材料力学概念及相关知识

合集下载

材料力学基础知识与原理解析

材料力学基础知识与原理解析

材料力学基础知识与原理解析材料力学是研究材料在外力作用下的变形和破坏行为的学科。

它是工程力学的重要分支,对于工程材料的设计、制造和使用具有重要的理论和实践意义。

在本文中,我们将深入探讨材料力学的基础知识和原理。

1. 弹性力学弹性力学是材料力学的基础,它研究的是材料在外力作用下的弹性变形行为。

弹性力学的核心理论是胡克定律,它描述了材料的应力与应变之间的线性关系。

根据胡克定律,应力与应变之间的关系可以用弹性模量来表示。

弹性模量是材料的重要力学性能指标,它反映了材料在外力作用下的变形能力。

2. 塑性力学塑性力学是研究材料在外力作用下的塑性变形行为的学科。

与弹性力学不同,塑性力学研究的是材料的非线性变形行为。

在材料受到外力作用时,如果应力超过了材料的屈服强度,就会发生塑性变形。

塑性变形是材料在外力作用下的永久性变形,它会导致材料的形状和尺寸发生改变。

塑性力学的研究对象包括塑性变形的机理、塑性应力分布和塑性变形的规律等。

3. 破坏力学破坏力学是研究材料在外力作用下失效的学科。

材料在外力作用下可能会发生破坏,破坏力学的研究目的是预测和控制材料的破坏行为。

根据破坏的形式,破坏力学可以分为弹性破坏和塑性破坏。

弹性破坏是指材料在外力作用下发生断裂,而塑性破坏是指材料发生塑性变形后失去承载能力。

破坏力学的研究内容包括破坏的机理、破坏的形式和破坏的预测等。

4. 材料的本构关系材料的本构关系是材料力学的核心内容之一,它描述了材料的应力与应变之间的关系。

根据材料的性质和变形行为,可以将材料的本构关系分为线性弹性本构关系、非线性弹性本构关系和塑性本构关系等。

线性弹性本构关系是指材料的应力与应变之间是线性关系,非线性弹性本构关系是指材料的应力与应变之间是非线性关系,而塑性本构关系是指材料的应力与应变之间是非线性关系,并且在一定应力范围内存在塑性变形。

5. 材料的疲劳与断裂材料在长期受到交变应力作用时,可能会发生疲劳断裂。

疲劳断裂是指材料在应力循环作用下发生的断裂,它是材料力学的重要研究内容之一。

材料力学概念及基础知识

材料力学概念及基础知识

一、基本概念1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。

2 强度:构件抵抗破坏的能力。

3 刚度:构件抵抗变形的能力。

4 稳定性:构件保持初始直线平衡形式的能力。

5 连续均匀假设:构件内均匀地充满物质。

6 各项同性假设:各个方向力学性质相同。

7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。

8 截面法:计算内力的方法,共四个步骤:截、留、代、平。

9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。

10 正应力:垂直于截面的应力(σ)11 剪应力:平行于截面的应力()12 弹性变形:去掉外力后,能够恢复的那部分变形。

13 塑性变形:去掉外力后,不能够恢复的那部分变形。

14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。

二、拉压变形15 当外力的作用线与构件轴线重合时产生拉压变形。

16 轴力:拉压变形时产生的内力。

17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。

18 画轴力图的步骤是:①画水平线,为X轴,代表各截面位置;②以外力的作用点为界,将轴线分段;③计算各段上的轴力;④在水平线上画出对应的轴力值。

(包括正负和单位)19 平面假设:变形后横截面仍保持在一个平面上。

20 拉(压)时横截面的应力是正应力,σ=N/A21 斜截面上的正应力:σα=σcos²α22 斜截面上的切应力:α=σSin2α/223 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。

