新课程标准高一数学必修二课程第一章空间几何体

合集下载

人教新课标高中数学教材章节目录

人教新课标高中数学教材章节目录

必修1→4→5→2→3普通高中课程标准实验教科书数学必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用普通高中课程标准实验教科书数学必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系普通高中课程标准实验教科书数学必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码普通高中课程标准实验教科书数学必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换普通高中课程标准实验教科书数学必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式普通高中课程标准实验教科书数学选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分普通高中课程标准实验教科书数学选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2结构图信息技术应用用Word2002绘制流程图选修2 系列2由3个模块组成选修2-1常用逻辑用语圆锥曲线空间中的向量与立体几何选修2-2导数及其应用推理与证明数系的扩充与复数的引入选修2-3计数原理统计案例概率选修3 系列3由6个模块组成选修3-1 数学史选讲选修3-2 信息安全与密码选修3-3球面上的几何选修3-4对称与群选修3-5欧拉公式与闭曲面分类选修3-6三等分角与数域扩充选修4 系列4由10专题组成选修4-1几何证明选讲选修4-2矩阵与变换选修4-3数列与差分选修4-4坐标系与参数方程选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法第一节不等式的基本性质和一元二次不等式的解法第二节基本不等式第三节绝对值不等式的解法第四节绝对值的三角不等式第五节不等式证明的基本方法第二章柯西不等式与排序不等式及其应用第一节柯西不等式第二节排序不等式第三节平均值不等式(选学)第四节最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式第一节数学归纳法原理第二节用数学归纳法证明不等式,贝努利不等式选修4-6初等数论初步选修4-7优选法与试验设计初步选修4-8统筹法与图论初步选修4-9风险与决策选修4-10开关电路与布尔代数。

人教版高中必修2第一章空间几何体课程设计

人教版高中必修2第一章空间几何体课程设计

人教版高中必修2第一章空间几何体课程设计一、背景介绍人教版高中数学教材中,空间几何体是必修2的第一章内容,通过本章的学习,可以帮助学生建立三维空间的思维模型,进一步提高他们的数学学习能力。

本课程设计旨在通过有趣的教学方法和补充教材,提高学生对空间几何体的理解和掌握。

二、学习目标1.了解空间几何体的基本概念;2.掌握空间几何体的相关参数计算方法;3.能够进行空间几何体的分类和比较;4.能够在现实问题中应用空间几何体的相关知识。

三、教学内容1. 立体图形与空间几何体•立体图形的特点;•空间几何体的基本概念;•空间几何体的种类及特点。

2. 空间几何体的参数计算•空间几何体的体积计算;•空间几何体的表面积计算;•空间几何体的其他参数计算。

3. 空间几何体的分类•空间几何体的分类;•不同空间几何体的比较;•在实际问题中应用空间几何体的分类知识。

四、教学方法1. PBL教学法本课程采用问题驱动学习(PBL)教学法,通过引入实际问题,激发学生的学习兴趣,提高学生的自主学习能力和解决问题的能力。

2. 案例教学法在教学中引入具体案例,让学生在解决问题时更能理解和掌握所学知识。

同时,在案例解决过程中,要求学生能够进行创新和自主思考,培养他们的实际应用能力。

3. 交互式教学法教师与学生通过互动、讨论、合作等形式,共同探究问题,激发学生的学习兴趣,提高其学习效果。

五、教学流程第一部分:引入教学•介绍本章学习目标;•引入立体图形和空间几何体的概念;•通过图片、视频等形式展现空间几何体的特点和应用场景。

第二部分:教学过程•在课堂上呈现具体的例子,让学生更好地理解空间几何体的概念和应用;•引入问题来激发学生的学习兴趣,同时培养学生的自主思考和解决问题的能力;•给予学生足够的时间,让他们自主探索和发现,鼓励他们进行创新和思考。

第三部分:总结归纳•进行知识点的总结,强化学生对空间几何体的理解和掌握;•借助案例,让学生更深入地理解和掌握空间几何体的相关知识。

数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1 ?学问与技能(1)通过实物操作,增加同学的直观感知。

(2)能按照几何结构特征对空间物体举行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2. 过程与办法(1)让同学通过直观感触空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让同学观看、研究、归纳、概括所学的学问。

3. 情感态度与价值观(1)使同学感触空间几何体存在于现实生活周围,增加同学学习的乐观性,同时提高同学的观看能力。

(2)培养同学的空间想象能力和抽象括能力。

二、教学重点、难点重点:让同学感触大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观看、思量、沟通、研究、概括。

(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 研究:经典的建造给人以美的享受,其中神秘为何?世间万物,为何千姿百态?2. 提问:学校与初中在平面上讨论过哪些几何图形?在空间范围上讨论过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深化讨论一些空间几何图形,即学习立体几何,注重学习办法:直观感知、操作确认、思维辩证、度量计算二、讲授新课:1. 教学棱柱、棱锥的结构特征:②提问:举例生活中有哪些实例给我们以两个面平行的形象?②研究:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有D哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫棱柱→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)结合图形熟悉:底面、侧面、侧棱、顶点、高、对角面、对角线?②分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等表示:棱柱ABCDE-A 'B'C'D''②研究:埃及金字塔具有什么几何特征?②定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形熟悉:底面、侧面、侧棱、顶点、高?→研究:棱锥如何分类及表示?②研究:棱柱、棱锥分离具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方?2. 教学圆柱、圆锥的结构特征:②研究:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥?→列举生活中的棱柱实例→结合图形熟悉:底面、轴、侧面、母线、高.→表示办法②研究:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.②观看书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3. 质疑答辩,排难解惑,进展思维,老师提出问题,让同学思量。

必修2_第一章__空间几何体

必修2_第一章__空间几何体

必修2第一章空间几何体〖1.1〗空间几何体的结构(1)空间几何体的概念我们只考虑物体的形状和大小,不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.我们高中学习的空间几何体主要有多面体与旋转体两大类. (2)多面体的概念一般地,我们把由若干个平面多边形围成的几何体叫做多面体•高中学习的多面体主要有棱柱、棱锥、棱台•①棱柱:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱②棱锥:一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.③棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台•(3)旋转体的概念我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体•这条定直线叫做旋转体的轴•①圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱•②圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥•③圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台④球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球•棱柱与圆柱统称为柱体,棱锥与圆锥统称为锥体,棱台与圆台统称为台体(4)简单组合体的构成简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;另一种是由简单几何体截去或挖去一部分而成•〖1.2〗空间几何体的三视图与直观图(1)中心投影与平行投影我们把光由一点向外散射形成的投影,叫做中心投影;我们把在一束平行光线照射・・■・・■■・・■!■■■!■■ 丿下形成的投影,叫做平.行投影.._.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.我们可以用平行投影的方法,画出空间几何体的三视图和直观图.(2)空间几何体的三视图三视图分为从前往后看得到的正视图(主视图)、从左往右看得到的侧视图(左视图)、从上往下看得到的俯视图.(3)空间几何体的直观图我们常用斜二测画法画几何体的直观图,斜二测画法是一种特殊的平行投影画法.画直观图时掌握原有图形中横向长度不变,纵向长度变成一半,竖向长度不变,横向与纵向的直角变成45°.〖1.3〗空间几何体的表面积与体积(1)柱体、锥体、台体的表面积柱体、锥体、台体的表面积是由底面积与侧面积两部分组成.①棱柱表面积:是由两个全等多边形的底面积与多个平行四边形的侧面积组成.②棱锥表面积:是由一个多边形的底面积与多个三角形的侧面积组成.③棱台表面积:是由两个相似多边形的底面积与多个梯形的侧面积组成.④圆柱表面积:是由两个全等圆的底面积与侧面展开图为矩形的侧面积组成. S表2 r2 2 rl (其中r为底面圆半径,I为母线长).⑤圆锥表面积:是由一个圆的底面积与侧面展开图为扇形的侧面积组成.S表r2 rl (其中r为底面圆半径,I为母线长),且侧面展开图扇形的中心角⑥圆台表面积:是由两个相似圆的底面积与侧面展开图为扇环的侧面积组成.S表r2r2(r r)l (其中r为上底面圆半径,r为下底面圆半径,I为母线长).⑦球表面积:S表4 R2(其中R为球半径).(2)柱体、锥体、台体的体积①柱体: 包括棱柱与圆柱. V柱体Sh (S为底面积,h为柱体高)②锥体: 包括棱锥与圆锥. V锥体gh3(S为底面积,.SS S)hh为锥体高)③台体: 包括棱台与圆台. V台体-(S3(S , S分别为上、下底面面积,h为台体高)④球体:4 3V球 4 R.第二章点、直线、平面之间的位置关系〖2.1〗空间点、直线、平面之间的位置关系(1)平面的基本性质:公理1,公理2,公理3及其推论1, 2, 3①公理1 :如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.②公理2:如果两个平面有一个公共点,那么它们还有其它公共点,这些公共点的集合是一条直线.③公理3 :经过不在同一条直线上的三点有且只有一个平面.(2)公理的运用 ① 证明共面问题证明共面问题,一般有两种证法,一是由某些元素确定一个平面,再证明其余元素在这个平面内.二是分别由不同元素确定若干个平面,再证明这些平面重合. 通常证明这些点都在两个平面的交线上, 即先确定出某两点 再证明第三点是两个平面的公共点, 那它当然必在两个平面先证两条直线交于一点, 再证明第三条直线经过这点, 把问 题转化为证明点在直线上的问题. (3)空间两条直线的位置关系① 空间两条不重合的直线有三种位置关系:相交、平行、异面. ② 公理4 :平行于同一条直线的两条直线平行. ③ 等角定理:对应边平行且方向相同的两个角相等. (4)异面直线① 定义:不同在任何 一个平面内的两条直线是异面直线. ② 证明异面直线的方法 依据定义采用反证法,假设共面. ③ 求异面直线所成角的方法平移法:通过平移直线,把异面问题转化为共面问题来解决(主要通过中位线、平行 四边形来平移直线).(5) 直线与平面的位置关系①直线在平面内②直线与平面相交③直线与平面平行注意:直线和平面相交、直线和平面平行统称为直线在平面外,记作 |(6) 平面与平面的位置关系①两个平面平行 ②两个平面相交.公理1 公理2 推论1:经过一条直线和这条直线外一点有且只有一个平面. 推论2:经过两条相交直线有且只有一个平面. 公理3推论3:经过两条平行直线有且只有一个平面.推论1 推论2 推论3② 证明三点共线问题 证明空间三点共线问题, 在某两个平面的交线上, 的交线上.③ 证明三线共点问题 证明空间三线共点问题,『2.2〗直线、平面平行的判定及其性质判定:①ba②a性质:①aa baa bb门//性质:①a ab ②ac a判定:①a , bap|b A(1直线与平面平行的判定与性质定理(2)平面与平面平行的判定与性质定理a //下鱼制造b下鱼制造『2.3〗直线、平面垂直的判定及其性质,a b flb,a(2)三垂线定理及其逆定理(不必掌握)定理:POPA^ AaA a OAa OA a PA(1)直线与平面垂直的判定与性质定理m , nb a④b a bbb②aPA逆定理:PAp|下鱼制造② A a, A aa实际是以该直线为轴的一个旋转,通过对翻折问题的研究,可以进一步发展空间想象能力. ②求翻折问题的基本方法是: 先比较翻折前后的图形, 弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体几何中, 将问题归结为一个条件与结论均明朗化的立几问题.③ 把平面图形翻折成空间图形后的有关计算问题,必须抓住在翻折过程中点、 线、面之间的位置关系、数量关系中,哪些是变的,哪些不变,特别要抓住不变量. 一般地, 在同一个半平面内的几何元素之间的关系是不变的, 涉及到两个半平面内的几何元素之间的关系是变的.④ 另外,在解题中还须注意:因折叠所形成的是一个二面角图形, 而大多数问题都与 这个二面角有关,所以必须以折叠前后的一些不变垂直关系为依据, 找出或作出二面角的平面角.⑤ 在处理几何体(翻折后)中线面之间的关系时,要充分利用折叠前平面图形,在平 面图形中,各元素的数量关系和位置关系易于观察和计算.(5) 几何体的展开 几何体的展开,是平面图形翻折的逆过程,常用此法求两点间的最短距离.(3) 平面与平面垂直的判定与性质定理②依定义,二面角的平面角90性质:①, ba ,a b(4)处理翻折的基本方法①将平面图形沿直线翻折成立体图形,。

