3.2复数代数形式的四则运算3.2.1复数代数形式的加、减运算及其几何意义教案1新人教A版选修2_2

合集下载

3.2.1 复数代数形式的加、减运算及其几何意义

3.2.1 复数代数形式的加、减运算及其几何意义

【答案】 1-i
[小组合作型]
复数的加、减法运算
1 1 4 3 (1)3+2i+(2-i)-3-2i=________.
(2)已知复数 z 满足 z+1-3i=5-2i,求 z. 【自主解答】 =1+i. 【答案】 1+i
1 1 4 3 1 4 1 3 (1)3+2i+(2-i)-3-2i=3+2-3+2-1+2i
探究 2 复数|z1-z2|的几何意义是什么?
【提示】 复数|z1-z2|表示复数 z1,z2 对应两点 Z1 与 Z2 间的距离.
已知 z∈C,且|z+3-4i|=1,求|z|的最大值与最小值. 【导学号:62952106】
【精彩点拨】 先根据|z+3-4i|=1 的几何意义,画出复数 z 对应点的轨道 再根据|z|的几何意义求解.
运用复数加、减运算的几何意义应注意的问题 向量加法、减法运算的平行四边形法则和三角形法则是复数加法、减法几 何意义的依据.利用加法“首尾相接”和减法“指向被减数”的特点,在三角 → 形内可求得第三个向量及其对应的复数.注意向量AB对应的复数是 zB-zA(终点 对应的复数减去起点对应的复数).
[再练一题] → → → 2. (1)向量OZ1对应的复数是 5-4i, 向量OZ2对应的复数是-5+4i, 则OZ1+ → OZ2对应的复数是( A.-10+8i C.0 ) B.10-8i D.10+8i
【答案】 3+5i
[探究共研型]
复数加、减法的几何意义的应用
探究 1 在实数范围内 a-b>0⇔a>b 恒成立,在复数范围内是否有 z1-
z2>0⇒z1>z2 恒成立呢?
【提示】 若 z1,z2∈R,则 z1-z2>0⇒z1>z2 成立.否则 z1-z2>0D⇒ z1>z2. 如果 z1=1+i,z2=i,虽然 z1-z2=1>0,但不能说 1+i 大于 i.

3.2.1复数代数形式的加、减运算及其几何意义(最新整理)

3.2.1复数代数形式的加、减运算及其几何意义(最新整理)

复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义预习课本P107~108,思考并完成下列问题(1)复数的加法、减法如何进行?复数加法、减法的几何意义如何?(2)复数的加、减法与向量间的加减运算是否相同?1.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i.2.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).3.复数加、减法的几何意义设复数z 1,z 2对应的向量为,,则复数z 1+z 2是以,为邻边的OZ 1――→ OZ 2――→ OZ 1――→ OZ 2――→ 平行四边形的对角线 所对应的复数,z 1-z 2是连接向量与的终点并指向OZ ――→ OZ 1――→ OZ 2――→的向量所对应的复数.OZ 1――→[点睛] 对复数加、减法几何意义的理解它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.1.判断(正确的打“√”,错误的打“×”)(1)复数与向量一一对应.( )(2)复数与复数相加减后结果只能是实数.( )(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( )答案:(1)× (2)× (3)×2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( )A .8i B .6C .6+8iD .6-8i答案:B3.已知复数z 满足z +i -3=3-i ,则z 等于( )A .0B .2iC .6D .6-2i 答案:D4.在复平面内,复数1+i 与1+3i 分别对应向量和,其中O 为坐标原点,OA ――→ OB ――→则||等于( )AB ――→A.B .22C. D .410答案:B复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以Error!解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|=.2[答案] (1)-2-i (2)2复数代数形式的加、减法运算技巧(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算. [活学活用]已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.解析:由条件知z 1+z 2=a 2-2a -3+(a 2-1)i ,又z 1+z 2是纯虚数,所以Error!解得a =3.答案:3复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0,3+2i ,-2+4i.求:(1) 表示的复数;AO ――→(2)对角线表示的复数;CA ――→(3)对角线表示的复数.OB ――→[解] (1)因为=,所以表示的复数为-3-2i.AO ――→ -OA ――→ AO ――→(2)因为=-,所以对角线表示的复数为(3+2i)-(-2+4i)=5CA ――→ OA ――→ -OC ――→ CA ――→-2i.(3)因为对角线=+,所以对角线表示的复数为(3+2i)+(-2+OB ――→ OA ――→ OC ――→ OB ――→4i)=1+6i.复数与向量的对应关系的两个关注点(1)复数z =a +b i(a ,b ∈R)是与以原点为起点,Z (a ,b )为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.[活学活用] 复平面内三点A ,B ,C ,A 点对应的复数为2+i ,向量对应的复数为1+2i ,BA ――→向量对应的复数为3-i ,求点C 对应的复数.BC ――→解:∵对应的复数为1+2i ,对应的复数为3-i.BA ――→ BC ――→∴=-对应的复数为(3-i)-(1+2i)=2-3i.AC ――→ BC ――→ BA ――→又∵=+,OC ――→ OA ――→ AC ――→∴C 点对应的复数为(2+i)+(2-3i)=4-2i.复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( )A .1 B.12C .2 D.5(2)若复数z 满足|z ++i|≤1,求|z |的最大值和最小值.3[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z1,Z2,Z3,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以点Z 的集合为线段Z1Z2.问题转化为:动点Z 在线段Z1Z2上移动,求|ZZ3|的最小值,因为|Z1Z3|=1.所以|z+i+1|min=1.[答案] A(2)解:如图所示, ||==2.OM ――→(-\r(3))2+(-1)2所以|z |max =2+1=3,|z |min =2-1=1.[一题多变]1.[变条件、变设问]若本例题(2)条件改为已知|z |=1且z ∈C ,求|z -2-2i|(i 为虚数单位)的最小值.解:因为|z |=1且z ∈C ,作图如图:所以|z -2-2i|的几何意义为单位圆上的点M 到复平面上的点P (2,2)的距离,所以|z -2-2i|的最小值为|OP |-1=2-1.22.[变条件]若题(2)中条件不变,求|z -|2+|z -2i|2的最大值和最小值.3解:如图所示,在圆面上任取一点P ,与复数z A =,z B =2i 对应点A ,B 相连,得向3量,,再以,为邻边作平行四边形.PA ――→ PB ――→ PA ――→ PB ――→P 为圆面上任一点,z P =z ,则2||2+2||2=||2+(2||)2=7+4||2,(平行四边形四条边的PA ――→ PB ――→ AB ――→ PO ′――→ PO ′――→平方和等于对角线的平方和),所以|z -|2+|z -2i|2=.312(7+4|z -32-i |2)而max =|O ′M |+1=1+,|z -32-i |432min =|O ′M |-1=-1.|z -32-i |432所以|z -|2+|z -2i|2的最大值为27+2,最小值为27-2.34343层级一 学业水平达标1.已知z =11-20i ,则1-2i -z 等于( )A .z -1 B .z +1C .-10+18iD .10-18i解析:选C 1-2i -z =1-2i -(11-20i)=-10+18i.2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4解析:选B z =1-(3-4i)=-2+4i ,故选B.3.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B z =z 2-z 1=(1+2i)-(2+i)=-1+i ,实部小于零,虚部大于零,故位于第二象限.4.若z 1=2+i ,z 2=3+a i(a ∈R),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1解析:选D z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.5.设向量,,对应的复数分别为z 1,z 2,z 3,那么( )OP ――→ PQ ――→ OQ ――→A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=0解析:选D ∵+=,∴z 1+z 2=z 3,即z 1+z 2-z 3=0.OP ――→ PQ ――→ OQ ――→6.已知x ∈R ,y ∈R ,(x i +x )+(y i +4)=(y -i)-(1-3x i),则x =__________,y =__________.解析:x +4+(x +y )i =(y -1)+(3x -1)i∴Error!解得Error!答案:6 117.计算|(3-i)+(-1+2i)-(-1-3i)|=________.解析:|(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|= =5.32+42答案:58.已知z 1=a +(a +1)i ,z 2=-3b +(b +2)i(a ,b ∈R),若z 1-z 2=4,则a +b =3233________.解析:∵z 1-z 2=a +(a +1)i -[-3b +(b +2)i]=+(a -b -1)i =4,323(32a +33b )3由复数相等的条件知Error!解得Error!∴a +b =3.答案:39.计算下列各式.(1)(3-2i)-(10-5i)+(2+17i);(2)(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 015-2 016i).解:(1)原式=(3-10+2)+(-2+5+17)i =-5+20i.(2)原式=(1-2+3-4+…+2 013-2 014+2 015)+(-2+3-4+5-…-2 014+2 015-2 016)i =1 008-1 009i.10.设z 1=x +2i ,z 2=3-y i(x ,y ∈R),且z 1+z 2=5-6i ,求z 1-z 2.解:∵z 1=x +2i ,z 2=3-y i ,∴z 1+z 2=x +3+(2-y )i =5-6i ,∴Error!解得Error!∴z 1=2+2i ,z 2=3-8i ,∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.层级二 应试能力达标1.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( )A .0 B .1C. D.2212解析:选C 由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离即为.222.复平面内两点Z 1和Z 2分别对应于复数3+4i 和5-2i ,那么向量对应的复数Z 1Z 2――→为( )A .3+4iB .5-2iC .-2+6iD .2-6i解析:选D =-,即终点的复数减去起点的复数,∴(5-2i)-(3+Z 1Z 2――→ OZ 2――→ OZ 1――→4i)=2-6i.3.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心解析:选A 由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量,对应OA ――→ OB ――→的复数分别是3+i ,-1+3i ,则对应的复数是( )CD ――→A .2+4iB .-2+4iC .-4+2iD .4-2i解析:选D 依题意有==-.而(3+i)-(-1+3i)=4-2i ,故CD ――→ BA ――→ OA ――→ OB ――→对应的复数为4-2i ,故选D.CD ――→5.设复数z 满足z +|z |=2+i ,则z =________.解析:设z =x +y i(x ,y ∈R),则|z |= .x 2+y 2∴x +y i +=2+i.x 2+y 2∴Error!解得Error!∴z =+i.34答案:+i 346.在复平面内,O 是原点,,,对应的复数分别为-2+i,3+2i,1+5i ,OA ――→ OC ――→ AB ――→那么对应的复数为________.BC ――→解析:=-=-(+)=3+2i -(-2+i +1+5i)=BC ――→ OC ――→ OB ――→ OC ――→ OA ――→ AB ――→(3+2-1)+(2-1-5)i =4-4i.答案:4-4i7.在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求向量,,对应的复数;AB ――→ AC ――→ BC ――→(2)判断△ABC 的形状.(3)求△ABC 的面积.解:(1)对应的复数为2+i -1=1+i ,AB ――→对应的复数为-1+2i -(2+i)=-3+i ,BC ――→对应的复数为-1+2i -1=-2+2i.AC ――→(2)∵||=,||=,||==2,AB ――→ 2BC ――→ 10AC ――→82∴||2+||2=||2,∴△ABC 为直角三角形.AB ――→ AC ――→ BC ――→(3)S △ABC =××2=2.12228.设z =a +b i(a ,b ∈R),且4(a +b i)+2(a -b i)=3+i ,又ω=sin θ-icos θ,求z 3的值和|z -ω|的取值范围.解:∵4(a +b i)+2(a -b i)=3+i ,∴6a +2b i =3+i ,33∴Error!∴Error!∴z =+i ,3212∴z -ω=-(sin θ-icos θ)(32+12i )=+i (32-sin θ)(12+cos θ)∴|z -ω|=(32-sin θ)2+(12+cos θ)2= 2-3sin θ+cos θ= = ,2-2(32sin θ-12cos θ)2-2sin (θ-π6)∵-1≤sin ≤1,(θ-π6)∴0≤2-2sin ≤4,∴0≤|z -ω|≤2,(θ-π6)故所求得z =+i ,|z -ω|的取值范围是[0,2].3212。

