卷第11题,5分2023年I卷II卷第17题,10分2023年甲卷第16题,5分2023年乙卷第18题,12分2022年I卷II卷第18题,12分2021年I卷II卷第20题,12分热点题型解读【题型1】拆角与凑角类型一出现了3个角(拆角)类型二凑角类型三拆角后再用辅助角公式合并求角类型四通过诱导公式统一函数名【题型2】利用余弦定理化简等式类型一出现了角或边的平方类型二出现角的余弦(正弦走不通)【题型3】周长与面积相关计算类型一面积相关计算类型二周长的相关计算【题型4】倍角关系类型一倍角关系的证明和应用类型二扩角降幂类型三图形中二倍角的处理【题型5】角平分线相关计算【题型6】中线相关计算【题型7】高线线相关计算【题型8】其它中间线【题型9】三角形解的个数问题【题型10】解三角形的实际应用类型一距离问题类型二高度问题题型分类解析【题型1】拆角与凑角(1)正弦定理的应用①边化角,角化边⇔a:b:c=sin A:sin B:sin C②大边对大角大角对大边a>b⇔A>B⇔sin A>sin B⇔cos A<cos B③合分比:a+b+csin A+sin B+sin C =a+bsin A+sin B=b+csin B+sin C=a+csin A+sin C=asin A=bsin B=csin C=2R(2)△ABC内角和定理(结合诱导公式):A+B+C=π①sin C=sin(A+B)=sin A cos B+cos A sin B⇔c=a cos B+b cos A 同理有:a=b cos C+c cos B,b=c cos A+a cos C.②-cos C=cos(A+B)=cos A cos B-sin A sin B;③斜三角形中,-tan C=tan(A+B)=tan A+tan B1-tan A⋅tan B⇔tan A+tan B+tan C=tan A⋅tan B⋅tan C④sinA+B2=cos C2;cos A+B2=sin C2类型一出现了3个角(拆角)1.在△ABC中,2b-3c3a =cos Ccos A,求A的值2.△ABC的内角A,B,C的对边分别为a,b,c,且b=2c sin A+π6,求C.3.(湛江一模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知ba =2cosπ3-C,求A.类型二凑角4.在△ABC中,角A,B,C的对边分别为a,b,c,已知2a cos A⋅cos B+b cos2A=3c-b,求角A5.(2024届·广州·阶段练习)已知△ABC中角A,B,C的对边分别为a,b,c,满足ca cos B+bacos C=3cos C,求sin C的值6.在△ABC中,角A,B,C所对的边分别为a,b,c,且bcos B +ccos C=acos A+3acos B cos C,求tan B tan C.7.3a sin A+B2=c sin A,求角C的大小.8.已知△ABC的内角A,B,C的对边分别为a,b,c,且3b cos A+B2=c sin B,求C9.在△ABC中,内角A,B,C所对边的长分别为a,b,c,且满足b cos B+C2=a sin B,求A.类型三拆角后再用辅助角公式合并求角,求A.10.(深圳一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知b+c=2a sin C+π611.在△ABC中,3sin C+cos C=sin B+sin Csin A,求A.12.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知a cos C+3c sin A=b+c,求A.13.已知a,b,c分别为△ABC三个内角A,B,C的对边,且a cos C+3a sin C=b+c,求角A的大小;类型四通过诱导公式统一函数名,求A的值14.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin B=b cos A-π615.已知△ABC中,角A,B,C所对边分别为a,b,c,若满足a(sin2A-cos B cos C)+b sin A sin C=0,求角A的大小.,b cos C=c cos B,求A的16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin B=b cos A-π6值.【题型2】利用余弦定理化简等式余弦定理公式a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .常见变形cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab.类型一出现了角或边的平方17.已知△ABC 内角A ,B ,C 所对的边长分别为a ,b ,c ,22a 2cos B +b 2=2ab cos C +a 2+c 2,求B .18.(2024年高考全国甲卷数学(理)真题)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若B =π3,b 2=94ac ,则sin A +sin C =()A.23913B.3913C.72D.3131319.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a 2=3b 2+c 2,则tan Atan C=.20.(2023年北京高考数学真题)在△ABC 中,(a +c )(sin A -sin C )=b (sin A -sin B ),则∠C =()A.π6B.π3C.2π3D.5π621.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c =252a sin C cos B =a sin A -b sin B +52b sin C ,求b ;22.(2024届·湖南四大名校团队模拟冲刺卷(一))在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为S,且2S sin Csin B +sin A sin C=(a2+b2)sin A,求C的值23.(2024·广东省六校高三第四次联考)已知△ABC的角A,B,C的对边分别为a,b,c,且sin A c cos B+b cos C-c sin B=c sin C+b sin B,求角A24.记ΔABC的内角A,B,C的对边分别为a,b,c.已知b2-a2=2c2,求tan Btan A的值类型二出现角的余弦(正弦走不通)25.记△ABC的内角A、B、C的对边分别为a、b、c,已知b cos A-a cos B=b-c,求A.26.已知a,b,c分别为△ABC三个内角A,B,C的对边,且sin A-B=2sin C,证明:a2=b2+2c2.27.在△ABC中,内角A,B,C的对边分别为a,b,c,c=2b,2sin A=3sin2C,求sin C.28.记△ABC的内角A,B,C的对边分别为a,b,c,B=2π3,且sin A+sin Bsin C+cos2C=1,求证5a=3c29.已知△ABC的内角A、B、C的对边分别为a、b、c,sin(A-B)tan C=sin A sin B,求a2+c2.b230.△ABC的内角A,B,C的对边分别为a,b,c.已知b-c,求角A.sin B=b sin A-C【题型3】周长与面积相关计算设计周长和面积的相关计算一般会用到余弦定理还有可能需要用到完全平方公式对于完全平方公式:a+b2=a2+b2+2ab,其中两边之和a+b对应周长,两边平方和a2+b2在余弦定理中,两边之积ab在面积公式和余弦定理中都会出现类型一面积相关计算31.已知△ABC中角A,B,C的对边分别为a,b,c,sin C=223,a=b+2,c=32,求△ABC的面积.32.(2024新高考一卷·真题)记△ABC的内角A、B、C的对边分别为a,b,c,已知sin C=2cos B,a2+b2-c2=2ab(1)求B;(2)若△ABC的面积为3+3,求c.33.记△ABC的内角A,B,C的对边分别为a,b,c,B=2π3,且5a=3c,若△ABC的面积为153,求c34.在△ABC中,内角A,B,C的对边分别为a,b,c,已知A=π6,△ABC的面积为332,b=2,求a.35.记△ABC的内角A,B,C的对边分别为a,b,c,已知B=2A,当a=4,b=6时,求△ABC的面积S.36.(2024届·广东省六校第二次联考)已知△ABC中角A,B,C的对边分别为a,b,c,sin C=223,a=b +2,c=32,求△ABC的面积.37.记△ABC的内角A,B,C的对边分别为a,b,c,已知B=2A,当a=4,b=6时,求△ABC的面积S.类型二周长的相关计算38.已知在△ABC中,角A,B,C的对边分别是a,b,c,且A=C,若B=π6,△ABC的面积为4,求△ABC的周长.39.在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b+c)(sin B+sin C)=a sin A+3b sin C.(1)求角A的大小;(2)若a=6,且△ABC的面积为3,求△ABC的周长.40.(2024·新高考二卷·真题)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =2.(1)求A .(2)若a =2,2b sin C =c sin2B ,求△ABC 的周长.41.△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,AB ⋅AC=-1,△ABC 的面积为2,若a =22,求△ABC 的周长.42.在△ABC 中,已知AC ⋅AB =4,a =5,∠BAC =60°,则△ABC 周长为.43.在△ABC 中,A ,B ,C 所对的边为a ,b ,c ,A =π3,a =2,B =π4,求△ABC 的周长.44.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且(b +c )(sin B +sin C )=a sin A +3b sin C .(1)求角A 的大小;(2)若a =6,且△ABC 的面积为3,求△ABC 的周长.【题型4】倍角关系1、二倍角公式:sin2A =2sin A cos A ,cos2A =2cos 2A -1=1-2sin 2A =cos 2A -sin 2A 2、扩角降幂:cos2C 2=1+cos C 2.,sin 2C 2=1-cos C2忘记了可以用二倍角公式推导:记C2=t,则cos C=cos2t=2cos2t-1=1-2sin2t故cos2t=2cos2t-1⇒cos2t=1+cos2t2,cos2t=1-2sin2t⇒sin2t=1-cos2t23、倍角关系证明的方法技巧解三角形中的关系,主要涉及到正弦、余弦等三角函数的倍角公式。