25 弹性模量(E)代表材料抵抗变形的能力(单位Pa)。

26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。

27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。

材料力学基本概念及计算公式

材料力学基本概念及计算公式

材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。

下面将介绍材料力学的基本概念及计算公式。

1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。

计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。

(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。

计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。

(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。

计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。

2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。

计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。

(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。

计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。

3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。

计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。

(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。

计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。

4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。

材料力学知识

材料力学知识

第一章材料力学基本知识§1.1基本概念:理论力学------研究物体(刚体)受力和机械运动一般规律的科学。

材料力学——研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。

4. 1构件的承载能力为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。

因此,构件应当满足以下要求:1、强度要求:即构件在外力作用下应具有足够的抵抗破坏的能力。

在规定的载荷作用下构件当然不应破坏,包括断裂和发生较大的塑性变形。

例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。

强度要求就是指构件在规定的使用条件下不发生意外断裂或显著塑性变形。

2、刚度要求:即构件在外力作用下应具有足够的抵抗变形的能力。

在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。

例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。

刚度要求就是指构件在规定的事业条件下不发生较大的变形。

3、稳定性要求:即构件在外力作用下能保持原有直线平衡状态的能力。

承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。

稳定性要求就是指构件在规定的使用条件下不产生丧失稳定性破坏。

如果构件的横截面尺寸不足或形状不合理,或材料选用不当,不能满足上述要求,将不能保证工程结构或机械的安全工作。

相反,如果不恰当的加大构件横截面尺寸或选用高强材料,这虽满足了上述要求,却使用了更多的材料和增加了成本,造成浪费。

我们可以作出以下结论:材料力学是研究各类构件(主要是杆件)的强度、刚度和稳定性的学科,它提供了有关的基本理论、计算方法和实验技术,使我们能合理地确定构件的材料和形状尺寸,以达到安全与经济的设计要求。