3.2.1 复数代数形式的加、减运算及其几何意义.doc

3.2.1 复数代数形式的加、减运算及其几何意义.doc

3.2复数代数形式的四则运算3.2.1复数代数形式的加、减运算及其几何意义整体设计教材分析复数的加减运算不仅是本节的重点,也是本章知识的重点之一.复数代数形式的加法运算法则是一种规定,它的合理性体现在:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神.复数的减法运算法则是通过转化为加法运算而得到的,渗透了转化的数学思想方法,是学生体会数学思想的素材.对于复数加法、减法运算的几何意义(即可以通过|hj量加法、减法法则来进行),它不仅乂一次让我们看到了向量这一工具的功能,也使数和形得到了有机的结合.课时分配1课时.教学目标1.知识与技能目标掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义.2.过程与方法目标培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力.3.情感、态度和价值观培养学生学习数学的兴趣,勇于创新的精神,并且通过探究学习,培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神.重点难点重点:发数代数形式的加法、减法的运算法则.难点:复数加法、减法的几何意义.教学过程引入新课我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究发数的加减运算.探究新知我们规定,复数的加法法则如下:设Zi=a+bi, z2=c+di 是任意两个复数,那么(a+bi) + (c+di) = (a+c) + (b+d)i.提出问题:问题1:两个夏数的和是个什么数,它的值唯一确定吗?问题2:当b=0, d=0时,与实数加法法则一致吗?M题3:它的实质是什么?类似于实数的哪种运算方法?活动设计:学生独立思考,口答.活动成果:1.仍然是个复数,且是一个确定的复数;2.一致;3.实质是实部与实部相加, 虚部与虚部相加,类似于实数运算中的合并同类项.设计意图加深对复数加法法则的理解,且与实数类比,了解规定的合理性.提出问题:实数的加法有交换律、结合律,复数的加法满足这些运算律吗?并试着证明.活动设计:学生先独立思考,然后小组交流.活动成果:满足,对任意的Z], z2, z3ec,有交换律:Z]+Z2 = Z?+Z1・结合律:(Z]+Z2)+ Z3 = Z]+(Z2 + Z3).证明:设Z] = a+bi, z2=c + di, Z]+z2 = (a+c)+(b+d)i, z2 + Z| = (c + a) + (d + b)i, 显然,z1+z2 = z2 + z1.同理可得(Z1+Z2)+ Z3 = Z1+(Z2 + Z3).设计意图引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,提高学生的建构能力及主动发现问题,探究问题的能力.下面我们根据岌数的儿何意义,探究一下夏数加法的儿何意义.提出问题:复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗?并验证.活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流.学情预测:学生可能会很快类比出结果,却不知如何验证,教师适时引导,在图形中解ZZ|(Q0)0x设向量应1,宓分别与复数zi=a+bi, Z2=c+di对应,则OZ]=(a, b), OZ2=(c, d),由平面向量的坐标运算,有OZi+OZ? = (a+c, b+d).这说明两个向量OZ. ^OZo的和就是与夏数(a+c) + (b+d)i对应的向量.活动成果:复数的加法可以按照向量的加法来进行,这就是复数加法的几何意义.设计意图既训练了学生的类比思想,也训练了学生的数形结合思想.下面我们来研究复数的减法提出问题:类比于复数的加法法则,试着给出夏数的减法法则及其儿何意义.活动设计:学生独立完成,口述,教师板书.活动成果:1.我们规定,复数的减法是加法的逆运算,即把满足(c+di) + (x + yi) = a+bi 的复数x + yi叫做复数a + bi减去复数c + di的差,记做(a+bi) — (c + di).2 .复数减法的儿何意义是可以按照向量的减法来进行的.考查学生的类比思想,提高学生主动发现问题,探究问题的能力.提出问题:你能试着推导复数减法法则吗?活动设计:先让学生独立思考,然后小组交流.学情预测:大多数学生可能很快就会想到用复数相等的定义来验证,部分学生可能会想到把减法运算转化为加法运算,即(a+bi)—(c+di)=(a+bi)+(— 1 )(c+di)= (a+bi)+(—c—di)= (a—c)+(b—d)i.活动成果:证明:根据复数相等的定义,有c + x=a, d+y=b,因lit x = a—c, y=b—d,即(a+bi)—(c+di)=(a—c)+(b—d)i.设计意图让学生自己动手推导减法法则,有利于培养学生的创新能力和互助合作的学习习惯.理解新知提出问题:问题1:复数的加(减)法法则规定的合理性在哪里?问题2:复数的加(减)法实质是什么?问题3:多个复数相加减怎样运算?活动设计:学生独立完成,口述,教师完善.活动成果:1.它既与实数运算法则,运算律相同,又与向量完美地结合起•来;2.实质是复数的实部与实部,虚部与虚部分别相加减;3.可将各个发数的实部与实部,虚部与虚部分别相加减.设计意图加深对夏数加(减)法法则的理解,并为例题打下基础.运用新知例1 计算(5—6i)+( — 2—i)—(3+4i).思路分析:根据复数的加减运算法则即可得出.解法一:(5-6i) + (-2-i)-(3+4i) = (5-2-3) + (-6-l-4)i= — lli.解法二:(5-6i)+(-2—i)一(3+4i)=(5—2)+(—6— l)i-(3+4i)=(3-7i)-(3+4i)=。