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c .4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123123S S S B -+==. (1)求ABC 的面积;(2)若sin sin 3A C =,求b . 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC C . 9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.2.(2023∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知2,120a b A ==∠= . (1)求sin B 的值; (2)求c 的值; (3)求()sin B C -的值.3.(2022∙天津∙高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.4.(2021∙天津∙高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =. (I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.5.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.6.(2020∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.7.(2020∙浙江∙高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.8.(2020∙江苏∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.考点04 求三角形的高、中线、角平分线及其他线段长1.(2023∙全国新Ⅰ卷∙高考真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.考点05 三角形中的证明问题1.(2022∙全国乙卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ; (2)证明:2222a b c =+2.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.参考答案考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积. 条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分. 【答案】(1)2π3A =; (2)选择①无解;选择②和③△ABC【详细分析】(1)利用正弦定理即可求出答案; (2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【答案详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角, 则cos 0B ≠,则2sin 7B b =,则7sin sin sin b a BA A ===,解得sin 2A =, 因为A 为钝角,则2π3A =. (2)选择①7b =,则sin 7B ===2π3A =,则B 为锐角,则3B π=, 此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin 14B ==,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B ⎛⎫=+=+=+ ⎪⎝⎭131********⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯=选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C ,解得sin C =,因为C 为三角形内角,则11cos 14C ==, 则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭11121421414⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯⨯=△ 2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【详细分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【答案详解】(1)因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc Abc A A+-===,解得:1bc =.(2)由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC的面积为11sin 122ABC S bc A ==⨯△.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积. 【答案】(1)14;【详细分析】(1)首先由余弦定理求得边长BC的值为BCcos 14B =,最后由同角三角函数基本关系可得sin 14B =; (2)由题意可得4ABDACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积. 【答案详解】(1)由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =222cos 214a c b B ac +-===,sin ABC ∠==(2)由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭△△. 4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】;(2)22.【详细分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab +-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【答案详解】(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin 45A C ==. (2)因为4a ,由余弦定理,得2222221612111355cos 22225a a aa b c C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.5.(2019∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). 【详细分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅ ,又根据正弦定理和1c =得到ABC S 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C 的值域.【答案详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】 由三角形的内角和定理得222A C Bπ+=-, 此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭. 由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==, 此时就有sin cossin sin 2BA AB =,即cos sin 2B B =,再由二倍角的正弦公式得cos2sin cos 222B B B=,解得3B π=. [方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】 由解法1得sin sin 2A CB +=, 两边平方得22sinsin 2A CB +=,即21cos()sin 2A CB -+=. 又180A BC ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=, 进一步整理得22cos cos 10B B +-=, 解得1cos 2B =,因此3B π=. [方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】 根据题意sinsin 2A Ca b A +=,由正弦定理得sin sin sin sin 2A C A B A +=, 因为0A π<<,故sin 0A >, 消去sin A 得sin sin 2A CB +=. 0<B π<,02A C π+<<,因为故2A C B +=或者2A CB π++=, 而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=, 又因为A BC π++=,代入得3B π=,所以3B π=.(2)[方法一]【最优解:利用锐角三角形求得C 的范围,然后由面积函数求面积的取值范围】 因为ABC 是锐角三角形,又3B π=,所以,6262A C ππππ<<<<, 则1sin 2ABCS ac B ==V 22sin 1sin 3sin 24sin 4sin C a A c B c C Cπ⎛⎫- ⎪⎝⎭⋅⋅=⋅=⋅=22sincos cos sin 333sin 8tan C CC C ππ-=. 因为,62C ππ⎛⎫∈ ⎪⎝⎭,所以tan C ⎫∈+∞⎪⎪⎝⎭,则1tan C ∈,从而ABC S ⎝⎭∈ ,故ABC面积的取值范围是82⎫⎪⎪⎝⎭. [方法二]【由题意求得边a 的取值范围,然后结合面积公式求面积的取值范围】 由题设及(1)知ABC的面积4ABC S a =△. 因为ABC 为锐角三角形,且1,3c B π==,所以22221cos 0,21cos 0,2b a A bb a C ab ⎧+-=>⎪⎪⎨+-⎪=>⎪⎩即22221010.b a b a ⎧+->⎨+->⎩, 又由余弦定理得221b a a =+-,所以220,20,a a a ->⎧⎨->⎩即122a <<,所以82ABC S << ,故ABC面积的取值范围是⎝⎭. [方法三]【数形结合,利用极限的思想求解三角形面积的取值范围】如图,在ABC 中,过点A 作1AC BC ⊥,垂足为1C ,作2AC AB ⊥与BC 交于点2C . 由题设及(1)知ABC的面积ABC S =△,因为ABC 为锐角三角形,且1,3c B π==,所以点C 位于在线段12C C 上且不含端点,从而cos cos cc B a B⋅<<, 即1cos3cos 3a ππ<<,即122a <<,所以82ABC S << , 故ABC面积的取值范围是82⎛⎫⎪ ⎪⎝⎭.【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法; 方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值; 方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小. (2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用.6.(2017∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【答案】(1)23π,4;(2【答案详解】试题详细分析:(1)先根据同角的三角函数的关系求出tan A = 从而可得A 的值,再根据余弦定理列方程即可求出边长c 的值;(2)先根据余弦定理求出cos C ,求出CD 的长,可得12CD BC =,从而得到12ABD ABC S S ∆∆=,进而可得结果. 试题解析:(1)sin 0,tan A A A =∴= 20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =. (2)2222cos c b a ab C =+-Q,1628422cos C ∴=+-⨯⨯,2cos 2cos AC C CD C ∴=∴===12CD BC ∴=,1142222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=12ABD ABC S S ∆∆∴==7.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=. (1)求角C ;(2)若c =2ABC S ∆=,求ABC ∆的周长. 【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C (2)11sin 6222∆=⇒=⇒=ABC S ab C ab ab又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.8.(2015∙浙江∙高考真题)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan()24A π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若,34B a π==,求ABC ∆的面积. 【答案】(1)25;(2)9 【答案详解】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan()24A π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin 5C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=. 考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.9.(2015∙全国∙高考真题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边, 2sin 2sin sin B A C =. (1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积. 【答案】(1)14;(2)1 【答案详解】试题详细分析:(1)由2sin 2sin sin B A C =,结合正弦定理可得:22b ac =,再利用余弦定理即可得出cos ;B(2)利用(1)及勾股定理可得c ,再利用三角形面积计算公式即可得出 试题解析:(1)由题设及正弦定理可得22b ac = 又a b =,可得2,2b c a c ==由余弦定理可得2221cos 24a c b B ac +-==(2)由(1)知22b ac =因为90B = ,由勾股定理得222a c b += 故222a c ac +=,得c a == 所以的面积为1考点:正弦定理,余弦定理解三角形10.(2015∙山东∙高考真题)设()2sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.【答案】(Ⅰ)单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)ABC ∆【答案详解】试题详细分析:(Ⅰ)首先利用二倍角公式化简函数()f x 的解析式,再利用正弦函数的单调性求其单调区间;(Ⅱ)首先由02A f ⎛⎫= ⎪⎝⎭结合(Ⅰ)的结果,确定角A 的值,然后结合余弦定理求出三角形ABC ∆面积的最大值. 试题解析:解:(Ⅰ)由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=-sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (Ⅱ)由1sin 0,22A f A ⎛⎫=-= ⎪⎝⎭得1sin 2A =由题意知A 为锐角,所以cos 2A =由余弦定理:2222cos a b c bc A =+-可得:2212b c bc =+≥即:2bc ≤ 当且仅当b c =时等号成立.因此1sin 2bc A ≤所以ABC ∆面积的最大值为24考点:1、诱导公式;2、三角函数的二倍角公式;3、余弦定理;4、基本不等式.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长. 【答案】(1)π6A =(2)2+【详细分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决; (2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长. 【答案详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,333A A ∈⇒+∈,故ππ32A +=,解得π6A = 方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A = 又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A = 又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A == ,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==, 则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=, 又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-, 又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=, 由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412b c==,解得b c == 故ABC的周长为2+2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3c . 【答案】(1)π3B =(2)【详细分析】(1)由余弦定理、平方关系依次求出cos ,sin C C,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【答案详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===, 因为()0,πC ∈,所以sin 0C >,从而sin 2C ===,又因为sin C B =,即1cos 2B =, 注意到()0,πB ∈, 所以π3B =. (2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而1,4222a cbc +====, 由三角形面积公式可知,ABC 的面积可表示为21113sin 222228ABC S ab C c c ==⋅⋅= , 由已知ABC的面积为323=所以c =3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =. (1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c . 【答案】(2)2b c ==.【详细分析】(1)方法1,利用三角形面积公式求出a ,再利用余弦定理求解作答;方法2,利用三角形面积公式求出a ,作出BC 边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a ,再利用三角形面积公式求出ADC ∠即可求解作答;方法2,利用向量运算律建立关系求出a ,再利用三角形面积公式求出ADC ∠即可求解作答. 【答案详解】(1)方法1:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ABD △中,2π3ADB ∠=,由余弦定理得2222cos c BD AD BD AD ADB =+-⋅∠, 即2141221()72c =+-⨯⨯⨯-=,解得c =cos 14B ==,sin B ===,所以sin tan cos 5B B B ==. 方法2:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ACD 中,由余弦定理得2222cos b CD AD CD AD ADC =+-⋅∠,即214122132b =+-⨯⨯⨯=,解得b =,有2224AC AD CD +==,则π2CAD ∠=,π6C =,过A 作AE BC ⊥于E,于是3cos ,sin 2CE AC C AE AC C ====,52BE =,所以tan 5AE B BE ==. (2)方法1:在ABD △与ACD 中,由余弦定理得222211121cos(π)4211121cos 42c a a ADC b a a ADC ⎧=+-⨯⨯⨯-∠⎪⎪⎨⎪=+-⨯⨯⨯∠⎪⎩,整理得222122a b c +=+,而228b c +=,则a =,又11sin 22ADC S ADC =⨯∠=,解得sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.方法2:在ABC 中,因为D 为BC 中点,则2AD AB AC =+ ,又CB AB AC =-,于是2222224()()2()16AD CB AB AC AB AC b c +=++-=+= ,即2416a +=,解得a =,又11sin 2ADC S ADC =⨯∠ sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知123123S S S B -+==. (1)求ABC 的面积; (2)若sin sin 3A C =,求b . 【答案】(2)12【详细分析】(1)先表示出123,,S S S,再由1232S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.【答案详解】(1)由题意得22221231,,22444S a a S b S c =⋅⋅===,则222123S S S -+==, 即2222a c b +-=,由余弦定理得222cos 2a c b B ac +-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,1cos 4ac B ==,则1sin 28ABC S ac B == ; (2)由正弦定理得:sin sin sin b a c B A C ==,则229sin sin sin sin sin 43b ac ac B A C A C =⋅==,则3sin 2b B =,31sin 22b B ==. 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14【详细分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. 【答案详解】(1)证明:因为()()sin sin sin sin C A B B C A -=-, 所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+;(2)解:因为255,cos 31a A ==, 由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长. 【答案】(1)6π(2)6+【详细分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【答案详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos 2C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABC S ab C a === ,解得a =.由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.【答案】(1)π6;(2)5.【详细分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. 【答案详解】(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B +++-==()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5. 8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC =2,求C . 【答案】(1(2)15︒.【详细分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【答案详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B == (2)[方法一]:多角换一角 30A C +=︒ ,sin sin(30)A C C C ∴=︒-1cos sin(30)22C C C ==+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒. [方法二]:正弦角化边由正弦定理及150B =︒得22sin sin sin ====a c bR b A C B.故sin ,sin 22==a c A C b b .由sin 2A C =,得a +=.又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =.所以15=︒C .【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【详细分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【答案详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===,所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤,当且仅当0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.10.(2018∙全国∙高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠; (2)若DC =,求BC . 【答案】(1)5;(2)5. 【详细分析】(1)方法一:根据正弦定理得到sin sin BD AB A ADB =∠∠,求得sin 5ADB ∠=,结合角的范围,利用同角三角函数关系式,求得cos 5ADB ∠==;(2)方法一:根据第一问的结论可以求得cos sin 5BDC ADB ∠=∠=,在BCD △中,根据余弦定理即可求出.【答案详解】(1)[方法1]:正弦定理+平方关系在ABD △中,由正弦定理得sin sin BD AB A ADB =∠∠,代入数值并解得sin 5ADB ∠=.又因为BD AB >,所以A ADB ∠>∠,即ADB ∠为锐角,所以cos 5ADB ∠=. [方法2]:余弦定理在ABD △中,2222cos 45BD AB AD AB AD =+-⋅ ,即2254222AD AD =+-⨯⨯⨯,解得:AD =所以,2254cos5ADB +-∠==. [方法3]:【最优解】利用平面几何知识如图,过B 点作BE AD ⊥,垂足为E ,BF CD ⊥,垂足为F .在Rt AEB 中,因为45A ∠=︒,=2AB ,所以AE BE ==.在Rt BED △中,因为5BD =,则DE ===.所以cos ADB ∠=[方法4]:坐标法以D 为坐标原点,DC 为x 轴,DA为y 轴正方向,建立平面直角坐标系(图略).设BDC α∠=,则(5cos ,5sin )B αα.因为45A ∠=︒,所以(0,5sin A α.从而2AB ==,又α是锐角,所以cos 5α=,cos sin ADB α∠===(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,cos 5ADB ∠=,()2222cos 90BC BD DC BD DC ADB︒=+-⋅-∠2252525ADB =+-⨯⨯∠=,所以=5BC .[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,BF =FC =,由勾股定理得=5BC .【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法; 方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现. (2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法. 方法二:利用几何知识,解直角三角形,简单易算.11.(2017∙全国∙高考真题)△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2) 3【答案详解】试题详细分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC 的周长为3+试题解析:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =. 故2sin sin 3B C =. (2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +故ABC 的周长为3+点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.12.(2017∙山东∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .【答案】34A π=,a =【答案详解】试题详细分析:先由数量积公式及三角形面积公式得3cos 613sin 32c A c A =-⎧⎪⎨⨯=⎪⎩,由此求A ,再利用余弦定理求a .试题解析:因为6AB AC ⋅=-, 所以cos 6bc A =-, 又3ABC S =△, 所以sin 6bc A =,因此tan 1A =-,又0πA <<, 所以3π4A =, 又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(a =+-⨯⨯,所以a = 【考点】解三角形【名师点评】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.13.(2017∙全国∙高考真题)△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin2B AC +=.(1)求cos B ;(2)若6a c +=,△ABC 的面积为2,求b . 【答案】(1)1517;(2)2. 【答案详解】试题详细分析:(1)利用三角形的内角和定理可知A C B π+=-,再利用诱导公式化简()sin A C +,利用降幂公式化简28sin 2B,结合22sin cos 1B B +=,求出cos B ;(2)由(1)可知8sin 17B =,利用三角形面积公式求出ac ,再利用余弦定理即可求出b . 试题解析:(1)()2sin 8sin2BA C +=,∴()sin 41cosB B =-,∵22sin cos 1B B +=, ∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABC S ac B =⋅=,∴172ac =, ∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=, ∴2b =.14.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒=⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.15.(2015∙浙江∙高考真题)在ABC ∆中,内角 A ,B , C 所对的边分别为a , b ,c ,已知 4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为3,求 b 的值. 【答案】(1)2;(2)3b =.【答案详解】(1)根据正弦定理可将条件中的边之间的关系转化为角之间满足的关系,再将式 子作三角恒等变形即可求解;(2)根据条件首先求得sin B 的值,再结合正弦定理以及三角 形面积的计算公式即可求解.试题解析:(1)由22212b a c -=及正弦定理得2211sin sin 22B C -=, ∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos 2sin 22sin cos B C C C -==,解得tan 2C =;(2)由tan 2C =,(0,)C π∈得sin 5C =,cos 5C =,又∵sin sin()sin()4B A C C π=+=+,∴sin B =3c b =,又∵4A π=,1sin 32bc A =,∴bc =3b =. 考点:1.三角恒等变形;2.正弦定理.16.(2015∙山东∙高考真题)ABC 中,角A B C ,,所对的边分别为,,a b c .已知cos ()39B A B ac =+==求sin A 和c 的值.【答案】,1.3【详细分析】由条件先求得sin sin C A ,,再由正弦定理即可求解.【答案详解】在ABC 中,由cos 3B =,得sin 3B =.因为A B C π++=,所以sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,cos 9C =,因此sin sin()sin cos cos sin A B C B C B C =+=+39393=⨯+⨯=.由sin sin a c A C =,可得sin sin 9cc A a C ===,又ac =1c =.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.【答案】(1)4(2)4 (3)5764【详细分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【答案详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍); 则4,6a c ==.(2)法一:因为B为三角形内角,所以sin B ===再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭, 由(2)法一知sin 16B =,。