在工程实际问题中,一般来说,构件都应具有足够的承载能力,即足够的强度、刚度和稳定性,但对具体的构件又有所侧重。

材料力学概念整理

材料力学概念整理

材料力学概念整理材料力学是研究材料的力学性质和行为的一门学科。

它是工程力学的重要组成部分,与材料科学和工程密切相关。

材料力学主要研究材料的变形、破坏和疲劳等力学性质,揭示材料内部的微观结构与力学性能之间的关系,为材料设计和工程应用提供理论依据。

1.弹性力学弹性力学是材料力学的基础。

弹性力学研究材料在受力作用下的变形行为,弹性变形和弹性力学的关系遵循胡克定律。

弹性变形是指在外力作用下,材料会发生可逆的形变,当外力消除后,材料会恢复其初始形状。

弹性力学的经典理论主要包括拉压力学、剪切力学和折弯力学等。

2.塑性力学塑性力学研究材料在受力作用下的塑性变形行为。

与弹性变形不同,塑性变形一旦发生,材料无法恢复其初始形状。

塑性变形的机制主要包括滑移、位错移动和晶粒形变等。

塑性力学的经典理论主要包括单轴拉伸、多轴变形和硬化等。

3.破坏力学破坏力学研究材料在受力作用下的破坏行为。

材料的破坏可表现为断裂、裂纹扩展和脆性破坏等形式。

破坏力学的研究可通过断裂力学、裂纹力学和损伤力学等方法来解释材料的破坏行为,例如断裂力学中的强度理论和断裂韧性的表征。

4.疲劳力学疲劳力学研究材料在交变循环载荷下的疲劳行为。

疲劳是材料由于反复载荷引起的局部损伤积累而导致的失效现象。

疲劳失效通常可通过疲劳寿命和疲劳强度等指标来评价。

疲劳力学的研究主要包括S-N曲线、疲劳寿命预测和疲劳裂纹扩展等。

5.蠕变力学蠕变力学研究材料在长时间高温下的蠕变变形行为。

蠕变是材料在高温下由于内部应力的作用而发生的不可逆变形。

蠕变力学的研究可通过蠕变曲线、蠕变寿命和蠕变机制等方面来描述材料的蠕变特性。

6.微观力学微观力学是研究材料内部微观结构与力学性能之间关系的力学分支。

它涉及到材料的原子、晶格和位错等微观结构,并通过探索这些微观结构对材料强度、塑性和破坏等性能的影响,了解材料的力学行为的基本机制。

总结:材料力学作为一门重要的工程力学学科,涵盖了弹性、塑性、破坏、疲劳、蠕变和微观力学等诸多概念。

材料力学基本概念知识点总结

材料力学基本概念知识点总结

材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。

本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。

一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。

一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。

法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。

1.2 应变应变是物体在受力作用下发生形变的度量。

一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。

线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。

二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。

即当外力停止作用时,材料能够完全恢复到初始状态。

弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。

2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。

即当外力停止作用时,材料只能部分恢复到初始状态。

塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。

三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。

在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。

根据胡克定律,应力等于弹性模量与应变的乘积。

四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。

杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。

4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。

剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。

五、破坏力学破坏力学是研究材料在外力作用下失效的学科。

材料力学的基本知识与原理解析

材料力学的基本知识与原理解析

材料力学的基本知识与原理解析材料力学是研究材料在外界力作用下的力学性质和变形规律的学科。

它是现代工程学的基础学科之一,对于工程设计、材料选择和结构分析具有重要的意义。

本文将从材料力学的基本概念、应力与应变关系、材料的弹性与塑性行为以及材料失效等方面进行解析。

一、基本概念材料力学研究的对象是材料的内部结构和外部力的相互作用。

