引物设计的11条黄金法则
引物设计原则(必看)
mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。
3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。
6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
引物设计原则(必看)
mi引物设计原则1。
引物的长度一般为15—30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2。
引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3'端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加.3。
引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A.另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4。
引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应.上下游引物的GC含量不能相差太大。
5。
引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳.Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method).6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3'端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应.7。
引物二聚体及发夹结构的能值过高(超过4。
5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5'端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5—3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
引物设计原则
引物设计原则
1.合适的引物长度:引物长度通常在18-30个碱基对之间,过长或过
短的引物都不利于PCR扩增的稳定性。
2.适当的引物GC含量:引物的GC含量应在40%-60%之间,过高或过
低的GC含量都会影响引物和模板DNA的特异性结合。
3.引物特异性:引物应具有高度特异性,可以通过引物序列在数据库
中进行BLAST分析来评估引物的特异性。
4.避免引物自身的二聚体和结构性:引物序列中要避免出现自身二聚
体和结构性,这会干扰PCR扩增的效果。
5.选择高峰结构引物:在引物设计时,优先选择会形成高峰结构的引物,这有助于提高扩增效率。
6.引物末端碱基的特异性:在引物末端碱基选择时,尽量使用能够增
强特异性和避免非特异性扩增的碱基。
7.引物的熔解温度(Tm):引物的熔解温度直接影响PCR扩增反应的
特异性和效率,应根据目标DNA的长度和序列来确定引物的Tm。
8.避免引物之间的交叉杂交:在多引物PCR反应中,引物之间的交叉
杂交会干扰扩增效果,可以通过软件模拟或实验确认引物之间没有相互杂交。
9.引物序列中避免多个重复碱基:引物序列中的多个重复碱基可能导
致非特异性扩增,应避免在引物序列中出现连续的多个重复碱基。
10.引物设计的可操作性和经济性:引物设计时,要考虑到引物合成
的成本和操作的方便性,选择价格适中的合成方法,并确保引物容易操作。
以上是引物设计的原则和考虑因素,通过合理设计和优化引物序列,可以提高PCR扩增实验的特异性、敏感性和效率,从而获得准确和稳定的实验结果。
引物设计一般原则
引物设计一般原则引物是一篇文章的开头部分,起着引导读者进入文章内容的作用。
设计出一个吸引人的引物,可以让读者对全文产生兴趣,从而增加文章的阅读率和影响力。
以下是设计引物的一般原则:1.引人入胜:一个好的引物应该从一开始就吸引读者的注意力。
可以使用一个有趣的事实、引人瞩目的问题、或者一个令人震惊的观点,引起读者的好奇心和注意力。
例如,一篇关于环保的文章可以这样开头:"你知道每年全球有多少塑料袋被丢弃在海洋中吗?让我们想象一下,如果塑料袋能够排成一排,能围绕地球多少次呢?"例如,一篇关于教育问题的文章可以这样开头:"教育是改变社会的关键。
我们如何培养出具有创新精神和社会责任感的下一代?本文将探讨教育系统中存在的问题,并提出一些解决方案。
"3.引用名言:一个有启发性的引言可以吸引读者的注意力,并激发他们对文章内容的思考。
这种引物可以是一个名人的名言、一句格言或者一句普遍认同的观点。
例如,一篇关于成功的文章可以这样开头:"爱因斯坦曾经说过,成功不是偶然发生的,而是由采取正确行动的结果。
本文将探讨一些成功的秘诀,并帮助你实现自己的目标。
"例如,一篇关于健康饮食的文章可以这样开头:"在现代社会中,我们很容易陷入不健康的饮食习惯中。
但是,我们应该意识到食物对我们的健康有着巨大的影响。
本文将分享一些健康饮食的技巧,让你拥有一个健康的生活方式。
"6.语言生动:一个好的引物应该通过使用生动的语言和形象的描述,给读者留下深刻的印象。
这样可以增加读者的情感共鸣,让他们更容易被文章吸引和影响。
例如,一篇关于环保的文章可以这样开头:"在一个炎热的夏天,当你走近那片被绿意覆盖的公园时,你能感受到清新的空气和树木的阴凉。
但是,你是否想过背后那些无声的英雄们,他们为了保护这片绿洲付出了多少努力?"总结来说,一个好的引物应该具有引人入胜、提出观点、引用名言、切入主题、简洁明了和语言生动等特点。
引物设计原则[必看]
引物设计原则[必看]mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74C,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3'端相似性较高的序列,否则容易导致错配。
引物3'端出现3个以上的连续碱基,如GG(或CCC也会使错误引发机率增加。
3. 引物3'端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3'端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5'端序列对PCF影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72E左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm= 4(G+C)+ 2(A+T),在Oligo软件中使用的是最邻近法(the n earest n eighbor method) 。
