北师大版必修4高中数学第一章从单位圆看正弦函数的性质教案
必修4-1.4.3 单位圆与正弦函数、余弦函数的基本性质
虹屏居
11
新知探究
2、求函数 y=-0.5sinx,x[-5π/6,3π/4]的最大值和最小 值,并写出取得最大值和最小值时的自变量x的值.
最大值为0.5,最小值为-0.5;取得最大值时的x值 为0.5π,取得最小值时x的值为-0.5π.
虹屏居
12
新知探究
3、求函数y 0.5- cosx 的定义域.
难点:利用单位圆说明正弦函数的周期性.
虹屏居
3
新 知 预读
1、单位圆中的三角函数定义; 2、试说明角α的终边与单位圆的交点P的纵坐标 sinα的变化情况
虹屏居
4
新知思议
1、研究正弦函数的基本性质从哪几方面进行的? 4个方面;分别为:(1)定义域;(2)值域; (3)周期性;(4)单调性.
虹屏居
5
虹屏居
14
新知小结
本课所学的知识点有哪些? 正弦函数、余弦函数的性质. 本课有哪些数学思想? 类比思想、数形结合思想.
你有何收获?
虹屏居
15
新知强化
1、P23习题2-4,A组 5,B组 2 .
2、预习:P19、§4.4单位圆的对称性与诱导公式
虹屏居
16
欢迎指导 谢谢合作
虹屏居
17
虹屏居
9
新知思议
请在单位圆中,讨论余弦函数的单调性.
由正弦函数的周期性可知,正弦函数在每一个 区间[2kπ-π/2,2kπ+π/2](k∈Z)上是增加的,在每 一个区间[2kπ+π/2,2kπ+3π/2](k∈Z)上是减少的.
虹屏居
10
新知探究
1、求下列函数的单调区间. (1)y=sinx,x[-π,π] ;(2)y=cosx,x[-π,π] . (1)y=sinx,在x[-π,π]上增区间为[-π/2,π/2];减 区间为[-π,-2/π] ,[2/π,π] . (2)y=cosx,在x[-π,π]上增区间为[-π,0];减区 间为[0,π] .
北师版高中数学高一必修4课件-5.2从单位圆看正弦函数的性质正弦函数的图像
当堂测·查疑缺
1234
1.方程2x=sin x的解的个数为( D )
A.1
B.2
C.3
D.无穷多
明目标、知重点
1234
2.函数y=sin
x,x∈[0,2π]的图像与直线y=-
1 2
的交点有
____2____个.
解析 如图所示.
明目标、知重点
1234
3.利用“五点法”画出函数y=2-sin x,x∈[0,2π]的简图. 解 (1)取值列表如下:
明目标、知重点
例1 利用“五点法”作出y=-1+sin x (x∈[0,2π])的简图. 解 按五个关键点列表:
x
0
sin x
0
-1+sin x -1
明目标、知重点
π
3π
2
π
2
2π
1
0 -1 0
0 -1 -2 -1
描点并将它们用光滑的曲线连接起来(如图所示).
明目标、知重点
反思与感悟 作正弦函数的曲线要理解几何法作图,掌握 五点法作图.“五点”即y=sin x的图像在一个最小正周 期内的最高点、最低点和与x轴的交点.“五点法”是作 简图的常用方法.
明目标、知重点
探究点二 五点法作正弦曲线 思考1 同学们观察, 在y=sin x,x∈[0,2π]的图像上,起关键 作用的点有几个? 答 五个关键点(0,0),π2,1,(π,0),32π,-1,(2π,0).
明目标、知重点
思考2 如何用描点法画出y=sin x,x∈[0,2π]的图像?
答 在精确度要求不太高时,y=sin x,x∈[0,2π]可以通过找出 (0,0),π2,1,(π,0),32π,-1,(2π,0)五个关键点,再用光滑曲线将 它们连接起来,就可得 y=sin x,x∈[0,2π]的图像,这种方法简称 “五点法”.
高中数学第一章三角函数1.5正弦函数的图像与性质1.5.2正弦函数的性质教案北师大版必修420170
正弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图像 观察,还是由诱导公式进行证明,都很容易.单调性只要求由图像观察,不要求证明,而正弦的最 大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可. 三维目标 1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念; 能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展 运用. 2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发 学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物. 重点难点 教学重点:正弦函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性 质的思想方法. 教学难点:正弦函数性质的理解及灵活运用,特别是周期性的理解. 课时安排 1 课时
结合正弦函数的周期性可知:
正弦函数在每一个闭区间[- +2kπ, +2kπ](k∈Z)上都是增函数,其值从-1增大到 1;在
2
2
每一个闭区间[ +2kπ, 3 +2kπ](k∈Z)上都是减函数,其值从 1 减小到-1.
2
2
对问题⑤,学生能直观地得出正弦曲线关于原点 O 对称.在 R 上,y=sinx为奇函数.教师要
1
图1
活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继
续探究,对找不到思考方向的学生,教师可参与到他们中去,并适时地给予点拨、指导.
数学:1.5.1-5.2正弦函数的性质与图像 课件(高一 北师大版必修4)
研一研·问题探究、课堂更高效
5.1~5.2
③找横坐标:把 x 轴上___从__0_到__2_π___ (2π≈6.28)这一段分 成 12 等份. ④找纵坐标:将__正__弦___线对应平移,即可得到相应点的纵
本
讲 坐标.
栏Байду номын сангаас
目 ⑤连线:用平滑的曲线将这些点依次从左到右连接起来,
开
关 即得 y=sin x,x∈[0,2π]的图像.
利用“五点法”作出正弦函数的图像是本节的重点,也是进 一步通过正弦函数图像研究正弦函数性质的基础和前提,
“五点法”作图的基本步骤和要领要熟练掌握.
填一填·知识要点、记下疑难点
5.1~5.2
1.正弦函数图像的画法
本
(1)几何法—借助三角函数线;
讲 栏
(2)描点法—五点法.