材料可以是金属、陶瓷、塑料等各种物质的组合体。

材料力学的基本概念包括应力、应变、弹性模量、屈服强度等。

应力是指单位面积上的力,可以分为正应力和剪应力。

应变是指物体单位长度的变化量,可以分为线性应变和剪切应变。

弹性模量是衡量材料抗拉伸变形能力的指标,屈服强度则是材料开始发生塑性变形的临界点。

二、应力与应变关系应力与应变之间存在一定的关系,这种关系被称为应力-应变关系。

对于线性弹性材料来说,应力与应变之间呈线性关系,可以用胡克定律来描述。

胡克定律表示应力与应变成正比,比例常数为弹性模量。

然而,在材料的应力超过一定临界值后,材料会发生塑性变形,此时应力与应变的关系就不再呈线性关系。

三、材料的弹性与塑性行为材料的弹性行为是指材料在外力作用下能够恢复原状的能力。

弹性行为是材料力学中最基本的性质之一。

当外力作用消失时,材料会恢复到原来的形状和尺寸。

然而,当外力超过材料的屈服强度时,材料会发生塑性变形。

塑性变形是指材料在外力作用下会永久性地改变其形状和尺寸。

塑性变形会导致材料的强度降低和损伤积累,最终可能导致材料的失效。

四、材料失效材料失效是指材料在使用过程中不再满足设计要求或无法继续承受外界力的情况。

材料失效可以分为强度失效和稳定性失效两种。

强度失效是指材料在外力作用下超过其强度极限而发生破坏。

稳定性失效是指材料在长期使用过程中,由于材料的内部缺陷或损伤积累导致材料的性能逐渐下降,最终无法继续使用。

材料失效对于工程结构的安全性和可靠性具有重要影响,因此,对于材料失效机理的研究和预测是材料力学的重要内容之一。

材料力学知识点

材料力学知识点

材料力学知识点材料力学是工程学科中的一门重要课程,它研究物质的力学性质及其在工程中的应用。

下面我将介绍一些关键的材料力学知识点。

一、应力和应变应力和应变是材料力学中最基本的概念。

应力是单位面积上的力,可以分为正应力和剪应力。

正应力是垂直于截面的力,剪应力是平行于截面的力。

应变是物体形变程度的度量,可以分为线性应变和剪应变。

线性应变是物体的伸长或压缩相对于初始长度的比值,剪应变是物体平行于切面的相对形变。

二、弹性力学弹性力学研究材料在力的作用下发生的弹性变形。

杨氏模量和泊松比是衡量材料弹性特性的重要参数。

杨氏模量衡量了材料在受力时产生的线性应变的能力,泊松比则描述了材料在受力时在垂直方向上的形变相对于平行方向的形变的比值。

三、塑性力学塑性力学研究材料在超过其弹性极限时的变形和损伤行为。

屈服强度、抗拉强度和延伸率是评价材料塑性特性的重要指标。

屈服强度是材料在受力时产生塑性变形的临界应力值,抗拉强度是材料能够承受的最大拉伸应力值,延伸率则表示材料在断裂前可以产生的伸长量。

四、断裂力学断裂力学研究材料在受力超过其强度极限时发生破裂的过程。

断裂韧性是衡量材料抵抗断裂的能力的指标。

断裂韧性越高,材料的抗断裂能力就越强。

断裂韧性的计算可以通过测量断裂前的伸长量以及断面面积来得到。

五、疲劳力学疲劳力学研究材料在重复应力作用下的疲劳行为。

疲劳寿命和疲劳极限是评价材料抵抗疲劳破坏的重要指标。

疲劳寿命是材料在一定应力水平下能够承受的循环次数,疲劳极限是材料能够承受的最大循环应力。

这些是材料力学中的一些关键知识点,它们对于工程领域的实际应用具有重要的指导作用。

深入理解这些知识点,可以帮助工程师们更好地设计和选择材料,提高工程结构的安全性和可靠性。

除了上述提到的知识点之外,材料力学还涉及许多其他方面,如蠕变、冷却、材料的疲劳强度和弹塑性等。

这些知识点需要在实际问题中具体应用和深入研究,以更好地解决工程中的材料相关问题。

通过不断学习和实践,工程师们可以不断提升自己的材料力学水平,为工程领域的发展做出积极贡献。

材料力学基本概念

材料力学基本概念

本构关系和破坏准则
1 本构关系
材料应力与应变关系的定量化表达式。
2 破坏准则
用于预测材料在外力作用下破坏的条件和准则。
应力分析
1பைடு நூலகம்
平面应力问题
考虑应力沿两个相互垂直的方向变化。
平面应变问题
2
考虑应变沿两个相互垂直的方向变化。
3
三维应力问题
考虑应力沿三个互相垂直的方向变化。
材料力学的应用
建筑工程
材料力学是工程师设计强度结 构的基础。
描述了材料沿某个方向的变形抵抗程度。
2
泊松比
描述了材料在沿某个方向收缩时,其垂直于该方向的膨胀程度。
3
杨氏模量和泊松比的作用
它们对我们设计和选择材料有重要意义。
材料的弹性和塑性
弹性材料
材料在外力作用下形变,但恢复过程完全接近或完 全符合胡克定律。
塑性材料
材料在外力作用下形变后不完全恢复,出现塑性变 形。
材料力学基本概念
材料力学是研究材料受力和形变的科学,了解力与形变的关系是更深入地了 解材料和其性能的关键。
应力和应变的定义
应力
定义为单位面积内的力。
应变
定义为材料形变程度的度量, 是材料拉伸或压缩后长度与 原来长度之比。
应力-应变关系
材料力学的基础是应力和应 变之间的关系。
杨氏模量和泊松比
1
杨氏模量
机械制造
材料力学是机械制造过程中选 择材料、设计构件等的基础。
航空航天
材料力学在航空航天领域具有 重要的应用价值。
结论和要点
了解应力和应变的定义以及它们之间的 关系。
了解弹性和塑性材料的区别。
了解杨氏模量和泊松比,以及它们的作 用。