复数代数形式的加、减运算及其几何意义

复数代数形式的加、减运算及其几何意义

3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义内 容 标 准 学 科 素 养1. 熟练掌握复数代数形式的加、减运算法则;2. 理解复数加减法的几何意义,能够利用“数形结合”的思想解题.严格数学定义熟练数形结合提升数学运算授课提示:对应学生用书第 54 页[基础认识]知识点一 复数代数形式的加减法 预习教材P 107-108,思考并完成以下问题类比多项式的加减法运算,想一想复数如何进行加减运算?提示:两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a +b i)±(c + d i)=(a ±c )+(b ±d )i.知识梳理 (1)运算法则设 z 1=a +b i ,z 2=c +d i 是任意两个复数,那么(a +b i)+(c +d i)=(a +c )+(b +d )i ,(a + b i)-(c +d i)=(a -c )+(b -d )i.(2)加法运算律对任意 z 1,z 2,z 3∈C ,有 z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 知识点二 复数加减法的几何意义 思考并完成以下问题1. 复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的 几何意义吗?提示:如图,设 → , →分别与复数 a +b i ,c +d i 对应,OZ 1 OZ 2则→ → OZ 1=(a ,b ),OZ 2=(c ,d),由平面向量的坐标运算,得 → + →=(a +c ,b +d ),所以→ → OZ 1 OZ 2OZ 1+OZ 2与复数(a +c )+(b +d )i 对应,复数的加法可以按照向量的加法来进行.2. 怎样作出与复数 z 1-z 2 对应的向量?提示:z 1-z 2 可以看作 z 1+(-z 2).因为复数的加法可以按照向量的加法来进行.所以可以按照平行四边形法则或三角形法则作出与 z 1-z 2 对应的向量(如图).图中 → 对应复数 z 1, →2对应复数 z 2,则 →对应复数 z 1-z 2.知识梳理OZ 1 OZ Z 2Z 1复数加法的几何意义复数 z 1+z 2 是以 → , →为邻边的平行四边形OZ 1 OZ 2 的对角线→所对应的复数OZ复数减法的几何意义复数 z 1-z 2 是从向量 →2的终点指向向量 →的OZ OZ 1终点的向量 →所对应的复数Z 2Z 1提示:(1)一种规定:复数的代数形式的加法法则是一种规定,减法是加法的逆运算.(2) 运算律:实数加法的交换律、结合律在复数集中仍成立.实数的移项法则在复数中 仍然成立.(3) 运算结果:两个复数的和(差)是唯一的复数. (4) 适当推广:可以推广到多个复数进行加、减运算.(5) 虚数单位 i :在进行复数加减运算时,可将虚数单位 i 看成一个字母,然后去括号,合并同类项即可.2.怎样理解复数加减法运算的几何意义?提示:(1)复数的加法:根据复数加法的几何意义知,两个复数的和就是两个复数对应 向量的和所对应的复数.(2)复数的减法:根据复数减法的几何意义,两个复数的差就是两个复数对应向量的差 所对应的复数.[自我检测]1.已知复数 z 1=3+4i ,z 2=3-4i ,则 z 1+z 2 等于( ) A .8i B .6 C .6+8iD .6-8i2.若复数 z 1=1+5i ,z 2=-3+7i ,则复数 z =z 1-z 2 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(5-6i)+(-2-2i)-(3+3i)=____ __.授课提示:对应学生用书第 54 页 探究一 复数的加、减运算 [例 1] 计 算 : (1)(-2+3i)+(5-i);(2)(-1+ 2i)+(1+ 2i); (3)(a +b i)-(2a -3b i)-3i(a ,b ∈R ).方法技巧 复数加、减运算法则的记忆(1) 复数的实部与实部相加减,虚部与虚部相加减. (2) 把 i 看作一个字母,类比多项式加减中的合并同类项.(3) 在进行复数减法运算时要注意格式,两复数相减所得结果依然是一个复数,其对应 的实部与虚部分别是两复数的实部与虚部的差,注意中间用“+”号,如 z 1=a +b i ,z 2=c +d i ,z 1-z 2=(a -c )+(b -d )i ,而不是 z 1-z 2=(a -c )-(b -d )i(a ,b ,c ,d ∈R ).(4) 复数中出现字母时,首先要判断其是否为实数,再确定复数的实部与虚部,最后把 实部与虚部分别相加.提醒:注意运算格式及范围,避免出错跟踪探究 1.(1)已知 z 1=2+3i ,z 2=-1+2i.求 z 1+z 2,z 1-z 2;⎛1 1 ⎫ ⎛4 3 ⎫(2)计算:⎝3+2i ⎭+(2-i)-⎝3-2i ⎭.探究二 复数加减法的几何意义[例 2] 如图所示,平行四边形 OABC 的顶点 O ,A ,C 分别对应的复数为 0,3+2i ,-2+4i.求: →表示的复数.(1) AO→(2) CA 表示的复数.AB BC AC 延伸探究 (1)若本例条件不变,试求点 B 所对应的复数.(2)若本例条件不变,求对角线 AC ,BO 的交点 M 对应的复数.方法技巧 利用复数加减运算的几何意义解题的技巧及常见结论(1) 技巧.①形转化为数:利用几何意义可以把几何图形变换转化成复数运算去处理;②数转化为形:对于一些复数运算也可以给予几何解释,使复数作为工具运用于几何之 中.(2) 常见结论:在复平面内,z 1,z 2 对应的点分别为 A ,B ,z 1+z 2 对应的点为 C ,O 为坐标原点,则四边形 OACB :①为平行四边形;②若|z 1+z 2|=|z 1-z 2|,则四边形 OACB 为矩形; ③若|z 1|=|z 2|,则四边形 OACB 为菱形;④若|z 1|=|z 2|且|z 1+z 2|=|z 1-z 2|,则四边形 OACB 为正方形.跟踪探究 2.在复平面内 A ,B ,C 三点对应的复数分别为 1,2+i ,-1+2i. (1)求→, → , →对应的复数;(2) 判断△ABC 的形状; (3) 求△ABC 的面积.探究三 复数模的最值问题[例 3] 复数 z 1=3+4i ,z 2=0,z 3=c +(2c -6)i 在复平面内对应的点分别为 A ,B ,C , 若∠BAC 是钝角,求实数 c 的取值范围.延伸探究(1)在本例中,若∠BAC 为锐角,求实数c 的取值范围.(2)在本例中,求|z1+z3|的最小值.方法技巧(1)|z-z0|表示复数z,z0的对应点之间的距离,在应用时,要把绝对值号内变为两复数差的形式.(2)|z-z0|=r 表示以z0对应的点为圆心,r 为半径的圆.(3)涉及复数模的最值问题以及点的轨迹问题,均可从两点间距离公式的复数表达形式入手进行分析判断,然后通过几何方法进行求解.跟踪探究 3.已知z1=2-2i,且|z|=1,求|z-z1|的最大值.授课提示:对应学生用书第56 页[课后小结](1)复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算.(2)复数加法的几何意义就是向量加法的平行四边形法则,复数减法的几何意义就是向量减法的三角形法则.[素养培优]误解复数代数形式的几何意义致错易错案例:已知复平面上的四个点A,B,C,D 构成平行四边形,顶点A,B,C 对应的复数分别为-5-2i,-4+5i,2,则点D 对应的复数为_____ _.B . 3i5 5 CDC. 5D. 2单独成册:对应学生用书第 105 页[A 组 学业达标]1. 已知复数 z 1=3+2i ,z 2=1-3i ,则复数 z =z 1-z 2 在复平面内对应的点 Z 位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知 x ,y ∈R ,i 为虚数单位,若 1+x i =(2-y )-3i ,则|x +y i|=( ) B .33. 如果一个复数与它的模的和为 5+ 3i ,那么这个复数是( )A.11 C.11+ 3i11D. 5 +2 3i4. 在平行四边形 ABCD 中,对角线 AC 与 BD 相交于点 O ,若向量→ , →对应的复数OA OB 分别是 3+i ,-1+3i ,则 → 对应的复数是( )A .2+4iB .-2+4iC .-4+2iD .4-2i5. A ,B 分别是复数 z 1,z 2 在复平面内对应的点,O 是坐标原点,若|z 1+z 2|=|z 1-z 2|,则△AOB 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形6.设复数 z 满足 z +|z |=2+i ,则 z = ____ _ .7.已知复数 z 1=2+a i ,z 2=a +i(a ∈R ),且复数 z 1-z 2 在复平面内对应的点位于第二象限,则 a 的取值范围是 ___.8.若复数 z 1=1+3i ,z 2=-2+a i ,且 z 1+z 2=b +8i ,z 2-z 1=-3+c i ,则实数 a =_ ______ , b =____,c =_ _ .9.已知 z (a +1)i ,z =-3 3b +(b +2)i ,(a ,b ∈R ),且 z -z =4 3,求复数1 2 1 2z =a +b i.A. 10B . 2 BA BC [B 组 能力提升]10.复数 z =(a 2-2a )+(a 2-a -2)i(a ∈R )在复平面内对应的点位于虚轴上,则 z -1-i 等 于 ( )A .-1-3i 或-1-iB .-1-iC .-1-3iD .-1+i 或-1+3i11.如果复数 z 满足|z +2i|+|z -2i|=4,那么|z +i +1|的最小值是( ) A .1 C .212.已知在复平面内的正方形 ABCD 有三个顶点对应的复数分别是 1+2i ,-2+i ,-1 -2i ,则第四个顶点对应的复数是___ ____ .13.若|z -1|=|z +1|,则|z -1|的最小值是____ ___ .14. 已知|z |=2,求|z +1+ 3i|的最大值和最小值.15. 已知在复平面内的平行四边形 ABCD 中,A 点对应的复数为 2+i ,向量→对应的复数为 1+2i ,向量→ 对应的复数为 3-i. (1)求点 C ,D 对应的复数; (2)求平行四边形 ABCD 的面积.D. 5。