6. AG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3'端4G值较低(绝对值不超过9),而5'端和中间△ G值相对较高的引物。
引物的3'端的4G值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol )易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5'端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
PCR引物设计原则
PCR引物设计原则PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。
因此,引物的优劣直接关系到PCR的特异性与成功与否。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
如这个区域单链能形成二级结构,就要避开它。
如这一段不能形成二级结构,那就可以在这一区域设计引物。
现在可以在这一保守区域里设计一对引物。
一般引物长度为15-30碱基,扩增片段长度为100-600碱基对。
让我们先看看P1引物。
一般引物序列中G+C含量一般为40%-60%。
而且四种碱基的分布最好随机。
不要有聚嘌呤或聚嘧啶存在。
否则P1引物设计的就不合理。
应重新寻找区域设计引物。
同时,引物之间不能有互补性。
通常,一对引物之间互补的连续碱基不应超过四个。
引物确定以后,可以对引物进行必要的修饰,例如可以在引物的5′端加酶切位点序列;标记生物素、荧光素、地高辛等,这对扩增的特异性影响不大。
但3′端绝对不能进行任何修饰,因为引物的延伸是从3′端开始的。
这里还需提醒的是3′端不要终止于密码子的第3位,因为密码子第3位易发生简并,会影响扩增的特异性与效率。
综上所述我们可以归纳十条PCR引物的设计原则:1.引物设计在核酸序列的保守区域,具有特异性。
2、产物不能形成二级结构。
3、引物长度一般在15~30碱基之间。
4、G+C含量在40%~60%之间。
5、碱基要随机分布。
6.引物本身不能与四个连续的碱基互补。
7.引物不能与四个连续的碱基互补。
8、引物5′端可以修饰。
9、引物3′端不可修饰。
10、引物3′端要避开密码子的第3位。
PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。
如前述,引物的优劣直接关系到PCR 的特异性与成功与否。
对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。
1、引物的特异性引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。
引物设计法则
3.引物GC含量在40%~60%之间,Tm值最好接近72℃。
GC含量(composition)过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度,一般高于Tm值5~10℃。若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。
7. 引物自身及引物之间不应存在互补序列。
引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。
两引物之间也不应具有互补性,尤其应避免3′ 端的互补重叠以防止引物二聚体(Dimer与Cross dimer)的形成。引物之间不能有连续4个碱基的互补。
6)PCR扩增产物长度: 引物的产物大小不要太大,一般在80-250bp之间都可;80~150 bp最为合适(可以延长至300 bp)。
7)引物的退火温度要高,一般要在60度以上;
要特别注意避免引物二聚体和非特异性扩增的存在。
而且引物设计时应该考虑到引物要有不受基因组DNA污染影响的能力,即引物应该跨外显子,最好是引物能跨外显子的接头区,这样可以更有效的不受基因组DNA污染的影响。
9.引物的5′端可以修饰,而3′端不可修饰。
引物的5′ 端决定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′ 端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。
引物的设计原则
引物的设计原则引言引物在分子生物学领域中扮演着重要角色,它们被广泛应用于聚合酶链反应(PCR)、DNA测序、基因克隆等实验中。
引物的设计是实验的关键步骤之一,它直接影响实验结果的准确性和可靠性。
因此,了解引物的设计原则对于科学家在实验设计中至关重要。
本文将全面、详细、完整地探讨引物的设计原则。
引物的基本概念引物是一段寡聚核苷酸序列,通常包含18-30个碱基对。
引物通过与待扩增的目标序列的互补配对,引导DNA的复制和扩增。
引物由两个部分组成,分别是引物的5’端和3’端。
引物的5’端包含可变区域,这一区域的序列决定了引物的特异性。
引物的3’端通常含有一定数目的腺嘌呤(A)碱基,以提供DNA聚合酶的模板。
引物的设计原则引物的设计需要遵循一些基本的原则,才能确保引物具有高度的特异性和扩增效率。
下面将详细介绍引物设计的原则和注意事项。
特异性引物的特异性是引物设计中最重要的考虑因素之一。
确保引物只与待扩增的目标序列互补配对,而不与其他非目标序列配对,可以通过以下几个方法实现:1.引物序列的序列比对:在设计引物之前,进行目标序列与数据库中已知序列的比对,确保引物序列不与其他非目标序列相似。
2.引物的GC含量:GC含量较高的引物通常具有更高的特异性。
然而,过高的GC含量可能导致引物的自身结合和非特异性扩增。
3.避免重复序列:引物中不应含有重复的序列,以避免非特异性扩增和产生假阳性结果。
避免二聚体形成引物在反应中可能会形成二聚体,即引物间的互相结合。
二聚体的形成会降低引物的扩增效率。
为了避免二聚体形成,需要注意以下几点:1.引物的相互作用力(Tm):引物的Tm应该相似,通常在2°C的范围内。
这有助于避免引物之间的不稳定配对和二聚体形成。
2.引物的序列:引物设计时,需要避免引物序列中包含有重复序列、自身配对区和富含GC或AT的片段,因为这些序列容易形成二聚体。
引物长度引物的长度是影响扩增效率和特异性的重要因素之一。