材料力学原理

材料力学原理

材料力学原理材料力学原理是材料科学与工程中的重要基础学科,它研究材料在外力作用下的力学性能和变形行为。

材料力学原理的研究对于材料的设计、加工和应用具有重要的指导意义。

本文将从材料力学原理的基本概念、应力与应变、弹性力学、塑性力学等方面进行介绍。

首先,材料力学原理的基本概念。

材料力学原理是研究材料在外力作用下的力学性能和变形行为的学科,它包括静力学、动力学和弹塑性力学等内容。

静力学研究材料在平衡状态下的力学性能,动力学研究材料在外力作用下的运动规律,而弹塑性力学则研究材料在外力作用下的弹性和塑性变形行为。

其次,应力与应变是材料力学原理中的重要概念。

应力是单位面积上的力,它描述了材料受到的外力作用程度。

而应变则是材料单位长度上的变形量,它描述了材料在外力作用下的变形程度。

应力与应变之间的关系可以通过杨氏模量和泊松比来描述,它们是材料力学性能的重要指标。

接下来,弹性力学是材料力学原理中的重要内容。

弹性力学研究材料在外力作用下的弹性变形行为,它包括胡克定律、拉伸与压缩、弯曲等内容。

胡克定律描述了材料的线弹性行为,而拉伸、压缩和弯曲则是材料在外力作用下的典型变形形式。

最后,塑性力学是材料力学原理中的另一个重要内容。

塑性力学研究材料在外力作用下的塑性变形行为,它包括屈服、硬化、蠕变等内容。

材料的塑性变形是材料加工和应用中不可避免的问题,因此塑性力学的研究对于材料的设计和加工具有重要意义。

综上所述,材料力学原理是材料科学与工程中的重要基础学科,它研究材料在外力作用下的力学性能和变形行为。

材料力学原理的研究对于材料的设计、加工和应用具有重要的指导意义,它包括静力学、动力学、弹性力学和塑性力学等内容。

希望本文的介绍能够对读者对材料力学原理有所了解,并对相关领域的研究和应用有所帮助。

材料力学中的基本知识及其应用

材料力学中的基本知识及其应用

材料力学中的基本知识及其应用材料力学是研究材料的力学性能和行为的一门学科,它是材料科学和工程学的重要基础。

在工程实践中,掌握材料力学的基本知识对于设计和制造高性能材料和结构至关重要。

本文将介绍材料力学的基本概念和应用,并探讨其在工程领域中的重要性。

第一部分:材料力学的基本概念材料力学的基本概念包括应力、应变和弹性模量。

应力是单位面积上的力,可以描述材料受力后的变形程度。

应变是材料受力后的变形量与原始尺寸的比值,可以用来描述材料的变形性能。

弹性模量是描述材料对应力的响应能力,它衡量了材料在受力后能够恢复原状的能力。

第二部分:材料力学的应用材料力学的应用广泛,涉及到材料的设计、制造和使用。

在材料的设计过程中,材料力学可以帮助工程师选择合适的材料和确定合理的结构设计,以满足特定的应力和应变要求。

在材料的制造过程中,材料力学可以指导工程师选择适当的工艺参数,以确保材料的质量和性能。

在材料的使用过程中,材料力学可以帮助工程师评估材料的耐久性和可靠性,以确保材料在使用过程中不会发生失效。

第三部分:材料力学在工程领域中的重要性材料力学在工程领域中具有重要的意义。

首先,材料力学可以帮助工程师理解材料的性能和行为,从而指导材料的设计和制造。

其次,材料力学可以帮助工程师评估材料的可靠性和安全性,从而确保工程项目的顺利进行。

此外,材料力学还可以帮助工程师解决材料失效和损坏的问题,提高工程项目的效率和可持续性。

结论材料力学是材料科学和工程学的重要基础,掌握材料力学的基本知识对于设计和制造高性能材料和结构至关重要。

材料力学的应用广泛,涉及到材料的设计、制造和使用。

在工程领域中,材料力学具有重要的意义,可以帮助工程师理解材料的性能和行为,评估材料的可靠性和安全性,解决材料失效和损坏的问题。

因此,深入学习和应用材料力学的知识对于工程师来说是非常重要的。

材料力学的基本知识与基本原理

材料力学的基本知识与基本原理

材料力学的基本知识与基本原理材料力学是研究材料在外力作用下的力学性能和力学行为的学科。

它是材料科学与工程中的重要基础学科,对于材料的设计、制备和应用具有重要意义。

本文将介绍材料力学的基本知识与基本原理,帮助读者更好地理解材料的力学性质。

一、材料力学的基本概念材料力学是研究材料在外力作用下的力学行为的学科,它主要包括静力学、动力学和弹性力学等内容。

静力学研究材料在力的作用下的平衡状态,动力学研究材料在力的作用下的运动状态,而弹性力学则研究材料在外力作用下的弹性变形。

二、材料力学的基本原理1. 牛顿第一定律牛顿第一定律也被称为惯性定律,它指出物体在没有外力作用下将保持静止或匀速直线运动。

在材料力学中,这一定律可以解释材料在没有外力作用下的静力平衡状态。

2. 牛顿第二定律牛顿第二定律是描述物体受力后的运动状态的定律,它表明物体所受合力与物体的加速度成正比。

在材料力学中,牛顿第二定律可以用来描述材料在外力作用下的运动状态,从而研究材料的力学性能。

3. 弹性力学原理弹性力学原理是研究材料在外力作用下的弹性变形的原理。

它基于胡克定律,即应力与应变成正比。

应力是单位面积上的力,应变是单位长度上的变形量。

弹性力学原理可以用来计算材料在外力作用下的应力和应变,从而研究材料的弹性性能。

4. 应力与应变的关系应力与应变的关系是材料力学中的重要内容,它可以通过应力-应变曲线来描述。

应力-应变曲线是材料在外力作用下的应力和应变之间的关系曲线,它可以反映材料的力学性能和变形特性。

在应力-应变曲线中,通常有线弹性阶段、屈服阶段、塑性阶段和断裂阶段等不同的阶段。

5. 杨氏模量和泊松比杨氏模量和泊松比是材料力学中的两个重要参数。

杨氏模量是描述材料在拉伸或压缩时的刚度的参数,它越大表示材料越硬。

泊松比是描述材料在拉伸或压缩时的体积变化与形变的比值,它越小表示材料越不易变形。

三、材料力学的应用材料力学的研究成果广泛应用于材料科学与工程领域。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、基本概念1、外力:作用在物体上的力,包括载荷和约束力。