3.2.1复数代数形式的加、减运算及其几何意义

3.2.1复数代数形式的加、减运算及其几何意义

第1讲 描第述三运章动的基数本概系念的扩充与复数的引入
1 |复数加、减法的应用 对复数加、减法运算的五点解读: 1.一种规定:复数的代数形式的加法法则是一种规定,减法是加法的逆运算. 特殊情形:当复数的虚部为零时,与实数的加、减法法则一致. 2.运算律:实数加法的交换律、结合律在复数集中仍成立.实数的移项法则在复数 集中仍然成立. 3.运算结果:两个复数的和(差)是唯一确定的复数. 4.适当推广:可以推广到多个复数的加、减运算. 5.虚数单位i:在进行复数加、减运算时,可将虚数单位i看成一个字母,然后去括号, 合并同类项即可.
第1讲 描第述三运章动的基数本概系念的扩充与复数的引入
(★★☆)已知复数z1=a2-3+(a+5)i,z2=a-1+(a2+2a-1)i(a∈R,i为虚数单位)分别对应向
量OZ1 、OZ2 (O为原点),若向量 Z1Z2 对应的复数为纯虚数,求a的值. 思路点拨
根据向量减法的几何意义表示出 Z1Z2 对应的复数,根据纯虚数的定义,列满足条件 的关系式,求出a的值.
第1讲 描第述三运章动的基数本概系念的扩充与复数的引入
2 |复数加、减法的几何意义及应用
复数可以用向量来表示,因此复数的加、减法可以利用向量的加、减法来表 示.如果复数对应的向量不共线,那么这些复数的加、减法就可按平行四边形法则 求解. 用复数加、减运算的几何意义解题的技巧: 1.形转化为数:利用几何意义可以把几何图形的变换转化成复数运算去处理. 2.数转化为形:对于一些复数运算也可以给予几何解释,使复数作为工具运用于几 何之中.
解析 ∵ Z1Z2 =OZ2 -OZ1 ,
∴ Z1Z2 对应的复数为z2-z1=[a-1+(a2+2a-1)i]-[a2-3+(a+5)i]=-(a2-a-2)+(a2+a-6)i,

高中数学3.2.1 复数代数形式的加、减运算及其几何意义

高中数学3.2.1 复数代数形式的加、减运算及其几何意义

i
=1+i. (2)z1+z2=2+3i+(-1+2i)=1+5i, z1-z2=2+3i-(-1+2i)=3+i.
目录 退出
迁移与应用 1.若复数 z 满足 z+2-3i=-1+5i,则复数 z= . 解析:由 z+2-3i=-1+5i,得 z=(-1+5i)-(2-3i)=-3+8i. 答案:-3+8i 2.计算:(1)2i-[(3+2i)-(-1+3i)]; (2)a+bi+(2a-3bi)-4i(a,b∈R); (3)(10-9i)+(-8+7i)-(3+3i). 解:(1)原式=2i-[(3+1)+(2-3)i]=2i-(4-i)=-4+3i; (2)原式=(a+2a)+(b-3b)i-4i=3a+(-2b-4)i=3a-(2b+4)i; (3)原式=(10-8-3)+(-9+7-3)i=-1-5i.
目录
退出
预习导引
1.复数的加减法 设 z1=a+bi,z2=c+di(a,b,c,d∈R), 则 z1+z2=(a+c)+(b+d)i, z1-z2=(a-c)+(b-d)i. 2.复数加法的运算律 交换律:对任意的 z1,z2∈C,z1+z2=z2+z1; 结合律:对任意的 z1,z2,z3∈C,(z1+z2)+z3=z1+(z2+z3).
目录
退出
预习交流 2
(1)思考:①根据复数减法的几何意义,|z1-z2|表示什么? ②若 z1,z2 为复数,当 z1-z2>0 时,一定有 z1>z2 吗?为什么? 提示:①根据复数减法以及模的几何意义,|z1-z2|的含义是指在 复平面上,复数 z1,z2 所对应的点 Z1 与 Z2 之间的距离. ②不一定.当 z1-z2>0 时,z1 和 z2 不一定都是实数,例 如:z1=3+i,z2=1+i,虽有(3+i)-(1+i)=2>0,但不能推出 3+i>1+i. (2)做一做:在▱ ABCD 中,������������和������������对应的复数分别为 1-2i,-3+4i, 则对角线 AC 对应向量������������对应的复数为 . 提示:由复数加法几何意义知������������对应的复数为 (1-2i)+(-3+4i)=-2+2i.