引物设计原则(必看)
引物设计原则(必看)mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。
3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A 的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。
6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
PCR引物设计原则
PCR引物的设计原则:①引物应用核酸系列保守区内设计并具有特异性。
②产物不能形成二级结构。
25碱基之间。
③引物长度一般在18~60%之间。
④ G+C含量在40%~⑤碱基要随机分布。
⑥引物自身不能有连续4个碱基的互补。
⑦引物之间不能有连续4个碱基的互补。
⑧引物5′端可以修饰。
⑨引物3′端不可以修饰。
⑩引物3′断要避开密码子的第3位。
△G值是指DNA 双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G值越大,则双链越稳定。
1.引物的特异性引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。
2.避开产物的二级结构区某些引物无效的主要原因是引物重复区DNA二级结构的影响,选择扩增片段时最好避开二级结构区域。
用有关计算机软件可以预测估计mRNA的稳定二级结构,有助于选择模板。
实验表明,待扩区域自由能(△G°)小于58.6lkJ/mol 时,扩增往往不能成功。
若不能避开这一区域时,用7-deaza-2′-dGTP取代dGTP 对扩增的成功是有帮助的。
3.长度25bp。
引物的有效长度:Ln=2(G+C)+(A+T),寡核苷酸引物长度一般为18~Ln值不能大于38,因为>38时,最适延伸温度会超过Taq DNA聚合酶的最适温度(74℃),不能保证产物的特异性。
4.G+C含量G+C含量一般为40%60%。
其Tm值是寡核苷酸的解链温度,即在一定盐浓~度条件下,50%寡核苷酸双链解链的温度,有效启动温度,一般高于Tm值510℃。
~若按公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为5580℃,~其Tm值最好接近72℃以使复性条件最佳。
5.碱基础随机分布引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。
尤其3′端不应超过3个连续的G或C,因为这样会使引物在G+C富集序列区引发错误。
6.引物自身引物自身不应存在互补序列,否则引物自身会折叠成发夹状结构牙引物本身复性。
引物设计原则(必看)
mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。
3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。
6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
引物设计原则(必看)
mi引物设计原则1、引物得长度一般为15-30 bp,常用得就是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其就是3’端相似性较高得序列,否则容易导致错配。
引物3’端出现3个以上得连续碱基,如GGG或CCC,也会使错误引发机率增加。
ﻫ3。
引物3’端得末位碱基对Taq酶得DNA合成效率有较大得影响。
不同得末位碱基在错配位置导致不同得扩增效率,末位碱基为A得错配效率明显高于其她3个碱基,因此应当避免在引物得3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5'端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
ﻫ4。
引物序列得GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物得GC含量不能相差太大。
ﻫ5、引物所对应模板位置序列得Tm值在72℃左右可使复性条件最佳。
Tm值得计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用得就是最邻近法(thenearest neighbor method)。
ﻫ6. ΔG值就是指DNA双链形成所需得自由能,该值反映了双链结构内部碱基对得相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端与中间ΔG值相对较高得引物。
引物得3’端得ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
ﻫ7、引物二聚体及发夹结构得能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物得修饰一般就是在5’端增加酶切位点,应根据下一步实验中要插入PCR产物得载体得相应序列而确定。
引物序列应该都就是写成5-3方向得,ﻫTm之间得差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
ﻫ要设计引物首先要找到DNA序列得保守区、同时应预测将要扩增得片段单链就是否形成二级结构、如这个区域单链能形成二级结构,就要避开它。
引物设计原则(必看)
mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。
3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。
6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
PCR设计引物应遵循以下原则2
P C R设计引物应遵循以下原则:①引物长度:15-30bp,常用为20bp左右。
②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。
③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。
A TGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。
④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。
⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。
⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。
⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。
引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。
酶及其浓度目前有两种Taq DNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。
催化一典型的PCR反应约需酶量2。
5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。
dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。
dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。
HCL的缓冲液将其PH调节到7.0~7.5,小量分装,-20℃冰冻保存。
多次冻融会使dNTP降解。
在PCR 反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP 的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。
浓度过低又会降低PCR 产物的产量。
dNTP能与Mg2+结合,使游离的Mg2+浓度降低。
PCR引物设计原则
PCR引物设计原则PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。
因此,引物的优劣直接关系到PCR的特异性与成功与否。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
如这个区域单链能形成二级结构,就要避开它。
如这一段不能形成二级结构,那就可以在这一区域设计引物。
现在可以在这一保守区域里设计一对引物。
一般引物长度为15~30碱基,扩增片段长度为100~600碱基对。
让我们先看看P1引物。
一般引物序列中G+C含量一般为40%~60%。
而且四种碱基的分布最好随机。
不要有聚嘌呤或聚嘧啶存在。
否则P1引物设计的就不合理。
应重新寻找区域设计引物。
同时引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的互补。
引物确定以后,可以对引物进行必要的修饰,例如可以在引物的5′端加酶切位点序列;标记生物素、荧光素、地高辛等,这对扩增的特异性影响不大。
但3′端绝对不能进行任何修饰,因为引物的延伸是从3′端开始的。
这里还需提醒的是3′端不要终止于密码子的第3位,因为密码子第3位易发生简并,会影响扩增的特异性与效率。
综上所述我们可以归纳十条PCR引物的设计原则:①引物应用核酸系列保守区内设计并具有特异性。
②产物不能形成二级结构。
③引物长度一般在15~30碱基之间。
④G+C含量在40%~60%之间。
⑤碱基要随机分布。
⑥引物自身不能有连续4个碱基的互补。
⑦引物之间不能有连续4个碱基的互补。
⑧引物5′端可以修饰。
⑨引物3′端不可修饰。
⑩引物3′端要避开密码子的第3位。
PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。
如前述,引物的优劣直接关系到PCR的特异性与成功与否。
对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。
1.引物的特异性引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。
引物设计原则(必看)
mi引物设计原则1。
引物的长度一般为15—30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2。
引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3'端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加.3。
引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A.另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4。
引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应.上下游引物的GC含量不能相差太大。
5。
引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳.Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method).6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3'端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应.7。
引物二聚体及发夹结构的能值过高(超过4。
5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5'端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5—3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
引物设计原则(必看)
mi引物设计原则1。
引物的长度一般为15-30 bp,常用的是18—27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应.2. 引物序列在模板内应当没有相似性较高,尤其是3'端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。
3。
引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A.另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应.上下游引物的GC含量不能相差太大。
5。