2、内力:物体内部各部分之间相互作用的力。

3、应力:单位面积上的内力。

4、应变:物体在受力时发生的相对变形。

二、轴向拉伸与压缩1、轴力:杆件沿轴线方向的内力。

轴力的计算通过截面法,即假想地将杆件沿某一截面切开,取其中一部分为研究对象,根据平衡条件求出截面处的内力。

2、拉压杆的应力正应力计算公式为:σ = N / A,其中 N 为轴力,A 为横截面面积。

应力在横截面上均匀分布。

3、拉压杆的变形纵向变形:Δl = Nl / EA,其中 E 为弹性模量,l 为杆件长度。

横向变形:Δd =μΔl,μ 为泊松比。

三、剪切与挤压1、剪切:在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。

2、剪切力:平行于横截面的内力。

3、切应力:τ = Q / A,Q 为剪切力,A 为剪切面面积。

4、挤压:连接件在接触面上相互压紧的现象。

5、挤压应力:σbs = Pbs / Abs,Pbs 为挤压力,Abs 为挤压面面积。

四、扭转1、扭矩:杆件受扭时,横截面上的内力偶矩。

扭矩的计算同样使用截面法。

2、圆轴扭转时的应力横截面上的切应力沿半径线性分布,最大切应力在圆周处,计算公式为:τmax = T / Wp,T 为扭矩,Wp 为抗扭截面系数。

3、圆轴扭转时的变形扭转角:φ = TL / GIp,G 为剪切模量,Ip 为极惯性矩。

五、弯曲内力1、平面弯曲:梁在垂直于轴线的平面内发生弯曲变形,且外力和外力偶都作用在该平面内。

2、剪力和弯矩剪力:梁横截面上切向分布内力的合力。

弯矩:梁横截面上法向分布内力的合力偶矩。

材料力学基本概念和公式

材料力学基本概念和公式

材料力学基本概念和公式材料力学是研究材料在受到外力作用下的变形和破坏行为的一门学科。

下面将简要介绍材料力学的基本概念和公式。

1.伸长量(ε):伸长量是材料在受到拉伸力作用下的长度变化与原始长度之比,可以表示为ε=ΔL/L0,其中ΔL是材料受力后的长度变化,L0是材料的原始长度。

2.弹性模量(E):弹性模量是材料表征其抵抗拉伸或压缩变形能力的物理量,定义为材料受应力作用下的应力与应变之比,可以表示为E=σ/ε,其中σ是材料受到的应力。

3.屈服强度(σy):屈服强度是材料在受力过程中产生塑性变形的应力阈值,物理上可以看作是材料从弹性到塑性变形的过程。

屈服强度可以表示为σy=Fy/A,其中Fy是材料引起塑性变形的应力,A是材料的横截面积。

4.断裂强度(σf):断裂强度是材料在受到应力作用下发生破坏的最大阈值,表示材料的抗拉抗压能力。

断裂强度可以表示为σf=Ff/A,其中Ff是材料破坏时受到的应力。

5. 牛顿第二定律(F = ma):材料力学中的牛顿第二定律与经典物理学中的类似,描述了材料在受到外力作用下的加速度与作用力之间的关系。

6.雪松方程(σ=Eε):雪松方程是描述线性弹性材料受力变形关系的基本公式,其中σ为材料受到的应力,E为弹性模量,ε为材料的应变。

7.线性弹性材料的胡克定律(σ=Eε):对于线弹性材料来说,应力和应变之间的关系可以遵循胡克定律。

即材料的应力是弹性模量和应变的乘积。

8.悬臂梁挠度公式(δ=(Fl^3)/(3EI)):悬臂梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为悬臂梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。

9.铰接梁挠度公式(δ=(Fl^3)/(48EI)):铰接梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为铰接梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。

10.压缩应力(σc):压缩应力是材料在受到压缩力作用下的应力,可以表示为σc=F/A,其中F为材料受到的压缩力。

材料力学第1章材料力学基本概念

材料力学第1章材料力学基本概念


两种状态
(1) 承载力极限状态—强度、稳定性 (2) 正常使用极限状态—刚度
1.1.2.3 材料力学的任务

可靠性与经济性
可靠性要求 构件截面尺寸增大 经济性要求 构件截面尺寸减小

材料力学的任务
为解决构件设计中可靠性与经济性的 这一对矛盾提供理论依据 保证可靠的前提下,尽可能经济

F dF s lim A 0 A dA
应力s 的方向就是内力F 的方向

应力的分量

应力沿截面法线方向的分量,称为法向应力(normal stress)或正应力,用 表 示

应力平行于截面的分量,称为切向应力、切应力( shear stress)或 剪应力,用 表 示

应力的单位 基本单位:N/m2=Pa 常用单位:kN/m2=kPa 帕 千帕

杆系结构
1.1.2 材料力学的任务

结构与构件的概念
结构:能承受作用并具有适当刚度的由各连接部件有 机组合而成的系统 结构构件:结构在物理上可以区分出的部件

结构构件:屋盖、楼板、梁、柱、基础 非结构构件:门、窗、隔墙
1.1.2.1 结构的功能要求
安全性 各能 整发 偶 种够 体生 然 结构功 作 承 稳 保 事 良好的工作性能 能要求 用受 定持 件 不裂 不挠 发生火灾时,在规定时 耐久性 宽缝 大度 间内可保持足够承载力 发生撞击、爆炸时,整体稳定性 结构在规定的工作环境中、预定时期 内,材料性能的劣化不致导致结构出 现不可接受的失效概率 适用性
研究基本变形杆件之 强度条件 刚度条件 稳定性条件
1.2.1 基本假定