高中数学第三章3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义讲义新人教A版选修2_2

高中数学第三章3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义讲义新人教A版选修2_2

3.2.1 复数代数形式的加、减运算及其几何意义1.复数的加法与减法 (1)复数的加减法运算法则(a +b i)±(c +d i)=□01(a ±c )+(b ±d )i. (2)复数加法的运算律复数的加法满足□02交换律、□03结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=□04z 2+z 1;(z 1+z 2)+z 3=□05z 1+(z 2+z 3). 2.复数加、减法的几何意义 (1)复数加法的几何意义若复数z 1,z 2对应的向量OZ 1→,OZ 2→不共线,则复数z 1+z 2是以OZ 1→,OZ 2→为邻边的平行四边形的对角线OZ →所对应的复数.(2)复数减法的几何意义复数z 1-z 2是连接向量OZ 1→,OZ 2→的□06终点,并指向被减向量的向量Z 2Z 1→所对应的复数. (3)复平面内的两点间距离公式:d =□07|z 1-z 2|. 其中z 1,z 2是复平面内的两点Z 1和Z 2所对应的复数,d 为Z 1和Z 2间的距离.1.两点间的距离公式结合模的知识可得复平面上两点间的距离公式,设z 1=x 1+y 1i ,z 2=x 2+y 2i ,则|Z 2Z 1→|=|z 1-z 2|=|(x 1+y 1i)-(x 2+y 2i)|=|(x 1-x 2)+(y 1-y 2)i|=x 1-x 22+y 1-y 22.2.复数模的两个重要性质(1)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|; (2)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2.1.判一判(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( )(2)复数与复数相加减后结果只能是实数.( )(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案 (1)× (2)× (3)× 2.做一做(1)计算:(3+5i)+(3-4i)=________. (2)(5-6i)+(-2-2i)-(3+3i)=________.(3)已知向量OZ 1→对应的复数为2-3i ,向量OZ 2→对应的复数为3-4i ,则向量Z 1Z 2→对应的复数为________.答案 (1)6+i (2)-11i (3)1-i探究1 复数的加减运算例1 计算:(1)(3-5i)+(-4-i)-(3+4i); (2)(-7i +5)-(9-8i)+(3-2i).[解] (1)原式=(3-4-3)+(-5-1-4)i =-4-10i. (2)原式=(5-9+3)+(-7+8-2)i =-1-i. 拓展提升复数代数形式的加减法运算,其运算法则是对它们的实部和虚部分别进行加减运算.在运算过程中应注意把握每一个复数的实部和虚部.这种运算类似于初中的合并同类项.【跟踪训练1】 计算:(1)(1+2i)+(-2+i)+(-2-i)+(1-2i); (2)(i 2+i)+|i|+(1+i).解 (1)原式=(-1+3i)+(-2-i)+(1-2i) =(-3+2i)+(1-2i)=-2. (2)原式=(-1+i)+0+12+(1+i) =-1+i +1+(1+i)=1+2i. 探究2 复数加减运算的几何意义例2 已知ABCD 是复平面内的平行四边形,且A ,B ,C 三点对应的复数分别是1+3i ,-i,2+i ,求点D 对应的复数.[解] 解法一:设D 点对应复数为x +y i(x ,y ∈R ),则D (x ,y ). 又由已知A (1,3),B (0,-1),C (2,1),∴AC 中点为⎝ ⎛⎭⎪⎫32,2,BD 中点为⎝ ⎛⎭⎪⎫x 2,y -12.∵平行四边形对角线互相平分, ∴⎩⎪⎨⎪⎧32=x 2,2=y -12,∴⎩⎪⎨⎪⎧x =3,y =5.即点D 对应的复数为3+5i.解法二:设D 点对应的复数为x +y i(x ,y ∈R ).则AD →对应的复数为(x +y i)-(1+3i)=(x -1)+(y -3)i , 又BC →对应的复数为(2+i)-(-i)=2+2i. 由已知AD →=BC →,∴(x -1)+(y -3)i =2+2i ,∴⎩⎪⎨⎪⎧x -1=2,y -3=2,∴⎩⎪⎨⎪⎧x =3,y =5,即点D 对应的复数为3+5i.[条件探究] 若一个平行四边形的三个顶点对应的复数分别为1+3i ,-i,2+i ,求第四个顶点对应的复数.[解] 设1+3i ,-i,2+i 对应A ,B ,C 三点,D 为第四个顶点,则①当ABCD 是平行四边形时,D 点对应的复数是3+5i.②当ABDC 是平行四边形时,D 点对应的复数为1-3i.③当ADBC 是平行四边形时,D 点对应复数为-1+i.拓展提升(1)根据复数的两种几何意义可知:复数的加减运算可以转化为点的坐标运算或向量运算.(2)复数的加减运算用向量进行时,同样满足平行四边形法则和三角形法则. (3)复数及其加减运算的几何意义为数形结合思想在复数中的应用提供了可能. 【跟踪训练2】 已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i ,求:(1)点C ,D 对应的复数; (2)平行四边形ABCD 的面积.解 (1)因为向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i , 所以向量AC →对应的复数为(3-i)-(1+2i)=2-3i. 又OC →=OA →+AC →,所以点C 对应的复数为(2+i)+(2-3i)=4-2i. 因为AD →=BC →,所以向量AD →对应的复数为3-i ,即AD →=(3,-1), 设D (x ,y ),则AD →=(x -2,y -1)=(3,-1),所以⎩⎪⎨⎪⎧x -2=3,y -1=-1,解得⎩⎪⎨⎪⎧x =5,y =0.所以点D 对应的复数为5. (2)因为BA →·BC →=|BA →||BC →|cos B ,所以cos B =BA →·BC →|BA →||BC →|=3-25×10=152=210.所以sin B =752=7210,所以S =|BA →||BC →|sin B =5×10×7210=7.所以平行四边形ABCD 的面积为7. 探究3 复数加减运算的几何意义的应用 例3 已知|z 1|=|z 2|=|z 1-z 2|=1,求|z 1+z 2|.[解]解法一:设z1=a+b i,z2=c+d i(a,b,c,d∈R),∵|z1|=|z2|=|z1-z2|=1,∴a2+b2=c2+d2=1,①(a-c)2+(b-d)2=1.②由①②得2ac+2bd=1.∴|z1+z2|=a+c2+b+d2=a2+c2+b2+d2+2ac+2bd= 3.解法二:设O为坐标原点,z1,z2,z1+z2对应的点分别为A,B,C.∵|z1|=|z2|=|z1-z2|=1,∴△OAB是边长为1的正三角形,∴四边形OACB是一个内角为60°,边长为1的菱形,且|z1+z2|是菱形的较长的对角线OC的长,∴|z1+z2|=|OC|=|OA|2+|AC|2-2|OA||AC|cos120°= 3.拓展提升掌握以下常用结论:在复平面内,z1,z2对应的点为A,B,z1+z2对应的点为C,O为坐标原点,则四边形OACB:①为平行四边形;②若|z1+z2|=|z1-z2|,则四边形OACB为矩形;③若|z1|=|z2|,则四边形OACB为菱形;④若|z1|=|z2|且|z1+z2|=|z1-z2|,则四边形OACB为正方形.【跟踪训练3】若复数z满足|z+i|+|z-i|=2,求|z+i+1|的最小值.解解法一:设复数-i,i,-(1+i)在复平面内对应的点分别为Z1,Z2,Z3.如图,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以复数z对应的点Z的集合为线段Z1Z2.问题转化为:动点Z在线段Z1Z2上移动,求|ZZ3|的最小值,由图可知|Z1Z3|为最小值且最小值为1.解法二:设z=x+y i(x,y∈R).因为|z+i|+|z-i|=2,所以x2+y+12+x2+y-12=2,又x2+y+12=2-x2+y-12≥0,所以0≤1-y=x2+y-12≤2,即(1-y)2=x2+(y-1)2,且0≤1-y≤2.所以x=0且-1≤y≤1,则z=y i(-1≤y≤1).所以|z+i+1|=|1+(y+1)i|=12+y+12≥1,等号在y=-1即z=-i时成立.所以|z+i+1|的最小值为1.1.复数的加法规定:实部与实部相加,虚部与虚部相加,两个复数的和仍是一个复数,这一法则可以推广到多个复数相加.2.因为复数可以用向量来表示,所以复数加法的几何意义就是向量加法的平行四边形法则.3.复数的减法可根据复数的相反数,转化为复数的加法来运算.1.复数z 1=3+i ,z 2=1-i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 ∵z 1-z 2=(3+i)-(1-i)=2+2i , ∴z 1-z 2在复平面内对应的点位于第一象限. 2.已知|z |=3,且z +3i 是纯虚数,则z 等于( ) A .-3i B .3i C .±3i D.4i 答案 B解析 设z =x +y i(x ,y ∈R ),由z +3i =x +(y +3)i 为纯虚数,得x =0,且y ≠-3,又|z |=x 2+y 2=|y |=3,∴y =3.故选B.3.非零复数z 1,z 2分别对应复平面内的向量O A →,O B →,若|z 1+z 2|=|z 1-z 2|,则( ) A .O A →=O B → B .|O A →|=|O B →| C .O A →⊥O B →D .O A →,O B →共线答案 C解析 如图,由向量的加法及减法法则可知,O C →=O A →+O B →,B A →=O A →-O B →.由复数加法及减法的几何意义可知,|z 1+z 2|对应O C →的模,|z 1-z 2|对应B A →的模.又|z 1+z 2|=|z 1-z 2|,所以四边形OACB 是矩形,则O A →⊥O B →.4.复数z 满足z -(1-i)=2i ,则z 等于( )A .1+iB .-1-iC .-1+iD .1-i答案 A解析 z =2i +(1-i)=1+i.故选A.5.如图所示,平行四边形OABC 的顶点O ,A ,C 分别对应复数0,3+2i ,-2+4i.求:(1)向量AO →对应的复数; (2)向量CA →对应的复数; (3)向量OB →对应的复数.解 (1)因为AO →=-OA →,所以向量AO →对应的复数为-3-2i.(2)因为CA →=OA →-OC →,所以向量CA →对应的复数为(3+2i)-(-2+4i)=5-2i. (3)因为OB →=OA →+OC →,所以向量OB →对应的复数为(3+2i)+(-2+4i)=1+6i.。