(完整版)解三角形高考大题-带答案

(完整版)解三角形高考大题-带答案

解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。

(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。

高考数学解三角形大题

高考数学解三角形大题

解三角形解答题题型一基础题型:求边求角+边角互化1.在ABC中,内角A,B,C 的对边分别为a,b,c,已知cos Acos B sin Asin B 1 3sinC .(1)求角C的大小;(2)若ABC的面积为2 3,c 2 3,求a b的值.2.在△ABC中,角A, B, C所对的边分别为a,b,c,且cos A 2 5,b c 6,S ABC 2. 25(1)求sin A 的值;(2)求a的值.11.在ABC中,内角A,B ,C的对边分别为a,b,c,且2a bs AC in cos2BcsinC asin A. 2(1)求角C 的大小;13,求(2)若c7,cos A CABC的面积1415.锐角ABC的内角A、B ,C的对边分别为a ,b ,c ,2sin A(a cos B bcos A) 3a. (1)求角C 的大小;(2)若c 13,ABC的面积为3 3,求ABC的周长.题型二三角形中的最值问题3.已知ABC的内角A 、B 、C所对的边分别为a 、b 、c .且cos B 2sin C cosA. 6 (1)求角A;(2)若ABC的面积为2 3 ,求ABC周长的最小值.7.已知△ABC的内角A,B,C所对的边分别为a,b ,c ,若向量m (a,b c)与n (cosC 3sinC, 1)相互垂直.(Ⅰ )求角A的大小;(Ⅱ )若a 3,求△ ABC 周长的最大值.12.在锐角三角形ABC 中,a,2sin 2AcosA 3 cos( B C) b ,c分别为角A,B ,C的对边,且sin3A 30.1)求A 的大小;2)若a 2,求ABC 的周长L 的取值范围题型三平面几何中的应用4.如图所示,ABC中,BC 6,ABC 60 ,在ABC内存在一点P,满足PA 2,PB 2 3 ,PAB外接圆的半径为2.1)求PBC ,APB ;2)求PC的长及APC的面积.5. ABC 的内角 A,B,C 的对边分别为 a,b,c 。