连续性假定
材料宏观上无间隙,连续分布于所占据的空间 物理量是空间位置的连续函数

材料力学概念及基础知识

材料力学概念及基础知识

材料力学概念及基础知识材料力学是一门研究构件承载能力的科学,其任务是在保证安全和经济的前提下,研究构件的强度、刚度和稳定性问题。

强度是指构件抵抗破坏的能力,刚度是指构件抵抗变形的能力,稳定性是指构件保持初始直线平衡形式的能力。

为了研究这些问题,材料力学假设构件内均匀充满物质,并且在各个方向力学性质相同。

在材料力学中,内力是指构件内由于发生变形而产生的相互作用力。

计算内力的方法是通过截面法,包括四个步骤:截、留、代、平。

应力是在某个面积上内力分布的集度,单位为Pa。

正应力是垂直于截面的应力,而剪应力是平行于截面的应力。

材料力学研究的基本变形包括拉伸或压缩、剪切、扭转和弯曲。

拉压变形发生在外力的作用线与构件轴线重合时,此时会产生轴力。

计算某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。

轴力图的绘制步骤是先画出水平线作为X轴,然后以外力的作用点为界将轴线分段。

最后,材料力学的研究对象包括杆件、板壳和块体等构件。

为了完成材料力学的任务,理论分析和实验研究都是必不可少的手段。

材料力学主要研究构件的强度、刚度和稳定性理论。

其中,杆件包括直杆(轴线为直线)和曲杆(轴线为曲线)。

杆件受到大小相等、方向相反且作用平面垂直于杆件轴线的力偶作用时,杆件的横截面会产生相对转动。

变形性质可以分为弹性变形和塑性变形。

研究内力的方法是截面法,而表示内力密集程度的指标是应力。

基本变形有轴向拉伸或压缩、剪切、扭转和弯曲。

轴力图可以表示轴力与横截面积的关系。

平面假设是指受轴向拉伸的杆件,在变形后横截面积仍保持不变的情况下,两平面相对位移了一段距离。

应力集中是指在某些局部位置,应力骤然增大的现象。

低碳钢的四个表现阶段是弹性阶段、屈服阶段、强化阶段和局部变形阶段。

材料强度性能的主要指标是屈服强度和抗拉强度,而塑性指标主要是伸长率和断面收缩率。

材料的脆性和塑性可以通过延伸率来区分。

连接杆主要有铆钉链接、螺栓链接、焊接、键连接和销轴链接。

材料力学的概念

材料力学的概念

材料失效的原因
材料失效可能由于应力超过了其承受能力、疲劳、腐蚀等原因引起。了解这 些失效机制有助于优化材料的设计和使用。
应用与展望
材料力学在众多工程领域中起着关键的作用,如结构工程、材料科学和制造业。未来,材料力学的发展 将进一步推动材料和工程技术的创新。
材料力学的概念
材料力学是研究材料的性质和行为的学科。本演讲将介绍材料分类、应力、 应变以及弹性模量的定义,以及其他相关的重要概念。
材料分类
材料可以根据其组成、结构和性能特点进行分类。常见的材料分类包括金属、塑料、陶瓷和复合材料。
应力、应变和弹性模量的定义
应力是材料内部受到的力与。弹性模量是描述材料弹性变形能力的物理量。
胡克定律及其用途
胡克定律是弹性固体力学中最基本的定律之一,它描述了材料的应力和应变之间的线性关系。胡克定律 在工程领域中广泛应用于材料设计和结构分析。
杨氏模量及其用途
杨氏模量是描述材料抵抗拉伸变形能力的指标。它在工程中用于计算材料的 应变和应力。
屈服强度和断裂强度
屈服强度是材料在受到外力作用下开始发生可见塑性变形的应力值。断裂强 度是材料发生断裂时承受的最大应力值。