第三章3.2.1复数代数形式的加减运算及其几何意义

第三章3.2.1复数代数形式的加减运算及其几何意义

§3.2 复数代数形式的四则运算3.2.1 复数代数形式的加减运算及其几何意义 课时目标 1.熟练掌握复数的代数形式的加减法运算法则.2.理解复数加减法的几何意义,能够利用“数形结合”的思想解题.1.复数加法与减法的运算法则(1)设z 1=a +b i ,z 2=c +d i 是任意两个复数,则z 1+z 2=____________,z 1-z 2=____________.(2)对任意z 1,z 2,z 3∈C ,有z 1+z 2=__________,(z 1+z 2)+z 3=z 1+(__________).2.复数加减法的几何意义如图:设复数z 1,z 2对应向量分别为OZ 1→,OZ 2→,四边形OZ 1ZZ 2为平行四边形,则与z 1+z 2对应的向量是_________,与z 1-z 2对应的向量是__________.一、选择题1.复数z 1=3+i ,z 2=-1-i ,则z 1-z 2等于( )A .2B .2+2iC .4+2iD .4-2i2.复数z 1=2-12i ,z 2=12-2i ,则z 1+z 2等于( ) A .0 B .32+52i C .52-52i D .52-32i 3.向量OZ 1→对应的复数是5-4i ,向量OZ 2→对应的复数是-5+4i ,则OZ 1→+OZ 2→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i4.非零复数z 1,z 2分别对应复平面内的向量OA →与OB →,若|z 1+z 2|=|z 1-z 2|,则向量OA →与OB →的关系是( )A.OA →=OB → B .|OA →|=|OB →|C .OA →⊥OB →D .OA →,OB →共线5.复数z 1=a +4i ,z 2=-3+b i ,若它们的和为实数,差为纯虚数,则实数a ,b 的值为( )A .a =-3,b =-4B .a =-3,b =4C .a =3,b =-4D .a =3,b =4二、填空题6.设纯虚数z 满足|z -1-i|=3,则z =____________.7.在复平面内,O 是原点,OA →,OC →,AB →对应的复数分别为-2+i,3+2i,1+5i ,那么BC→对应的复数为________________________________________________________________.8.设f (z )=z -2i ,z 1=3+4i ,z 2=-2-i ,则f (z 1-z 2)=__________.三、解答题9.已知复数z 1=-2+i ,z 2=-3+2i.(1)求z 1-z 2;(2)在复平面内作出复数z 1-z 2所对应的向量.10.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求AB →,BC →,AC →对应的复数;(2)判断△ABC 的形状;(3)求△ABC 的面积.能力提升11.若z ∈C 且|z +2-2i|=1,则|z -2-2i|的最小值是( )A .2B .3C .4D .512.复数3+3i ,-5i ,-2+i 的对应点分别为平行四边形的三个顶点A ,B ,C ,求第四个顶点对应的复数.1.复数的加减法运算,可以类比多项式中的合并同类项.2.根据复数的两种几何意义可知:复数的加减运算可以转化为点的坐标运算或向量运算.§3.2 复数代数形式的四则运算3.2.1 复数代数形式的加减运算及其几何意义答案知识梳理1.(1)(a +c )+(b +d )i (a -c )+(b -d )i(2)z 2+z 1 z 2+z 32.OZ → Z 2Z 1→作业设计1.C [z 1-z 2=(3+i)-(-1-i)=4+2i.]2.C [z 1+z 2=⎝⎛⎭⎫2+12-⎝⎛⎭⎫12+2i =52-52i.] 3.C [OZ 1→+OZ 2→=5-4i +(-5+4i)=0.]4.C [由向量的加法及减法可知:在▱OACB 内,OC →=OA →+OB →,AB →=OB →-OA →.非零复数z 1,z 2分别对应复平面内向量OA →,OB →,由复数加减法的几何意义可知:|z 1+z 2|对应OC →的模,|z 1-z 2|对应AB →的模,又因为|z 1+z 2|=|z 1-z 2|,则|OC →|=|AB →|,所以四边形OACB是矩形,因此OA →⊥OB →,故选C.]5.A [z 1+z 2=a -3+(4+b )i ,z 1-z 2=a +3+(4-b )i ,由已知得⎩⎪⎨⎪⎧ 4+b =0a +3=0,∴⎩⎪⎨⎪⎧a =-3b =-4.] 6.(±22+1)i解析 ∵z 是纯虚数,设z =b i (b ∈R 且b ≠0).由|z -1-i|=3得|-1+(b -1)i|=3.∴1+(b -1)2=9,∴b -1=±22,∴b =±22+1,即z =(±22+1)i.7.4-4i解析 由AB →=OB →-OA →,得OB →=AB →+OA →=1+5i +(-2+i)=-1+6i ,BC →=OC →-OB →=3+2i -(-1+6i)=4-4i.8.5+3i解析 ∵f (z )=z -2i ,∴f (z 1-z 2)=z 1-z 2-2i=(3+4i)-(-2-i)-2i=(3+2)+(4+1)i -2i =5+3i.9.解 (1)因为z 1=-2+i ,z 2=-3+2i ,所以z 1-z 2=(-2+i)-(-3+2i)=1-i.(2)在复平面内复数z 1-z 2所对应的向量是OZ →=1-i ,如图所示.10.解 (1)AB →对应的复数为z B -z A =(2+i)-1=1+i.BC →对应的复数为z C -z B =(-1+2i)-(2+i)=-3+i.AC →对应的复数为z C -z A =(-1+2i)-1=-2+2i.(2)由(1)可得,|AB →|=2,|BC →|=10,|AC →|=8,∵|AB →|2+|AC →|2=|BC →|2,∴△ABC 为直角三角形.(3)S △ABC =12×2×8=2. 11.B [由已知|z -(-2+2i)|=1,所以复数z 的对应点的轨迹是以(-2,2)为圆心,1为半径的圆,如图所示,|z -2-2i|=|z -(2+2i)|表示复数z 的对应点到(2,2)点的距离,即圆上的点到(2,2)点的距离,最小值为圆心与点(2,2)的距离减去半径,易得值为3.]12.解 当四点顺序为ABCD 时,第四个顶点D 对应的复数为1+9i ;当四点顺序为ADBC 时,第四个顶点D 对应的复数为5-3i ;当四点顺序为ABDC 时,第四个顶点D 对应的复数为-5-7i.。

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.2 3.2.1 复数代数形式的加、减运算及其几何意义

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.2 3.2.1 复数代数形式的加、减运算及其几何意义
(2)复数加法的运算律. 复数的加法满足交换律、结合律,即对任意 z1,z2,z3∈C,
z2+z1 ,(z1+z2)+z3=z 有 z1+z2=______ ______. 1 + ( z2 + z 3 )
基 础 梳 理
2.复数加、减法的几何意义. → ,OZ → 不共线. 复数 z1,z2 对应的向量OZ 1 2 → ,OZ → 为两邻边 (1)复数加法的几何意义:复数 z1+z2 是以OZ 1 2 → 所对应的复数.因此,复数的加法可以 的平行四边形 ___________的对角线OZ 按照向量的加法 __________来进行. → ,OZ →的 (2)复数减法的几何意义:复数 z1-z2 是连结向量OZ 1 2
栏 目 链 接
答案:C
栏 目 链 接
题型1
复数的加减运算
例1 计算:(1)(1+2i)+(3-4i)-(5+6i);
(2)5i-[(3+4i)-(-1+3i)];
(3)(a+bi)-(2a-3bi)-3i(a,b∈R).
解析: (1)(1 + 2i)+ (3 - 4i)- (5 + 6i) = (4 - 2i)- (5 +6i)=-1-8i. (2)5i-[(3+4i)-(-1+3i)]=5i-(4+i)=-4+4i. (3)(a + bi) - (2a - 3bi) - 3i = (a - 2a) + [b - ( - 3b) -3]i=-a+(4b-3)i.
跟 踪 训 练
→ 2. 在复平面内, 复数 1+i 与-1+3i 分别对应向量OA → , 其中 O 为坐标原点,则 → =______. 和OB AB
→ =OB → -OA → =-2+2i, 解析:AB → |=2 2. 所以|AB 答案:2 2

3.2.1复数代数形式的加、减运算及其几何意义(用)

3.2.1复数代数形式的加、减运算及其几何意义(用)

选择
uuur uuur
1、设O是原点,向量OA,OB 对uuu应r 的复
数分别为2-3i,-3+2i,那么向量BA 对应
的复数是( D ) A. -5+5i, B. -5-5i, C. 5+5i,
D. 5-5i.
2、设z1=3-4i,z2=-2+3i,则z1+z2在复平面
内对应的点位于( D ) A. 第一象限,
(3)|z-1|
点Z到点(1, 0)的距离
(4)|z+2i|
点Z到点(0, -2)的距离
例 2.若复数 z 满足| z (1 2i) | 5 , 则 z 所对应的点的集合是什么图形?
例3.若 | z 3 4i | 2 ,则 z 的最大值是__7___
y
变式: z 的最小值是_3__
复数z1 -z2
y
向量Z2Z1
符合 向量 减法 的三 角形 法则.
Z2(c,d)
o
Z1(a,b)
x
|z1-z2|表示什么? 两点Z1 、Z2的距离
运用 已知复数z对应点Z,说明下列各式
所表示的几何意义.
(1)|z-(1+2i)| 点Z到点(1, 2)的距离
(2)|z+(1+2i)| 点Z到点(-1, -2)的距离
B. 第二象限, C. 第三象限, D. 第四象限.
复数的模的几何意义 uuur
uuur
对应平面向量 OZ 的模|OZ |,复数的模:
复数z=a+bi在 复平面上对应的
ቤተ መጻሕፍቲ ባይዱ
点Z(a,b)到原点的距离
y
z=a+bi | z | =| OZ | = OZ