2024届高考数学专项练习解三角形“热考”十点(解析版)

2024届高考数学专项练习解三角形“热考”十点(解析版)

解三角形“热考”十点热点题型速览热点一 三角形中边角计算热点二 判断三角形的形状热点三 三角形解的个数问题热点四 解三角形与平面向量的交汇热点五 解三角形与解析几何交汇问题热点六 解三角形与立体几何交汇问题热点七 正弦定理、余弦定理应用于平面几何问题热点八 三角形周长问题热点九 三角形面积问题热点十 三角形范围(最值)问题三角形边(关系式)的问题三角形角(函数值)问题三角形周长问题三角形面积问题热点一三角形中边角计算1(2023·北京·统考高考真题)在△ABC 中,(a +c )(sin A -sin C )=b (sin A -sin B ),则∠C =()A.π6B.π3C.2π3D.5π62(2020·全国·统考高考真题)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12D.233(2021·全国·高考真题)在△ABC 中,已知B =120°,AC =19,AB =2,则BC =()A.1B.2C.5D.34(2020·山东·统考高考真题)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2+b 2=c 2+ab sin C ,且a sin B cos C +c sin B cos A =22b ,则tan A 等于()A.3 B.-13 C.3或-13 D.-3或135(2021·浙江·统考高考真题)在△ABC 中,∠B =60°,AB =2,M 是BC 的中点,AM =23,则AC =,cos ∠MAC =.【规律方法】1.已知任意两角和一边,解三角形的步骤:①求角:根据三角形内角和定理求出第三个角;②求边:根据正弦定理,求另外的两边.(1)已知内角不是特殊角时,往往先求出其正弦值,再根据以上步骤求解.(2)已知三边解三角形的方法2024届高考数学专项练习解三角形“热考”十点(解析版)(1)先利用余弦定理求出一个角的余弦,从而求出第一个角;再利用余弦定理或由求得的第一个角,利用正弦定理求出第二个角;最后利用三角形的内角和定理求出第三个角.(2)利用余弦定理求三角的余弦,进而求得三个角.热点二判断三角形的形状6在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.7(2020·全国·统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.【规律方法】利用正弦定理判断三角形形状的方法:(1)化边为角.将题目中的所有条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.(2)化角为边.根据题目中的所有条件,利用正弦定理化角为边,再利用代数恒等变换得到边的关系(如a =b ,a 2+b 2=c 2),进而确定三角形的形状.2.判断三角形的形状时,经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2.②△ABC 为锐角三角形⇔a 2+b 2>c 2且b 2+c 2>a 2且c 2+a 2>b 2.③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2.④若sin 2A =sin 2B ,则A =B 或A +B =π2.3.常见误区:易忽略三角形中的隐含条件.热点三三角形解的个数问题8(2016·全国卷Ⅰ文,4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=5,c=2,cos A= 23,则b=()A.2B.3C.2D.39在△ABC中,已知sin C=12,a=23,b=2,求边c.10(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)在①tan A tan C-3tan A=1+3tan C;②2c-3acos B=3b cos A;③a-3csin A+c sin C=b sin B这三个条件中任选一个,补充在下面问题中并作答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角B的大小;(2)已知c=b+1,且角A有两解,求b的范围.【方法技巧】三角形解的个数的判断在△ABC中,已知a,b和A,利用正弦定理解三角形时,会出现解不确定的情况,一般可根据三角形中“大边对大角和三角形内角和定理”来取舍.具体解的情况如下表:A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解上表中若A为锐角,则当a<b sin A时无解;若A为钝角或直角,则当a≤b时无解.热点四解三角形与平面向量的交汇11(2023·全国·统考高考真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ⋅ED=()A.5B.3C.25D.512(2023·贵州毕节·统考模拟预测)已知点G 为三角形ABC 的重心,且GA +GB =GA -GB,当∠C 取最大值时,cos C =()A.45B.35 C.25D.1513【多选题】(2023·浙江·二模)在△ABC 中,AB 2+AC 2=2BC 2,CD =BC ,则()A.AD >CDB.AD <52CD C.∠ADC >π6D.∠ADC <π4【点评】1.交汇考向主要有:(1)向量坐标运算条件下解三角形问题;(2)三角形中向量运算问题;(3)共线向量条件下解三角形问题;(4)向量的模与解三角形问题.2.解答的总体思路可归结为三个环节:(1)根据向量运算的定义、法则、运算律等,加以计算;(2)应用三角公式,进行变形进而完成化简;(3)应用正弦定理、余弦定理、三角形面积公式等,实施边角转化.就整体而言,正确向量运算、恒等变形是基础,恰当的边角转化是关键,考查的核心是解三角形、三角问题,向量运算是工具.应该注意的是,向量运算条件的给出,也可能是向量平行、垂直,需根据相关条件加以转化.热点五解三角形与解析几何交汇问题14(2021·全国·统考高考真题)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,PF 1 =3PF 2 ,则C 的离心率为()A.72B.132C.7D.1315(2023·全国·高三专题练习)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则|PO |=()A.25B.302C.35D.35216(2023·湖北武汉·统考模拟预测)已知抛物线y 2=8x 的焦点为F ,准线与x 轴的交点为C ,过点C 的直线l 与抛物线交于A ,B 两点,若∠AFB =∠CFB ,则|AF |=.【点评】1.与椭圆、双曲线的定义及几何性质相结合,在“焦点三角形”中,综合应用定义、正弦定理或余弦定理,确定几何量或几何量之间的关系,解决离心率(范围)计算问题,这类问题多以客观题出现;2.直线与圆锥曲线位置关系问题中,通过交点等构造或产生三角形,计算三角形面积(最值)、线段长度等,这类问题多在主观题出现,解题过程往往通过直线与圆锥曲线方程联立方程组,应用判别式、一元二次方程根与系数的关系、弦长公式、正弦定理、余弦定理等.热点六解三角形与立体几何交汇问题17(2023·全国·统考高考真题)已知四棱锥P-ABCD的底面是边长为4的正方形,PC=PD=3,∠PCA=45°,则△PBC的面积为()A.22B.32C.42D.6218(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C-AB-D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.25C.35D.2519(2023·河南·校联考模拟预测)点P是圆柱上底面圆周上一动点,△ABC是圆柱下底面圆的内接三角形,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若c=2,C=60°,三棱锥P-ABC的体积最大值为233,则该三棱锥外接球的表面积为()A.193π B.283π C.539π D.433π【点评】与立体几何的交汇问题,往往是利用几何体中存在的三角形,应用正弦定理或余弦定理,确定解题所需要的几何量,完成角的(函数值)的计算、面积计算等,有时与数学文化相结合,解决古典书籍中的问题,或与时俱进,解决现实生活中的立体几何问题,善于发现相关三角形或做辅助线构造三角形,是解题的重要基础.热点七正弦定理、余弦定理应用于平面几何问题20(2023·全国·统考高考真题)在△ABC中,∠BAC=60°,AB=2,BC=6,∠BAC的角平分线交BC于D,则AD=.21(2020·江苏·统考高考真题)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=2,B= 45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=-45,求tan∠DAC的值.【点评】解三角形应用于平面几何问题的基本思路(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.(3)特别提醒:做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.热点八三角形周长问题22(2022·全国·统考高考真题)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A-B)= sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.23(2022·北京·统考高考真题)在△ABC中,sin2C=3sin C.(1)求∠C;(2)若b=6,且△ABC的面积为63,求△ABC的周长.热点九三角形面积问题24(2023·全国·统考高考真题)在△ABC中,已知∠BAC=120°,AB=2,AC=1.(1)求sin∠ABC;(2)若D为BC上一点,且∠BAD=90°,求△ADC的面积.25(2022·浙江·统考高考真题)在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=5c, cos C=35.(1)求sin A的值;(2)若b=11,求△ABC的面积.【点评】三角形面积有关的问题解答步骤:(1)化简转化:根据条件,利用三角恒等变换公式,化简已知条件等式,再利用正弦定理、余弦定理化边、化角;(2)选择公式:多选择S△ABC=12ab sin C=12bc sin A=12ac sin B;(3)求值(最值).热点十三角形范围(最值)问题26(2022·全国·统考高考真题)记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.27(2020·浙江·统考高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a =0.(I)求角B的大小;(II)求cos A+cos B+cos C的取值范围.28(2020·全国·统考高考真题)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.【思路引导】(1)第一步,应用正弦定理角化边;第二步,应用余弦定理求cos A,进而求得A;(2)重点分析方法一:由于BC已知,因此,主要任务是确定AC+AB的最值.第一步,应用余弦定理并化简可得AC+AB2-AC⋅AB=9;第二步,利用基本不等式求得AC+AB的最大值,进而得到结果.29(2022秋·河南郑州·高三郑州外国语学校校考阶段练习)在①a+csin A-sin C=b sin A-sin B;②2b-ac-cos Acos C=0;③向量m =c,3b与n=cos C,sin B平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知△ABC内角A,B,C的对边分别为a,b,c,且满足.(1)求角C;(2)若△ABC为锐角三角形,且a=4,求△ABC面积的取值范围.【点评】1.边角、周长问题:利用正弦定理余弦定理灵活的进行边角转化,如果转化成 “边”的表达式,应用基本不等式求最值(范围);如果转化成三角函数表达式,应用二次函数的性质或应用三角函数的性质求解.2.面积问题求解基本步骤:一是应用正弦定理、余弦定理实施边角转化;二是确定三角形面积的表达式;三是应用均值不等式或三角函数性质求其最值(范围).解三角形“热考”十点热点题型速览热点一 三角形中边角计算热点二 判断三角形的形状热点三 三角形解的个数问题热点四 解三角形与平面向量的交汇热点五 解三角形与解析几何交汇问题热点六 解三角形与立体几何交汇问题热点七 正弦定理、余弦定理应用于平面几何问题热点八 三角形周长问题热点九 三角形面积问题热点十 三角形范围(最值)问题三角形边(关系式)的问题三角形角(函数值)问题三角形周长问题三角形面积问题热点一三角形中边角计算1(2023·北京·统考高考真题)在△ABC中,(a+c)(sin A-sin C)=b(sin A-sin B),则∠C=()A.