材料力学中的基本知识与原理

材料力学中的基本知识与原理

材料力学中的基本知识与原理材料力学是研究材料在外力作用下的变形和破坏行为的学科。

它是工程学的重要基础学科,对于工程设计、材料选择和结构分析都有着重要的指导作用。

在材料力学中,有一些基本的知识和原理是必须要了解和掌握的。

1. 应力与应变应力是指单位面积上的力,通常用符号σ表示。

应变是指物体在外力作用下发生的形变,通常用符号ε表示。

应力与应变之间的关系可以通过应力-应变曲线来描述。

在弹性阶段,应力与应变呈线性关系,即胡克定律。

而在超过材料弹性极限后,应力与应变的关系将变得非线性,并可能导致材料的破坏。

2. 弹性模量与刚度弹性模量是材料在弹性阶段应力与应变之间的比值,通常用符号E表示。

刚度是指材料对于外力的抵抗能力,刚度越大,材料越难发生形变。

弹性模量与刚度有着密切的关系,弹性模量越大,材料的刚度也越大。

3. 断裂与破坏断裂和破坏是材料力学中重要的研究内容。

断裂是指材料在外力作用下发生的断裂现象,通常分为脆性断裂和韧性断裂两种。

脆性断裂是指材料在弹性阶段后突然发生断裂,韧性断裂是指材料在外力作用下逐渐发生断裂。

破坏是指材料在外力作用下失去原有的功能和性能。

4. 强度与韧性强度是指材料抵抗外力破坏的能力,通常用抗拉强度、抗压强度等来表示。

韧性是指材料吸收能量的能力,通常用断裂韧性来表示。

强度和韧性是材料力学中两个重要的性能指标,不同的工程应用需要不同的强度和韧性。

5. 疲劳与寿命材料在长期循环加载下可能会出现疲劳现象,即在应力远低于材料的抗拉强度的情况下,材料会因为循环加载而逐渐疲劳积累,最终导致破坏。

疲劳寿命是指材料在特定应力循环下能够承受的次数。

疲劳与寿命是材料力学中需要重点研究和考虑的问题,对于工程设计和结构安全有着重要的影响。

6. 材料的选择与设计在工程设计中,材料的选择是一个关键的问题。

不同的工程应用需要不同的材料,需要考虑到材料的力学性能、耐久性、经济性等因素。

材料力学为工程设计提供了重要的指导原则,帮助工程师选择合适的材料并进行合理的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学基础
在机械构件的设计和生产过程中,经常要考虑到构件的受力和变形、以及承载能力。

材料力学则是专门帮助我们研究构件的承载能力的一门学科。

1. 什么叫做承载能力???
顾名思义,承载能力是构件承受载荷的能力。

在设计和加工过程中,如果超载了,工件就会发生破坏;如果载荷小,就会效率低,材料不能得到充分利用,造成不必要的浪费。

所以要使工件的承载能力在不使工件发生破坏的前提下尽可能的大。

2 怎么样来衡量工件的承载能力??这也就是材料力学所要研究的内容。

材料力学中通常用强度、刚度、稳定性来衡量工件的承载能力。

要求工件有足够的强度、刚度和稳定性。

强度是指工件在外来载荷的作用下抵抗破坏的能力;刚度是指工件在外来载荷的作用下抵抗变形的能力;稳定性是指工件保持其原有的平衡形态的能力。

其中,稳定性是针对细长杆提出的。

例如:对于细长杆,当压力增加到某一数值时,直杆就会由原来的直线平衡形态突然变弯。

对于这种细长杆,要求它们在工作中始终保持原有的直线平衡形式。

也就是要求工件具有足够的稳定性。

从设计的角度来说,材料力学的任务就是通过对构件的强度、刚度和稳定性的研究,找出构件的形状、尺寸以及所用材料的机械性质和所受荷载之间的关系,从而在既安全由经济的前提下,为构件选择适当的材料、合理的截面形状;从加工的角度来说,就是通过对强度、刚度、稳定性的研究,了解设计者的初衷,在操作过程中防止出现材料的破坏和超范围的变形。

3.强度、刚度、稳定性的表示方法?
强度通常用单位面积上所承受的载荷来表示,称为应力。

在设计过程中,应使材料满足强度条件,即:材料的应力小于等于许用应力σ≤[σ]。

刚度通常用变形来表示,例如可以用伸长量、弯曲的角度、弯曲处的最大直线距离等来表示。

有专门的计算公式,我们就不介绍了。

(弹性变形和塑性变形的概念)
稳定性通常用临界压力来衡量。

对于细长杆来说,作用在压杆上的力,随着外力的增加,细长压杆原有直线状态平衡会从稳定的平衡过渡到不稳定的平衡。

当压力达到一定数值时,压杆处于稳定平衡状态,当压力超过这个数值时,压杆
处于不稳定状态。

这个使得压杆从稳定平衡状态过渡到不稳定平衡状态的压力叫做临界压力。

它是压杆由原来直线平衡状态转变为微弯状态时的压力值,也是压杆开始丧失稳定平衡状态时的压力值。

4 举例说明强度、刚度和稳定性的概念。

通过拉、压、弯、扭、剪的受力、变形、破坏形式帮助工人建立强度、刚度概念,通过细长杆的压杆稳定问题建立稳定性概念。

联系生产,讲我们应该注意的问题。

加工过程,工件的装夹、切削力的大小;装配过程中,力矩的大小;钻孔过程中,孔的位置、大小等等,都必须满足强度的概念。

相关文档
最新文档