目 开
函数 y=sin x,x∈[0,2π]的图像上起关键作用的点有以
研一研·问题探究、课堂更高效
5.1~5.2
本 问题探究一 几何法作正弦曲线
讲 栏
利用几何法作正弦函数 y=sin x,x∈[0,2π]的图像的过程
目 开
如下:
关
①作直角坐标系,并在直角坐标系 y 轴的左侧画单位圆,
如图所示.
②把单位圆分成 12 等份(等份越多,画出的图像越精 确).过单位圆上的各分点作_x_轴__的垂线,可以得到对应 于 0,π6,π3,π2,…,2π 等角的正弦线.
研一研·问题探究、课堂更高效
5.1~5.2
例 2 求函数 f(x)=lg sin x+ 16-x2的定义域.
本
解 由题意,x 满足不等式组s1i6n-x>x02≥0 ,
讲 栏 目 开
高中数学 第一章 三角函数 4.3 单位圆与正弦函数、余弦函数的基本性质学案 北师大版必修4
4.3 单位圆与正弦函数、余弦函数的基本性质学习目标 1.会利用单位圆研究正弦、余弦函数的基本性质.2.能利用正弦、余弦函数的基本性质解决相关的问题.知识点 正弦、余弦函数的性质思考1 正弦函数、余弦函数的最大值、最小值分别是多少?答案 设任意角x 的终边与单位圆交于点P (cos x ,sin x ),当自变量x 变化时,点P 的横坐标是cos x ,|cos x |≤1,纵坐标是sin x ,|sin x |≤1,所以正弦函数、余弦函数的最大值为1,最小值为-1.思考2 能否认为正弦函数在单位圆的右半圆是增加的?答案 不能,右半圆可以表示无数个区间,只能说正弦函数在每一个区间⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z )上是增加的. 梳理 正弦、余弦函数的性质1.正弦函数在定义域上是单调函数.( × )提示 正弦函数不是定义域上的单调函数. 2.正弦函数在第一象限是增函数.( × )提示 正弦函数在第一象限不是增函数,因为在第一象限,如-5π3<π6,但sin ⎝ ⎛⎭⎪⎫-5π3=sin π3=32,sin π6=12,sin ⎝ ⎛⎭⎪⎫-5π3>sin π6.3.存在实数x ,使得cos x = 2.( × ) 提示 余弦函数最大值为1.4.余弦函数y =cos x 在区间[0,π]上是减函数.( √ ) 提示 由余弦函数的单调性可知正确.类型一 正弦、余弦函数的定义域 例1 求下列函数的定义域. (1)y =2sin x -3; (2)y =lg ⎝ ⎛⎭⎪⎫sin x -22+1-2cos x . 考点 正弦函数、余弦函数的定义域 题点 正弦函数、余弦函数的定义域 解 (1)自变量x 应满足2sin x -3≥0, 即sin x ≥32. 图中阴影部分就是满足条件的角x 的范围,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .(2)由题意知,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎪⎨⎪⎧cos x ≤12,sin x >22.则不等式组的解的集合如图(阴影部分)所示,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π3≤x <2k π+3π4,k ∈Z. 反思与感悟 (1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于三角函数的定义域问题,还要考虑三角函数自身定义域的限制. (2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以取特殊值把不固定的集合写成若干个固定集合再求交集.跟踪训练1 函数y =2sin x +1的定义域为 . 考点 正弦函数、余弦函数的定义域 题点 正弦函数、余弦函数的定义域 答案 ⎣⎢⎡⎦⎥⎤-π6+2k π,7π6+2k π,k ∈Z解析 要使2sin x +1有意义, 则必须满足2sin x +1≥0,即sin x ≥-12,结合单位圆,知x 的取值范围是⎣⎢⎡⎦⎥⎤-π6+2k π,7π6+2k π,k ∈Z . 类型二 正弦、余弦函数的值域与最值例2 (1)求函数y =cos x ⎝ ⎛⎭⎪⎫-π3≤x ≤5π6的值域.题点 正、余弦函数的值域解 ∵y =cos x 在区间⎣⎢⎡⎦⎥⎤-π3,0上是增加的, 在区间⎣⎢⎡⎦⎥⎤0,5π6上是减少的,∴当x =0时,y max =1,当x =5π6时,y min =cos 5π6=-32,∴y =cos x ⎝ ⎛⎭⎪⎫-π3≤x ≤5π6的值域是⎣⎢⎡⎦⎥⎤-32,1.(2)已知函数y =a sin x +1的最大值为3,求它的最小值. 考点 正、余弦函数的最值 题点 含参正、余弦函数的最值解 当a >0时,y max =a ×1+1=3,得a =2, ∴当sin x =-1时,y min =2×(-1)+1=-1; 当a <0时,y max =a ×(-1)+1=3,得a =-2, ∴当sin x =1时,y min =-2×1+1=-1. ∴它的最小值为-1.反思与感悟 (1)求正、余弦函数的值域或最值时应注意定义域,解题时可借助图像结合正、余弦函数的单调性进行分析.(2)对于含有参数的值域或最值,应注意对参数分类讨论.跟踪训练2 函数y =2+cos x ,x ∈⎝ ⎛⎦⎥⎤-π3,2π3的值域为 .考点 正、余弦函数的值域 题点 正、余弦函数的值域答案 ⎣⎢⎡⎦⎥⎤32,3解析 由单位圆,可知当x ∈⎝⎛⎦⎥⎤-π3,2π3时,cos x ∈⎣⎢⎡⎦⎥⎤-12,1,所以2+cos x ∈⎣⎢⎡⎦⎥⎤32,3,所以函数y =2+cos x ,x ∈⎝ ⎛⎦⎥⎤-π3,2π3的值域为⎣⎢⎡⎦⎥⎤32,3.类型三 正弦、余弦函数的单调性例3 函数y =cos x 的一个递增区间为( )A.⎝ ⎛⎭⎪⎫-π2,π2B.(0,π)C.⎝ ⎛⎭⎪⎫π2,3π2 D.(π,2π)题点 求正、余弦函数的单调区间 答案 D解析 ∵y =cos x 的递增区间为[2k π-π,2k π],k ∈Z ,令k =1得[π,2π],即为y =cos x 的一个递增区间,而(π,2π)⊆[π,2π],故选D. 反思与感悟 利用单位圆有助于理解记忆正弦、余弦函数的单调区间,特别注意不连贯的单调区间不能并.