π6B.π3C.2π3D.5π6【答案】B【分析】利用正弦定理的边角变换与余弦定理即可得解.【详解】因为(a+c)(sin A-sin C)=b(sin A-sin B),所以由正弦定理得(a+c)(a-c)=b(a-b),即a2-c2=ab-b2,则a2+b2-c2=ab,故cos C=a2+b2-c22ab=ab2ab=12,又0<C<π,所以C=π3 .故选:B.2(2020·全国·统考高考真题)在△ABC中,cos C=23,AC=4,BC=3,则cos B=()A.19B.13C.12D.23【答案】A【分析】根据已知条件结合余弦定理求得AB,再根据cos B=AB2+BC2-AC22AB⋅BC,即可求得答案.【详解】∵在△ABC中,cos C=23,AC=4,BC=3根据余弦定理:AB2=AC2+BC2-2AC⋅BC⋅cos C AB2=42+32-2×4×3×23可得AB2=9,即AB=3由∵cos B=AB2+BC2-AC22AB⋅BC=9+9-162×3×3=19故cos B=1 9 .故选:A.3(2021·全国·高考真题)在△ABC中,已知B=120°,AC=19,AB=2,则BC=()A.1B.2C.5D.3【答案】D【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.【详解】设AB=c,AC=b,BC=a,结合余弦定理:b2=a2+c2-2ac cos B可得:19=a2+4-2×a×c×cos120°,即:a2+2a-15=0,解得:a=3(a=-5舍去),故BC=3.故选:D.4(2020·山东·统考高考真题)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2+b2=c2+ab sin C,且a sin B cos C+c sin B cos A=22b,则tan A等于()A.3B.-13C.3或-13D.-3或13【答案】A【分析】利用余弦定理求出tan C=2,并进一步判断C>π4,由正弦定理可得sin(A+C)=22⇒sin B=22,最后利用两角和的正切公式,即可得到答案;【详解】∵cos C=a2+b2-c22ab=sin C2⇒tan C=2,∴C>π4,∵a sin A =bsin B=csin C=2R,∴sin A⋅sin B⋅cos C+sin C⋅sin B⋅cos A=22sin B,∴sin(A+C)=22⇒sin B=22,∴B=π4,∴tan B=1,∴tan A=-tan(B+C)=-tan B+tan C1-tan B⋅tan C=3,故选:A.5(2021·浙江·统考高考真题)在△ABC中,∠B=60°,AB=2,M是BC的中点,AM=23,则AC=,cos∠MAC=.【答案】213239 13【分析】由题意结合余弦定理可得BC=8,进而可得AC,再由余弦定理可得cos∠MAC.【详解】由题意作出图形,如图,在△ABM 中,由余弦定理得AM 2=AB 2+BM 2-2BM ⋅BA ⋅cos B ,即12=4+BM 2-2BM ×2×12,解得BM =4(负值舍去),所以BC =2BM =2CM =8,在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ⋅BC ⋅cos B =4+64-2×2×8×12=52,所以AC =213;在△AMC 中,由余弦定理得cos ∠MAC =AC 2+AM 2-MC 22AM ⋅AC =52+12-162×23×213=23913.故答案为:213;23913.【规律方法】1.已知任意两角和一边,解三角形的步骤:①求角:根据三角形内角和定理求出第三个角;②求边:根据正弦定理,求另外的两边.(1)已知内角不是特殊角时,往往先求出其正弦值,再根据以上步骤求解.(2)已知三边解三角形的方法(1)先利用余弦定理求出一个角的余弦,从而求出第一个角;再利用余弦定理或由求得的第一个角,利用正弦定理求出第二个角;最后利用三角形的内角和定理求出第三个角.(2)利用余弦定理求三角的余弦,进而求得三个角.热点二判断三角形的形状6在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.【答案】直角三角形.【解析】解法一:∵b 2sin 2C +c 2sin 2B =2bc cos B cos C ,∴利用正弦定理可得sin 2B sin 2C +sin 2C sin 2B =2sin B ·sin C ·cos B ·cos C ,∵sin B sin C ≠0,∴sin B ·sin C =cos B cos C ,∴cos (B +C )=0,∴cos A =0,∵0<A <π,∴A =π2,∴△ABC 为直角三角形.解法二:已知等式可化为b 2-b 2cos 2C +c 2-c 2·cos 2B =2bc cos B cos C ,由余弦定理可得b 2+c 2-b 2·a 2+b 2-c 22ab2-c 2·a 2+c 2-b 22ac 2=2bc ·a 2+b 2-c 22ab·a 2+c 2-b 22ac ∴b 2+c 2=a 2,∴△ABC 为直角三角形.解法三:已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B ·cos C ,∴b 2+c 2=b 2cos 2C +c 2cos 2B +2bc cos B ·cos C ,∵b 2cos 2C +c 2cos 2B +2bc cos B cos C =(b cos C +c cos B )2=a 2,∴b 2+c 2=a 2,∴△ABC 为直角三角形.7(2020·全国·统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.【答案】(1)A =π3;(2)证明见解析【分析】(1)根据诱导公式和同角三角函数平方关系,cos 2π2+A +cos A =54可化为1-cos 2A +cos A =54,即可解出;(2)根据余弦定理可得b 2+c 2-a 2=bc ,将b -c =33a 代入可找到a ,b ,c 关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为cos 2π2+A +cos A =54,所以sin 2A +cos A =54,即1-cos 2A +cos A =54,解得cos A =12,又0<A <π,所以A =π3;(2)因为A =π3,所以cos A =b 2+c 2-a 22bc=12,即b 2+c 2-a 2=bc ①,又b -c =33a ②,将②代入①得,b 2+c 2-3b -c 2=bc ,即2b 2+2c 2-5bc =0,而b >c ,解得b =2c ,所以a =3c ,故b 2=a 2+c 2,即△ABC 是直角三角形.【规律方法】利用正弦定理判断三角形形状的方法:(1)化边为角.将题目中的所有条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.(2)化角为边.根据题目中的所有条件,利用正弦定理化角为边,再利用代数恒等变换得到边的关系(如a =b ,a 2+b 2=c 2),进而确定三角形的形状.2.判断三角形的形状时,经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2.②△ABC 为锐角三角形⇔a 2+b 2>c 2且b 2+c 2>a 2且c 2+a 2>b 2.③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2.④若sin 2A =sin 2B ,则A =B 或A +B =π2.3.常见误区:易忽略三角形中的隐含条件.热点三三角形解的个数问题8(2016·全国卷Ⅰ文,4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=5,c=2,cos A= 23,则b=()A.2B.3C.2D.3【答案】D【解析】由余弦定理,得4+b2-2×2b cos A=5.整理得3b2-8b-3=0,解得b=3或b=-13(舍去),故选D.9在△ABC中,已知sin C=12,a=23,b=2,求边c.【解析】∵sin C=12,且0<C<π,∴C=π6或5π6.当C=π6时,cos C=32,此时,c2=a2+b2-2ab cos C=4,即c=2.当C=5π6时,cos C=-32,此时,c2=a2+b2-2ab cos C=28,即c=27.10(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)在①tan A tan C-3tan A=1+3tan C;②2c-3acos B=3b cos A;③a-3csin A+c sin C=b sin B这三个条件中任选一个,补充在下面问题中并作答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角B的大小;(2)已知c=b+1,且角A有两解,求b的范围.【答案】(1)答案见解析(2)b>1【分析】(1)若选①,由两角和的正切公式化简即可求出求角B的大小;若选②,利用正弦定理统一为角的三角函数,再由两角和的正弦公式即可求解;若选③,由余弦定理代入化简即可得出答案.(2)将c=b+1代入正弦定理可得sin C=b+12b,要使角A有两解,即12<sin C<1,解不等式即可得出答案.【详解】(1)若选①:整理得1-tan A tan C=-3tan A+tan C,因为A+B+C=π,所以tan B=-tan A+C=-tan A+tan C1-tan A tan C=33,因为B∈0,π,所以B=π6;若选②:因为2c-3acos B=3b cos A,由正弦定理得2sin C-3sin Acos B=3sin B cos A,所以2sin C cos B=3sin A+B=3sin C,sin C>0,所以cos B=32,因为B∈0,π,所以B=π6;若选③:由正弦定理整理得a2+c2-b2=3ac,所以a2+c2-b22ac=32,即cos B=32,因为B∈0,π,所以B=π6;(2)将c =b +1代入正弦定理b sin B =c sin C ,得b sin B =b +1sin C,所以sin C =b +12b ,因为B =π6,角A 的解有两个,所以角C 的解也有两个,所以12<sin C <1,即12<b +12b <1,又b >0,所以b <b +1<2b ,解得b >1.【方法技巧】三角形解的个数的判断在△ABC 中,已知a ,b 和A ,利用正弦定理解三角形时,会出现解不确定的情况,一般可根据三角形中“大边对大角和三角形内角和定理”来取舍.具体解的情况如下表:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解上表中若A 为锐角,则当a <b sin A 时无解;若A 为钝角或直角,则当a ≤b 时无解.热点四解三角形与平面向量的交汇11(2023·全国·统考高考真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ⋅ED=()A.5B.3C.25D.5【答案】B【分析】方法一:以AB ,AD 为基底向量表示EC ,ED,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求cos ∠DEC ,进而根据数量积的定义运算求解.【详解】方法一:以AB ,AD为基底向量,可知AB =AD =2,AB ⋅AD=0,则EC =EB +BC =12AB +AD ,ED =EA +AD =-12AB+AD ,所以EC ⋅ED =12AB +AD ⋅-12AB +AD =-14AB2+AD 2=-1+4=3;方法二:如图,以A 为坐标原点建立平面直角坐标系,则E 1,0 ,C 2,2 ,D 0,2 ,可得EC =1,2 ,ED=-1,2 ,所以EC ⋅ED=-1+4=3;方法三:由题意可得:ED =EC =5,CD =2,在△CDE 中,由余弦定理可得cos ∠DEC =DE 2+CE 2-DC 22DE ⋅CE =5+5-42×5×5=35,所以EC ⋅ED =EC ED cos ∠DEC =5×5×35=3.故选:B .12(2023·贵州毕节·统考模拟预测)已知点G 为三角形ABC 的重心,且GA +GB =GA -GB ,当∠C 取最大值时,cos C =()A.45B.35 C.25D.15【答案】A【分析】由题设可得AG ⋅BG =0,结合AG =13(AC +AB ),BG =13(BA +BC )及余弦定理可得cos C =25a b +ba,根据基本不等式即可求解.