(教师)高一数学必修2第一章知识点总结(空间几何体)

(教师)高一数学必修2第一章知识点总结(空间几何体)

必修2 第一章空间几何体知识点1、多面体旋转体2、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

直棱锥斜棱锥正棱锥表示:用各顶点字母,如五棱柱'''''EDCBAABCDE几何特征:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。

(2)棱锥:定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥(四面体)、四棱锥、五棱锥等。

正棱锥:正三棱锥:锥体中底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥.正三棱锥不等同于正四面体,正四面体必须每个面都是全等的等边三角形.正三棱锥的性质:1.底面是等边三角形。

2.侧面是三个全等的等腰三角形.3.顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。

表示:用各顶点字母,如五棱锥'''''E D C B A P - 几何特征:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3) 棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P - 几何特征:①上下底面是相似的平行多边形②侧面是梯形 ③侧棱交于原棱锥的顶点(4) 圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行; ③轴与底面圆的半径垂直; ④侧面展开图是一个矩形。

人教新课标版数学高一人教数学必修2教师用书 第一章 空间几何体

人教新课标版数学高一人教数学必修2教师用书 第一章 空间几何体

第一章空间几何体1.1空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征(教师用书独具)●三维目标1.知识与技能(1)能根据几何结构特征对空间物体进行分类.(2)通过观察实例,认识棱柱、棱锥、棱台的结构特征.(3)能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出棱柱、棱锥、棱台的几何结构特征.(2)让学生在观察、讨论、归纳、概括中获取知识.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力.●重点难点重点:让学生感受大量空间实物及模型,概括出棱柱、棱锥、棱台的结构特征.难点:棱柱、棱锥、棱台的结构特征的概括.重难点突破:以学生熟知的现实世界中几何体为切入点,教师通过提供丰富的实物模型引导学生对观察到的实物进行分类,考虑到棱柱、棱锥、棱台的结构特征的概括既是本节教学的重点又是本节教学的难点,教师可采用多媒体辅助教学法,利用多媒体演示,让学生通过观察比较,从而发现规律,概括出几何体的结构特征,突破难点.(教师用书独具)●教学建议本节内容是立体几何的入门教学,是义务教育阶段“空间与图形”课程的延续与提高,通过本节内容的学习可帮助学生逐步形成空间想象能力.由于本节知识具有概念多、感知性强等特点,教学时建议采用启导法和多媒体辅助教学法.引导学生从熟悉的物体入手,利用实物模型、计算机软件观察大量空间图形,多角度、多层次地揭示空间图形的本质.按照从整体到局部、由具体到抽象的原则,让学生认识棱柱、棱锥、棱台的几何结构特征,进而通过空间图形,培养和发展学生的空间想象能力.●教学流程创设问题情境,引出问题:你能根据某种标准对空间几何体进行分类吗?⇒引导学生观察柱、锥、台、球的相关图片得出空间几何体的定义及分类.⇒通过引导学生回答所提问题掌握棱柱、棱锥、棱台的结构特征.⇒通过例1及其变式训练,使学生掌握棱柱、棱锥、棱台的概念.⇒通过例2及其变式训练,引导学生应用概念判别几何体,加深对棱柱结构特征的认识.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.通过观察实例,认识棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构.空间几何体的定义、分类及相关概念【问题导思】观察下面两组物体,你能说出各组物体的共同点吗?(1)(2)【提示】(1)几何体的表面由若干个平面多边形围成.(2)几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.多面体与旋转体类别多面体旋转体定义由若干个平面多边形围成的几何体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体图形相关概念面:围成多面体的各个多边形棱:相邻两个面的公共边顶点:棱与棱的公共点轴:形成旋转体所绕的定直线棱柱的结构特征观察下列多面体,有什么共同特点?【提示】 (1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两个四边形的公共边都相互平行.棱柱的定义、分类、图示及其表示棱柱图形及表示定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图棱柱可记作: 棱柱ABCDEF —A ′B ′C ′D ′E ′F ′相关概念:底面(底):两个互相平行的面 侧面:其余各面 侧棱:相邻侧面的公共边 顶点:侧面与底面的公共顶点 分类:①依据:底面多边形的边数 ②举例:三棱柱(底面是三角形)、四棱柱(底面是四边形)……棱锥的结构特征观察下列多面体,有什么共同特点?【提示】 (1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形. 棱锥的定义、分类、图形及表示棱锥图形及表示定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥相关概念:底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点分类:①依据:底面多边形的边数②举例:三棱锥(底面是三角形)、四棱锥(底面是四边形)……如图棱锥可记作:棱锥S-ABCD棱台的结构特征观察下列多面体,分析其与棱锥有何区别联系?【提示】(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.棱台的定义、分类、图形及表示棱台图形及表示定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台相关概念:上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点分类:①依据:由几棱锥截得②举例:三棱台(由三棱锥截得)、四棱台(由四棱锥截得)……如图棱台可记作:棱台ABCD-A′B′C′D′棱柱、棱锥、棱台的概念下列说法正确的是()A.有两个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有三个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形【思路探究】已知条件→联想空间图形→紧扣定义→得出结论【自主解答】选项A错,反例如图a;选项C也错,反例如图b,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;一个多面体至少有四个面,如三棱锥有四个面,不存在有三个面的多面体,所以选项B错;根据棱柱的定义,知选项D正确.【答案】 D判断一个几何体是何种几何体,一定要紧扣棱柱、棱锥、棱台的结构特征,注意概念中的特殊字眼,切不可马虎大意,如棱柱的概念中的“相邻”,棱锥的概念中的“公共顶点”,棱台的概念中的“棱锥”等.下列说法中正确的是()①一个棱柱至少有五个面;②用一个平面去截棱锥,底面和截面之间的部分叫棱台;③棱台的侧面是等腰梯形;④棱柱的侧面是平行四边形.A.①④B.②③C.①③D.②④【解析】因为棱柱有两个底面,因此棱柱的面数由侧面个数决定,而侧面个数与底面多边形的边数相等,故面数最少的棱柱为三棱柱有五个面,①正确;②中的截面与底面不一定平行,故②不正确;由于棱台是由棱锥截来的,而棱锥的所有侧棱不一定相等,所以棱台的侧棱不一定都相等,即不一定是等腰梯形,③不正确;由棱柱的定义知④正确,故选A.【答案】 A对多面体的识别和判断1111图1-1-1(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分的几何体还是棱柱吗?若是棱柱指出它们的底面与侧棱.【思路探究】观察图形→紧扣概念→得出结论→回答问题【自主解答】(1)这个长方体是棱柱,是四棱柱,因为它满足棱柱的定义.(2)截面BCFE右侧部分是三棱柱,它的底面是△BEB1与△CFC1,侧棱是EF,B1C1,BC.截面左侧部分是四棱柱.它的底面是四边形ABEA1与四边形DCFD1,侧棱是AD,BC,EF,A1D1.1.解答本题的关键是正确掌握棱柱的几何特征,本题易出现认为所分两部分的几何体一个是棱柱,一个是棱台的错误.2.在利用几何体的概念进行判断时,要紧扣定义,注意几何体间的联系与区别,不要认为底面就是上下位置,如此题,底面也可放在前后位置.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).图1-1-2 【解析】结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.【答案】①③④⑥⑤对棱柱、棱锥、棱台的概念理解不到位致误如图1-1-3,甲、乙、丙是不是棱柱、棱锥、棱台?为什么?甲乙丙图1-1-3【错解】图甲有两个面ABC和A2B2C2平行,其余各面都是平行四边形,所以甲图的几何体是棱柱;图乙因一面ABCD是四边形,其余各面都是三角形,所以乙图的几何体是棱锥;图丙是棱台.【错因分析】上述错误答案都是根据相应概念的某一个结论去判断几何体,判断的依据不充分,应该按照几何体的定义去判断,或按照与定义等价的条件去判断.【防范措施】切实理解棱柱、棱锥和棱台的定义是解答此类问题的关键.【正解】图甲这个几何体不是棱柱.这是因为虽然上、下面平行,但是四边形ABB1A1与四边形A1B1B2A2不在一个平面内.所以多边形ABB1B2A2A1不是一个平面图形,它更不是一个平行四边形,因此这个几何体不是一个棱柱;图乙中的六个三角形没有一个公共点,故不是棱锥,只是一个多面体;图丙也不是棱台,因为侧棱的延长线不能相交于同一点.1.棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).2.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.图1-1-41.如图1-1-4所示的几何体是()A.五棱锥B.五棱台C.五棱柱D.五面体【解析】结合棱柱的概念及分类可知,该几何体是五棱柱.【答案】 C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错【解析】结合棱锥的特征知B符合题意.【答案】 B3.下列说法正确的有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.【解析】棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而正确的有①②④⑤.