3.2复数代数形式的四则运算念课件

3.2复数代数形式的四则运算念课件

(ac
bd ) c2
(bc d2
ad
)i
分母实数化
先把除式写成分式的形式,再把分子与分母都乘以 分母的共轭复数,化简后写成代数形式(分母实数化).
例题 讲解
例4.计算 (1 2i) (3 4i)
解:
变式训练
计算:1 3i 1 2i
解:
原式
1 3i 1 2i
1 3i1 2i 1 2i1 2i
5 5i
例题 讲解
例2.计算 (1 2i)(3 4i)(2 i).
解:原式= (3 4i 6i 8i2)(2 i) = (11 2i)(2 i) = 22 11i 4i 2i2 = 20 15i
复数的乘法与多项式的乘法是类似的.
例题 讲解
例3.计算互: 为相反数
(1) (3 4i)(3 4i)
思考题:
已知复数z1 cos i, z2 sin i,
则 z1-z2 的最大值为( D )
A. 3 B. 5 C.6
D. 6
小结
典例透析
1.复数的加法法则:
a bi c di a c b d i
2.复数加法的运算律: 复数的加法满足交换律和结合律
3.复数的减法是加法的逆运算,运算法则如下:
乘法交换律 乘法结合律 乘法对加法的分配律
z1·z2=__z_2·_z_1 (z1·z2)·z3=_z_1_·(_z_2_·z_3) z1(z2+z3)=_z_1_z_2+__z_1_z3
例题 讲解
例1:计算
12 ii
解:
原式 2i i2
1 2i
21 2i3 i
原式 3 i 6i 2i2 3 i 6i 2
uuuur
如图:向量OuuZuur1与复数a bi对应

32(复数代数形式的四则运算)教案(新人教选修2-2) 第三章 复数

32(复数代数形式的四则运算)教案(新人教选修2-2) 第三章  复数

§3.2.1复数代数形式的加减运算及其几何意义 一、教学目标: 掌握复数的加法与减法的运算及几何意义 二、教学重点: 掌握复数的加法与减法的运算及几何意义三、教学难点:复数减法的运算法则四、教学过程:(一)导入新课:复数的概念及其几何意义;(二)推进新课:建立复数的概念之后,我们自然而然地要讨论复数系的各种运算问题。

设z 1=a +bi ,z 2=c +di 是任意两个复数,我们规定:1、复数的加法运算法则:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .2、复数的加法运算律:交换律:z 1+z 2=z 2+z 1结合律::(z 1+z 2)+z 3=z 1+(z 2+z 3)3、复数加法的几何意义:设复数z 1=a +bi ,z 2=c +di ,在复平面上所对应的向量为1OZ 、2OZ ,即1OZ 、2OZ 的坐标形式为1OZ =(a ,b ),2OZ =(c ,d )以1OZ 、2OZ 为邻边作平行四边形OZ 1ZZ 2,则对角线OZ 对应的向量是OZ ,由于OZ =1OZ +2OZ =(a ,b )+(c ,d )=(a +c ,b +d ),所以1OZ 和2OZ 的和就是与复数(a +c )+(b +d )i 对应的向量4、复数的减法运算法则:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .5、复数减法的几何意义:类似复数加法的几何意义,由于z 1-z 2=(a -c )+(b -d )i ,而向量12Z Z =1OZ -2OZ =(a ,b )-(c ,d )=(a -c ,b -d ),所以1OZ 和2OZ 的差就是与复数(a-c )+(b -d )i 对应的向量6、例题讲解:例1、计算:(5-6i)+(-2-i)-(3+4i)例2、已知复数z 1=2+i ,z 2=1+2i 在复平面内对应的点分别为A 、B ,求AB 对应的复数z ,z 在平面内所对应的点在第几象限?解:由已知得:z =z 2-z 1=(1+2i )-(2+i )=-1+i ,∵z 的实部a =-1<0,虚部b =1>0,∴复数z 在复平面内对应的点在第二象限内.点评:任何向量所对应的复数,总是这个向量的终点所对应的复数减去始点所对应的复数所得的差。

复数代数形式的加减运算及其几何意义 情境互动课型PPT课件

复数代数形式的加减运算及其几何意义 情境互动课型PPT课件

1.满足条件|z -i|=|3 + 4i|的复数z在复平面上
对应的轨迹是 ( C )
A.一条直线
B.两条直线
C.圆
D.其他
2.复数z满足|z + 3 - 3i|= 3,则|z|的
最大值是__3__3__;最小值是___3___.
3.|z1|= |z2| 平行四边形OABC是 菱形 .
4.| z1+ z2|= | z1- z2| 平行四边形OABC是 矩形 .
O
x
复数的加法可以按照向量的加法来进行
复数加法运算的几何意义 z1+ z2=OZ1 +OZ2 = OZ
符合向量加法 的平行四边形 法则.
y
Z2(c,d)
Z(a+c,b+d)
Z1(a,b)
o
x
探究点3 复数的减法
类比实数集中减法的意义,我们规定,复数的 减法是加法的逆运算,即把满足
(c+di)+(x+yi)=a+bi
5.在复平面内,向量AB对应的复数是2 +i,向量CB对 应的复数是 -1- 3i,则向量CA对应的负数是( D ) A.1- 2i B.-1+ 2i C.3 + 4i D.- 3 - 4i
6. 已知复数z对应点A,说明下列各式所表示的几何 意义.
(1)|z-1| 点A到点(1,0)的距离
(2)|z+2i| 点A到点(0, -2)的距离
复数z2-z1
向量Z1Z2
符合向量 减法的三 角o
|z1-z2|表示什么? 表示复平面上两点Z1 ,Z2的距离
例3
变式训练:已知复数z对应点Z,说明下列各式所 表示的几何意义.

3.2.1复数代数形式的加减运算及几何意义

3.2.1复数代数形式的加减运算及几何意义

§3.2复数代数形式的四则运算§3.2.1复数代数形式的加减运算及几何意义教学目标:知识与技能:掌握复数的加法运算及意义过程与方法:理解并掌握实数进行四则运算的规律,了解复数加减法运算的几何意义 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用教学重点:复数加法运算,复数与从原点出发的向量的对应关系.教学难点:复数加法运算的运算率,复数加减法运算的几何意义。