【详解】由题意GA +GB =GA -GB ,所以(GA +GB )2=(GA -GB)2,即GA 2+GB 2+2GA ⋅GB =GA 2+GB 2-2GA ⋅GB ,所以GA ⋅GB =0,所以AG ⊥BG ,又AG =23×12(AC +AB )=13(AC +AB ),BG =23×12(BA +BC )=13(BA +BC ),则AG ⋅BG =19(AC +AB )⋅(BA +BC )=19(AC⋅BA +AC ⋅BC +AB ⋅BA +AB ⋅BC )=0,所以CA ⋅CB =AC ⋅AB +BA ⋅BC +AB 2,即ab cos C =bc cos A +ac cos B +c 2,由cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,所以a 2+b 2=5c 2,所以cos C =a 2+b 2-c 22ab=25a b +b a ≥45a b ⋅b a =45,当且仅当a =b 时等号成立,又y =cos x 在0,π 上单调递减,C ∈0,π ,所以当∠C 取最大值时,cos C =45.13【多选题】(2023·浙江·二模)在△ABC 中,AB 2+AC 2=2BC 2,CD =BC ,则()A.AD >CD B.AD <52CD C.∠ADC >π6D.∠ADC <π4【答案】BD【分析】根据条件,结合余弦定理求得AD =3b ,再建立不等关系,判断选项.【详解】设AB=c,BC=CD=a,AC=b,AD=x,由条件可知,b2+c2=2a2,△ABC中,cos B=a2+c2-b22ac,△ABD中,x2=c2+4a2-4ac cos B=c2+4a2-2a2+c2-b2=2a2-c2+2b2=3b2,所以AD=3b,c2=2a2-b2=2a2-33AD2>0,得AD<6a,即AD<6CD<52CD,故B正确;cos∠ADC=a2+3b2-b223ab =a2+2b223ab=a23b+b3a≥216=63>22,所以∠ADC<π4 .故选:BD【点评】1.交汇考向主要有:(1)向量坐标运算条件下解三角形问题;(2)三角形中向量运算问题;(3)共线向量条件下解三角形问题;(4)向量的模与解三角形问题.2.解答的总体思路可归结为三个环节:(1)根据向量运算的定义、法则、运算律等,加以计算;(2)应用三角公式,进行变形进而完成化简;(3)应用正弦定理、余弦定理、三角形面积公式等,实施边角转化.就整体而言,正确向量运算、恒等变形是基础,恰当的边角转化是关键,考查的核心是解三角形、三角问题,向量运算是工具.应该注意的是,向量运算条件的给出,也可能是向量平行、垂直,需根据相关条件加以转化.热点五解三角形与解析几何交汇问题14(2021·全国·统考高考真题)已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°, PF1=3PF2,则C的离心率为()A.72B.132C.7D.13【答案】A【分析】根据双曲线的定义及条件,表示出PF1,PF2,结合余弦定理可得答案.【详解】因为PF1=3PF2,由双曲线的定义可得PF1-PF2=2PF2=2a,所以PF2=a,PF1=3a;因为∠F1PF2=60°,由余弦定理可得4c2=9a2+a2-2×3a⋅a⋅cos60°,整理可得4c2=7a2,所以e2=c2a2=74,即e=72.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立a,c间的等量关系是求解的关键.15(2023·全国·高三专题练习)已知椭圆x29+y26=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=35,则|PO|=()A.25B.302C.35D.352【答案】B【分析】根据椭圆的定义结合余弦定理求出PF 1 PF 2 ,PF 1 2+PF 2 2的值,利用PO =12PF 1 +PF 2 ,根据向量模的计算即可求得答案.【详解】由题意椭圆x 29+y 26=1,F 1,F 2为两个焦点,可得a =3,b =6,c =3,则PF 1 +PF 2 =2a =6①,即PF 1 2+PF 2 2+2PF 1 PF 2 =36,由余弦定理得F 1F 2 2=PF 1 2+PF 2 2-2PF 1 PF 2 cos ∠F 1PF 2=(23)2,cos ∠F 1PF 2=35,故PF 1 +PF 2 2-2PF 1 PF 2 1+35=12,②联立①②,解得:PF 1 PF 2 =152,∴PF 1 2+PF 2 2=21,而PO =12PF 1 +PF 2 ,所以PO =PO =12PF 1 +PF 2 ,即PO =12PF 1 +PF 2 =12PF 1 2+2PF 1 ⋅PF 2 +PF 2 2=1221+2×152×35=302,故选:B 【点睛】方法点睛:本题综合考查了椭圆和向量知识的结合,解答时要注意到O 为F 1F 2的中点,从而可以利用向量知识求解|PO |.16(2023·湖北武汉·统考模拟预测)已知抛物线y 2=8x 的焦点为F ,准线与x 轴的交点为C ,过点C 的直线l 与抛物线交于A ,B 两点,若∠AFB =∠CFB ,则|AF |=.【答案】8【分析】先设出直线l 的方程,联立抛物线方程,得到两根之和,两根之积,表达出AB =1+m 2⋅y 1-y 2 ,BC =1+m 2⋅y 2,再由正弦定理得到CF AF =BC AB,得到4my 1=y 2y 1-y 2,代入两根之和,两根之积,列出方程,求出m =233,进而求出y 1=43,|AF |=8.【详解】由题意得,F 2,0 ,C -2,0 ,当直线l 的斜率为0时,与抛物线只有1个交点,不合要求,故设直线l 的方程为x =my -2,不妨设m >0,联立y 2=8x ,可得y 2-8my +16=0,易得Δ>0,设A x 1,y 1 ,B x 2,y 2 ,则y 1>0,y 2>0,则y 1+y 2=8m ,y 1y 2=16,则AB =1+m 2⋅y 1-y 2 ,BC =1+m 2⋅y 2 =1+m 2⋅y 2,由正弦定理得CF sin ∠CBF =BC sin ∠CFB ,AF sin ∠ABF =ABsin ∠AFB,因为∠AFB =∠CFB ,∠CBF +∠ABF =π,所以y 1>y 2,CF AF =BC AB ,即4AF=1+m 2⋅y 2 1+m 2⋅y 1-y 2=y 2y 1-y 2,又由焦半径公式可知AF =x 1+2=my 1-2+2=my 1,则4my 1=y 2y 1-y 2,即my 1y 2=4y 1-4y 2=4y 1+y 2 2-4y 1y 2,即16m =464m 2-64,解得m =233,则y 1+y 2=1633,y 1y 2=16,解得y 1=43,故|AF |=my 1=233×43=8,当m <0时,同理可得到|AF |=8.故答案为:8【点睛】方法点睛:解三角形中,当条件中有角平分线时,可利用正弦定理得到角平分线的性质,将角的关系转化为边的比例关系,再进行求解.【点评】1.与椭圆、双曲线的定义及几何性质相结合,在“焦点三角形”中,综合应用定义、正弦定理或余弦定理,确定几何量或几何量之间的关系,解决离心率(范围)计算问题,这类问题多以客观题出现;2.直线与圆锥曲线位置关系问题中,通过交点等构造或产生三角形,计算三角形面积(最值)、线段长度等,这类问题多在主观题出现,解题过程往往通过直线与圆锥曲线方程联立方程组,应用判别式、一元二次方程根与系数的关系、弦长公式、正弦定理、余弦定理等.热点六解三角形与立体几何交汇问题17(2023·全国·统考高考真题)已知四棱锥P -ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.62【答案】C【分析】法一:利用全等三角形的证明方法依次证得△PDO ≅△PCO ,△PDB ≅△PCA ,从而得到PA =PB ,再在△PAC 中利用余弦定理求得PA =17,从而求得PB =17,由此在△PBC 中利用余弦定理与三角形面积公式即可得解;法二:先在△PAC 中利用余弦定理求得PA =17,cos ∠PCB =13,从而求得PA ⋅PC =-3,再利用空间向量的数量积运算与余弦定理得到关于PB ,∠BPD 的方程组,从而求得PB =17,由此在△PBC 中利用余弦定理与三角形面积公式即可得解.【详解】法一:连结AC ,BD 交于O ,连结PO ,则O 为AC ,BD 的中点,如图,因为底面ABCD 为正方形,AB =4,所以AC =BD =42,则DO =CO =22,又PC =PD =3,PO =OP ,所以△PDO ≅△PCO ,则∠PDO =∠PCO ,又PC =PD =3,AC =BD =42,所以△PDB ≅△PCA ,则PA =PB ,在△PAC 中,PC =3,AC =42,∠PCA =45°,则由余弦定理可得PA 2=AC 2+PC 2-2AC ⋅PC cos ∠PCA =32+9-2×42×3×22=17,故PA =17,则PB =17,故在△PBC 中,PC =3,PB =17,BC =4,所以cos ∠PCB =PC 2+BC 2-PB 22PC ⋅BC=9+16-172×3×4=13,又0<∠PCB <π,所以sin ∠PCB =1-cos 2∠PCB =223,所以△PBC 的面积为S =12PC ⋅BC sin ∠PCB =12×3×4×223=4 2.法二:连结AC ,BD 交于O ,连结PO ,则O 为AC ,BD 的中点,如图,因为底面ABCD 为正方形,AB =4,所以AC =BD =42,在△PAC 中,PC =3,∠PCA =45°,则由余弦定理可得PA 2=AC 2+PC 2-2AC ⋅PC cos ∠PCA =32+9-2×42×3×22=17,故PA =17,所以cos ∠APC =PA 2+PC 2-AC 22PA ⋅PC =17+9-322×17×3=-1717,则PA ⋅PC =PA PC cos ∠APC =17×3×-1717=-3,不妨记PB =m ,∠BPD =θ,因为PO =12PA +PC =12PB+PD ,所以PA +PC 2=PB +PD 2,即PA 2+PC 2+2PA ⋅PC =PB 2+PD 2+2PB ⋅PD ,则17+9+2×-3 =m 2+9+2×3×m cos θ,整理得m 2+6m cos θ-11=0①,又在△PBD 中,BD 2=PB 2+PD 2-2PB ⋅PD cos ∠BPD ,即32=m 2+9-6m cos θ,则m 2-6m cos θ-23=0②,两式相加得2m 2-34=0,故PB =m =17,故在△PBC 中,PC =3,PB =17,BC =4,所以cos ∠PCB =PC 2+BC 2-PB 22PC ⋅BC=9+16-172×3×4=13,又0<∠PCB <π,所以sin ∠PCB =1-cos 2∠PCB =223,所以△PBC 的面积为S =12PC ⋅BC sin ∠PCB =12×3×4×223=4 2.故选:C .18(2023·全国·统考高考真题)已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CD sin ∠CED ,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C 19(2023·河南·校联考模拟预测)点P 是圆柱上底面圆周上一动点,△ABC 是圆柱下底面圆的内接三角形,已知在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,C =60°,三棱锥P -ABC 的体积最大值为233,则该三棱锥外接球的表面积为()A.193π B.283π C.539π D.433π【答案】B【分析】利用余弦定理结合基本不等式可求得△ABC面积的最大值,利用正弦定理可求得圆柱底面圆半径,利用锥体体积公式可求得圆柱的高,进而可求得该三棱锥外接球的半径,结合球体表面积公式可求得结果.【详解】在△ABC中,由余弦定理可得4=c2=a2+b2-2ab cos C=a2+b2-ab≥2ab-ab=ab,即ab≤4,当且仅当a=b=2时,等号成立,所以,S△ABC=12ab sin C=34ab≤34×4=3,设圆柱的高为h,则V P-ABC=13S△ABC⋅h≤33h,因为三棱锥的P-ABC体积的最大值为233,则33h=233,所以,h=2,圆柱底面圆半径r=22sin60°=23=233,设三棱锥P-ABC的外接球的半径为R,则该三棱锥的外接球和圆柱的外接球为同一个球,则R2=h22+r2=1+233 2=73,因此,三棱锥外接球的表面积为4πR2=283π.故选:B.【点评】与立体几何的交汇问题,往往是利用几何体中存在的三角形,应用正弦定理或余弦定理,确定解题所需要的几何量,完成角的(函数值)的计算、面积计算等,有时与数学文化相结合,解决古典书籍中的问题,或与时俱进,解决现实生活中的立体几何问题,善于发现相关三角形或做辅助线构造三角形,是解题的重要基础.热点七正弦定理、余弦定理应用于平面几何问题20(2023·全国·统考高考真题)在△ABC中,∠BAC=60°,AB=2,BC=6,∠BAC的角平分线交BC于D,则AD=.【答案】2【分析】方法一:利用余弦定理求出AC,再根据等面积法求出AD;方法二:利用余弦定理求出AC,再根据正弦定理求出B,C,即可根据三角形的特征求出.。