【答案】①②④⑤4.下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?(1)(2)(3)(4)图1-1-5【解】(1)是棱柱,可记为五棱柱ABCDE-A1B1C1D1E1;(2)不是棱柱,不满足棱柱的结构特征;(3)是棱柱,可记为三棱柱ABC-A1B1C1;(4)是棱柱,可记为四棱柱ABCD-A1B1C1D1.一、选择题1.棱柱的侧面都是()A.三角形B.四边形C.五边形D.矩形【解析】由棱柱的性质可知,棱柱的侧面都是四边形.【答案】 B2.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形【解析】三棱锥的侧面和底面均是三角形.【答案】 A3.四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).【答案】 C图1-1-64.如图1-1-6,能推断这个几何体可能是三棱台的是( ) A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1【解析】 由于棱台是由平行于底面的平面截棱锥得到的几何体,所以要使结论成立,只需A 1B 1AB =B 1C 1BC =A 1C 1AC便可.经验证C 选项正确. 【答案】 C5.(2013·郑州高一检测)观察如图1-1-7的四个几何体,其中判断不正确的是( )图1-1-7A .①是棱柱B .②不是棱锥C .③不是棱锥D .④是棱台【解析】 结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B 错误.【答案】 B 二、填空题6.(2013·天水高二检测)在如图1-1-8所示的长方体中,连接OA,OB,OD和OC所得的几何体是________.图1-1-8【解析】此几何体由△OAB,△OAD,△ODC,△OBC和正方形ABCD围成,是四棱锥.【答案】四棱锥7.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.【解析】面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.【答案】5698.(思维拓展题)用6根长度相等的木棒,最多可以搭成________个三角形.【解析】用三根木棒,摆成三角形,用另外3根木棒,分别从三角形的三个顶点向上搭起,搭成一个三棱锥,共4个三角形.【答案】 4三、解答题9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点.【解】(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.10.(探究性问题)如图1-1-9,在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.问:(1)依据题意知该几何体是什么几何体?(2)这个几何体有几个面构成,每个面的三角形是什么三角形?图1-1-9【解】(1)三棱锥.(2)这个几何体由四个面构成,即面DEF,面DFP,面DEP,面EFP.由平面几何体知识可知DE=DF,∠DPE=∠EPF=∠DPF=90°,所以△DEF为等腰三角形,△DFP、△DEP 为直角三角形,△EFP为等腰直角三角形.11.如图1-1-10,在透明塑料制成的长方体ABCD—A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,水的形状形成如下图(1)(2)(3)三种形状.(阴影部分)请你说出这三种形状分别是什么名称,并指出其底面.图1-1-10【解】(1)是四棱柱,底面是四边形EFGH和四边形ABCD;(2)是四棱柱,底面是四边形ABFE和四边形DCGH;(3)是三棱柱,底面是△EBF和△HCG.(教师用书独具)多面体的表面展开图画出如图所示的几何体的表面展开图.(1)(2)【思路探究】可假设一个面不动,进行空间想象,展开几何体.【自主解答】表面展开图如图所示:(1)(2)多面体表面展开图问题的解题策略:(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的是()【解析】将四个选项的平面图形折叠,看哪一个可以复原为正方体.【答案】 C第2课时旋转体与简单组合体的结构特征(教师用书独具)●三维目标1.知识与技能(1)会用语言概述圆柱、圆锥、圆台及球的结构特征.(2)理解由柱、锥、台、球组成的简单组合体的结构特征.(3)能运用简单组合体的结构特征描述现实生活中的实际模型.2.过程与方法(1)让学生通过直观感知空间物体,从实物中概括出圆柱、圆锥、圆台及球的几何结构特征.(2)让学生通过直观感知空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力,培养学习教学应用意识.●重点难点重点与难点:圆柱、圆锥、圆台及球的几何结构特征和简单组合体的结构特征.重难点突破:以丰富的实物模型为切入点,通过让学生观察、分析实物体,并结合旋转体的概念,抽象概括出圆柱、圆锥、圆台及球的几何结构特征和简单组合体的结构特征,进而在观察思考中形成概念,突出圆锥与圆台间的内在联系,突破重点的同时化解难点.(教师用书独具)●教学建议本节内容是上节知识延续与提高,通过本节内容的学习可帮助学生进一步了解空间几何体中圆柱、圆锥、圆台及球的结构特征.由于本节知识具有概念多、感知性强等特点,教学时,建议采用启导法和多媒体辅助教学法,引导学生从熟悉的物体入手,利用实物模型、计算机软件观察大量空间图形,通过整体观察、直观感知,引导学生多角度、多层次地揭示圆柱、圆锥、圆台及球的结构特征.在此基础上,再通过让学生说一说、举一举等方式,明确简单组合体的结构特征,最终达到通过空间图形培养和发展学生的空间想象能力的目的.●教学流程创设问题情境,引出问题:圆柱、圆锥、圆台及球是如何定义的?⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!课标解读1.了解圆柱、圆锥、圆台、球的定义.2.了解柱体、锥体、台体之间的关系.3.知道这四种几何体的结构特征,能识别和区分这些几何体.圆柱【问题导思】观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?【提示】以矩形的一边所在的直线为轴,其余三边旋转形成的面所围成的旋转体.圆柱的结构特征圆柱图形及表示定义:以矩形一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱相关概念:轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线图中圆柱表示为:圆柱O′O圆锥【问题导思】仿照圆柱的定义,你能定义什么是圆锥吗?【提示】以直角三角形的一直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.圆锥的结构特征圆锥图形及表示定义:以直角三角形的一直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体相关概念:轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面叫做圆锥的底面侧面:直角三角形的斜边旋转而成的曲面叫做圆锥的侧面母线:无论旋转到什么位置,不垂直于轴的边都叫做圆锥侧面的母线图中圆锥表示为:圆锥SO圆台【问题导思】下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?【提示】(1)圆台可以是直角梯形以垂直于底边的腰所在的直线为旋转轴,其他三边旋转一周形成的面所围成的几何体.(2)圆台也可以看作是等腰梯形以其底边的中垂线为轴,各边旋转180°形成的面所围成的几何体.(3)类比棱台的定义圆台还可以如下得到:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.圆台的结构特征圆台图形及表示定义:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台旋转法定义:以直角梯形中垂直于底边的腰所在直线为旋转轴,将直角梯形经旋转轴旋转一周而形成的旋转体叫做圆台相关概念:轴:旋转轴叫做圆台的轴底面:垂直于轴的边旋转一周所形成的圆面叫圆台底面图中圆台表示为:圆台O′O侧面:不垂直于轴的边旋转一周所形成的曲面叫圆台的侧面母线:无论旋转到什么位置,不垂直于轴的边叫做圆台的母线球【问题导思】球也是旋转体,它是由什么图形旋转得到的?【提示】以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体即为球.球的结构特征球图形及表示定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球相关概念:球心:半圆的圆心叫做球的球心半径:半圆的半径叫做球的半径直径:半圆的直径叫做球的直径图中的球表示为:球O简单组合体【问题导思】下图中的两个空间几何体是柱、锥、台、球体中的一种吗?它们是如何构成的?(1)(2)【提示】这两个几何体都不是单纯的柱、锥、台、球体,而是由柱、锥、台、球体中的两种或三种组合而成的几何体.简单组合体(1)概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.旋转体结构特征①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③一个圆绕其直径所在的直线旋转半周所形成的曲面围成的几何体是球;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0B.1C.2D.3【思路探究】紧扣旋转体的定义逐一判断.【自主解答】①错误.应以直角三角形的一条直角边为轴;②错误.应以直角梯形的垂直于底边的腰为轴;③错误.应把“圆”改成“圆面”;④错误,应是平面与圆锥底面平行时.【答案】 A1.圆柱、圆锥、圆台和球都是一个平面图形绕其特定边(弦)旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.2.只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误.如图1-1-11,第一排中的图形绕虚线旋转一周,能形成第二排中的某个几何体,请把一、二排中相应的图形用线连起来.图1-1-11【答案】(1)—C(2)—B(3)—D(4)—A简单组合体的结构特征图1-1-12【思路探究】结合简单组合体的两种基本构成形式入手分析.【自主解答】图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.组合体是由简单几何体拼接、截去或挖去一部分而成的,因此,要仔细观察组合体的组成,结合柱、锥、台、球的几何结构特征,对原组合体进行分割.如图1-1-13为某竞赛中,获得第一名的代表队被授予的奖杯,试分析这个奖杯是由哪些简单几何体组成的?图1-1-13【解】奖杯由一个球,一个四棱柱和一个四棱台组成.有关几何体的计算问题截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.图1-1-14【思路探究】过圆锥的轴作截面,利用三角形相似来解决.【自主解答】设圆台的母线长为l,由截得圆台上、下底面面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r.。