跟踪训练3 求下列函数的单调区间.(1)y =sin x ,x ∈[-π,π];(2)y =cos x ,x ∈[-π,π]. 考点 正、余弦函数的单调性 题点 求正、余弦函数的单调区间解 (1)y =sin x 在x ∈[-π,π]上的递增区间为⎣⎢⎡⎦⎥⎤-π2,π2,递减区间为⎣⎢⎡⎦⎥⎤-π,-π2,⎣⎢⎡⎦⎥⎤π2,π.(2)y =cos x 在x ∈[-π,π]上的递增区间为[-π,0],递减区间为[0,π].1.函数y =cos x -1的最小值是( ) A.0 B.1 C.-2 D.-1考点 正弦函数、余弦函数的最大值与最小值 题点 余弦函数的最大值与最小值 答案 C解析 cos x ∈[-1,1],所以y =cos x -1的最小值为-2.2.不等式2sin x -1≥0的解集为 . 考点 解三角不等式 题点 解三角不等式答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π4+2k π≤x ≤3π4+2k π,k ∈Z解析 由2sin x -1≥0得,sin x ≥22. 由单位圆可得π4+2k π≤x ≤3π4+2k π,k ∈Z .3.函数f (x )=-2sin x +1的最大值为 .答案 3解析 因为-1≤sin x ≤1,所以当sin x =-1时,f (x )取最大值2+1=3.4.求y =-2sin x ,x ∈⎣⎢⎡⎦⎥⎤-π6,π的值域. 考点 正、余弦函数的值域 题点 正、余弦函数的值域解 由x ∈⎣⎢⎡⎦⎥⎤-π6,π,得sin x ∈⎣⎢⎡⎦⎥⎤-12,1,∴y ∈[-2,1],∴y =-2sin x ,x ∈⎣⎢⎡⎦⎥⎤-π6,π的值域为[-2,1].利用单位圆来研究正弦、余弦函数的基本性质,能够加深对正弦、余弦函数性质的理解与认识,同时也有助于提升学生利用数形结合思想解决问题的意识.一、选择题1.函数y =sin x +-cos x 的定义域是( ) A.[k π,(k +1)π](k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π+π2,(2k +1)π(k ∈Z )C.⎣⎢⎡⎦⎥⎤k π+π2,(k +1)π(k ∈Z )D.[2k π,(2k +1)π](k ∈Z ) 考点 正弦函数、余弦函数的定义域 题点 正弦函数、余弦函数的定义域 答案 B解析 由已知,得⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,∴⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,∴2k π+π2≤x ≤2k π+π(k ∈Z ).2.函数y =sin 2x 的递减区间是( ) A.⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ) C.[π+2k π,3π+2k π](k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ) 考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的判断 答案 B解析 由2k π+π2≤2x ≤2k π+3π2,k ∈Z ,得k π+π4≤x ≤k π+3π4,k ∈Z ,∴y =sin 2x 的递减区间是⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ).3.函数y =lg ⎝⎛⎭⎪⎫cos x -12的定义域为( )A.⎝ ⎛⎭⎪⎫-π3,π3B.⎝ ⎛⎭⎪⎫k π-π3,k π+π3,k ∈ZC.⎝⎛⎭⎪⎫2k π-π3,2k π+π3,k ∈Z D.R考点 正弦函数、余弦函数的定义域 题点 正弦函数、余弦函数的定义域 答案 C解析 ∵cos x -12>0,∴cos x >12,∴2k π-π3<x <2k π+π3,k ∈Z .∴函数y =lg ⎝ ⎛⎭⎪⎫cos x -12的定义域为⎝ ⎛⎭⎪⎫2k π-π3,2k π+π3,k ∈Z .4.函数y =4sin x +3在[-π,π]上的递增区间为( ) A.⎣⎢⎡⎦⎥⎤-π,-π2B.⎣⎢⎡⎦⎥⎤-π2,π2C.⎣⎢⎡⎦⎥⎤-π,π2 D.⎣⎢⎡⎦⎥⎤π2,π 考点 正、余弦函数的单调性 题点 求正、余弦函数的单调区间 答案 B解析 y =sin x 的递增区间就是y =4sin x +3的递增区间.5.y =3cos x ,x ∈⎝ ⎛⎦⎥⎤-π6,4π3的最大值与最小值分别为( )A.3,-3B.3,-332C.3,32D.3,-32考点 正、余弦函数的最值 题点 求正、余弦函数的最值 答案 A6.在[0,2π]内,使sin x ≥12成立的x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤π6,56πC.⎣⎢⎡⎦⎥⎤π6,23πD.⎣⎢⎡⎦⎥⎤56π,π考点 解三角不等式 题点 解三角不等式 答案 B7.已知f (x )=cos ⎝⎛⎭⎪⎫πx +π3,x ∈Z ,则f (x )的值域为( )A.⎩⎨⎧⎭⎬⎫-12,12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-32,32 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-12,12,-32,32D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12,32考点 余弦函数的值域 题点 余弦函数的值域 答案 A 二、填空题8.y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-5π6,5π3的递增区间为 .考点 正、余弦函数的单调性 题点 求正、余弦函数的单调区间 答案 ⎣⎢⎡⎦⎥⎤-5π6,0,⎣⎢⎡⎦⎥⎤π,5π3 9.满足sin α-cos α>0的α的取值范围是 . 考点 解三角不等式 题点 解三角不等式答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π4+2k π<α<5π4+2k π,k ∈Z 解析 由图可解.10.y =3sin x ,x ∈⎣⎢⎡⎦⎥⎤-π3,4π3的值域为 .