引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳.Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method).6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物.引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5—3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右.要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
引物设计原则(必看)
mi引物设计原则1。
引物的长度一般为15—30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2。
引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3'端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加.3。
引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A.另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4。
引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应.上下游引物的GC含量不能相差太大。
5。
引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳.Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method).6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3'端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应.7。
引物二聚体及发夹结构的能值过高(超过4。
5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5'端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5—3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引物设计的11条黄金法则PCR引物设计的11条黄金法则1.引物最好在模板cDNA的保守区内设计。
DNA序列的保守区是通过物种间相似序列的比较确定的。
在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。
2.引物长度一般在15~30碱基之间。
引物长度(primerlength)常用的是18-27bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于TaqDNA聚合酶进行反应。
3.引物GC含量在40%~60%之间,Tm值最好接近72℃。
GC含量(composition)过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
另外,上下游引物的Tm值(meltingtemperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。
有效启动温度,一般高于Tm值5~10℃。
若按公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。
4.引物3′端要避开密码子的第3位。
如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。
5.引物3′端不能选择A,最好选择T。
引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T 时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。
6.碱基要随机分布。
引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(Falsepriming)。
降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。
尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。
7.引物自身及引物之间不应存在互补序列。
引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。
这种二级结构会因空间位阻而影响引物与模板的复性结合。
引物自身不能有连续4个碱基的互补。
两引物之间也不应具有互补性,尤其应避免3′端的互补重叠以防止引物二聚体(Dimer与Crossdimer)的形成。
引物之间不能有连续4个碱基的互补。
引物二聚体及发夹结构如果不可避免的话,应尽量使其△G值不要过高(应小于4.5kcal/mol)。
否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8.引物5′端和中间△G值应该相对较高,而3′端△G值较低。
△G值是指DNA双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G值越大,则双链越稳定。
应当选用5′端和中间△G 值相对较高,而3′端△G值较低(绝对值不超过9)的引物。
引物3′端的△G值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
(不同位置的△G值可以用Oligo6软件进行分析)9.引物的5′端可以修饰,而3′端不可修饰。
引物的5′端决定着PCR产物的长度,它对扩增特异性影响不大。
因此,可以被修饰而不影响扩增的特异性。
引物5′端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。
引物的延伸是从3′端开始的,不能进行任何修饰。
3′端也不能有形成任何二级结构可能。
10.扩增产物的单链不能形成二级结构。
某些引物无效的主要原因是扩增产物单链二级结构的影响,选择扩增片段时最好避开二级结构区域。
用有关软件(比如RNAstructure)可以预测估计mRNA的稳定二级结构,有助于选择模板。
实验表明,待扩区域自由能(△G°)小于58.6lkJ/mol时,扩增往往不能成功。