人教新课标版数学高一-高中数学必修2教案 第一章 空间几何体

人教新课标版数学高一-高中数学必修2教案 第一章 空间几何体

1.1空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征空间几何体与多面体[导入新知]1.空间几何体概念定义空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,这条定直线叫做旋转体的轴2.多面体多面体定义图形及表示相关概念棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱上图可记作:棱柱ABCD-A′B′C′D′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些底面(底):多边形面侧面:有公共顶点的各个三角形面面所围成的多面体叫做棱锥上图可记作:棱锥S-ABCD侧棱:相邻侧面的公共边顶点:各侧面的公共顶点棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台上图可记作:棱台ABCD-A′B′C′D′上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点[化解疑难]1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要4个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分.2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.棱柱的结构特征[例1]下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[答案](3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各个侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形答案:D棱锥、棱台的结构特征[例2]下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由4个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:判定方法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点下列说法正确的有()①由5个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余4个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A多面体的平面展开图[例3]如下图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]水平放置的正方体的6个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.5C.快D.乐答案:B1.柱、锥、台结构特征判断中的误区[典例]如下图所示,下列关于这个几何体的正确说法的序号为________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.[解析]①正确,因为有6个面,属于六面体的范围;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,如果把几何体放倒就会发现是一个四棱柱;④⑤都正确,如下图所示.[答案]①③④⑤[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如右图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案:A一、选择题1.下列图形中,不是三棱柱的展开图的是()答案:C2.如右图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体答案:B3.下列说法正确的是()①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长都相等.A.①②B.①③C.②③D.②④答案:B4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案:D5.下列命题正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个互相平行的面一定是棱柱的底面C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点答案:D二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.答案:三 57.如右图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”“不一定”或“一定不”)答案:(1)不一定(2)不一定三、解答题9.如右图所示,长方体ABCD -A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM的上方部分是三棱柱BB1M-CC1N,下方部分是四棱柱ABMA1-DCND1.10.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.第二课时圆柱、圆锥、圆台、球的结构特征简单组合体的结构特征旋转体[导入新知]旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆柱OO′圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆锥SO 圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为圆台OO′球以半圆的直径所在直线为旋转轴,半圆面旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为球O 1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的垂直平分线为轴,各边旋转半周形成的曲面所围成的几何体.简单组合体[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).旋转体的结构特征[例1]给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪种平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.答案:(1)(2)简单组合体[例2]观察下列几何体的结构特点,完成以下问题:(1)题图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①.(2)题图②所示几何体的结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②.(3)题图③所示几何体是由哪些简单几何体构成的?请说明该几何体的面数、棱数、顶点数.[解](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如题图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]指出图①~图③的3个几何体分别是由哪些简单几何体组成的.解:图①几何体由一个圆锥、一个圆柱和一个圆台拼接而成;图②几何体由一个六棱柱和一个圆柱拼接而成;图③几何体由一个六棱柱挖去一个圆柱而成.1.旋转体的生成过程[典例]如右图所示,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程][规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图①所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图②所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图③所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图④所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图①和图②所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图③所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图④所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.一、选择题1.下列说法正确的是()A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形答案:C2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括() A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥答案:D3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥答案:D4.下列叙述中正确的个数是()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3答案:B5.如右图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形答案:D二、填空题6.有下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.其中正确的是________(把所有正确说法的序号都填上).答案:②④7.下面这个几何体的结构特征是_____________________________________.答案:由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱三、解答题9.指出如图①、图②、图③所示的图形分别是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图①是由一个三棱柱和一个四棱柱拼接而成的简单组合体;图②是由一个圆锥和一个四棱柱拼接而成的简单组合体;图③是由一个半球、一个圆柱和一个圆台拼接而成的简单组合体.10.如右图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别为2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如右图所示,过圆台的轴作截面,截面为等腰梯形ABCD ,由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,且腰长AB =12 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得l -12l =25,所以l =20 cm ,即截得此圆台的圆锥的母线长为20 cm.1.2空间几何体的三视图和直观图1.2.1 & 1.2.2 中心投影与平行投影 空间几何体的三视图中心投影与平行投影 [导入新知] 1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影 投影 定义特征 分类 中心投影 光由一点向外散射形成的投影 投影线交于一点平行投影在一束平行光线照射下形成的投影投影线互相平行正投影和斜投影平行投影和中心投影都是空间图形的一种画法,但二者又有区别 (1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.三视图[导入新知]三视图概念规律正视图光线从几何体的前面向后面正投影得到的投影图一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样侧视图光线从几何体的左面向右面正投影得到的投影图俯视图光线从几何体的上面向下面正投影得到的投影图1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.中心投影与平行投影[例1]下列说法中:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;③两条相交直线的平行投影是两条相交直线.其中正确的个数为()A.0B.1C.2 D.3[答案] B[类题通法]1.判定几何体投影形状的方法.(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)对于平行投影,当图形中的直线或线段不平行于投影线时,平行投影具有以下性质:①直线或线段的投影仍是直线或线段;②平行直线的投影平行或重合;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.2.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.[活学活用]如右图所示,在正方体ABCD -A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的序号是________.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在平面A′D′DA内的投影是菱形;③四边形BFD′E在平面A′D′DA内的投影与在平面ABB′A内的投影是全等的平行四边形.答案:①③画空间几何体的三视图[例2]画出如右图所示的四棱锥的三视图.[解]几何体的三视图如下:[类题通法]画三视图的注意事项(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.[活学活用]沿一个正方体三个面的对角线截得的几何体如下图所示,则该几何体的侧视图为()答案:B由三视图还原空间几何体[例3]如下图所示的三视图表示的几何体是什么?画出物体的形状.(1)(2)(3)[解](1)该三视图表示的是一个四棱台,如右图.(2)由俯视图可知该几何体是多面体,结合正视图、侧视图可知该几何体是正六棱锥.如下图.(3)由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体上面是一个圆柱,下面是一个四棱柱,所以该几何体的形状如右图所示.[类题通法]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[活学活用]如图①、图②、图③、图④为4个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台。

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1。

棱柱1。

1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。

1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。

新课程标准高一数学必修二课程第一章空间几何体

新课程标准高一数学必修二课程第一章空间几何体

当图形中的直线或线段不平行于投影线时,平行投影都具备下述性质: (1)直线或线段的平行投影仍是 ; (2)平行直线的平行投影是 的直线 (3)平行于投影面的线段,他的投影与这条线段 ; (4)与投影面平行的平面图形,它的投影与这个图形 ; (5)在同一条直线或两条平行直线上,两条线段的平行投影的大小比,等于这两条线段 的 的比. 4. 空间几何体三视图: 正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右) 、俯视图(从上向下)
' ' ' ' '
;平行于底面的截面与底面 。

其相似比等于顶点到截面距离与高的比的 (3)棱台: 定义: 用一个平行于棱锥底面的平面去截
, 截面和底面之间的部分;
1
2018 年李文歆收编——新课标高中数学学习课程资料(复习+预习)
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如:五棱台 P A B C D E 几何特征:①上下底面是 的平行多边形
11.如图为某几何体的三视图,根据三视图可以判断这个几何体为( A.圆锥 B.三棱锥 C.三棱柱 D.三棱台