考点 正、余弦函数的值域 题点 正、余弦函数的值域答案 ⎣⎢⎡⎦⎥⎤-332,3解析 借助单位圆可知,函数f (x )=sin x ,x ∈⎣⎢⎡⎦⎥⎤-π3,4π3在x =π2处取最大值1,在x =-π3和x =4π3处同时取得最小值-32,即-32≤sin x ≤1,所以-332≤3sin x ≤3. 11.下列说法正确的是 .(只填序号) ①y =|sin x |的定义域为R ; ②y =3sin x +1的最小值为1; ③y =-sin x 为周期函数;④y =sin x -1的递增区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈R ).考点 正、余弦函数的基本性质 题点 正、余弦函数的基本性质综合 答案 ①③解析 对于②,y =3sin x +1的最小值为-3+1=-2;对于④,y =sin x -1的递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2,k ∈Z ,故②④错,填①③.三、解答题12.已知函数y =a cos x +b 的最大值是0,最小值是-4,求a ,b 的值. 考点 正、余弦函数的最值 题点 含参正、余弦函数的最值解 当a >0时,⎩⎪⎨⎪⎧a +b =0,-a +b =-4,解得⎩⎪⎨⎪⎧a =2,b =-2,当a <0时,⎩⎪⎨⎪⎧-a +b =0,a +b =-4,解得⎩⎪⎨⎪⎧a =-2,b =-2.∴a =2,b =-2或a =b =-2. 13.已知函数f (x )=12-sin x.(1)判定函数f (x )是否为周期函数; (2)求函数f (x )的递增区间;(3)当x ∈⎝ ⎛⎦⎥⎤-π6,5π6时,求f (x )的值域. 考点 正、余弦函数的基本性质 题点 正、余弦函数的基本性质综合 解 (1)函数f (x )的定义域是R .因为f (x +2π)=12-sin (2π+x )=12-sin x=f (x ),所以f (x )是周期函数.(2)由正弦函数的基本性质,可知在区间⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z )上,函数y =sin x 是增加的,而此时函数h (x )=2-sin x 是减函数,从而可知此时函数f (x )是增函数, 故可知函数f (x )的递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ).(3)设t =sin x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎦⎥⎤-π6,5π6,则t ∈⎝ ⎛⎦⎥⎤-12,1,所以1≤2-t <52,则25<12-t≤1.故f (x )的值域为⎝ ⎛⎦⎥⎤25,1. 四、探究与拓展14.函数y =-23cos x ,x ∈(0,2π),其单调性是( )A.在(0,π)上是增加的,在[π,2π)上是减少的B.在⎝ ⎛⎦⎥⎤0,π2,⎣⎢⎡⎭⎪⎫3π2,2π上是增加的,在⎝ ⎛⎦⎥⎤π2,3π2上是减少的C.在[π,2π)上是增加的,在(0,π)上是减少的D.在⎣⎢⎡⎦⎥⎤π2,3π2上是增加的,在⎝ ⎛⎭⎪⎫0,π2,⎝ ⎛⎭⎪⎫3π2,2π上是减少的考点 正、余弦函数的单调性题点 正、余弦函数的单调性答案 A15.已知f (x )=-sin x .(1)试写出f (x )的单调区间;(2)若f (x )在⎣⎢⎡⎦⎥⎤-π2,a 上是减少的,求实数a 的取值范围. 考点 正弦函数的单调性题点 正弦函数的单调性综合解 (1)∵f (x )=-sin x ,根据正弦函数y =sin x 的单调性可知,f (x )在⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z )上是减少的, 在⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z )上是增加的. (2)∵f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上是减少的, ∴⎣⎢⎡⎦⎥⎤-π2,a ⊆⎣⎢⎡⎦⎥⎤-π2,π2, 即-π2<a ≤π2. ∴a 的取值范围是⎝ ⎛⎦⎥⎤-π2,π2.。
高中数学第一章三角函数1.4.2单位圆与周期性1.4.3单位圆与正弦函数、余弦函数的基本性质课件北师大版必修4
易错案例 正、余弦函数基本性质的应用 【典例】若x是三角形的最小内角,则正弦函数y=sinx的值域为_____.
【失误案例】
【错解分析】分析上面的解析过程,你知道错在哪里吗? 提示:错误的根本原因是角的范围错误,忽视了“最小内角”对角范围 的限制.
【自我矫正】因为x是三角形的最小内角,
则0<x≤
3
2.图像的利用 在求解函数的值域时,结合单位圆,能避免出错,如本例中x∈ (0,] 时,
3
最大值与最小值的求解,作出单位圆后,结果就很清晰了.
(2)周期函数一定存在最小正周期吗? 提示:不一定.如常数函数是周期函数,但是没有最小正周期.
2.关于周期函数,下列说法正确的是________(填序号). ①周期函数的定义域可以是有限集; ②周期函数的周期只有唯一一个; ③周期函数的周期可以有无数多个; ④周期函数的周期可正可负. 【解析】由周期函数的定义可得①②是错误的,③④是正确的. 答案:③④
【解析】因为f(x)是周期为4的函数,所以f(-3)=f(-3+4)
=f(1)= 1 . 2
答案: 1 2
【知识探究】 知识点1 周期函数 观察图形,回答下列问题:
问题1:周期函数的定义域有什么特点? 问题2:周期函数的函数值、图像有什么样的特征?
【总结提升】 对于周期函数的四点认识 (1)对于定义域内的任意x,都有x+T属于定义域; (2)并不是每一个函数都是周期函数,若函数具有周期性,不一定有最 小正周期; (3)如果T是函数的一个周期,则nT(n∈Z,且n≠0)也是函数的周期. (4)每相隔周期的整数倍,图像要重复出现.
x
1, 2
结合单位圆(如图所示)知x的取值范围是 2k x 7 2k,k Z.