教具准备:多媒体、实物投影仪 。

教学设想:复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定.教学过程:学生探究过程:1.虚数单位i :(1)它的平方等于-1,即 21i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:N Z Q R C .6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小7. 复平面、实轴、虚轴: 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法8.若(,)A x y ,(0,0)O ,则(),OA x y =9. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差10. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)讲解新课:一.复数代数形式的加减运算1.复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .2. 复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .3. 复数的加法运算满足交换律: z 1+z 2=z 2+z 1.证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ).∵z 1+z 2=(a 1+b 1i )+(a 2+b 2i )=(a 1+a 2)+(b 1+b 2)i .z 2+z 1=(a 2+b 2i )+(a 1+b 1i )=(a 2+a 1)+(b 2+b 1)i .又∵a 1+a 2=a 2+a 1,b 1+b 2=b 2+b 1.∴z 1+z 2=z 2+z 1.即复数的加法运算满足交换律.4. 复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3)证明:设z 1=a 1+b 1i .z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R ).∵(z 1+z 2)+z 3=[(a 1+b 1i )+(a 2+b 2i )]+(a 3+b 3i )=[(a 1+a 2)+(b 1+b 2)i ]+(a 3+b 3)i=[(a 1+a 2)+a 3]+[(b 1+b 2)+b 3]i=(a 1+a 2+a 3)+(b 1+b 2+b 3)i .z 1+(z 2+z 3)=(a 1+b 1i )+[(a 2+b 2i )+(a 3+b 3i )]=(a 1+b 1i )+[(a 2+a 3)+(b 2+b 3)i ]=[a 1+(a 2+a 3)]+[b 1+(b 2+b 3)]i=(a 1+a 2+a 3)+(b 1+b 2+b 3)i∵(a 1+a 2)+a 3=a 1+(a 2+a 3),(b 1+b 2)+b 3=b 1+(b 2+b 3).∴(z 1+z 2)+z 3=z 1+(z 2+z 3).即复数的加法运算满足结合律讲解范例:例1计算:(5-6i)+(-2-i)-(3+4i)解:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4) i=-11 i例2计算:(1-2i )+(-2+3i )+(3-4i )+(-4+5i )+…+(-2002+2003i )+(2003-2004i )解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i )=(2003-1001)+(1001-2004)i =1002-1003i .解法二:∵(1-2i )+(-2+3i )=-1+i ,(3-4i )+(-4+5i )=-1+i ,……(2001-2002i )+(-2002+2003)i =-1+i .相加得(共有1001个式子):原式=1001(-1+i )+(2003-2004i )=(2003-1001)+(1001-2004)i =1002-1003i二.复数代数形式的加减运算的几何意义复数的加(减)法 (a +bi )±(c +di )=(a ±c )+(b ±d )i .与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减). 1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ2. 复数z a bi =+←−−−→一一对应平面向量OZ3.复数加法的几何意义:设复数z 1=a +bi ,z 2=c +di ,在复平面上所对应的向量为1OZ 、2OZ ,即1OZ 、2OZ 的坐标形式为1OZ =(a ,b ),2OZ =(c ,d )以1OZ 、2OZ 为邻边作平行四边形OZ 1ZZ 2,则对角线OZ 对应的向量是OZ , ∴OZ = 1OZ +2OZ =(a ,b )+(c ,d )=(a +c ,b +d )=(a +c )+(b +d )i4. 复数减法的几何意义:复数减法是加法的逆运算,设z =(a -c )+(b -d )i ,所以z -z 1=z 2,z 2+z 1=z ,由复数加法几何意义,以为一条对角线,1OZ 为一条边画平行四边形,那么这个平行四边形的另一边OZ 2所表示的向量2OZ 就与复数z -z 1的差(a -c )+(b -d )i 对应由于21OZ Z Z =,所以,两个复数的差z -z 1与连接这两个向量终点并指向被减数的向量对应.例3已知复数z 1=2+i ,z 2=1+2i 在复平面内对应的点分别为A 、B ,求AB 对应的复数z ,z 在平面内所对应的点在第几象限?解:z =z 2-z 1=(1+2i )-(2+i )=-1+i ,∵z 的实部a =-1<0,虚部b =1>0,∴复数z 在复平面内对应的点在第二象限内.点评:任何向量所对应的复数,总是这个向量的终点所对应的复数减去始点所对应的复数所得的差. 即AB 所表示的复数是z B -z A . ,而BA 所表示的复数是z A -z B ,故切不可把被减数与减数搞错尽管向量AB 的位置可以不同,只要它们的终点与始点所对应的复数的差相同,那么向量AB 所对应的复数是惟一的,因此我们将复平面上的向量称之自由向量,即它只与其方向和长度有关,而与位置无关例4 复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数. 分析一:利用BC AD =,求点D 的对应复数.解法一:设复数z 1、z 2、z 3所对应的点为A 、B 、C ,正方形的第四个顶点D 对应的复数为x +yi (x ,y ∈R ),是:-==(x +yi )-(1+2i )=(x -1)+(y -2)i ;-==(-1-2i )-(-2+i )=1-3i . ∵BC AD =,即(x -1)+(y -2)i =1-3i ,∴⎩⎨⎧-=-=-,32,11y x 解得⎩⎨⎧-==.1,2y x 故点D 对应的复数为2-i .分析二:利用原点O 正好是正方形ABCD 的中心来解.解法二:因为点A 与点C 关于原点对称,所以原点O 为正方形的中心,于是(-2+i )+ (x +yi )=0,∴x =2,y =-1.故点D 对应的复数为2-i .点评:根据题意画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用巩固练习:1.已知复数z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1在复平面内所表示的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在复平面上复数-3-2i ,-4+5i ,2+i 所对应的点分别是A 、B 、C ,则平行四边形ABCD 的对角线BD 所对应的复数是A.5-9iB.-5-3iC.7-11iD.-7+11i3.已知复平面上△AOB 的顶点A 所对应的复数为1+2i ,其重心G 所对应的复数为1+i ,则以OA 、OB 为邻边的平行四边形的对角线长为 A.32 B.22 C.2 D.54.复平面上三点A 、B 、C 分别对应复数1,2i ,5+2i ,则由A 、B 、C 所构成的三角形是A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5.一个实数与一个虚数的差( )A.不可能是纯虚数B.可能是实数C.不可能是实数D.无法确定是实数还是虚数6.计算(-])23()23[()23()32i i i ++---++=____.7.计算:(2x +3yi )-(3x -2yi )+(y -2xi )-3xi =________(x 、y ∈R ).8.计算(1-2i )-(2-3i )+(3-4i )-…-(2002-2003i ).9.已知复数z 1=a 2-3+(a +5)i ,z 2=a -1+(a 2+2a -1)i (a ∈R )分别对应向量1OZ 、2OZ (O 为原点),若向量21Z Z 对应的复数为纯虚数,求a 的值. 解:21Z Z 对应的复数为z 2-z 1,则z 2-z 1=a -1+(a 2+2a -1)i -[a 2-3+(a +5)i ]=(a -a 2+2)+(a 2+a -6)i∵z 2-z 1是纯虚数∴⎪⎩⎪⎨⎧≠-+=+-060222a a a a 解得a =-1. 10.已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数.解:设D (x ,y ),则OA OD AD -=对应的复数为(x +yi )-(1+2i )=(x -1)+(y -2)iOB OC BC -=对应的复数为:(-1-2i )-(-2+i )=1-3i ∵= ∴(x -1)+(y -2)i =1-3i∴⎩⎨⎧-=-=-3211y x ,解得⎩⎨⎧-==12y x ∴D 点对应的复数为2-i 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数代数形式的加减运算及其几何意义
教学目标:
知识与技能:掌握复数的加法运算及理解其几何意义.
过程与方法:通过类比实数的四则运算的规律或向量的运算规律,得到复数加减运算的法则,同时了解复数加减法运算的几何意义.
情感、态度与价值观:通过探究复数加减运算法则的过程,感悟由特殊到一般的思想,同时由向量的加减法与复数的类比,理解复数加减的运算法则,知道事物之间是普遍联系的哲学规律.
教学重点:复数加减法运算及其应用.
教学难点:复数加减法运算的几何意义.
教具准备:多媒体、实物投影仪等.
教学过程:
①复数z=a+bi(a、b∈R),其中a是实部,b是虚部.当且仅
当b=0 时,z是实数;当且仅当a=0且b≠0 时,z为纯虚数;
②如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d
③复数z=a+bi与复平面内所有的点是一一对应关系;与平面向量
也呈一一对应关系.
④如果已知向量,则,
引入了一个新数,我们最关心是它是如何运算的,我们先来研究复数的加法.即
,那么
根据复数是实数的推广,实数也是复数的概念,举出复数(实数)相加的特例,如2+3=5.
①因为实数是复数的特殊情况,那么复数是如何进行加减运算的呢?2+3=?这个式子能不能写成复数形式呢?若能,从复数的概念角度如何解释?
②复数还有其它特殊情形吗?是什么?对这类复数的加法,你有什么想法?举例说明.(纯虚数是复数的另一类特殊情形.z1=2i z2=3i,即z1=0+2i,z2=0+3i 猜想z1+
z2=(0+0)+(2+3)i=0+5i=5i.)
③你对一般的两个复数相加有什么猜想,即
④引导学生从向量的角度上去理解加法法则猜想的正确性
结论:两个复数相加等于它们的实部与实部相加,虚部与虚部相加.
⑤复数的加法满足加法交换律,满足加法结合律吗?
复数的加法运算满足交换律: z1+z2=z2+z1.
复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)
⑥那么复数的减法法则如何推导出来呢?
可以利用复数减法是加法逆运算的规定来推导.
例题:
例1.课本题57页
例2.若复数与的差是纯虚数,那么实数.
例3.若复数与的和位于复平面的第一象限,则实数的范围
是.
例4.已知复数z1=2+i,z2=1+2i在复平面内对应的点分别为A、B,求对应的复数z,z在平面内所对应的点在第几象限?
例5.复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.(备用)
小结:
从知识上小结:加减法法则
从思想方法上小结:由特殊到一般,普遍联系,相互转化的思想。

相关文档
最新文档