12.圆柱的正视图和侧视图都是 圆锥的正视图和侧视图都是 圆台的正视图和侧视图都是 球的三视图都是 .
,俯视图是 ,俯视图是 ,俯视图是
; ; ;
9
2018 年李文歆收编——新课标高中数学学习课程资料(复习+预习)
B、圆台、正方形 D、棱台、圆柱
8、正方体内接于球,它过球心的截面图, 不可能是下图中的 ( )
9、一个棱柱至少有 顶点最少的一个棱台有
个面,面数最少的一个棱锥有 条侧棱.
个顶点,

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计空间几何体的结构是新课程立体几何的重要组成部分之一。

该课程的设计思想是以培养学生的几何直观能力、抽象概括能力、合情推理能力和空间想象能力为指导思想,运用建构主义教学原理,通过观察实物抽象出空间图形、用文字描述空间图形和用数学语言定义空间图形的三部曲来构建课堂主框架。

整个设计旨在增强学生参与数学研究的意愿,提高学生自主研究、分析问题和解决问题的能力,培养学生合作研究的意识。

空间几何体是在土木建筑、机械设计、航海测绘等实际问题中广泛应用的基础内容。

与传统的立体几何体系相比,人教A版对立体几何的体系结构作了重大改革。

新课程从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面。

这种安排降低了立体几何研究入门难的门槛,强调几何直观,淡化几何论证,可以激发学生研究立体几何的兴趣。

本节课的教学方法主要为观察、比较、分析、抽象概括、讨论和实践操作。

教学手段包括图片、实物模型、板书、PPT等多种形式。

在教学过程中,教师应该注重引导学生观察、思考、提问和交流,鼓励学生自主探究,培养学生的创新意识和思考能力。

本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节。

课标要求学生认识柱、锥、台、球及其简单组合体的结构特征,并能应用这些特征描述现实生活中简单物体的结构,发展几何直观能力。

教材首先让学生观察现实世界中的实物图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征。

《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时。

本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于研究的深度和概括程度。

笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理。

(完整版)高一数学必修2_第一章空间几何体知识点

(完整版)高一数学必修2_第一章空间几何体知识点

第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。

(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。

(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。

(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。

3. 棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。

正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。

(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。

高中数学必修2--第一章《空间几何体》知识点总结与练习

高中数学必修2--第一章《空间几何体》知识点总结与练习

高中数学必修2__第一章《空间几何体》知识点总结与练习第一节空间几何体的结构特征及三视图和直观图[知识能否忆起]一、多面体的结构特征多面体棱柱棱锥棱台结构特征有两个面互相平行,其余各面都是四边形,并且每相邻两个面的交线都平行且相等有一个面是多边形,而其余各面都是有一个公共顶点的三角形棱锥被平行于底面的平面所截,截面和底面之间的部分二、旋转体的形成几何体圆柱圆锥圆台球旋转图形矩形直角三角形直角梯形半圆旋转轴任一边所在的直线一条直角边所在的直线垂直于底边的腰所在的直线直径所在的直线三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.四、平行投影与直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.五、三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.1.正棱柱与正棱锥(1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中 “正”字包含两层含义:①侧棱垂直于底面;②底面是正多边形.(2)底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:①顶点在底面上的射影必需是底面正多边形的中心,②底面是正多边形,特别地,各棱均相等的正三棱锥叫正四面体.2.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.3.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段,“平行于 x 轴的线段平行性不变,长度不变;平行于 y 轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图= 2 4S 原图形,S 原图形=2 2S 直观图.空间几何体的结构特征典题导入[例 1] (2012· 哈师大附中月考)下列结论正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线[自主解答] A 错误,如图 1 是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图△2,若ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;图1图2C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.[答案]D由题悟法解决此类题目要准确理解几何体的定义,把握几何体的结构特征,并会通过反例对概念进行辨析.举反例时可利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三棱锥、三棱台等,也可利用它们的组合体去判断.以题试法1.(2012·天津质检)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立).故仅命题B为假命题.几何体的三视图典题导入[例2](2012·湖南高考)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()[自主解答]根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.[答案]C由题悟法三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.[注意]画三视图时,要注意虚、实线的区别.以题试法2.(1)(2012·莆田模拟)如图是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的()解析:选D由俯视图排除B、C;由正视图、侧视图可排除A.= ,所以 OC ′=sin 120° a = 6a ,(2)(2012· 济南模拟)如图,正三棱柱 ABC -A 1B 1C 1 的各棱长均为 2,其正视图如图所示,则此三棱柱侧视图的面积为()A .2 2C. 3B .4D .2 3解析:选 D 依题意,得此三棱柱的左视图是边长分别为 2, 3的矩形,故其面积是2 3.几何体的直观图典题导入[例 3] 已知△ABC 的直观图 A ′B ′C ′是边长为 a 的正三角形,求原△ABC 的面积.[自主解答]建立如图所示的坐标系 xOy ′, △A ′B ′C ′的顶点 C ′在 y ′轴上,A ′B ′边在 x 轴上,OC 为△ABC 的高.把 y ′轴绕原点逆时针旋转 45°得 y 轴,则点 C ′变为点 C ,且 OC =2OC ′,A ,B 点即为 A ′,B ′点,长度不变.已知 A ′B ′=A ′C ′=△a ,在 OA ′C ′中,由正弦定理得OC ′ A ′C ′sin ∠OA ′C ′ sin 45°sin 45° 2所以原三角形 ABC 的高 OC = 6a.2 2 2S = (1+ 2+1)×2=2+ 2.V = Sh = πr 2h = πr 2 l 2-r 2所以 △S ABC =1×a ×6a = 26a 2.由题悟法用斜二测画法画几何体的直观图时,要注意原图形与直观图中的“三变、三不变”.⎧⎪坐标轴的夹角改变,“三变”⎨与y 轴平行线段的长度改变,⎪⎩图形改变;⎧⎪平行性不变,“三不变”⎨与x 轴平行的线段长度不变,⎪⎩相对位置不变.以题试法3.如果一个水平放置的图形的斜二测直观图是一个底角为 45°,腰和上底均为 1 的等腰梯形,那么原平面图形的面积是()A .2+ 22+ 2 C. 1+ 2 B.D .1+ 2解析:选 A 恢复后的原图形为一直角梯形1 2第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积面积体积圆柱圆锥S 侧=2πrlS 侧=πrlV =Sh =πr 2h1 1 13 3 31 V = ShV = πR 3圆台S 侧=π(r 1+r 2)l1V =3(S 上+S 下+ S 上· S 下)h1=3π(r 2+r 2+r 1r 2)h直棱柱正棱锥 正棱台球S 侧=Ch1S 侧=2Ch ′1S 侧=2(C +C ′)h ′S 球面=4πR 2V =Sh1 31V =3(S 上+S 下+ S 上· S 下)h431.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.3.求组合体的表面积时注意几何体的衔接部分的处理.几何体的表面积典题导入[例 1] (2012· 安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱 (如图所示).所以其表面积为2×1×(2+5)×4+2×4+4×5+4×5+4×4=92. 视图、侧视图都是面积为 3,且一个内角为 60°的菱形,俯视图为正方面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为 8×⎝2×1×1⎭=4.在四边形 ABCD 中,作 DE ⊥AB ,垂足为 E ,则 DE =4,AE =3,则 AD =5.2[答案] 92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(2012· 河南模拟)如图是某宝石饰物的三视图,已知该饰物的正2形,那么该饰物的表面积为()A. 3B .2 3C .4 3D .4解析:选 D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底⎛1 ⎫几何体的体积典题导入[例 2](1)(2012·广东高考)某几何体的三视图如图所示,它的体积为()V =V 半球+V 圆锥= · π·33+ ·π·32·4=30π. [答案](1)C (2)=π×32×4-1π×32×4=24π.3A .72πB .48πC .30πD .24π(2)(2012· 山东高考)如图,正方体 ABCD -A 1B 1C 1D 1 的棱长为 1,E为线段 B 1C 上的一点,则三棱锥 A -DED 1 的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为 3,高为 4,半球的半径为 3.14 1 23 31 1 1 1(2)V A -DED 1=VE -ADD 1=3×△S ADD 1×CD =3×2×1=6.16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V圆锥答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.3 32 2 32 1 = .33和 2 个直角边分别为 3,1 的直角三角形,其底面积 S =9+2× ×3×1=12,以题试法2.(1)(2012·长春调研)四棱锥 P -ABCD 的底面 ABCD 为正方形,且 PD 垂直于底面ABCD ,N 为 PB 中点,则三棱锥 P -ANC 与四棱锥 P -ABCD 的体积比为()A .1∶2C .1∶4B .1∶3D .1∶8解析:选 C 设正方形 ABCD 面积为 S ,PD =h ,则体积比为1 11 1 11Sh - · S · h - · Sh1 4Sh(2012· 浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是()A .32C .8B .2432 D.解析:选 B 此几何体是高为 2 的棱柱,底面四边形可切割成为一个边长为 3 的正方形12所以几何体体积 V =12×2=24.与球有关的几何体的表面积与体积问题典题导入[例 3] (2012·新课标全国卷)已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC是边长为 1 的正三角形,SC 为球 O 的直径,且 SC =2,则此棱锥的体积为()A.C. 2 62 3B.D. 3 62 2×AB 2=4 41 3 6=2 =2V O -ABC =2× ×34 3 6 × . b c A .2 3π8πB.[自主解答 ] 由于三棱锥 S -ABC 与三棱锥 O -ABC 底面都是△ABC ,O 是 SC 的中点,因此三棱锥 S -ABC 的高是三棱锥 O -ABC 高的 2 倍,所以三棱锥 S -ABC 的体积也是三棱锥 O -ABC 体积的 2 倍.在三棱锥 O -ABC 中,其棱长都是 1,如图所示,△S ABC = 3 3,高 OD =12-⎛ 3⎫2= 6,⎝ 3 ⎭ 3∴V S -ABC[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为 a ,球的半径为 R ,①正方体的外接球,则 2R = 3a ;②正方体的内切球,则 2R =a ;③球与正方体的各棱相切,则 2R = 2a.(2)长方体的同一顶点的三条棱长分别为 a ,,,外接球的半径为 R ,则 2R = a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为 1∶3.以题试法3.(1)(2012·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()3C .4 316πD. B 2=16π.2 故球 O 的体积 V = = 6π.3(2)(2012· 潍坊模拟)如图所示,已知球 O 的面上有四点 A 、 、C 、D ,DA ⊥平面 ABC ,AB ⊥BC ,DA =AB =BC = 2,则球 O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示.