高中数学必修4北师大版 正弦函数的性质与图像 学案1
§5 正弦函数的性质与图像1.正弦线及五点法 (1)正弦线设任意角α的终边与单位圆交于点P ,过点P 作x 轴的垂线,垂足为M ,我们称线段MP 为角α的正弦线.(2)五点法用“五点法”作正弦函数y =sin x ,x ∈[0,2π]的图像的五个点是______、______、______、______、______.它们是正弦曲线与x 轴的交点和函数取最大值、最小值时的点.预习交流1用“五点法”作y =sin x ,x ∈[0,2π]的图像应注意哪些问题? R [-1,1]当x =π2+2k π(k ∈Z )时,y max =1;当x =-π+2k π(k ∈Z )时,y =-1正弦曲线是中心对称图形,其对称中心坐标为(k π,0)(k ∈Z );正弦曲线是轴对称图形,其对称轴方程是x =k π+π2(k ∈Z ).预习交流2(1)用五点法作函数y =-sin x 的图像时,首先应描出的五点的横坐标是______________________.(2)函数y =11+sin x 的定义域是__________;函数y =-3sin x +1的值域是______,单调递减区间是______.答案:1.(2)(0,0) ⎝⎛⎭⎫π2,1 (π,0) ⎝⎛⎭⎫3π2,-1 (2π,0) 预习交流1:提示:(1)明确正弦曲线的结构特征. 由于用“五点法”作图时精确度较差,因此画图之前要做到心中有图,明确正弦曲线的变化趋势和规律.(2)弄清五个关键点的意义.其中,平衡点是正弦曲线凹凸方向改变的位置.最高点和最低点是正弦曲线上升或下降变化趋势改变的位置. (3)熟练画图的步骤.首先选取正弦函数的一个周期[0,2π],再将其四等分,确定五个关键点的位置,最后用平滑曲线连接.预习交流2:(1)0,π2,π,3π2,2π(2)⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠3π2+2k π,k ∈Z [-2,4] ⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z )1.正弦函数的图像(1)从函数y =sin x ,x ∈[0,2π)的图像来看,对应于sin x =12的x 有( ).A .1个值B .2个值C .3个值D .4个值(2)用“五点法”作函数y =-1+sin x (x ∈[0,2π])的简图.1.正弦函数y =sin x (x ∈R )的图像的一条对称轴是( ). A .x 轴 B .y 轴 C .直线x =π2D .直线x =π2.用“五点法”作出y =2sin x ,x ∈[0,2π]的简图.作函数y =a sin x +b 的图像的步骤2.正弦函数的定义域问题求函数y =log 21sin x-1的定义域. 思路分析:由于所求函数的定义域的解析式中含有根号,又含有对数,须保证被开方数大于等于0,且真数大于0,解答本题时可采用不等式组的形式由里向外把使函数有意义的式子罗列,然后求交集.求下列函数的定义域: (1)y =1-2sin x ; (2)y =log 2sin x ; (3)y =log 122sin x -1.求函数的定义域通常是解不等式组,在求解综合性强的含三角函数的复合函数的定义域时,则常利用数形结合,在函数图像或单位圆中表示,然后取各部分的公共部分(即交集).3.正弦函数的值域、最值问题求下列函数的值域: (1)y =3-2sin 2x ;(2)y =sin 2x -sin x +1,x ∈⎣⎡⎦⎤π3,3π4.思路分析:对于(1),直接利用y =sin x 的值域为[-1,1]分析求解;对于(2),利用换元法,转化为二次函数的区间最值求解.求函数y =74+sin x -sin 2x (x ∈R )的值域.求正弦函数的最值或值域的常用方法是:①利用sin x 的有界性,即|sin x |≤1;②利用换元法转化为二次函数的区间最值问题; ③化为sin x =f (y )的形式,通过|f (y )|≤1求解. 4.正弦函数的单调性及应用利用正弦函数的单调性,比较下列各对正弦值的大小. (1)sin 190°与sin 200°; (2)sin ⎝⎛⎭⎫-π10与sin ⎝⎛⎭⎫-π11; (3)sin15π8与sin 10π9. 思路分析:解答本题的关键是对函数解析式恰当化简,利用y =sin x 在区间⎣⎡⎦⎤-π2,π2上是增加的来判断函数值的大小.不通过求值,指出下列各式大于零还是小于零. (1)sin 135°-sin 144°; (2)sin ⎝⎛⎭⎫-π18-sin ⎝⎛⎭⎫-π10; (3)sin ⎝⎛⎭⎫-23π5-sin ⎝⎛⎭⎫-17π4.1.对正弦函数单调性的理解:(1)正弦函数在定义域R 上不是单调函数.(2)因为正弦函数是周期函数,周期为2π,所以研究正弦函数的单调性,只要研究一个周期内(如[0,2π])的单调性即可.2.利用单调性比较三角函数值的大小的步骤: (1)异名函数化为同名函数.(2)利用诱导公式把角化到同一单调区间上. (3)利用函数的单调性比较大小.3.求函数的单调区间时,要充分利用正弦函数的递增、递减区间.在求复合函数的单调区间时,要先求定义域,同时还要注意内层、外层函数的单调性. 5.三角函数的奇偶性问题判断下列函数的奇偶性. (1)f (x )=x sin(π+x );(2)f (x )=2sin x -1;(3)f (x )=lg(sin x +1+sin 2x ). 思路分析:解答本题要注意以下两个关键问题:(1)先判断定义域是否关于原点对称.(2)。
【北师大版】高中数学必修四全册学案(全册共340页 附答案)
【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。
【北师大版】高中数学必修4第一章:1.5.1正弦函数的图像 教学设计
【北师大版】高中数学必修四 正弦函数的图像教学设计 教学设计一、教材分析《正弦函数的图像与性质》是数学必修四(北师大版)第一章三角函数第五节部分内容,其主要内容是正弦函数的图像与性质。