专题08 解三角形(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题08 解三角形(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题08解三角形考点三年考情(2022-2024)命题趋势考点1:正余弦定理综合应用2023年天津高考数学真题2022年高考全国乙卷数学(文)真题2023年北京高考数学真题2023年高考全国乙卷数学(文)真题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2022年新高考天津数学高考真题高考对本节的考查不会有大的变化,仍将以考查正余弦定理的基本使用、面积公式的应用为主.从近三年的全国卷的考查情况来看,本节是高考的热点,主要以考查正余弦定理的应用和面积公式为主.考点2:实际应用2024年上海夏季高考数学真题2022年新高考浙江数学高考真题考点3:角平分线、中线、高问题2023年新课标全国Ⅰ卷数学真题2023年高考全国甲卷数学(理)真题考点4:解三角形范围与最值问题2022年高考全国甲卷数学(理)真题2022年新高考全国I卷数学真题2022年新高考北京数学高考真题考点5:周长与面积问题2024年新课标全国Ⅰ卷数学真题2024年新课标全国Ⅱ卷数学真题2024年北京高考数学真题2022年高考全国乙卷数学(理)真题2022年新高考北京数学高考真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题考点6:解三角形中的几何应用2023年新课标全国Ⅱ卷数学真题考点1:正余弦定理综合应用1.(2023年天津高考数学真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知39,2,120a b A ==∠= .(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -的值.【解析】(1)由正弦定理可得,sin sin a b A B =392sin120sin B = ,解得:13sin 13B =(2)由余弦定理可得,2222cos a b c bc A =+-,即21394222c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得:5c =或7c =-(舍去).(3)由正弦定理可得,sin sin a c A C =395sin120sin C =,解得:513sin 26C =,而120A =o,所以,B C 都为锐角,因此2539cos 15226C =-,139cos 11313B =-,()133********sin sin cos cos sin 1326132626B C B C B C -=-=⨯-⨯=-.2.(2022年高考全国乙卷数学(文)真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+【解析】(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =.(2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a c b b c a b c a a b c +--+-=+--+-,化简得:2222a b c =+,故原等式成立.3.(2023年北京高考数学真题)在ABC 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C ∠=()A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选:B.4.(2023年高考全国乙卷数学(文)真题)在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C π=,则B ∠=()A .10πB .5πC .310πD .25π【答案】C【解析】由题意结合正弦定理可得sin cos sin cos sin A B B A C -=,即()sin cos sin cos sin sin cos sin cos A B B A A B A B B A -=+=+,整理可得sin cos 0B A =,由于()0,πB ∈,故sin 0B >,据此可得πcos 0,2A A ==,则ππ3πππ2510B AC =--=--=.故选:C.5.(2024年高考全国甲卷数学(理)真题)在ABC 中,内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .23913B .3913C .72D .31313【答案】C 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则7sin sin A C +=.故选:C.6.(2024年天津高考数学真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.【解析】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以22957sin 1cos 11616B B ⎛⎫=-=-= ⎪⎝⎭,再根据正弦定理得sin sin a b A B =,即4sin 5716A =7sin 4A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则237sin 144A ⎛⎫=- ⎪⎝⎭(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知57sin 16B =,因为a b <,则A B <,所以273cos 144A ⎛⎫=-= ⎪ ⎪⎝⎭,则7337sin 22sin cos 2448A A A ==⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()91573757cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=.法二:7337sin 22sin cos 2448A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以22957sin 1cos 116B B ⎛⎫=-=-= ⎪⎝⎭所以()91573757cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯=7.(2022年新高考天津数学高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知16,2,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.【解析】(1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以215sin 1cos 4A A =-sin sin a b AB =,所以152sin 104sin 46b AB a==(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又215sin 1cos A A =-所以11515sin 22sin cos 2448A A A ⎛⎫==⨯-⨯=- ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin 104B =26cos 1sin 4B B =-,故15671010sin(2)sin 2cos cos 2sin 84848A B A B A B ⎛-=-=-+= ⎝⎭.考点2:实际应用8.(2024年上海夏季高考数学真题)已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠=(精确到0.1度)【答案】7.8︒【解析】设,90BCA ACD θθ∠=∠=- ,在DCA △中,由正弦定理得sin sin CA CDD CAD=∠,即()sin 37.0sin 1809037.0CACD θ-=⎡⎤-+⎣⎦’即()sin 37.0sin 9037.0CACDθ=-+①在BCA V 中,由正弦定理得sin sin CA CBB CAB=∠,即()sin16.5sin 18016.5CACB θ=⎡⎤+⎦-⎣,即()sin16.5sin 16.5CA CBθ=+ ,②因为CD CB =,②①得()()sin 9037.0sin 37.0sin16.5sin 16.5θθ-+=+,利用计算器即可得7.8θ≈ ,故答案为:7.8 .9.(2022年新高考浙江数学高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =.234【解析】因为222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,所以242312342442S ⎡⎤+-⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⨯234考点3:角平分线、中线、高问题10.(2023年新课标全国Ⅰ卷数学真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【解析】(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,3310sin 1010A ∴==(2)由(1)知,10cos 1010A =,由sin sin()B A C =+23101025sin cos cos sin ()210105A C A C =+==由正弦定理,sin sin c bC B=,可得255521022b =,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 210610h b A ∴=⋅==.11.(2023年高考全国甲卷数学(理)真题)在ABC 中,60,2,6BAC AB BC ∠=︒==,BAC ∠的角平分线交BC 于D ,则AD =.【答案】2【解析】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:13b =+由ABC ABD ACD S S S =+ 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ ,解得:2313323312b AD b ==++.故答案为:2.方法二:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:13b =62sin 60sin sin b B C ==,解得:62sin 4B =,2sin 2C =,因为1362+>>45C = ,180604575B =--= ,又30BAD ∠=o ,所以75ADB ∠= ,即2AD AB ==.故答案为:2.考点4:解三角形范围与最值问题12.(2022年高考全国甲卷数学(理)真题)已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =.31/13-【解析】[方法一]:余弦定理设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-==-+++++()1244233211m m ≥--+⋅+当且仅当311m m +=+即31m =时,等号成立,所以当ACAB取最小值时,31m =.31.[方法二]:建系法令BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系.则C (2t,0),A (13,B (-t,0)()()()22222221344412443324131113,31t AC t t AB t t t t t t BD -+-+∴===-≥-++++++++==当且仅当即时等号成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正余弦定理的专项题型
题型1:利用正余弦定理判断三角形形状
两种途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;
(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.