其中侧面 DBC ⊥底面 ABC ,取 BC 的中点 O 1,连接 AO 1,DO 1 知 DO 1⊥底面 ABC 且 DO 1= 3,AO 1=1,BO 1=O 1C =1.在 △Rt ABO 1 和 Rt △ACO 1 中,AB =AC = 2,又∵BC =2,∴∠BAC =90°.∴BC 为底面 ABC 外接圆的直径,O 1 为圆心, 又∵DO 1⊥底面 ABC ,∴球心在 DO 1 上,即△BCD 的外接圆为球大圆,设球半径为 R ,则( 3-R)2+12=R 2,∴R = 2 3.⎛ 2 ⎫∴S 球=4πR 2=4π×⎝ 3⎭3(2)如图,以 DA ,AB ,BC 为棱长构造正方体,设正方体的外接球 球 O 的半径为 R ,则正方体的体对角线长即为球 O 的直径,所以|CD|= ( 2)2+( 2)2+( 2)2=2R ,所以 R =6 .4πR 33答案:(1)D (2) 6π某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.33=3×π×12×4=3π.1.对称补形[典例 1] (2012· 湖北高考)已知某几何体的三视图如图所示,则该几何体的体积为( )8π A.10π C.B .3πD .6π[解析]由三视图可知,此几何体是底面半径为 1,高为 4 的圆柱被从母线的中点处截去了圆柱的1,根据对称性,可补全此圆柱如图,故体积 V44[答案] B[题后悟道] “对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称关系对空间想象能力的提高很有帮助.2.联系补形(2012· 辽宁高考)已知点 P ,A ,B ,C ,D 是球 O 表面上的点,PA ⊥平面 ABCD ,四边形ABCD 是边长为 2 3的正方形.若 P A =2 △6,则 OAB 的面积为________.[解析] 由 P A ⊥底面 ABCD ,且 ABCD 为正方形,故可补形为长方体如图,知球心 O 为 PC 的中点,又 PA =2 6,AB =BC =2 3,∴AC =2 6,∴PC =4 3,∴OA =OB =2 △3,即 AOB 为正三角形,∴S =3 3.[答案] 3 3[题后悟道] 三条侧棱两两互相垂直,或一侧棱垂直于底面,底面为正方形或长方形,则此几何体可补形为正方体或长方体,使所解决的问题更直观易求.练习题1.(教材习题改编)以下关于几何体的三视图的论述中,正确的是()A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析:选A B中正方体的放置方向不明,不正确.C中三视图不全是正三角形.D中俯视图是两个同心圆.2.(2012·杭州模拟)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱C.球体B.圆锥D.圆柱、圆锥、球体的组合体解析:选C当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.3.下列三种叙述,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个C.2个B.1个D.3个解析:选A①中的平面不一定平行于底面,故①错.②③可用下图反例检验,故②③不正确.4.(教材习题改编)利用斜二测画法得到的:①正方形的直观图一定是菱形;②菱形的直观图一定是菱形;③三角形的直观图一定是三角形.以上结论正确的是________.解析:①中其直观图是一般的平行四边形,②菱形的直观图不一定是菱形,③正确.答案:③5.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为________.解析:由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为③.答案:③1.(2012·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.②③④C.①③④B.①②③D.①②④解析:选A①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.(其中真命题的个数是() A .1C .3B .2D .4解析:选 A 命题①不是真命题,因为底面是矩形,但侧棱不垂直于底面的平行六面体不是长方体;命题②不是真命题,因为底面是菱形 非正方形),底面边长与侧棱长相等的直 四棱柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂直于底面一边不能推出侧棱与底面垂直;命题④是真命题,由对角线相等,可知平行六面体的对角面是矩形,从而推得侧棱与底面垂直,故平行六面体是直平行六面体.3.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()解析:选 C C 选项不符合三视图中“宽相等”的要求,故选 C.4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是()解析:选 B 由直观图和正视图、俯视图可知,该几何体的侧视图应为面 P AD ,且 EC投影在面 P AD 上,故 B 正确.△5.如图 A ′B ′C ′是△ABC 的直观图,那么△ABC 是()A .等腰三角形B .直角三角形解析:选 D 依题意得,该几何体的侧视图的面积等于 22+ ×2× 3=4+ 3.为 ,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号)角形;如图 2 所示,直三棱柱ABC -AB C 符合题设要求,此时俯视图△ABC 是直角三角形;-A B C D 符合题设要求,此时俯视图(四边形 ABCD)是正方形;若俯视图是扇形或圆,体C .等腰直角三角形D .钝角三角形解析:选 B 由斜二测画法知 B 正确.6.(2012· 东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A .2+ 3C .2+2 3B .1+ 3D .4+ 3127.(2012· 昆明一中二模)一个几何体的正视图和侧视图都是边长为 1 的正方形,且体积12①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆.解析:如图 1 所示,直三棱柱 ABE -A 1B 1E 1 符合题设要求,此时俯视图△ABE 是锐角三1 1 1如图 3 所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱 ABCD1 1 1 1积中会含有 π,故排除④⑤.答案:①②③8.(2013· 安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.何体的体积为1×2×2sin 60°×2-1×1×2×2sin 60°×1=5 3.3解析:结合三视图可知,该几何体为底面边长为 2、高为 2 的正三棱柱除去上面的一个高为 1 的三棱锥后剩下的部分,其直观图如图所示,故该几2 3 2 35 3答案:9.正四棱锥的底面边长为 2,侧棱长均为 3,其正视图(主视图)和侧视图(左视图)是全 等的等腰三角形,则正视图的周长为________.解析:由题意知,正视图就是如图所示的截面PEF ,其中 E 、F分别是 AD 、BC 的中点,连接 AO ,易得 AO = 2,而 P A = 3,于是解得 PO =1,所以 PE = 2,故其正视图的周长为 2+2 2.答案:2+2 210.已知:图 1 是截去一个角的长方体,试按图示的方向画出其三视图;图2 是某几何体的三视图,试说明该几何体的构成.解:图 1 几何体的三视图为:图 2 所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.11.(2012· 银川调研)正四棱锥的高为 3,侧棱长为 7,求棱锥的斜高(棱锥侧面三角形在△Rt SOE 中,∵OE =1BC = 2,SO = 3,42-⎝ × ×2 3⎭2 2的高).解:如图所示,正四棱锥 S -ABCD 中,高 OS = 3,侧棱 SA =SB =SC =SD = 7,在 △Rt SOA 中,OA = SA 2-OS 2=2,∴AC =4.∴AB =BC =CD =DA =2 2.作 OE ⊥AB 于 E ,则 E 为 AB 中点.连接 SE ,则 SE 即为斜高,2∴SE = 5,即棱锥的斜高为 5.12.(2012· 四平模拟)已知正三棱锥 V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)三棱锥的直观图如图所示.(2)根据三视图间的关系可得 BC =2 3, ∴侧视图中V A =⎛2 3 3 2⎫= 12=2 3,∴△S VBC =1×2 3×2 3=6. 1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为 a 时,该三棱锥的全 面积是()A. a 242 4 a 2+3× ×⎝ 2 a ⎭2= a 2.(3 2)2-⎝2×6⎭2=3,因此底面中心到各顶点的距离均等于 3,所以该四棱锥的外接球的棱锥的高是 5,可由锥体的体积公式得 V = ×8×6×5=80.3+ 3 3 B. a 2 43+ 36+ 3 C.a 2D.a 2解析:选 A ∵侧面都是直角三角形,故侧棱长等于31 ⎛2 ⎫ 3+ 3∴S 全=42422a ,2.已知正四棱锥的侧棱与底面的边长都为 3 2,则这个四棱锥的外接球的表面积为()A .12πC .72π B .36πD .108π解析: 选 B 依题意得,该正四棱锥的底面对角线长为 3 2 × 2 = 6 ,高为⎛1⎫球心为底面正方形的中心,其外接球的半径为 3,所以其外接球的表面积等于 4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为 5 的等腰三角形,侧视图是一个底边长为 6,高为 5 的等腰三角形,则该几何体的体积为()A .24C .64 B .80D .240解析:选 B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为 8 和 6 的矩形,1 34.(教材习题改编)表面积为 3π 的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为 l ,圆锥底面半径为 r ,则 πrl +πr 2=3π,πl =2πr.解得 r =1,即直径为 2.答案:25.某几何体的三视图如图所示,其中正视图是腰长为 2 的等20/2733××2×2×2=.形42-⎝232+22⎭2=,所以棱锥O-A BCD的体积等于×(3×2)×51=51.________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.(2012·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是()A.8 C.48 B.4 D.解析:选D将三视图还原,直观图如图所示,可以看出,这是一个底11面为正方形(对角线长为2),高为2的四棱锥,其体积V=3S正方ABCD×P A=314232.(2012·山西模拟)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=3,BC=2,则棱锥O-ABCD的体积为()A.51 C.251B.351 D.651解析:选A依题意得,球心O在底面ABCD上的射影是矩形ABCD的中心,因此棱锥O-A BCD的高等于⎛1⎫5112323.(2012·马鞍山二模)如图是一个几何体的三视图,则它的表面积为()4 4 解析:选 D 由三视图可知该几何体是半径为 1 的球被挖出了 部分得到的几何体,故·4π·12+3· ·π·12= π.22只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2× ×2×1=4,所以该A .4πC .5π15 B. π17 D. π18表面积为7 1 178 44 4.(2012· 济南模拟)用若干个大小相同,棱长为 1 的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为()A .24C .22B .23D .21解析:选 C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为 22.5. (2012· 江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为()11 A.9 C.B .5D .4解析:选 D 由三视图可知,所求几何体是一个底面为六边形,高为1 的直棱柱,因此12几何体的体积为 4×1=4.6.如图,正方体 ABCD -A ′B ′C ′D ′的棱长为 4,动点 E ,F 在棱 AB 上,且 EF =2,动点 Q 在棱 D ′C ′上,则三棱锥 A ′-EFQ 的体积()解析:选 D 因为 V A ′-EFQ =V Q -A ′EF = ×⎝2×2×4⎭×4= ,故三棱锥 A ′-EFQ 的高为 3,连接顶点和底面中心即为高,可求得高为 2,所以体积 V =1×1×1× 2= 2.3答案: 3π⎧⎪a +b =6 ,A .与点 E ,F 位置有关B .与点 Q 位置有关C .与点 E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值1 ⎛1 ⎫ 163 3体积与点 E ,F ,Q 的位置均无关,是定值.7.(2012· 湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为 1 的正方形和 4 个边长为 1 的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为 1,侧棱长为 1,斜2 23 2 6答案:2 68.(2012· 上海高考)若一个圆锥的侧面展开图是面积为 2π 的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为 2π,所以半圆的半径为 2,圆锥的母线长为 2.底面圆的周长为2π,所以底面圆的半径为 1,所以圆锥的高为 3,体积为 3π.39.(2013· 郑州模拟)在三棱锥 A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,2 2 2 设该长方体的长、宽、高分别为 a 、b 、c ,且其外接球的半径为 R ,则⎨b 2+c 2=52,⎪⎩c 2+a 2=52,得 a 2+b 2+c 2=43,即(2R)2=a 2+b 2+c 2=43,易知 R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为 4πR 2=43π.答案:43π10.(2012· 江西八校模拟)如图,把边长为 2 的正六边形 ABCDEF 沿对角线 BE 折起,使 AC = 6.。