过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数的图像与性质,为今后余弦函数、正切函数的图像与性质、函数的图像的研究打好基础。
因此,本节的学习有着极其重要的地位。
本节共分两个课时,本课为第一课时,主要是利用正弦线画出x y sin =,[]π2,0∈x 的图像,考察图像的特点,介绍“五点作图法”,再利用图像研究正弦函数的主要性质(定义域、值域、周期性、奇偶性和单调性) 二、设计思想 教法分析(1)教学模式:建构式教学法本节课应用这种教学模式的具体操作程序是:创设问题情景——小组协作探索——猜想尝试整理——动手画图验证——知识巩固应用——方法归纳整合。
这种教学模式的特点是:学生在一定的情境背景(已具备函数基础知识和三角函数线知识)下,借助老师和学习伙伴的帮助,利用必要的学习资料等学习环境要素充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义建构的目的(即在学习过程中帮助学生很好地掌握正弦函数的图像的画法,并对与正弦函数有关的图像平移变换和对称变换达到较深刻的理解)。
(2)教学手段:利用计算机多媒体辅助教学为了给学生认识理解“正弦函数的图像”提供更加形像、直观、清晰的材料,我准备利用电脑动画模拟演示利用单位圆中的正弦线画出正弦函数的图像的过程。
运用多媒体教学手段使问题变得形像直观,易于突破难点,借以帮助学生完成对所学知识的过程建构 学法分析引导学生认真观察“正弦函数的几何作图法”教学课件的演示,指导学生进行分组讨论交流,促进学生知识体系的建构和数学思想方法的形成,注意面向全体学生,培养学生勇于探索、勤于思考的精神,提高学生合作学习和数学交流的能力。
数学高中必修4北师大版课件: 从单位圆看正弦函数的性质 正弦函数的图像
数学 必修4
第一章 三角函数
学案·自主学习
教案·合作探究
4.利用“五点法”作出 y=2sin x,x∈[0,2π]的简图.
解析: (1)列表:
x
0
π 2
π
Байду номын сангаас
3π 2
2π
y=2sin x 0 2 0 -2 0
描点作图,如图所示:
练案·高效测评
数学 必修4
第一章 三角函数
学案·自主学习
教案·合作探究
练案·高效测评
数学 必修4
第一章 三角函数
学案·自主学习
教案·合作探究
练案·高效测评
[走进教材] 1.正弦线 设任意角 α 的终边与单位圆交于点 P,过点 P 作_x_轴__的垂线,垂足为 M,我 们称线段 MP 为角 α 的正弦线,P 叫正弦线的终点. 2.利用单位圆中的正弦线观察正弦函数的性质 y=sin x,x∈[0,2π]
π (1)当 x=__2__时,取到最大值__1__;
3π 当 x=__2__时,取到最小值_-__1_.
故函数的值域为_[-__1_,_1_]__.
数学 必修4
第一章 三角函数
学案·自主学习
教案·合作探究
练案·高效测评
(2)当 x∈0,π2时,函数单调_递__增__; 当 x∈π2,π时,函数单调_递__减__; 当 x∈π,32π时,函数单调_递__减__; 当 x∈32π,2π时,函数单调_递__增__.
(2)明确正弦曲线的结构特征.
由于“五点法”作图时,精确度较差,因此画图之前要做到心中有图,明确
正弦曲线的变化趋势和规律.
数学 必修4
第一章 三角函数
学案·自主学习
高中数学第一章三角函数1.4.3单位圆与正弦函数、余弦函数的基本性质1.4.4单位圆的对称性与诱导
2018-2019学年高中数学第一章三角函数1.4.3 单位圆与正弦函数、余弦函数的基本性质1.4.4 单位圆的对称性与诱导公式(一)学案北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章三角函数1.4.3 单位圆与正弦函数、余弦函数的基本性质1.4.4 单位圆的对称性与诱导公式(一)学案北师大版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章三角函数1.4.3 单位圆与正弦函数、余弦函数的基本性质1.4.4 单位圆的对称性与诱导公式(一)学案北师大版必修4的全部内容。
4。
3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)学习目标 1.会利用单位圆探究正弦函数、余弦函数的基本性质,并能初步运用性质解决相关问题(重点)。
2.了解正弦函数、余弦函数的诱导公式的意义和作用。
3.理解诱导公式的推导过程(重点).4.能运用有关诱导公式解决一些正弦函数、余弦函数的求值、化简和证明问题(难点).知识点1 单位圆与正弦函数、余弦函数的性质正弦函数y=sin x 余弦函数y=cos x定义域R值域[-1,1]周期2π在[0,2π]上的单调性在错误!,错误!上是增加的;在错误!上是减少的在[π,2π]上是增加的;在[0,π]上是减少的(正确的打“√”,错误的打“×”)(1)正弦函数y=sin x与余弦函数y=cos x的定义域都是R。
(√)(2)函数y=sin x在[0,π]上是单调减函数.(×)(3)函数y=cos x在[0,π]上的值域是[0,1].(×)(4)函数y=sin x的最大值为1,最小值为-1.(√)知识点2 2kπ±α,-α,π±α(k∈Z)的诱导公式对任意角α,有下列关系式成立:sin(2kπ+α)=sin α,cos(2kπ+α)=cos α.(1。
北师版高中数学第一章 单位圆与任意角的正弦函数、余弦函数定义 单位圆与正弦函数、余弦函数的基本性质
(2)若已知角α终边上一点P(x,y)是单位圆上的点,则sin α=y,cos α=x;
(3)若已知角α终边上一点P(x,y)不是单位圆上一点,首先求
r= 2 + 2 ,则 sin α= ,cos α= ;
(4)若已知角α终边上点的坐标含参数,则需进行分类讨论.
如果将水车边缘看成一个圆,如何确定水车边缘上的点呢?