若不能避开这一区域时,用7-deaza-2′-脱氧GTP取代dGTP对扩增的成功是有帮助的。
11.引物应具有特异性。
引物设计完成以后,应对其进行BLAST检测。
如果与其它基因不具有互补性,就可以进行下一步的实验了。
附:值得一提的是,各种模板的引物设计难度不一。
有的模板本身条件比较困难,例如GC含量偏高或偏低,导致找不到各种指标都十分合适的引物;用作克隆目的的PCR,因为产物序列相对固定,引物设计的选择自由度较低。
在这种情况只能退而求其次,尽量去满足条件。
做RealTime时,用于SYBRGreenI法时的一对引物与一般PCR的引物,在引物设计上所要求的参数是不同的。
引物设计的要求:1)避免重复碱基,尤其是G.2)Tm=58-60度。
3)GC=30-80%.4)3'端最后5个碱基内不能有多于2个的G或C.5)正向引物与探针离得越近越好,但不能重叠。
6)PCR扩增产物长度:引物的产物大小不要太大,一般在80-250bp之间都可;80~150bp最为合适(可以延长至300bp)。
7)引物的退火温度要高,一般要在60度以上;要特别注意避免引物二聚体和非特异性扩增的存在。
而且引物设计时应该考虑到引物要有不受基因组DNA污染影响的能力,即引物应该跨外显子,最好是引物能跨外显子的接头区,这样可以更有效的不受基因组DNA污染的影响。
至于设计软件,PRIMER3,PRIMER5,PRIMEREXPRESS都应该可以的。
做染料法最关键的就是寻找到合适的引物和做污染的预防工作。
对于引物,你要有从一大堆引物中挑出一两个能用的引物的思想准备---寻找合适的引物非常不容易。
关于BLAST的作用应该是通过比对,发现你所设计的这个引物,在已经发现并在GENEBANK中公开的不物种基因序列当中,除了和你的目标基因之外,还有没有和其他物种或其他序列当中存在相同的序列,如和你的目标序列之外的序列相同的序列,则可能扩出其他序列的产物,那么这个引物的特异性就很差,从而不能用。
1.简介寡聚核苷酸引物的选择,通常是整个扩增反应成功的关键。
所选的引物序列将决定PCR产物的大小、位置、以及扩增区域的Tm值这个和扩增物产量有关的重要物理参数。
好的引物设计可以避免背景和非特异产物的产生,甚至在RNA-PCR中也能识别cDNA或基因组模板。
引物设计也极大的影响扩增产量:若使用设计粗糙的引物,产物将很少甚至没有;而使用正确设计的引物得到的产物量可接近于反应指数期的产量理论值。
当然,即使有了好的引物,依然需要进行反应条件的优化,比如调整Mg2+浓度,使用特殊的共溶剂如二甲基亚砜、甲酰胺和甘油。
计算机辅助引物设计比人工设计或随机选取更有效。
一些影响PCR反应中引物作用的因素诸如溶解温度、引物间可能的同源性等,易于在计算机软件中被编码和限定。
计算机的高速度可完成对引物位置、长度以及适应用户特殊条件的其他有关引物的变换可能性的大量计算。
通过对成千种组合的检测,调整各项参数,可提出适合用户特殊实验的引物。
因此通过计算机软件选择的引物的总体“质量”(由用户在程序参数中设定)保证优于通过人工导出的引物。
需要指出的是,引物不必与模板完全同源,因此可包含启动子序列、限制酶识别位点或5’端的各种修饰,这种对引物的修饰不会妨碍PCR反应,而会在以后使用扩增子时发挥作用。
2.基本PCR引物设计参数引物设计的目的是在两个目标间取得平衡:扩增特异性和扩增效率。
特异性是指发生错误引发的频率。
特异性不好或劣等的引物会产生额外无关和不想要的PCR扩增子,在EB染色的琼脂糖凝胶上可见到;引物效率是指在每一PCR循环中一对引物扩增的产物与理论上成倍增长量的接近程度。
①引物长度;特异性一般通过引物长度和退火温度控制。
如果PCR的退火温度设置在近于引物Tm值(引物/模板双链体的解链温度)几度的范围内,18到24个碱基的寡核苷酸链是有很好的序列特异性的。
引物越长,扩增退火时被引发的模板越少。
为优化PCR反应,使用确保溶解温度不低于54℃的最短的引物,可获得最好的效率和特异性。
总的来说,最好在特异性允许的范围内寻求安全性。
每增加一个核苷酸,引物特异性提高4倍;这样,大多数应用的最短引物长度为18个核苷酸。
引物设计时使合成的寡核苷酸链(18~24聚物)适用于多种实验条件仍不失为明智之举。
②引物的二级结构包括引物自身二聚体、发卡结构、引物间二聚体等。
这些因素会影响引物和模板的结合从而影响引物效率。
对于引物的3’末端形成的二聚体,应控制其ΔG大于-5.0kcal/mol或少于三个连续的碱基互补,因为此种情形的引物二聚体有进一步形成更稳定结构的可能性,引物中间或5’端的要求可适当放宽。
引物自身形成的发卡结构,也以3’端或近3’端对引物-模板结合影响更大;影响发卡结构的稳定性的因素除了碱基互补配对的键能之外,与茎环结构形式亦有很大的关系。
应尽量避免3’末端有发卡结构的引物。
③引物GC含量和Tm值PCR引物应该保持合理的GC含量。
含有50%的G+C的20个碱基的寡核苷酸链的Tm值大概在56~62℃范围内,这可为有效退火提供足够热度。
一对引物的GC含量和Tm值应该协调。
协调性差的引物对的效率和特异性都较差,因为降低了Tm值导致特异性的丧失。
这种情况下引物Tm 值越高,其错误引发的机率也越大。
若采用太高的退火温度,Tm值低的引物对可能完全不发挥作用。
在从一批在特定序列范围内已合成好的寡核苷酸中选择一对新的引物时,这种GC含量和Tm值的协调非常关键。
一般来说,一对引物的Tm值相差尽量不超过2~3摄氏度,同时引物和产物的Tm值也不要相差太大,20摄氏度范围内较好。
④引物的额外序列与退火温度若有额外的序列信息要加到引物中,例如T7RNA 聚合酶结合位点、限制酶切位点或者GC发夹结构可以使用加长的引物。
一般说来,引物5’端添加无关序列不会影响引物特异序列的退火。
有时候,引物中添加了大量与模板不配对的碱基,可以在较低退火温度的条件下进行4到5个扩增循环;然后在假定引物5’端序列已经加入到模板中,计算得出的退火温度下进行其余的循环。
在引物上添加限制酶位点时一个重要的考虑是大多数限制酶的有效切割要求在它们的识别序列的5’端有2至3个非特异的额外碱基,这样就会增加引物的非模板特异序列的长度。
长引物序列的另一个缺点是影响溶解温度的精确计算,而这对于确定PCR反应时的退火温度又是必须的。
对于低于20个碱基的引物,Tm值可以根据Tm=4(G+C)+2(A+T)计算。
而对于较长的引物,Tm 值需要考虑动力学参数、从“最近邻位”的计算方式得到,现有的PCR引物设计软件大多数都采用这种方式。
⑤引物的3’末端核苷酸组成引物3’末端和模板的碱基完全配对对于获得好的结果是非常重要的,而引物3’末端最后5到6个核苷酸的错配应尽可能的少。