高一数学必修二第一章“空间几何体”知识点总结

高一数学必修二第一章“空间几何体”知识点总结
πR3
表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
数学必修2第一章 空间几何体知识点
1.多面体的面积和体积公式
名称
侧面积(S侧)
全面积(S全)
体积(V)


棱柱
直截面周长×l
S侧+2S底
S底·h=S直截面·h
直棱柱
Ch
S底·h


棱锥
各侧面面积之和
S侧+S底
S底·h
正棱锥
ch′


棱台
各侧面面积之和
S侧+S上底+S下底
h(S上底+S下底+ )
正棱台
(c+c′)h′
表中S表示面积,c′、c分别表示上、下底面周长,h表示高,h′表示斜高,l表示侧棱长。2源自旋转体的面积和体积公式名称
圆柱
圆锥
圆台

S侧
2πrl
πrl
π(r1+r2)l
S全
2πr(l+r)
πr(l+r)
π(r1+r2)l+π(r21+r22)
4πR2
V
πr2h(即πr2l)
πr2h
πh(r21+r1r2+r22)

必修2第1章空间几何体

必修2第1章空间几何体

洋2贮乐新知1:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD ;相邻两个面的公共边叫多面体的棱,如棱AB ;棱与棱的公共点叫多面体的顶点,如顶点、课前准备(预习教材P2~ P4,找出疑惑之处)引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫做空间几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧!二、新课导学探探索新知探究1:多面体的相关概念问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?新知2:由一个平面图形绕它所在平面内的一条定直线旋转所形成的圭寸闭几何体叫旋转体,这条定直线叫旋转体的轴.如下图的旋转体:A.具体如下图所示:1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解多面体的有关概念;4. 会用语言概述棱柱、棱锥、棱台的结构特征亠学习过程§ 1.1.1棱柱、棱锥、棱台的结构探究2:旋转体的相关概念问题:仔细观察下列物体的相同点是什么?轴新知6:有一个面是多边形,其余各个面都是有一 个公共顶点的三角形,由这些面所围成的几何体叫 做棱锥(pyramid ).这个多边形面叫做棱锥的 底面或 底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公 共边叫做棱锥的侧棱•顶点到底面的距离叫做棱锥 的高;棱锥也可以按照底面的边数分为三棱锥(四 面体)、四棱锥…等等,棱锥可以用顶点和底面各顶 点的字母表示,如下图中的棱锥S ABCDE .新知3: —般地,有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都互相 平行,由这些面所围成的几何体叫做 棱柱(prism ). 棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的 侧面;相邻侧面的公共边 叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱 的顶点•(两底面之间的距离叫棱柱的高)试试1:你能指出探究 3中的几何体它们各自的 底、侧面、侧棱和顶点吗?你能试着按照某种标准 将探究3中的棱柱分类吗?新知4:①按底面多边形的边数来分,底面是三角 形、四边形、五边形…的棱柱分别叫做 三棱柱、四棱柱、五棱柱… 探究5:棱台的结构特征问题:假设用一把大刀能把金字塔的上部分平行地 切掉贝U 切掉的部分是什么形状 ?剩余的部分呢?②按照侧棱是否和底面垂直,棱柱可分为 斜棱柱(不垂直)和 直棱柱(垂直).新知7:用一个平行于棱锥底面的平面去截棱锥, 底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid ).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的 侧面, 相邻侧面的公共边叫 侧棱,侧面与两底面的公共点 叫顶点俩底面间的距离叫 棱台的高.棱台可以用上、 下底面的字母表示,分类类似于棱锥.新知5:我们用表示底面各顶点的字母表示棱柱, 如图⑴中这个棱柱表示为棱柱 ABCD — ABCD .,它具有什么样的几何特征呢?试试2:探究3中有几个直棱柱?几个斜棱柱?棱 柱怎么表示呢?问题:你能归纳下列图形共同的几何特征吗傢2贮乐试试3:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来•探知识拓展1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱;3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;4. 正棱台:由正棱锥截得的棱台叫做正棱台反思:根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系?探典型例题例由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形•仿照棱柱,棱锥、棱台有哪些几何性质呢?探自我评价你完成本节导学案的情况为().A.很好B.较好C. 一般D.较差探当堂检测(时量:5分钟满分:10分)计分:1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成().A .棱锥B .棱柱C.平面D.长方体2. 棱台不具有的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点三、总结提升探学习小结1.多面体、旋转体的有关概念; 棱柱},面体},D={直四棱柱},则().E={棱柱}, F={直平行六A. A B C D F EB. A C B F D EC.C A B D F E3.已知集合A={正方体}, B={长方体}, C={正四2.棱柱、棱锥、棱台的结构特征及简单的几何性质D.它们之间不都存在包含关系4.长方体三条棱长分别是AA 11 AB12, AD 4 , 则从A 点出发,沿长方体的表面到C '的最短矩离是.5. ___________________________________ 若棱台的上、下底面积分别是25和81,高为4, 则截得这棱台的原棱锥的高为 ______________________________________ .1. 已知正三棱锥 S-ABC 的高S01h,斜高(侧面三角 形的高)SM1 n ,求经过 SO 的中点且平行于底面的 截面△ A i B i C i 的面积.•分.....学习目标1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 能概述圆柱、圆锥、圆台台体、球的结构特征;4. 能描述一些简单组合体的结构.丄 学习过程•in ■ ■ ■ ■ j J ■ ■ ■ 11 J ■ ■ ■ U、课前准备(预习教材P 5~ P 7,找出疑惑之处)2. 在边长a 为正方形 ABCD 中,E 、F 分别为AB 、 BC 的中点,现在沿 DE 、DF 及EF 把厶ADE 、△ CDF 和厶BEF 折起,使 A 、B 、C 三点重合,重合 后的点记为P .问折起后的图形是个什么几何体?复习:① ___________________________________ 叫多面体, __________________________________________________ 叫旋转体.②棱柱的几何性质: ___________是对应边平行的全等 多边形,侧面都是 ____________ ,侧棱 ______ 且 ____ ,平 行于底面的截面是与 __________ 全等的多边形;棱锥的 几何性质:侧面都是 _________ ,平行于底面的截面与底面 ______ ,其相似比等于 ______________ .引入:上节我们讨论了多面体的结构特征,今天我 们来探究旋转体的结构特征.1课后作业§ 1.1.2圆柱、圆锥、圆台、球及 简单组合体的结构特征它每个面的面积是多少?AE B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A.①②
B.①③
C.①④
D.②④ )
4.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是(
A.
B.
C.
D. )
5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为(
A.
B.
C.
D.
6. 用一些棱长是 1cm 的小正方体码放成一个几何体, 图 1 为其俯视图, 图 2 为其主视图 (或 正视图),若这个几何体的体积为 7cm3,则其左视图为( )
(1) 棱柱 定义:有两个面互相 都互相 ,其余各面都是四边形,且每相邻两个四边形的公共边 ,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等; 还可以分为直棱柱和斜棱柱。 表示:用各顶点字母,如:五棱柱 ABCDE A B C D E 或用对角线的端点字母, 如五棱柱 AD
三、对应训练: 【1】投影问题 例 1、下列几种关于投影的说法不正确的是( A. 平行投影的投影线是互相平行的 C.线段上的点在中心投影下仍然在线段上 ) B. 中心投影的投影线是互相垂直的 D.平行的直线在中心投影中不平行
【变式 1】有下列说法:①平行投影的投影线互相平行,中心投影的投影线交于一点; ②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交直线; ③几何体在平行投影和中心投影下有不同的表现形式,其中正确命题有( A.0 个 B.1 个 C.2 个 ) D.路灯的光线 D.3 个 )
第二讲:
一、学习指导:
1.2 空间几何体的三视图
1.要学好本节内容,首先应复习初中学过的简单空间图形的三视图,在此基础上能画出空间 简单图形组合体的三视图,进一步掌握在平面上表示空间图形的方法和技能. 2. 三视图画法的要点是:正、俯视图长对正;正、侧视图高平齐;俯、侧视图宽相等. 3.用斜二测画法画水平放置的平面图形的关键是确定多边形的顶点.因为多边形顶点的位 置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画 法就可归结为确定点的位置的画法. 二、核心知识梳理: 1.投影: 由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫 做 ,其中的光线叫做 ,把留下物体影子的屏幕叫做投影面, 投影分为 和 . 2.中心投影: 光由一点向外散射形成的投影叫做中心投影。 性质: (1)中心投影的投影线交于 . (2)平行于投影面放置的物体,点光源距离物体越近, 投影形成的影子越大。 3.平行投影: 在一束平行光线的照射下形成的投影,叫做平行投影,平行投影的投影线是平行的, 平行投影分为 和 . 性质:平行投影的投影线相互平行.
C.矩形或一条线段 )
2、两条不平行的直线,其平行投影不可能是( A.两条平行直线 B.一点和一条直线
C.两条相交直线 )
D.两个点
3、给下列几种关于投影的说法,正确的是( A.矩形的平行投影一定是矩形 C.垂直于投影面的直线或线段的正投影是点 【2】三视图问题
B.平行直线的平行投影仍是平行直线 D.中心投影的投影线是互相平行的
B、圆台、正方形 D、棱台、圆柱
8、正方体内接于球,它过球心的截面图, 不可能是下图中的 ( )
9、一个棱柱至少有 顶点最少的一个棱台有
个面,面数最少的一个棱锥有 条侧棱.
个顶点,
10、一个棱柱有 10 个顶点,所有的侧棱长和为 60,则每条侧棱长为
.
四、课时作业: 1.下面多面体中,是棱柱的有 ( )
图例
棱柱
圆 柱
2
2018 年李文歆收编——新课标高中数学学习课程资料(复习+预习)
棱锥
圆 锥
棱台
圆 台