-4-
4.1
4.2
单位圆与任意角的正弦函数、余弦函数定义
单位圆与正弦函数、余弦函数的基本性质
激趣诱思
课前篇自主预习
课堂篇探究学习
知识点拨
一、任意角的正弦函数和余弦函数
任意角的正弦函数和余弦函数的定义
1.单位圆:以单位长度为半径的圆称为单位圆.
2.单位圆中任意角的正弦函数和余弦函数的定义:给定任意角α,作
sin < 0,
从而有
sincos > 0,
cos < 0,
所以角 θ 的终边在第三象限,故选 C.
答案C
-18-
4.1
4.2
探究一
单位圆与任意角的正弦函数、余弦函数定义
单位圆与正弦函数、余弦函数的基本性质
探究二
探究三
课前篇自主预习
课堂篇探究学习
课堂篇探究学习
当堂检测
反思感悟 正、余弦函数值的符号判断方法
-13-
4.1
4.2
探究一
单位圆与任意角的正弦函数、余弦函数定义
单位圆与正弦函数、余弦函数的基本性质
探究二
探究三
课前篇自主预习
课堂篇探究学习
课堂篇探究学习
当堂检测
根据正、余弦函数的定义求值
高中数学 第一章 正弦函数的性质教案1 北师大版必修4
§5.3 正弦函数的性质一、教学目标1、知识与技能:(1)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;(2)能熟练运用正弦函数的性质解题。
2、过程与方法:通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
二、教学重、难点重点:正弦函数的性质。
难点:正弦函数的性质应用。
三、学法与教法在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发学生探索出正弦函数的诱导公式;通过例题和练习掌握诱导公式在解题中的作用;在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。
教法: 自主合作探究式四、教学过程(一)、创设情境,揭示课题同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?y(二)、探究新知让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:(1) 正弦函数的定义域是什么? (2) 正弦函数的值域是什么? (3) 它的最值情况如何? (4) 它的正负值区间如何分? (5) ƒ(x)=0的解集是多少? 师生一起归纳得出:1. 定义域:y=sinx 的定义域为R2. 值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性) 再看正弦函数线(图象)验证上述结论,所以y =sinx 的值域为[-1,1] 3.最值:1︒对于y =sinx 当且仅当x =2k π+2π,k ∈Z 时 y max =1 当且仅当时x =2k π-2π, k ∈Z 时 y min =-1 2︒当2k π<x <(2k+1)π (k ∈Z)时 y =sinx >0 当(2k-1)π<x <2k π (k ∈Z)时 y =sinx <04.周期性:(观察图象) 1︒正弦函数的图象是有规律不断重复出现的;2︒规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3︒这个规律由诱导公式sin(2k π+x)=sinx 也可以说明 结论:y =sinx 的最小正周期为2π 5.奇偶性sin(-x)6.单调性增区间为[-2π+2k π, 2π+2k π](k∈Z),其值从-1增至1; 减区间为[2π+2k π, 23π+2k π](k∈Z),其值从1减至-1。
从单位圆看正弦函数的性质正弦函数的图像
例1.用五点法画出y=-sinx在区间[0,2π ]上的简图.
解:列表
x y=sinx y=-sinx
y
0 0 0
π 2
π
0 0
3π 2
2
0 0
1 -1
-1 1
-1
. O
1
y= -sinx,
.
2
.
.
x [0, 2 ]
2
3 2
.
x
y sinx, x [0,2π]
例2.用五点法画出y=1+sinx在区间[0,2π ]上的简图. 解:列表
. 2
1 O -1
y
. .
π 2
.
2
3π 2
x
y sinx, x [0,2π]
2 ]的简图 2.用五点法画出y=sin2x, x∈[0, 解:
x 2x y=sin2x
y 1
0 0 0
π 2
4
π
0
2
3 4
3π 2
2
0
1
-1
O
.
.
.
2
y= sin2x
-1
.
.
x
回顾本节课的收获
1.会用单位圆中的正弦线画出正弦函数图像. 2.掌握正弦函数图像的“五点作图法”. 3.会利用“五点作图法”画一些简单函数的图.
作业
1,p26 练习1 ,2 ,3。 2,优化设计 p10-11页
冰山在海里移动,它之所以显得庄严宏伟, 是因为只有1/8露出水面.
——海明威《老人与海》
重点前面我们定义了任意角三角函数之后又从数的角度研究了三角函数的关系式及诱导公式从这节课开始我们将从函数的角度来一起探讨三角函数的图像与性质首先来看
单位圆与正弦函数教案
单位圆与正弦函数教案一、教学目标1. 让学生理解单位圆的定义和性质,能够画出单位圆并标出重要的角度和点。
2. 让学生掌握正弦函数的定义和性质,能够用正弦函数表示单位圆上的角度对应的坐标值。
3. 培养学生运用单位圆和正弦函数解决实际问题的能力。
二、教学内容1. 单位圆的定义和性质单位圆是半径为1的圆,中心在原点。
单位圆上的角度可以用弧度表示,弧度制的0度对应的角度是0 rad。
单位圆上的角度可以用角度表示,角度制的0度对应的角度是0°。
2. 正弦函数的定义和性质正弦函数是单位圆上角度对应的纵坐标值。
正弦函数的定义域是全体实数,值域是[-1,1]。
正弦函数是周期函数,周期是2π。
三、教学重点与难点1. 重点:单位圆的定义和性质,正弦函数的定义和性质。
2. 难点:正弦函数的图像和性质,如何运用单位圆和正弦函数解决实际问题。
四、教学方法1. 采用讲授法,讲解单位圆和正弦函数的定义和性质。
2. 采用直观演示法,通过图形和动画展示单位圆和正弦函数的图像。
3. 采用练习法,让学生通过练习题巩固所学知识。