1.在
中,a,b,c 分别表示三个内角
A,B,C
的对边,如果
2222()sin()()sin()a b A B a b A B +-=-+ ,判断三角形的形状.
例2.在△ABC 中,已知2
2
tan tan a B b A =,试判断此三角形的形状。

【同类型强化】1.在∆ABC 中,若B b A a cos cos =,试判断∆ABC 的形状
【同类型强化】2.(2018上海文数)若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则A
B C ∆( )
A .一定是锐角三角形.
B .一定是直角三角形.
C .一定是钝角三角形.
D .可能是锐角三角形,也可能是钝角三角形
【同类型强化】3.△ABC 中,2sinAcosB=sinC ,则此三角形的形状是 ( ) (A)等腰△ (B) 等腰或者直角△ (C)等腰直角△ (D)直角△
题型2:利用正余弦定理求三角形的面积
三角形一般由三个条件确定,比如已知三边a ,b ,c ,或两边a ,b 及夹角C ,可以将a ,b ,c 或a ,b ,C 作为解三角形的基本要素,根据已知条件,通过正弦定理、余弦定理、面积公式等利用解方程组等手段进行求解,必要时可考虑作辅助线,将所给条件置于同一三角形中.
例3.在ABC ∆中,角A,B,C 所对的边分别为a,b,c 且满足(1)
求△ABC 的面积;(2)若c =1,求a 的值.
例4.(2018·辽宁营口检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足
3sin A -cos A =0,cos B =4
5,b =2 3.
(1)求sin C 的值;(2)求△ABC 的面积.
例5.(2018·安徽)在△ABC 中,sin(C -A )=1,sin B = 1
3
.
(1)求sin A 的值;(2)设AC = ABC 的面积.
【同类型强化】1. 在ABC △中,已知角A 、B 、C 所对的边分别是a 、b 、c ,边7
2
c =
,且
tan tan tan tan 3A B A B +⋅
ABC △,求a b +的值.
【同类型强化】2. 在锐角三角形中,边a 、b 是方程220x -+=的两根,角A 、B 满足()
2sin 0
A B +,求角C 的度数,边c 的长度及ABC △的面积.
【同类型强化】3.(2018湖北卷文)(本小题满分12分) 在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且A c a sin 23=(Ⅰ)确定角C 的大小(Ⅱ)若c =7,且△ABC 的面积为2
3
3,求a
+b 的值。

【同类型强化】4.(2018浙江理)(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,
且满足cos 2A =
, 3AB AC ⋅=. (I )求ABC ∆的面积; (II )若6b c +=,求a 的值.
【同类型强化】5.(2018北京理)(本小题共13分) 在ABC ∆中,角,,A B C 的对边分别为,,,3
a b c B π
=

4
cos ,5
A b ==(Ⅰ)求sin C 的值; (Ⅱ)求ABC ∆的面积.
题型3:与三角函数结合的综合问题
三角函数作为联系代数与几何问题的纽带和桥梁,往往出现在综合题中——解三角形就是这样一种常见而又典型的问题,在三角形的三角变换中,正、余弦定理是解题的基础.
例6. △ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =

sin(B -A )=cos C . (1)求A ,C ; (2)若S △ABC =3+ ,求a ,c .
【同类型强化】(2018·山东卷)已知函数f (x )=2sin x cos 2
2
ϕ
+cos x sin ϕ -sin x (0<ϕ<π)在x =π
处取最小值.(1)求ϕ的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边.已知a =1,b =

f (A )= 2
,求角C .
题型4:实际问题
例7.(2018·福建厦门调研)在海岸A处,发现北偏东45°方向,距离A(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2n mile的C处的缉私船奉命以103n mile/h的速度追截走私船.此时,走私船正以10n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?
例8.要测量河对岸两地A、B之间的距离,在岸边选取相距1003米的C、D两地,并测得∠ADC=30°∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、D四点在同一平面上,求A、B两地的距离。

【同类型强化】2.某海轮以30海里∕时的速度航行,在A点测得海平面上油井P在南偏东600,向北航行40分钟后到达B点,测得油井P在南偏东300,海轮改为东偏北600在航行80分钟到达C点,求P、C间的距离。

解三角形【2018高考题再现】
1.(山东理17)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a
=
cos B b . (I )求sin sin C A 的值;II )若cosB=1
4,b=2,ABC ∆的面积S 。

2.(江苏15)在△ABC 中,角A 、B 、C 所对应的边为c b a ,,
(1)若,
cos 2)6
sin(A A =+
π
求A 的值;(2)若c
b A 3,31
cos ==,求C sin 的值.
3.设ABC ∆的内角A 、B 、C 、所对的边分别为a 、b 、c ,已知
11. 2.cos .
4a b C === (Ⅰ)求ABC ∆的周长(Ⅱ)求()
cos A C -的值
4.(湖南理17)在△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足csinA=acosC .
(Ⅰ)求角C 的大小;
(B+4π
)的最大值,并求取得最大值时角A 、B 的大小。

5.(全国大纲理17)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知A-C=90°,
,求C .
6.(陕西理18)叙述并证明余弦定理。

7.(浙江理18)在ABC ∆中,角..A B C 所对的边分别为a,b,c .已知
()sin sin sin ,
A C p
B p R +=∈且
214ac b =.(Ⅰ)当5,1
4p b ==时,求,a c 的值;(Ⅱ)若角B 为锐角,求p 的取值范围;
1.(重庆理6)若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足
2
2a b 4c +-=(),且C=60°,则ab 的值为A .43 B
.8- C . 1 D .2
3
2.(四川理6)在∆ABC 中.2
2
2
sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是
A .(0,6π
]
B .[ 6π,π)
C .(0,3π]
D .[ 3π
,π)
3.(全国新课标理16)ABC ∆
中,60,B AC =︒=,则AB+2BC 的最大值为_________. 4.(福建理14)如图,△ABC 中,AB=AC=2,
BC= D 在BC 边上,∠ADC=45°,则AD 的长度等于______。

5.(北京理9)在ABC ∆中。

若b=5,4
B π
∠=
,tanA=2,则sinA=____________;a=_______________。

相关文档
最新文档