三、对应训练: 1、将梯形沿某一方向平移形成的几何体是 A、四棱柱 B、四棱锥 ( ) D、五棱柱
C、四棱台 ( )
2、用一个平面截三棱柱,截面一定是 A、三角形 C、五边形 B、四边形
D、三角形或四边形 )
2018 年李文歆收编——新课标高中数学学习课程资料(复习+预习)
第一讲:
一、学习指导:
1.1 空间几何体结构特征
1.要学好本节内容,可从直观感知已学过的正方体、长方体等空间几何体的整体结构入手, 去抽象一般空间几何体的结构特征.本节是立体几何的基础课,掌握空间几何体的结构特征, 将为我们学习空间点、线、面的位置关系奠定坚实的基础. 2.学习本节知识的基本方法是:直观感知、 操作确认.通过感受大量空间实物及模型,掌握柱、 锥、台、球的结构特征. 二、核心知识梳理: 1、柱、锥、台、球的结构特征
5、线段 y=2x(0≤x≤2)绕着 x 轴旋转一周所得到的图形是 A、圆锥 B、圆锥面 C、圆


D、圆面 ( )
6、以一个等边三角形底边所在的直线为对称轴旋转一周所得的几何体是 A、一个圆柱 B、一个圆锥 C、两个圆锥
D、一个圆台
7、如图所示为一个空间几何体的竖直截面图形,那么这个空间 几何体自上而下可能是 A、梯形、正方形 C、圆台、圆柱 ( )
' ' ' ' '
;平行于底面的截面与底面 。

其相似比等于顶点到截面距离与高的比的 (3)棱台: 定义: 用一个平行于棱锥底面的平面去截
, 截面和底面之间的部分;
1
2018 年李文歆收编——新课标高中数学学习课程资料(复习+预习)
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如:五棱台 P A B C D E 几何特征:①上下底面是 的平行多边形
例 2、下列光线所形成的投影不是中心投影的是( A.太阳光线 B.台灯的光线
C.手电筒的光线
7
2018 年李文歆收编——新课标高中数学学习课程资料(复习+预习)
【变式 2】哪个实例不是中心投影( A.工程图纸 B.小孔成像
) C.相片 ) D.以上答案都不对 D.人的视觉
1、有一边与平面平行的矩形在此平面内的射影是( A.平行四边形 B.矩形
几何特征: ①底面是一个 (6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个 ;②侧面母线交于原圆锥的顶点;
③侧面展开图是一个弓形。 (7)球体: 定义:以 的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 。
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于 归纳总结: (棱、面的上、下、侧面去分析) 结 构 特 征 结 构 特 征
' ' ' ' '
②侧面是
③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以 几何体; 几何特征:①底面是 的圆;②母线与轴 ; 。 的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的
③轴与底面圆的半径 (5)圆锥: 定义: 以
;④侧面展开图是一个
的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 ; ②母线交于圆锥的顶点; ③侧面展开图是一个 。
A. 1 个 2.下列说法正确的是 (
B.2 个 )
C.3 个
D. 4 个
A.有 2 个面平行,其余各面都是梯形的几何体是棱台 B.多面体至少有 3 个面 C.各侧面都是正方形的四棱柱一定是正方体 D.九棱柱有 9 条侧棱,9 个侧面,侧面为平行四边形 3.下列说法中正确的是 ( A.所有的棱柱都有一个底面 C.棱柱的侧棱至少有 4 条
6. 空间几何体的直观图——斜二测画法 (1)斜二测画法特点:①原来与 x 轴平行的线段仍然与 x 平行且长度 ②原来与 y 轴平行的线段仍然与 y 平行,长度为 (2)斜二测画法的步骤: (1)平行于坐标轴的线依然平行于坐标轴; (2)平行于 x,z 轴的线长度不变,平行于 y 轴的线长度变半; 简单来说: 画轴 、 画底面 、 画高 、 成图 。 ;
4
) B.棱柱的顶点至少有 6 个 D.棱柱的棱至少有 4 条
2018 年李文歆收编——新课标高中数学学习课程资料(复习+预习)
4.下列图形经过折叠可以围成一个棱柱的是 (
)
5.观察如图所示的四个几何体,其中判断不正确的是 ( A.①是棱柱 C.③不是棱锥 B.②不是棱锥 D.④是棱台
)
6.用一个平面去截一个三棱锥,截面形状是 ( A.四边形 C.三角形或四边形 B.三角形
' ' ' ' ' '
几何特征:两底面是对应边平行的 侧棱 (2)棱锥
多边形;侧面、对角面都是平行四边形; 的多边形。
;平行于底面的截面是与底面
定义:有一个面是多边形,其余各面都是有一个 所围成的几何体
顶点的三角形,由这些面
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如:五棱锥 P A B C D E 几何特征:侧面、对角面都是
11.如图为某几何体的三视图,根据三视图可以判断这个几何体为( A.圆锥 B.三棱锥 C.三棱柱 D.三棱台

12.圆柱的正视图和侧视图都是 圆锥的正视图和侧视图都是 圆台的正视图和侧视图都是 球的三视图都是 .
,俯视图是 ,俯视图是 ,俯视图是
; ; ;
9
2018 年李文歆收编—பைடு நூலகம்新课标高中数学学习课程资料(复习+预习)
1.某空间几何体的正视图是三角形,则该几何体不可能是( A.圆柱 B.圆锥 C.四面体 D.三棱柱

2.一个简单几何体的主视图、侧视图如图所示,则其俯视图不可能为 矩形;②正方形;③圆;④三角形.其中正确的是( A.①② B.②③ C.③④ ) D.①④
①长、宽不相等的
3.下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是(
相关文档
最新文档