五、教学准备1. 教学课件:包括单位圆和正弦函数的图像、性质等内容。
2. 练习题:包括选择题、填空题、解答题等类型,用于巩固所学知识。
3. 图形计算器或数学软件:用于绘制单位圆和正弦函数的图像。
六、教学过程1. 导入:通过一个实际问题引入单位圆和正弦函数的概念,例如“一个物体在一条绳子上做简谐振动,求物体在某一时刻的位移”。
2. 新课讲解:讲解单位圆的定义和性质,如何画出单位圆并标出重要的角度和点。
讲解正弦函数的定义和性质,如何用正弦函数表示单位圆上的角度对应的坐标值。
3. 案例分析:通过一些具体的案例,让学生运用单位圆和正弦函数解决问题,例如求解物体在简谐振动中的位移、速度、加速度等。
4. 课堂练习:让学生在课堂上完成一些练习题,巩固所学知识。
5. 总结与拓展:总结本节课所学的内容,强调重点和难点,并给出一些拓展问题,激发学生的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第一章从单位圆看正弦函数的性质教案
北师大版必修4
一、教学目标
1、知识与技能:
(1)回忆锐角的正弦函数定义;
(2)熟练运用锐角正弦函数的性质;
(3)理解通过单位圆引入任意角的正弦函数的意义;
(4)掌握任意角的正弦函数的定义;
(5)理解有向线段的概念;
(6)了解正弦函数图像的画法;
(7)掌握五点作图法,并会用此方法画出[0,2π]上的正弦曲线。
2、过程与方法:
初中所学的正弦函数,是通过直角三角形中给出定义的;由于我们已将角推广到任意角的情况,而且一般都是把角放在平面直角坐标系中,这样一来,我们就在直角坐标系中来找直角三角形,从而引出单位圆;利用单位圆的独特性,是高中数学中的一种重要方法,在第二节课的正弦函数图像,以及在后面的正弦函数的性质中都有直接的应用;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:
通过本节的学习,使同学们对正弦函数的概念有了一个新的认识;在由锐角的正弦函数推广到任意角的正弦函数的过程中,体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力。
二、教学重、难点
重点:
1.任意角的正弦函数定义,以及正弦函数值的几何表示。
2.正弦函数图像的画法。
难点:
1.正弦函数值的几何表示。
2.利用正弦线画出y =sinx ,x∈[0, 2π]的图像。
三、学法与教法
在初中,我们知道直角三角形中锐角的对边比上斜边就叫着这个角的正弦,当把锐角放在直角坐标系中时,角的终边与单位圆交于一点,正弦函数对应于该点的纵坐标,当是任意角时,通过函数定义的形式引出正弦函数的定义;作正弦函数y =sinx 图像时,在正弦函数定义的基础上,通过平移正弦线得出其图像,再归结为五点作图法。
教法: 探究讨论法。
四、教学过程
(一)、创设情境,揭示课题
我们学习角的概念的推广和弧度制,就是为了学习三角函数。
请同学们回忆(1)角的概念的推广及弧度制、象限角等概念;(2)初中所学的正弦函数是如何定义的?并想一想它有哪些性质?学生思考回答以后,教师小结。
(板书课题)
(二)、探究新知
在初中,我们学习了锐角α的正弦函数值:sin α
=
斜边
对边
,如图:sinA =c a ,由于a
是直角边,c 是斜边,所sinA∈(0,1)。
由于我们通常都是将角放到平面直角坐标系中,我们来看看会发生什么?
在直角坐标系中,(如图所示),设角α(α∈(0,2
))的终边与半经为r 的圆交于点P (a ,b ),则角α的正弦值是:sin α=r
b
.根据相似三角形的知识可知,对于确定的角α,
r
b
都不会随圆的半经的改变而改变。
为简单起见,令r =1(即为单位圆),那么sin α=b ,也就是说,若角α的终边与单位圆相交于P ,则点P 的纵坐标b 就是角α的正弦函数。
直角三角形显然不能包含所有的角,那么,我们可以仿照锐角正弦函数的定义.你认为
B
C
A
a
b
c
该如何定义任意角的正弦函数?
一般地,在直角坐标系中(如上图),对任意角α,它的终边与单位圆交于点P (a ,b ),我们可以唯一确定点P (a ,b )的纵坐标b ,所以P 点的纵坐标b 是角α的函数,称为正弦函数,记作y =sin α(α∈R)。
通常我们用x ,y 分别表示自变量与因变量,将正弦函数表示为y =sinx.正弦函数值有时也叫正弦值.
请同学们画图,并利用正弦函数的定义比较说明:3
π角与37π
角的终边与单位圆的交
点的纵坐标有什么关系?它们的正弦值有什么关系?3π角和38π角呢?-3
π角和35π
角
呢?-32π角和-3
14π角呢?
sin
π=sin 7π=y y = sin
8π=-sin π
=-y
Sin(-3π)=sin(35π)=y sin(-32π)=sin(-3
14π
)=y
通过上述问题的讨论,容易得到:终边相同的角的正弦函数值相等,即
sin(2k π+α)=sin α (k∈Z),说明对于任意一个角α,每增加2π的整数倍,其正弦函数值不变。
所以,正弦函数是随角的变化而周期性变化的,正弦函数是周期函数,2k π(k∈Z,k≠0)为正弦函数的周期。
2π是正弦函数的正周期中最小的一个,称为最小正周期。
一般地,对于周期函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小的正数就叫作f(x)的最小正周期。
【巩固深化,发展思维】
1.若点P(—3,y)是α终边上一点,且sin α=—
32,求y 值.【y = 2.若角α的顶点为坐标原点,始边与x 轴正半轴重合,终边在函数y =—3x (x≤0)
的图像上,则sin α= 。
【10
】 (三)、归纳整理,整体认识:
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
(四)、作业布置:1、已知锐角α终边上一点P (3,4),求α角的正弦值。
2、已知)32(--,
P 是角α终边上一点,求αsin 的值。
3、已知角α的终边落在直线x y 2=上,求αsin 的值。
4、若实数x ,y
满足0404122
2
=++-+y x y
x
,求:⎪⎭⎫ ⎝
⎛-+⎪⎭⎫ ⎝⎛-415
sin 325sin ππy x 的值。
(五)、课后反思:。